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The interpenetration of light and heavy liquids has been studied in a long tube inclined at small
angles � to the horizontal. For angles greater than a critical angle �c �whose value decreases when
the density contrast measured by the Atwood number At increases�, the velocity of the
interpenetration front is controlled by inertia and takes the steady value Vf =ki�At gd�1/2, with ki

�0.7. At lower angles, the front is initially controlled by inertia, but later limited by viscous effects.
The transition occurs at a distance Xfc, which increases indefinitely as � increases to �c. Once the
viscous effects act, the velocity of the front decreases in time to a steady value Vf

� which is
proportional to sin �. For a horizontal tube in the viscous regime, the velocity of the front decreases
to zero as t−1/2. At the same time, the profile of the interface h�x , t� only depends on the reduced
variable x / t1/2. A quasi-unidirectional model reproduces well the variation of the velocity of the
front and the profiles of the interface, both in inclined and horizontal tubes. In the inclined tube, the
velocity of the front is determined by matching rarefaction waves to a shock wave. © 2007
American Institute of Physics. �DOI: 10.1063/1.2813581�

I. INTRODUCTION

Buoyancy-driven flows of a light fluid displacing a
heavier one, or gravity currents of a heavy fluid over a sur-
face, often occur in oceanography, meteorology, and chemi-
cal engineering.1,2 Such flows are driven by buoyancy, but
the physical mechanisms that limit the flow may be very
different depending on the configuration and the type of
fluid. While inertial forces are dominant for large-scale mo-
tions of a low viscosity fluid,3,4 viscosity controls the flow of
very viscous fluids at small thicknesses or inside a narrow
channel. Such viscous flows have been studied experimen-
tally and theoretically,5–7 but often in weakly confined con-
figurations �for instance a fluid spreading inside a thick layer
of another fluid�. Confinement is important in the lock-
exchange problem, which has been investigated both in
horizontal8,9 and sloping10 channels. Inertia, however, domi-
nates in most studies performed in this configuration.

The present work studies the different regimes observed
during the relative interpenetration of two fluids of different
densities but the same viscosity. The fluids start in an un-
stable configuration in the confined geometry of a long
nearly horizontal tube. The study focuses on the transient
regimes observed before the velocity of the front becomes
constant and on the relative influence of the inertial and vis-
cous effects.

In previous papers,11–13 we studied the stationary re-
gimes for tubes at different angles � to the horizontal, for
different density contrasts between the two fluids, and differ-
ent values of their common viscosity. For tubes close to ver-

tical ��→90° �, one observes weak turbulent mixing and the
velocity of the front Vf increases as the tube is tilted away
from vertical. When � decreases further, Vf reaches an upper
limiting value Vf

M which is almost constant with � and which
is controlled by inertia.12 In this case, mixing is much less
efficient than in the first regime. Then, as �→0, Vf decreases
to very low values. In this latter regime, there is a Poiseuille-
like counterflow of the two fluids and viscous forces domi-
nate. The present paper deals exclusively with the two re-
gimes in which the tube is close to horizontal with little or no
mixing.

After discussing the experimental setup and procedure
in Sec. II, the key characteristic velocities of the problem
�inertial and viscous� will be introduced in Sec. III. This
allows us to suggest and test scaling laws. Then, the different
regimes of the motion of the front observed at early times
will be identified qualitatively in Sec. IV. A simple approxi-
mate model will be developed to account for them in Sec. V
and compared with the experimental data in Sec. VI. Finally,
a more elaborate model in Sec. VII allows us to predict both
the concentration profiles and the velocity of the front both
in the transient and stationary regimes: it will be applied to
horizontal and tilted tubes.

II. EXPERIMENTAL SETUP

The experiments are realized in a 3.5-m-long transparent
tube with a d=20 mm internal diameter which can be split
into two isolated parts by a gate valve located at the half
length �Fig. 1�. The lower half of the tube is initially filled
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with a light dyed fluid �nigrosin-water solution of density �1�
and the upper one by a heavy transparent fluid �salt-water
solution of density �2�. The density contrast between the flu-
ids is characterized by the Atwood number At= ��2

−�1� / ��2+�1�, where At ranges between 10−3 and 4�10−2.
The dynamic viscosities � of the two fluids are equal and
different solutions with 10−3���4�10−3 Pa s have been
used. The tube is closed at both ends so that, in order to
conserve mass, the upward flow of light fluid is compensated
by a downward flow of heavy fluid; the Atwood number At
is low enough so that the Boussinesq approximation is valid
and the flows of both fluids are symmetrical. In the first
series of experiments, the tube is illuminated from the back
and, at the initial time, the gate valve is opened and images
of flow in the tube are recorded at regular time intervals.
Video recordings are also realized to examine local, fast mo-
tions of the fluids during the flow. The front velocity Vf is
determined directly from its displacement between succes-
sive images.

III. CHARACTERISTIC VELOCITIES
IN THE STATIONARY FLOW REGIMES

When no turbulence is present, the flow is nearly parallel
in the bulk of the fluid outside the vicinity of the upper and
lower fronts �Fig. 1�: inertial terms are negligible in the
equation of motion of the two fluids, and a Poiseuille-like
developed flow is observed. Then, buoyancy forces ���2

−�1�g are balanced by viscous forces scaling like �V /d2,
allowing one to define a characteristic velocity,

V� =
At gd2

�
, �1�

where � is defined as 2� / ��2+�1�. Actually, for a counter-
flow parallel to the tube axis, the driving force is associated
to the longitudinal gravity component g sin � so that the rel-
evant characteristic viscous velocity is V� sin �.

