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The dispersion of a passive tracer in fluid flowing between a source and a sink in a Hele-Shaw 
geometry, characteristic of field scale flows in a layer or fracture, is considered. A combination 
of analytic and numerical techniques and complementary experimental measurements are 
employed, leading to a consistent picture. This dispersion process is found to be characterized by 
a power-law decay in time of the tracer concentration, with an exponential cutoff at very long 
times, in strong contrast to the Gaussian behavior associated with the widely used 
quasi-one-dimensional (1-D) models. 

I. INTRODUCTION 

Many practical processes in groundwater hydrology 
and oil recovery involve the circulation of a fluid in a di- 
pole geometry between an injection and a pumping well. l-4 
For example, in geothermal operations one often wishes to 
recover heat by flowing water through an artificial or nat- 
ural fracture network. Similarly, in secondary oil recovery 
one pumps water into injection wells in order to push oil 
toward the producing wells. In some cases, the number of 
wells is large and injection and pumping wells are located 
in alternate positions, so that the flow domain correspond- 
ing to each well is of limited size. At the other extreme, 
where only a single injection and a single pumping well are 
present, the flow lines may extend quite far from the two 
wells into zones of very low velocity. In this case, the tran- 
sit times for the corresponding flow lines may be very 
large, so that the efficiency of the displacement process is 
reduced. The global extension of the fracture or of the 
porous layer into which fluid is injected will then be very 
important. 

The purpose of the present paper is to study such ef- 
fects in the simple model case of a circular fracture geom- 
etry, corresponding to the space between two parallel 
smooth planes. We have used a mixture of analytical, nu- 
merical, and experimental techniques to address the prob- 
lem. The dipole flow is induced by a source and a sink 
placed symmetrically with respect to the fracture center, as 
indicated in Fig. 1. The fracture thickness is assumed to be 
small compared to its global radius. We have analyzed, in 
particular, the influence of the ratio between the source- 
sink separation a and the overall fracture radius R. We 
have chosen to analyze the dispersion of a passive tracer in 
this 00w,~,~ since it provides the transit time distribution of 
fluid particles flowing between the source and the sink. 
This flow structure models a near horizontal fracture, or a 
thin stratum of porous rock, through which fluid is recir- 

culated between two vertical wells intersecting the fracture 
or layer.’ 

The common practice in quantifying dispersion mea- 
surements is in terms of a quasi-one-dimensional (1-D) 
model,8-10 where a uniform average flow from source to 
sink is assumed. In ideal cases, the efflux profile, the con- 
centration of tracer leaving the system as a function of 
time, is thereby fitted to a Gaussian or error function char- 
acteristic of solutions of the 1-D convection-diffusion 
equation. Commonly the ideal profile is not seen, and more 
complicated heuristic models, such as that of Coats and 
Smith,8 provide a better parametrization of the data. Such 
models retain the 1-D approximation, and are meant to 
allow for heterogeneity and, in particular, the presence of 
slow or stagnant fluid regions. Higher-dimensional model- 
ing is generally avoided, except for purely radial flow or 
purely numerical studies, because of the paucity of analytic 
solutions of the convection-diffusion equation in two (2D) 
or three dimensions (3D).” The principal point of this 
paper is that dipolar Rows are quafitativefy different from 
1-D models: Even if the medium is completely homoge- 
neous one should expect power-law profiles cut off only by 
the effects of finite system volume. The distinction between 
one and higher dimensions can be seen most readily by 
considering the general theorem’213 that the mean transit 
time for passive tracer convected through any system is 
given by the system volume divided by the flux. In a 1-D 
configuration containing a source and a sink, the volume is 
finite, given by the distance between the two. In the dipolar 
configurations considered here, or in any 3-D reservoir, the 
system volume is quite independent of the source-sink sep- 
aration. Thus the mean transit time has no connection with 
a 1-D model and, as we shall see, the shape of the profile is 
quite different. 