Near to the front, the flow can no longer be considered
as quasiparallel: inertial terms resulting from three-
dimensional effects are then dominant �the Reynolds number
is generally �1�. Viscous forces are localized in a boundary
layer close to the interface: the outside flow may therefore be
considered as potential in this region. In this case, velocity
variations between the tip of the front and its side �where
the interface is nearly parallel to the tube axis� result in
Bernoulli pressure differences of the order of �V2. These will
be compensated by hydrostatic pressure differences that are

of the order of ��2−�1�gd �the vertical size of the front is of
the order of d for all values of ��. This suggests the intro-
duction of a characteristic inertial velocity,

Vt = �At gd . �2�

Using Vt and d as the characteristic velocity and length
scales allows one to define the characteristic Reynolds
number,

Ret =
Vtd

�
=�At gd3

�2 =
V�

Vt
. �3�

One defines also a second Reynolds number Re�=V� d /�
�=Ret

2� based on the characteristic viscous velocity.
The relevance of the characteristic velocities Vt and V� is

checked by plotting in Fig. 2 the normalized stationary front
velocity Vf /Vt as a function of the ratio V� sin � /Vt

=Ret sin �.12 The values plotted in Fig. 2 have been deter-
mined from the displacement of the front measured at long
times �but before reaching the ends of the tube�. It will be
seen below that they are an overestimation for low tilt angles
� but that they represent, however, a good approximation.
All data points in the figure correspond to the two flow re-
gimes observed close to horizontal and for which there is
little or no mixing between the fluids.

For Ret sin �	50, all data points corresponding to dif-
ferent values of At, �, and � �see caption� collapse onto a
single linear variation �Vf �0.0145 V� sin �� with a propor-
tionality constant independent of the control variables. The
relevant characteristic velocity for Ret sin �	50 is therefore
V�, implying that the front velocity is controlled by viscous
dissipation in the bulk of the fluid.

For Ret sin �
50, the points are close to a horizontal
line corresponding to Vf

M =0.7Vt. The relevant characteristic
velocity is therefore Vt in this domain, where it has been
shown13 that mixing is weak and that the density contrast at
the front is equal to the imposed density difference of the
unmixed fluids.

FIG. 1. Experimental setup.

FIG. 2. Variation of the normalized stationary front velocity Vf /Vt as a
function of the normalized characteristic viscous velocity V� sin � /Vt

�=Ret sin ��. Data correspond to different tilt angles �0���30° � and to
density contrasts: At=3.5�10−2 ���, 10−2 ���, 4�10−3 ���, 10−3 ���, and
4�10−4 ��� with �=10−3 Pa s and to viscosities �=10−3 Pa s ���,
4�10−3 Pa s ��� with At=10−2. Dotted line: Vf =0.7Vt; dashed line:
Vf =0.0145V� sin � �see Eq. �10��.
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The next sections of the paper are devoted to the study
of transient flows both in the viscous regime and the first part
of the “plateau” inertial regime.

IV. QUALITATIVE OBSERVATIONS
OF THE TRANSIENT REGIMES AT EARLY TIMES

A qualitative view of the occurrence and duration of
transient regimes is provided by the spatiotemporal diagrams
displayed in Fig. 3: they correspond to three different tilt
angles � between 0° and 5° but with the same values of At,
d, and �. Sequences of views of the tube obtained at early
times during the same experiments are displayed on the left
of the figure. In all cases, there is almost no mixing between
the fluids and the angle of the pseudo-interface �i.e., the ap-
parent interface between the miscible fluids while the mixing
is negligible� with the tube axis is very small, except near the
front. Therefore, the quasiparallel flow approximation is
valid in between the fronts. In the images corresponding to
�=2° and 5°, one observes a bump at the front �barely vis-
ible for �=0°� that results from the inertial effects discussed

in the preceding section. On the side of the bump where the
velocity is highest, there is a larger Bernoulli pressure drop
than at the tip of the front, which is a stagnation point. This
is compensated by the hydrostatic pressure term due to the
locally larger thickness of the bump of the interface �when
the velocity is of the order of the characteristic velocity Vt

discussed above, this thickness is of the order of d�.
The instantaneous front velocities are determined in the

spatiotemporal diagrams from the local slope of the bound-
aries separating the gray regions of the diagram �interpen-
etration zones� from the white and black regions �pure trans-
parent and dyed fluid�. It is observed that the boundaries
corresponding to the rising and falling fronts have equal
slopes so that the two front velocities are the same. All three
experiments are within the range 0	Ret sin �	50 estimated
in the preceding section for obtaining a viscous regime at
long times. Experiment �a� corresponding to �=5° is close to
the limit with the inertial regime �Ret sin �=48.5�. In this
case, as well as at higher angles �, the boundaries marking
the front displacement are straight �dashed lines� so that the
front velocity is constant during the experiment.

For the horizontal tube ��=0° �, the front velocity Vf �as
estimated from the slope of the boundary� decreases steadily
with time, case �c�. In the intermediate case �b� ��=2° �, Vf

decreases at first but reaches a constant value at longer times
�dashed line�. The duration of the transient regime increases,
therefore, when the tube is closer to horizontal.

V. TRANSIENT VISCOUS REGIME IN HORIZONTAL
AND TILTED TUBES

A. Simple model of the transient viscous regime

In this section, an approximate relation is derived to es-
timate the variations of the front velocity Vf with time. A
more complete approach will be used in Sec. VII to deter-
mine the full interface profile.

Figure 4 displays schematically the distribution of the
two fluids in the vertical diametrical plane of the tube. Flow
results from the combination of the effects of the compo-
nents of gravity parallel and perpendicular to the tube axis.
The transverse gravity component g cos � is only effective
when the interface between the two fluids is tilted with re-
spect to the tube axis �i.e., if �h /�x�0 in Fig. 4�. The axial
gravity component g sin � remains effective even when the
interface is nearly parallel to the tube axis at very long times.
However, it vanishes for horizontal tubes. In the following,
the flow is assumed to be quasiparallel to the tube axis so

FIG. 3. Right: spatiotemporal diagrams of the average concentration varia-
tions �gray levels� along the tube for �a� �=5°, �b� �=2°, and �c� �=0° with
At=3.9�10−3, �=10−6 m2 /s, d=20 mm �corresponding values of Ret sin �:
48.5, 19.5, 0�. Vertical scale: time; horizontal scale: distance along the tube.
Dashed lines have slopes equal to velocities estimated for the stationary
regime. Left: sequences of views of the tube for a flow regime correspond-
ing to the spatiotemporal diagram.