Several earlier papers in the hydrology literature have 
considered flow and dispersion in a dipole geometry, but 
with a different focus than ours. Hoopes and Harleman14 
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FIa. 1. Streamline-s of the 2-D dipole velocity field induced by a source- 
sink flow. The source A and sink B are separated by 2 units and placed 
symmetrically about the center of a circle of radius 10 units bounding the 
fluid volume. 

considered an infinite layer and found the tracer concen- 
tration profile in closed form in several limiting cases in- 
volving approximations to longitudinal dispersion, while 
Grove and Beetemi5 solved for the tracer profile in a “cres- 
cent approximation,” which amounts to neglecting trans- 
verse dispersion. Aside from the approximations made, the 
effects of finite system size or the behavior at long times 
was not considered. In addition, numerical solution meth- 
ods have been published by Huyakorn et al. l6 and Grin- 
garten, Sauty, and collaborators.” Here the emphasis was 
on producing a curve of efflux tracer concentration versus 
time, with no attempt to extract the functional form of the 
result or to understand the nature of the transition between 
finite and infinite systems. 

In Sec. II, we compute analytically the purely convec- 
tive transit time distribution for a 2-D flow field, in the 
limiting case where the source-sink separation a tends to 
zero and the fracture radius R tends to infinity. We shall 
show that the concentration profile at the sink varies as a 
power law in time, due to the fact that the transit time 
increases as the cube of the maximum distance from the 
dipole along a trajectory. We shall then consider the influ- 
ence of an outer boundary at finite radius, which is shown 
to introduce an exponential cutoff in the concentration 
variation at long times. Numerical computations of the 
concentration variation in the case of a finite R/a will then 
be performed to complement these results; they confirm 
the existence of a long-time exponential decay and show in 
addition that, while a power law variation regime is very 
often observed, the corresponding exponent may depend 
on the ratio R/a. The results of these 2-D computations 
will be finally compared to those of experimental measure- 
ments in Sec. III, where partial agreement is found. In Sec. 
IV we provide a more realistic theoretical treatment, by 
means of Monte-Carlo simulations, which takes into ac- 
count both molecular diffusion and the parabolic flow pro- 
file between the parallel plates. Concluding remarks and 
indications for future work are given in Sec. V. 

II. CONVECTIVE DISPERSION IN A 2-D DIPOLE 
GEOMETRY 

In this section (only) we assume that the local flow 
velocity is independent of the vertical coordinate between 
the parallel plates, and we neglect molecular diffusion. In 
consequence, Taylor dispersion’8 associated with the par- 
abolic Poiseuille velocity profile in the fluid is omitted, 
although it will be restored later. 

A. Perfect dipole in an infinite 2-D medium (a-0, 
R+CO) 

Let us consider a source and a sink placed at x=a/2 
and -a/2, respectively, in an infinite medium. The com- 
plex potential for the resultant flow is given by 

W(z)=& [ln(z-z)-ln(z+i)], (1) 

where z=x + iy, Q is the injected volumetric flow rate, and 
d is the fracture or layer thickness. In the case of a perfect 
dipole, where the distance a between the source and the 
sink tends to zero with constant moment M=Qa, W(z) 
becomes 

M 1 
W(z) = -s ;= --Gr (cos 8--i sin 0) =++t& 

(2) 
where z=re iO, and 4 and 1c, are the velocity potential and 
streamfunction, respectively. The equation of the stream- 
lines, on which t,4 is a constant, takes the form 

r=2B sin 8, (3) 

corresponding to circles of radius B centered at the point 
{x=09= B}. Since the flow is stationary and diffusion is 
neglected, the streamlines are identical to the paths of the 
tracer particles. 

From (2) we obtain the velocity field v= grad 4 and so 
the equation for the motion of the tracers is 

dr M cos 0 
-=u = 
dt * 2s-d? (44 

and 

de M sin 8 
r z= ‘e= 2Td2 (4b) 

in polar coordinates, whence 

rdf3 273.d?(6) 
&e---= d0. 

% M sin 8 

By combining the above relation with Eq. (3) a,nd inte- 
grating from 0=0, we obtain 

t,(e) = E-$? (e-&n 2*). (5) 

Here, t,(O) is the time taken by the radius vector linking 
the origin to a tracer particule to turn through an angle 8 
as the particle moves along a circle of radius B, so that 
te(n-) = (8dd/M) B3 is the time at which the particle will 
return to the sink. Note that tg increases as the cube of the 
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G-C(t) 
c(t)= q-c, * 

Here, C, is the tracer concentration in the-injected fluid 
and C, the initial concentration so that C(t) decreases 
from an initial unit value toward zero at long times. Also, 
C(t) can be viewed as the relative fraction of displaced 
fluid in the solution flowing out of the fracture so that 
@Z’(t)& is the amount of initial solution which gets dis- 
placed between times t and t+dt. Then, 

FIG. 2. Contours of the zones invaded at equally spaced times by dipole 
P-(t) = 

I 
’ Qz( t)dt. (8) 

0 
flows. Dipole with a finite source-sink distance a=2 cm in a model of 
radius R =6 cm (continuous lines). The thick shaded circle represents the By comparing Eqs. (7) and (8), we obtain finally 
boundary of the model. The dipole strength Qa and the injection times are 
such that the ratio Vi,/V, of the injected volume and of the model volume 
has the values: 0.95, 1.9, 2.86, 3.63, 4.76. The curves on the inside cor- (et)-“‘. (9) 
respond to the shortest times. In this particular example, the source is 
located at the left and the sink on the right. Perfect dipole in an infinite 
space (thin dotted line). The dipole strength Qa and the injection time 
values are the same as for the finite model. 

Therefore, the relative concentration varies with time fol- 
lowing a power law, completely different from the error 
function dependence corresponding to the 1-D solutions of 
the advection-diffusion equation. 

radius B of the trajectory; indeed, tB is of the order of the 
quotient of the path length ( cc 8) and the particle velocity 
[which, from Eq. (4) varies as l/B’]. The fast decrease of 
velocity with distance is demonstrated in Fig. 1, where flow 
lines corresponding to near direct trajectories are much 
more closely spaced that those extending far from the di- 
pole. 

Eliminating B using relation (3) and using M= Qu, we 
obtain the equation of the boundary of the injected solution 
at a given time t: 

sin e 
(e-sin 2812) lfi. 

The dotted lines in Fig. 2 show the contours of the curves 
determined by Eq. (6) for different injected fluid volumes 
Qt: they enclose an area 

B. Long-time tracer dispersion characteristics for a 
finite-size model 

Let us first assume that the source-sink distance is still 
infinitely small but the circular cell radius has a finite ra- 
dius R. Then, using the method of images, the complex 
potential is 

M 1 z 
mz)=-~d ;+g . 

( 1 
(10) 

This corresponds to the superimposition of the previous 
dipole flow and a uniform flow. Using Eqs. (4a) and (4b), 
the velocity field becomes 

r dr. 

The volume V(t) =dS( t) occupied by the injected solution 
\ , 

inside the cell can therefore be readily computed to be The streamfunction V! associated with (10) is 

(Qt)2’3, (74 

where 

k,= a s sin2 e 
are-2.1. 

o (e--sin2 ej2)2/5 (7b) 

Note that, from Eqs. (5) and (7), both r(e) and V(t) are 
independent of the flow rate Q for a given injected volume 
Qt. Note also that the volume V(t) occupied by the fluid is 
much smaller than the injected volume Qt because most of 
the fluid short circuits from the source to the sink. 

We now compute the normalized concentration of 
tracer in the fluid flowing out of the model: 

(lla) 

(lib) 

At short times, the boundaries of the cell have a neg- 
ligible influence on _the transit time distribution of the 
tracer particles and C(t) follows 4. (9). 

At long times, the variation of C( t) is controlled by the 
slowest streamlines: these move first close to the radius 
8=0, then along the cell outer boundary (r=R) and, fi- 
nally move back to the origin close to the radius e=a (Fig. 
1). Note that the velocity is minimum near the boundary 
of the cell along the x axis (rr R and 8 ~0 or S-), where 
both v, and ve are small. Let us now estimate the transit 
time r( Ye) along such a slow trajectory. In the initial part 
(e=O) we can put cos 8= 1 in Eq. (Ila) and integrate 
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with respect to r. One obtains the following expression of 
the time t(r) necessary to reach radius r after starting from 
the origin at t=O: 

t(r)=1 L3 -Y-L h 
/?rrdR [ R 2 [ (y)-ln(?)]]’ 