FIG. 4. Schematic view of the viscous counterflow of the fluids in the
transient regime.
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that transverse pressure gradients reflect only hydrostatic
pressure variations. This assumption is valid if the local
slope �h /�x of the interface is small enough; this is not the
case at short times, right after the opening of the valve. Writ-
ing the pressure difference between two nearby points of the
interface and taking into account the continuity of pressure
across the interface leads to

��2 − �1�g cos �
�h

�x
= − � �P1

�x
−

�P2

�x
	 , �4�

��vxi =
�Pi

�x
+ �ig sin � �i = 1,2� . �5�

Flow results, therefore, from a combination of longitudinal
pressure gradients proportional to g cos ��h /�x �Eq. �4�� and
longitudinal components of gravity proportional to g sin �.

Dimensionally, integrating Eq. �5� in the tube section
x=0, corresponding to the gate valve, and where h=0, must
lead to expressions of the following type for the mean ve-
locities vx1

m and vx2
m :

vx1
m = −

F�0�d2

�
� �P1

�x
+ �1g sin �	 ,

�6�

vx2
m = −

F�0�d2

�
� �P2

�x
+ �2g sin �	 .

The coefficient F�0� is the same in both relations due to the
symmetry of the equations and of the flow geometry. This
symmetry also allows one to compute F�0� analytically12

with

F�0� =
1

16
−

1

2�2 � 0.0118. �7�

The volume flow rates Q1 and Q2 are equal and opposite in
all tube sections to ensure mass conservation so that, for
x=0, vx1

m =−vx2
m =vvisc �the areas occupied by the two fluids

have the same value �d2 /8�. The common value vvisc of the
two velocities is computed by combining Eqs. �4� and �6�,

vvisc = F�0�
At gd2

�
sin ��1 +

�h

�x
cot �	 . �8�

At long times, the slope of the interface decreases to zero and
the second term of Eq. �8� is negligible: from Eqs. �1� and
�8�, vvisc is then equal to

vvisc
� = F�0�

At gd2

�
sin � = F�0�V� sin � . �9�

This value will represent in the following a convenient ref-
erence velocity. The front velocity Vf =dXf /dt may be ex-
pected to follow the same scaling laws as vvisc �mass conser-
vation would require that these velocities be equal if h
remained equal to zero up to the front�. We assume, there-
fore, that the limiting velocity Vf

� satisfies

Vf
� = k�V� sin � , �10�

in which k� is a coefficient of the same order as F�0� �but
generally different�. Assuming that the dependence of Vf on

the slope of the interface is the same as that of vvisc, Eq. �8�
leads to

Vf = Vf
��1 +

�h

�x
cot �	 . �11�

In the special case of horizontal tubes, the expression of vvisc

is obtained by combining Eqs. �4� and �6�,

vvisc = F�0�V�

�h

�x
, �12�

and Vf is assumed to obey the similar relation,

Vf = k�V�

�h

�x
. �13�

The following expression of the slope �h /�x is assumed to
analyze the variations of the flow velocity with time:

�h

�x
= 


d

2Xf
, �14�

in which Xf is the distance of the front from the gate valve
and 
�1 is equal to the ratio of the coordinates along the x
axis of points F and F� in Fig. 4; the coefficient 
 is, for
simplicity, assumed to remain constant during the
experiment.

Finally, for ��0°,

Vf =
dXf

dt
= k�V� sin ��1 + 
 cot �

d

2Xf
	 , �15�

and, for �=0°,

Vf =
dXf

dt
= k� 
V�

d

2Xf
. �16�

B. Front velocity variations with time
at different tilt angles

Figures 5�a�–5�c� display variations of Vf as a function
of the distance Xf predicted by Eqs. �15� and �16�. At short
times, Eqs. �15� and �16� predict a divergence of the velocity
of the viscous flow. This is not physically acceptable and Vf

will be limited by inertial effects right at the front �see the
above discussion�; it will then be of the order of the charac-
teristic inertial velocity Vt with Vf =kiVt. Note that, right after
the opening of the valve, the fluid accelerates briefly until the
inertial velocity kiVt is reached. This phase of the front mo-
tion is, however, too short to be studied precisely experimen-
tally here.

Three different cases are finally expected in our
experiments.

�a�: ��0°, kiVt�k�V� sin � �Fig. 5�b��: the velocity vvisc

remains always larger than the inertial velocity kiVt.
The front velocity is then always determined by inertial
effects and equal to kiVt.

�b�: ��0°, kiVt
k�V� sin � �Fig. 5�b��: the front velocity
Vf is equal to kiVt at short times until the velocity vvisc

from Eq. �15� is lower than kiVt. Then, the front veloc-
ity is limited by viscous dissipation in the whole flow
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and the front velocity decreases down to the limiting
value, Vf =k�V� sin � following Eq. �15�.

�c�: �=0°, kiVt
k�V� sin � �Fig. 5�c��: the results are the
same as in the previous case, except that the limiting
velocity at long times is zero.