(12) 
When the particle becomes close to the outer boundary 
(r-+R), Eq. (12) gives 

R-rs2R exp[ -2( l+zgi)] (13) 

Let us now compute the time necessary to move from angle 
19 to angle r/2 on trajectories close to the outer boundary 
(RBr) by integrating Eq. ( 1 lb) with respect to 0: 

r vi-dR3 
t(B)-T=TIntant, (14) 

where r is the global time to go from the dipole to the 
outermost point of a given trajectory and back. Due to the 
symmetry of the problem one has t( ?r/2) =7/2 and, in the 
part of the trajectory where 8-0, Eq. ( 14) becomes 

@=2exp[ ($0--f) &I. (15) 

Equations (13) and ( 15) are simultaneously valid in the 
very low velocity region where one has both e=O and 
rzsR: the streamfunction there is obtained by combining 
Eqs. (llc), (15), and (13) so that 

Y-+*(r) =~& ev( -s). 
We have used the fact that any point (r,e) is uniquely 
characterized by the transit time for the trajectory through 
it. Here, Y(r) is a monotonically decreasing function of 7 
and \I/ -+O when r--, CO. After a time 7, only particles fol- 
lowing trajectories corresponding to Y < Y (7) (the slowest 
ones) have not yet returned to the origin. From the de& 
nition of the streamfunction one shows classically that 
[Y(r) -Y ( CO )]d=Y (T)d is the total flow rate associated 
with these slow flow lines that still carry the original dis- 
placed fluid. Therefore, Y (t)d/Q is the mean relative frac- 
tion C(t) of this fluid in the outgoing flow so that 

Z;(t) =s exp- i 
0 

( 1,7a) 

with 

2n- dR3 
(17b) 

Thus, for a finite size model, c(t) decreases as t-“3 at 
short times and exponentially as e-t’7c at long times when 
the external boundary condition becomes dominant. Since 
the total volume V, of the model is n-eR2, the volume V(t) 
of initial solution displaced at time t satisfies (Eq. 8) 

y(t) = ’ Qi!(t>dt=vdR2- m QC(t)dt 
s 0 s t 

so 

C. 

that, at long times where expression (17a) is valid, 

. (18) 

Exponential decay rate for a finite separation and 
a finite cell 

Let us now assume that the source-sink distance is 
finite. The complex potential becomes 

W(z)=& [ln(z-g)-ln(z+i)-ln(z-2$) 

(19) 

The corresponding flow lines have been shown in Fig. 1 for 
R/a= 5. One cannot compute analytically Y (7) in the 
long-time limit but the time constant 7C can be obtained by 
taking the approximation of Eq. ( 1 lb) in the limit 8rO 
and r=R. In this limit the tangential velocity ve becomes 

1 
(R+a/2,z 

(20) 
After rearranging Eq. (20)) one obtains 

(21) 

so that the time constant r, for the long-time concentration 
variation given by Eq. ( 17b) is 

2n- dR3 (1 -c~‘/4R~)~ 
’ =- l+a2/4RZ * c Qa 

(22) 

This formula reduces to Eq. ( 17b) in the limit a =0 and 
predicts a relative decrease of rC with respect to the above 
value of the order of 3a2/4R2. 

D. Numerical computations 

In the above sections, we have computed the shape of 
the concentration exit profile in the pure-dipole limit both 
for an infinite size cell and, at long times, for a finite-size 
cell. It is possible to extend the calculation to the case of a 
finite separation between source and sink, provided the cell 
is infinite.lg However, the transit time distribution cannot 
be computed analytically at all times in the fully realistic 
case when both the source-sink interval and the system size 
are finite. We present here the results of the numerical 
computation of this distribution for this case, retaining 
however the 2-D convective approximation. 