C. Domains of existence of the different flow regimes

The discussion of the previous part implies that the dy-
namics of the front remains inertial at all times if the inertial
velocity kiVt is lower than the limiting viscous velocity
k�V� sin �. The transition toward a regime in which the dy-
namics is viscous at long times takes place when these two
velocities are equal, i.e., at a critical tilt angle �c such that

sin �c =
ki

k�

Vt

V�

=
1

Ret

ki

k�

. �17�

Using the values of ki and k� deduced below from the ex-
periments leads to a value of Ret sin �c of the order of 50 in
good agreement with the transition value in Fig. 2. As could
be expected, the angle �c decreases when the inertial Rey-
nolds number Ret increases. For �	�c, the front dynamics
becomes controlled by viscosity when the distance Xf is
larger than the transition value Xfc at which vvisc is equal to
the inertial velocity kiVt. The distance Xfc should then satisfy

Xfc

d
=


 cos �

2�sin �c − sin ��
. �18�

The variation with � of the distance Xfc at which the transi-
tion takes place is displayed in Fig. 6 for fixed values of the
parameters d, �, At, and for 
=1 �continuous line�. The ver-
tical dashed line marks the critical angle �=�c: one observes

that Xfc diverges when � increases toward �c.
The transition angle and distance also depend on the

value of Ret. As Ret increases, the transition angle �c be-
comes smaller, Eq. �17�. At a given angle 0	�	�c, Vf

remains at first constant in the inertial regime and decreases
toward the limiting value Vf

� after the viscous regime is
reached �the transition distance Xfc increases with Ret�. The
dotted and dash-dotted lines in the figure are guides for the
eye: they represent, for each tilt angle, the distance at which
the contribution of transient effects represents, respectively,
100% and 10% of the stationary term. The distance neces-
sary to reach the limiting velocity with a good approximation
increases, therefore, significantly when �→0. More specifi-
cally, after a distance Xf =1.5 m �half the tube length�, the
transient term still represents a relative correction of more
than 10% for �	4°. This implies that the values of Vf

� that
were directly determined from the spatiotemporal diagrams
may be overestimated so that a more precise determination
taking into account the transient effects is necessary. When
�=0 �horizontal tube�, the limiting velocity is zero and the
motion always appears as transient.

VI. COMPARISON WITH EXPERIMENTAL DATA

A. Initial inertial regime

Two limiting examples of the occurrence of inertial re-
gimes are displayed in Fig. 7.

For �=0°, a transition between two regimes in which the
distance Xf is, respectively, proportional to t and t1/2 is
clearly visible in log-log coordinates �inset�. At early times,
the velocity is limited by inertial effects and has a constant
value kiVt with Xf � t; then, as viscosity becomes dominant,
the velocity decreases toward zero with Xf � t1/2 as predicted
in Fig. 5�c�.

For �=4°, and with the same values of At, d, and �, Xf

increases linearly with t at all distances investigated �main
plot of Figs. 7 and 9�: at this tilt angle, very close to the
critical value �c, the transition toward the viscous regime

FIG. 5. Front velocity variation as a function of distance Xf from the
gate valve �continuous line�. �a� ��0°: kiVt�k�V� sin �. �b� ��0°:
kiVt
k�V� sin �. �c� �=0°. Dashed line: k� V� sin �. Dotted line: Xf =Xfc.
Arrows: trend of the evolution of the velocity with time.

FIG. 6. Map of regimes observed as a function of tilt angle � and distance
Xf of the front from the gate valve. Control parameter values: At=3.9
�10−3, d=20 mm, �=10−6 m2 /s, and 
=1. Continuous line: boundary be-
tween inertial and viscous regimes �Xfc����. Vertical dashed line: upper
limiting angle for observing viscous regime. Dotted line: transient term in
Eq. �15� equal to the stationary term. Dash-dotted line: transient term in Eq.
�15� equal to 10% of the stationary term.
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would take place at distances beyond the experimental range
so that the slope of the curve reflects solely the transient
inertial regime. A similar linear increase of Xf with t is also
observed at higher angles �.

At intermediate angles �0° 	�	4° �, Xf increases at
first linearly with the time t in the inertial regime �Fig. 7�;
then, a downward curvature appears after the transition to-
ward the viscous regime. The inertial velocity ki Vt in the
linear region is determined by a linear fit on the variation of
Xf: the variation with � of values of ki=Vf /Vt deduced in this
way is displayed in Fig. 8.

The coefficient ki increases at first roughly linearly from
ki�0.5 for �=0° up to ki�0.65 for �=5° and then levels off
toward a value ki�0.7 for ��10°. The variation near �
=0° may reflect the lesser amount of buoyant energy avail-
able to compensate for the viscous dissipation.

Regarding the transition from the inertial to the
viscous regime, the distance Xf corresponding to this transi-
tion may be detected from the onset of deviations from

the linear variation. The corresponding distances have been
compared with transition distances estimated from the dia-
gram of Fig. 6. The transitions take place on the experimen-
tal curves of Fig. 7, respectively, for Xf =0.4±0.1 m�4° �,
Xf =0.33±0.03 m�3° �, Xf =0.23±0.03 m�2° �, and Xf

�0.125±0.05 m�0° � in good agreement with the respective
theoretical values Xf =0.5 m, Xf =0.3 m, Xf =0.2 m, and
Xf =0.12 m. For �=4°, the transition is poorly defined due to
the vicinity of �c.

B. Viscous regime

Figure 9 displays the same experimental variation of the
distance Xf with the time t for different tilt angles � �Fig. 7 is
actually a zoomed view of the same data at early times while
Fig. 9 corresponds to the full range of distances over which
the front displacement has been measured�. Qualitatively, Xf

increases faster with t at larger tilt angles �. Also, the tran-
sient phase before the viscous stationary regime is reached is
shorter and shorter as � increases. These experimental curves
have been fitted by the following theoretical variations ob-
tained by integrating analytically Eqs. �15� and �16� with
respect to Xf �continuous lines�:

t =
1

k�V� sin �

Xf −


d cot �

2
ln�1 +

2Xf


d cot �
	� + const,

�19�

valid for ��0° and

t =
1

k�V�


Xf
2

d
+ const, �20�

valid for �=0°. In these fits, 
 �assumed to be constant with
time�, k�, and the integration constant are the adjustable pa-
rameters while V�, �, and d are known.

Equation �20� accounts for the variation of Xf as t1/2 at
long times for horizontal tubes �inset of Fig. 7�. Other values
of the exponent have been reported for viscous spreading on

FIG. 7. Variation of the distance Xf of the front from the gate valve with the
time t �At=3.9�10−3, d=20 mm, �=10−6 m2 /s�. Lines: fit of data points
corresponding to early times by a linear variation �continuous lines�. ���:
�=0°; ���: �=2°; ���: �=3°: ���: �=4°. For clarity, the different curves
have been shifted upward relative to each other by a distance increasing
with �. Inset: variation of Xf with time for �=0 in log-log coordinates �no
shift has been introduced on the values of Xf�.

FIG. 8. Variation of the coefficient ki characterizing the front velocity in the
inertial regime as a function of the tilt angle � �At=3.9�10−3, d=20 mm,
�=10−6 m2 /s�. The dashed line is a guide for the eye; horizontal and vertical
lines on the data points indicate the error bars.

FIG. 9. Front displacement Xf as a function of elapsed time t for different
tilt angles � �At=3.9�10−3, d=20 mm, and �=10−6 m2 /s�. Symbols: ex-
perimental points. Lines: fitted curves obtained using Eqs. �19� and �20�.
���: �=0°; ���: �=1°; ���: �=2°; ���: �=5°.
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horizontal planes7 but in different configurations; three-
dimensional simulations in the same geometry as the present
one do provide values of the order of 0.5.14

The good fits displayed in Fig. 9 for the full range of tilt
angles investigated indicate that the assumption of a value of
the coefficient 
 constant with time is reasonable for fitting
purposes. The fitted value of 
 decreases from 
=0.7 for
�=0° to 
=0 for �=5°: this reflects an increasing magni-
tude of the inertial effects at the front, resulting in a higher
height of the interface right behind the front and, therefore,
in a reduced slope of the upstream profile.

The key feature of these fits is the fact that they provide
a precise value of the coefficient k� even if the stationary
limiting velocity cannot be reached during the experiment.
Using this procedure allows one to take into account the
influence of the logarithmic term in Eq. �19�, which may
remain significant for a long distance and induce errors in the
front velocity measurement.

The velocities Vf
�=k�V� sin � �Eq. �10�� deduced from

these values of k� are plotted in Fig. 10 as a function of sin �.
The variation of Vf

� with sin � is precisely linear as expected,
which implies that k� is nearly constant with �. For �=5°
��c, the value of Vf

� is slightly lower than the linear trend,
implying that inertial forces already slow down the front. As
a reference, the variation of the velocity vvisc

� ��� �Eq. �9�� is
represented by the dotted line with Vf

��1.2�vvisc
� . A more

precise theoretical estimation will be provided in Sec. VII C.
Note that stationary front velocities plotted in Fig. 2

were directly estimated from the slope of the features mark-
ing the front motion in the spatiotemporal diagrams. These
estimations may be higher �by a few percent� than those
plotted in Fig. 10 because the front motion was not yet sta-
tionary, due to the large relative influence of the logarithmic
term of Eq. �19�.

VII. VISCOUS SPREADING
OF THE PSEUDO-INTERFACES

A. Experimental pseudo-interface profiles
in horizontal tubes

Up to now, only front velocity variations have been dis-
cussed, both for � equal to and higher than 0°, since it is the
most precise measurement available. However, in these weak
mixing regimes, it is also possible to determine the profile of
the “pseudo-interface” of the fluids by using a fluorescent
dye and illuminating a vertical diametrical plane of the tube
by a thin plane laser light sheet. The use of this so-called LIF
technique in the present experiment has been described in
Ref. 13. To reduce optical distortion, the tube is enclosed in
a water-filled cell with a square cross section: for practical
reasons, the domain of observation �entirely within the upper
half of the tube length� is 0.8 m long and the minimum use-
ful distance from the gate valve is 0.3 m. This method pro-
vides an excellent contrast between the two fluids, and
their pseudo-interface is determined easily by a thresholding
technique.

This procedure has been applied to horizontal tubes in
which the pseudo-interface is particularly sharp. This case is
also of special interest since, in the viscous regime, the front
displacement has been found to satisfy a well defined scaling
law Xf � t1/2. To verify whether the profile h�x , t� displays
similar properties, the normalized front profile in the vertical
diametrical plane is plotted in Fig. 11 as a function of the
reduced distance x / �V� dt�1/2 �only the upper halves of the
tube length and of its diameter appear in the figure�. Profiles
corresponding to different times have been superimposed
�gray lines� and an excellent collapse of all curves is ob-
served �note that the distance of the observation window
from the front varies from one profile to another�. The ex-
perimental curve does not extend down to x / �V� dt�1/2=0

FIG. 10. Variation of the stationary front velocities as a function of sin �
�At=3.9�10−3, d=20 mm, and �=10−6 m2 /s�. Black circles: experimental
values estimated from the fits of Fig. 9. Dotted line: estimation of stationary
front velocity assuming Vf

�=vvisc
� �Eq. �9��. Continuous line: estimation from

Eq. �35� derived theoretically in Sec. VII C.

FIG. 11. Gray lines: overlay of normalized front profiles h�x , t� /d deter-
mined at intervals �t=25 s by the LIF technique as a function of the nor-
malized distance x / �V� dt�1/2 from the gate valve �continuous gray curves�.
Times have been shifted by a constant small amount �10 s� reflecting ex-
perimental delays in order to obtain an optimal collapse. Continuous dark
lines: theoretical profiles corresponding to different times determined by a
numerical integration of Eq. �27�. Later times correspond to the rightmost
curve. The horizontal scale for the experimental data has been adjusted so
that the experimental and theoretical displacements with time of the front tip
coincide.
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due to the limited duration of the experiments and to the
finite distance between the gate valve and the measurement
window.

This collapse demonstrates that the variation of the
height h�x , t� of the interface depends only on the variable
x / t1/2. However, although the profile spreads out as t1/2 as for
a diffusive process, it is not simply diffusive: more specifi-
cally, the profile is delimited by a well-defined front while
the slope of simple diffusive profiles would decrease con-
tinuously with distance. Note that the self-similarity of the
curves at long times is only satisfied for horizontal tubes
�=0. For ��0, additional terms appear �reflecting the non-
zero final front velocity Vf

�� and the profiles are no longer
similar.

B. Modeling the interface profile
in the horizontal tube

The notations will be the same as in Fig. 4 and one
assumes that the flow velocity is quasiparallel and that the
interface has a constant height in a section �x=cst� of the
tube. The velocities vxi must be continuous at the interface
�as well as the viscous shear stresses� and vanish on the tube
walls. Under these assumptions, Eqs. �4� and �5� remain
valid, but Eq. �12� cannot be generalized since, for Xf �0,
the areas occupied by the two fluids and their absolute mean
velocities are different. We shall use instead the flow rates Q1

and Q2 of the two fluids, which still satisfy Q1+Q2=0 in all
tube sections so that

Q1 = − Q2 = F�h�x,t�
d

	V�

�d2

8

�h

�x
. �21�

For h�x , t� /d=0, the two fluids occupy the same area �d2 /8;
Eq. �21� is equivalent to Eq. �12� within a factor �d2 /8.

At other distances x�0, the function F�h /d� must be
symmetrical with respect to 0 with F�±1 /2�=0 �one of the
fluids disappears�. Close to the walls �h /d→ ±1 /2�, F�h /d�
may be estimated analytically using the lubrication approxi-
mation when fluid 1 flows inside a thin layer �the thickness
must be small compared with the transverse width of the
interface�. Since Q1=−Q2, the driving force for fluid 2 is
negligible compared with that in fluid 1 �the same flow rate
takes place in a much larger area�. This implies, from Eqs.
�4� and �5�, that �P2 /�x=0 so that �P1 /�x= ��1−�2�g�h /�x.
For the same reason, the shear stress in fluid 2, and therefore
the velocity gradient, may be assumed to be zero: they will
then also be zero in fluid 1 by continuity at the interface.
Integrating across the width of this interface elementary local
flow rates driven by the pressure gradient �P1 /�x and as-
sumed to take place between parallel planes provides the
following expression of F�h /d�:

F�h�x,t�
d

	 =
32�2

105�
�1 −

2h

d
	7/2

. �22�

The 7 /2 power combines the factors �1−2h /d�3 and
�1−2h /d�1/2 reflecting, respectively, the influences of the
thickness and of the width of the film of liquid 1 in the
section x=cst. The flow rate Q2 is computed for fluid 2 in the

same way when h→−1 /2, leading to an identical relation,
this time as a function of 1+2h /d.

These two expressions may be combined into the follow-
ing one:

F�h�x,t�
d

	 =
4

105�
�1 −

4h2

d2 	7/2

. �23�

Although these equations should only be valid if h→ ±1 /2,
the value obtained by taking h=0 in Eq. �23�, i.e.,
1.21�10−2, is close the value of F�0� from Eq. �7�
�1.18�10−2�. This suggests to use the following empirical
expression of F for all values of h:

F�h�x,t�
d

	 = F�0��1 −
4h2

d2 	7/2

. �24�

To verify the validity of this expression, Eqs. �5� have been
integrated numerically in the 2D section of the tube using a
finite-difference method for different values of h, under the
same assumptions as above regarding the boundary condi-
tions. The results were in agreement to within better than
2.5% with Eq. �24�, which is therefore used in the following
to estimate Q1 and Q2.

The conservation of the mass of fluid 1 can be written as

�Q1

�x
= −

dA1

dh

�h

�t
= �d2 − 4h2�h

�t
, �25�

in which

A1�h� =
d2

4
arccos�2h

d
	 −

1

2
h�d2 − 4h2 �26�

is the area occupied by fluid 1 in the tube section and
�d2−4h2�1/2 is the width of the interface in the tube section.

Combining Eqs. �21�, �24�, and �25� leads to the nonlin-
ear diffusion equation satisfied by the local height h�x , t� of
the interface profile,

�h

�t
=

F�0�V��d

8

1

�1 − 4h2/d2�1/2
�

�x

�1 −

4h2

d2 	7/2�h

�x
� .

�27�

Equation �27� has been integrated numerically: at t=0, h was
given values h=−1 /2 and 1 /2, respectively, for x	0 and
x
0, with sharp linear variation from −1 /2 to 1 /2 near
x=0. To avoid numerical divergence issues, the ratio
1 / �1−4h2 /d2�1/2 is replaced by 1 / �1.0001−4h2 /d2�1/2 �the
result was independent of the actual �small� value of the shift
from 1�.

These theoretical variations of the dimensionless height
h /d as a function of the normalized distance x / �V� dt�1/2 at
different times have been added to Fig. 11 �dark lines�: they
converge toward a self-similar profile depending only on the
reduced variable x / t1/2.

These curves first allow one to determine the variation of
the distance Xf with time: in the self-similar regime, the cor-
responding predicted value of the ratio Xf / �V� dt�1/2 is
0.1045. Experimentally, the proportionality constant between
Xf and t1/2 can be determined from such fits as that displayed
in Fig. 9 for �=0°. Several experiments have been per-
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formed and the values obtained for the ratio Xf / �V� dt�1/2

agree with the theoretical one with a dispersion of ±7.5%
�asymmetries of up to 10% have in particular been observed
between the velocities of the upward and downward moving
fronts�. The measurement is, however, very sensitive to mi-
nor errors in the horizontality of the tube.

Moreover, after adjusting slightly the horizontal scale of
the theoretical profiles so that the front tips coincide exactly
�as in Fig. 11�, the theoretical profiles are very similar to the
experimental ones �gray lines�. The sharp slope at the fronts
is in particular well reproduced.

C. Modeling the interface profile in tilted tubes

Equation �27� is generalized by modifying Eq. �21� to
include the effect of the longitudinal gravity component
g sin � and of the reduced transverse gravity g cos �. For a
given value of h, F�h� remains the same and only the factor
describing the driving force needs to be modified so that Eq.
�21� becomes

Q1 = − Q2 = F�h�x,t�
d

	V�

�d2

8
�cos �

�h

�x
+ sin �	 . �28�

The mass conservation relation �25� remains unchanged and
Eq. �27� becomes

�h

�t
=

F�0�V��d

8

1

�1 − 4h2/d2�1/2

�
�

�x

�1 −

4h2

d2 	7/2�cos �
�h

�x
+ sin �	� . �29�

At long times when �h /�x� tan �, this reduces to the hyper-
bolic equation

�h

�t
= − sin �F�0�V�

7�h

2d
�1 −

4h2

d2 	2�h

�x
. �30�

Each point of the interface corresponding to a given value of
h moves then at a constant velocity,

VK�h� = sin �F�0�V�

7�h

2d
�1 −

4h2

d2 	2

. �31�

This kinematic velocity VK�h� has a maximum for h=hM

=d /201/2	0.5d �and a minimum at the symmetric point
−hM�. The corresponding maximum velocity value is

VKM
= F�0�V� sin �

28�

25�5
� 1.57vvisc

� . �32�

As a result of this appearance of a maximum, the profiles
must be bounded by two symmetric shock waves moving in
opposite directions. The velocity VS�h� of a shock of height h
is given by conservation of mass as

VS�h� =
Q�h�
A�h�

, �33�

in which Q�h� is given by Eq. �28� and A�h� by Eq. �26�. At
long times such that Eq. �31� is valid in the vicinity of the
front, the velocity VS�h� must be equal to VK�h� by

continuity. The corresponding theoretical value of the shock
velocity is

VS
� = 1.165vvisc

� , �34�

which is very close to the experimental value.
To determine the profile of the interface, Eq. �29� has

been integrated numerically: Figures 12�a� and 12�b� display
profiles corresponding to different times. In Fig. 12�a�, the
scale of the distances has been normalized by VKM

t to allow
one to compare the curves with the variation of the normal-
ized kinematic wave velocity VK�h� /VKM

�dash-dot-dotted
line�. The latter are in agreement with the numerical profiles
in the rarefaction part of the curves up to values of x / �VKM

t�
increasing slightly with time. Then h /d increases very
sharply with x / �VKM

t� as expected for a shock front structure.
The corresponding value of x / �VKM

t�, which represents the
location of the front, decreases as expected with time toward
the theoretical value for which the curves VK�h� and VS�h�
intersect.

The detailed structure of the front is shown in Fig. 12�b�:
it also displays the profiles of h�x , t� /d at different times t but
the horizontal scales are now not normalized by t but are
shifted by a distance Xf�t� such that the points corresponding
to 2h /d=1 coincide �2h�Xf�t�� /d=1
. The front part of the

FIG. 12. �a� Numerical profiles 2h�x / t� /d of the interface as a function of
x / �VKM

t� at different normalized times: t=25,50,100,200 �dashed lines
with, respectively, decreasing dash lengths�. Dash-dotted �dash-dot-dotted�
line: variation of 2h /d as a function of the corresponding reduced shock
wave velocity VS�h� /VKM

from Eq. �33� �reduced theoretical kinematic in-
terface velocity VK�h� /VKM

from Eq. �31�� �b� Variation of 2h /d as a func-
tion of the normalized distance 2�x−Xf� /d cot � �same code as in �b� for the
lengths of dashes�. Continuous line: theoretical stationary profile. Only parts
of the profiles corresponding to x�0 and y�0 are shown.
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different profiles corresponding to 2h /d�0.5 also nearly co-
incide while the slope of the rear part decreases at longer
times t. The global profile tends toward a limiting curve
�continuous line� representing the solution of Eq. �29�, which
is stationary in the reference frame of the moving front. To
compute this curve, the cos � term is not neglected in Eq.
�29�. Note that the front appears very abrupt at long times in
Fig. 12�a� only because the horizontal scale is normalized by
time.

D. Experimental and theoretical front velocities
in tilted tubes

To determine precisely the front velocity at different
times and compare its variation with the experimental re-
sults, the displacement of the front with time is analyzed
with the same method as the experiments. The displacement
of the front is plotted as a function of time �Fig. 13� and
fitted by Eq. �19� in order to estimate precisely the limiting
velocity at long times. A very good fit of the equation �con-
tinuous line� with the numerical data �� symbols� is ob-
tained for a value 
=0.77 of the parameter relating the slope
�h /�x to the ratio d / �2Xf�. Taking into account the different
normalization coefficients leads to the following relation be-
tween the front velocity Vf

� and the reference velocity
vvisc

� =F�0�V� sin � by

Vf
� = 1.165vvisc

� . �35�

This theoretical variation is plotted in Fig. 10 �continuous
line�: the predicted slope coincides with that of the linear
regression on the experimental data to better than 1%. This
value coincides also with the theoretical estimation of Eq.
�34�. Regarding the transient front velocity variations, ex-
perimental data points corresponding to �=1°, 2°, and 3°
have been plotted for comparison in Fig. 13 with the same
nondimensional variables as the numerical curve; no adjust-
able coefficient has been introduced. The experimental curve
corresponding to �=1° is very close to the numerical one.
The curves corresponding to �=2° and 3° follow the same
trend at long times: however, they are shifted rightward and

a constant velocity is reached earlier. The shift reflects in part
the fact that, at early times, the front motion is controlled by
inertia so that Vf is lower than the predictions of the model.
These differences between the shapes of the curves are con-
sistent with the fact that the fits of the experimental curves
by Eq. �19� had provided values of the parameter 
 decreas-
ing with � and lower than the value 
=0.77 of the numerical
model �except near �=0�. This discrepancy may reflect a
residual influence of inertial effects at the front at early
times, particularly near the transition to the inertial regime:
different numerical initial conditions yielded different values
for 
.

VIII. CONCLUSIONS

The experiments and theoretical models reported in the
present paper have allowed us first to establish a criterion to
discriminate between control by inertia or by viscosity of
buoyancy-driven interpenetration flows in tubes slightly
tilted from the horizontal. They have also allowed us to pre-
dict and analyze transient regimes such as initial flows con-
trolled by inertia or variations with time of the velocities of
viscous flows. These conclusions are valid at tilt angles �
low enough so that mixing between the two fluids does not
influence the front velocity.

For �	�c such that Ret sin �c�50, the front velocity is
initially determined by inertial effects at the front and, at
later times, by viscous forces in the quasiparallel flow region
between the two fronts. A similar transition from an inertial
to a viscous regime has been discussed for �=0 by Didden
and Maxworthy in the case of unconfined gravity currents6

and by Hoult for oil spreading on a liquid surface.5

Note that, even when inertia forces are negligible in the
bulk of the flow, they often remain significant at the tip of the
front where flow is three-dimensional. A feature reflecting
these inertial effects is the bump-like structure at the front.
As noted above, it results from the Bernoulli pressure drop
on its upper side: the height of the bump increases, therefore,
with the front velocity and becomes of the order of the tube
diameter at the transition to the inertial regime. Another im-
portant result is the fact that, as Ret increases, the distance
Xfc necessary to reach the viscous regime increases.

Regarding the particular case of horizontal tubes, while
Xfc decreases as �→0 �Fig. 6�, it does not vanish for �=0.
For horizontal tubes, therefore, and for large values of Ret,
the distance Xfc may be larger than the length of the experi-
mental facilities �for �=0°, Xfc varies as k�Retd /ki�. This
explains why no viscous regime is reported either in horizon-
tal lock-exchange experiments realized with low viscosity
fluids and channel sections larger than in the present case8,9

or in numerical simulations of such processes realized at
high Ret values.4

For tubes tilted with respect to the horizontal, the sine of
the upper limiting angle sin��c� for observing this viscous
regime varies as the inverse of Ret from Eq. �17�. For
instance, using this latter equation with d=20 mm,
�=10−6 m2 s−1 �present experimental values� and sin����1,
a viscous counterflow would only be observed for Atwood

FIG. 13. Variation of the normalized front distance to the origin
2Xf / �d cot �� as a function of the normalized time t�8k�V� sin2 �� / �d cos ��.
��� Numerical data. Continuous line: fitted variation using Eq. �29�. Experi-
mental points ���: �=1°, ��� �=2°, ��� �=3°. Dash-dotted line: diffusive
spreading at early times. Dotted line: limiting constant velocity motion at
very long times.
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numbers At of the order of a few 10−5. This is much lower
than the typical density contrasts used in most experiments.

For �
�c, the velocity Vf is always limited by inertial
effects at the front and is constant except during the accel-
eration phase at very early times. This condition is, for in-
stance, satisfied in the numerical simulations of Birman
et al.10 realized for �=40° and Ret=2800. These authors also
do not observe a viscous regime in the horizontal case, likely
due to the short path lengths that they can investigate �an
estimation using Eq. �18� leads to Xfc�30d while the maxi-
mum path length investigated is of the order of 10 times the
channel depth�.

Close to the transition angle, however, the flow in the
remaining part of the tube still corresponds to a Poiseuille
counterflow but with a mean velocity larger than that of the
front. In contrast with the assumptions made up to now, a
stationary flow regime cannot be attained: the incoming liq-
uid accumulates behind the front and builds up a bump of
increasing length visible in the sequence on the left of Fig.
14. The rear end of the bump moves downstream but at a
slower velocity than that of the front �oblique line on the
spatiotemporal diagram of Fig. 14�.

Assuming that the flow rate is Q1�hv� upstream of the
bump �in which hv is the local height of the interface and
Q1�h� is given by Eq. �28��, the variation with time of the
length L�t� of the bump should satisfy, in order to ensure
mass conservation,

dL

dt
�Abump − Av� = Q1�hv� − kiVtAbump. �36�

The parameters Abump and Av are, respectively, the sections
occupied by fluid 1 in the bump and upstream of it in the
viscous flow region and Av is assumed to remain constant
with time. When � increases further above �c, the viscous
counterflow becomes unstable and turbulent dissipation
slows down the flow between the fronts and adjusts the mean
flow rate to the front velocity �until mixing becomes so effi-
cient that the density contrast at the front is reduced—and,
therefore, also Vf�.

13

Both the front velocity at long times and its transient
behavior are well described quantitatively in the viscous re-
gime by a model assuming quasiparallel Poiseuille flows,
particularly when the tube is close to horizontal. The quan-
titative agreement is particularly good for the value of the
velocity at long times. It should be remembered, however,
that such a model cannot be strictly valid right at the front
where the flow is no longer quasiparallel and inertial effects
appear. Regarding the transient regime, the predictions of the
model are good close to horizontal but the constant velocity
is reached faster than expected as � increases and approaches
the transition toward the inertial regime. The possible influ-
ence of inertial effects at the front may explain this
discrepancy.

The interface profile along the tube is also predicted by
the model: for a horizontal tube, the model predicts in par-
ticular the appearance of self-similar interface profiles de-
pending only on the reduced variable x / t1/2. This prediction
is well verified by the experiment.

These results demonstrate that, particularly for systems
of small size and small tilt angles with respect to the hori-
zontal, the front and interface dynamics result from a subtle
interplay between phenomena taking place over the full zone
of coexistence of the two fluids and/or right at the front.
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FIG. 14. Right: Spatiotemporal diagrams of the average concentration
variations �gray levels� along the tube for �=10° with At=10−2,
�=2�10−6 m2 /s, d=20 mm �Ret sin �=80�. Vertical scale: time; horizontal
scale: distance along the tube.—Left: sequence of views of the tube.
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