First, we compute the transit time r(e) corresponding 
to trajectories leaving the source at an angle 6’ with respect 
to the (x) axis joining the source and the sink. We simply 
integrate the two coupled ordinary differential equations 

dr 
z===grad[Re W(z)] (23) 
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FIG. 3. Variation of log,, C with log,, t/t, for numerical simulations with 
a 2-D velocity field and finite R/a values increasing from left to right. 
C(t) is here the normalized concentration and t, is the time of first arrival 
of the injected fluid to the sink point. The value of (2R/u)' is shown for 
each curve. 

with W, as given in ( 19), using a variable-step, variable- 
order backward difference routine.” r( f3) is computed for 
180 equally spaced 19 values between 0 and 179~/180. Then 
the interval [0,7r/l80] is again divided in 100 parts in order 
to investigate precisely the exponential relaxation at long 
times. As explained above, the relative concentration C(t) 
of initial fluid in the outflowing solution at a given time is 
equal to the fraction of the flow rate for which the transit 
time is larger than f. Near the source point, the flow is 
radial and isotropic so that the flow rate is equally distrib- 
uted between all 8 values. Since the slowest flow lines cor- 
respond t_o I~=z-, and particles are emitted uniformly in 8, 
one has C(t) = [r- 0( t)]/n-, where e(t) is the angle cor- 
responding to the transit time t. 

Figure 3 gives a log-log plot of C(t) as a function of 
the ratio t,,,,/t, (t, being the first arrival time), for several 
values of the ratio R/a. The time scale tnum used in the 
simulations is nondimensional and related to the physical 
one by 

42 
t num- 2. -t s-da 

It is only at the largest value of R/a (R/a=50) that 
one observes a slope -l/3 corresponding to the infinite 
medium approximation over a significant part of the curve. 
The minimum slopes on the other curves are significantly 
lower, particularly for the values R/a= 3 and R/a= 5.5 
that correspond to the laboratory experiments to be dis- 
cussed in Sec. III. We also observe that the range of times 
over which the slope of the log-log curve is approximately 
constant increases markedly with R/a being pra_ctically 
non existent at the lowest values. By plotting C(t) in 
semilogarithmic coordinates, one verifies that the exponen- 
tial relaxation regime is indeed reached at long times. 

In order to obtain a precise value of rc, particularly at 
large values of R/a, it has been necessary to extend the 
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TABLE I. Variation of the characteristic relaxation times rc for the ex- 
ponential long time part of the concentration variation and of the expo- 
nent in the power-law part of the concentration variation at intermediate 
times. The time scales are those used in the numerical simulations and the 
physical time values can be obtained by the relation 
X p,,ys= (37=“d/2Q) x,,, . 

R/a T<,I [Es. (17b)l TV [Eq. (22)J T, (numerical) Exponent 

1.58 15.81 11.6 11.7 -0.56 
3.0 108 99.4 100.3 -0.44 
5.0 500 485.2 484.7 -0.39 
5.5 665.5 649.2 648.2 -0.385 

15.8 15 811 15 762 15 753 -0.35 
50 500000 499 900 499 000 -0.34 

curves at long times by using 8 values closer to rr as re- 
ported above. Table I displays the values of rc obtained by 
the numerical computation, and those determined analyt- 
ically from Eqs. (17b) and (22), for several values of R/a 
(after taking into account the nondimensionalization) . We 
see that the agreement between the analytical and numer- 
ical computations of the relaxation times is always better 
than 1% when the finite source-sink distance correction 
discussed in the previous section is applied. This correction 
can be as high as 35% for R/a= 1.5 and 10% for R/a=3. 

In summary, the numerical computations indicate the 
very strong influence of finite R/a values, which increase 
the apparent exponent of the power law variation at inter- 
mediate times and reduces its domain of validity. These 
computations also confirm the exponential cutoff at long 
times, which is in very good agreement with the analytical 
calculation. 

III. DISPERSION EXPERIMENTS 

In order to verify that the above discussion gives a 
realistic view of the tracer spreading process, we have car- 
ried out experiments in circular Hele-Shaw cell geome- 
tries. A further motivation is that in future studies of di- 
pole dispersion phenomena, experiment may prove more 
efficient than calculation in investigating the influence of 
realistic features such as permeability heterogeneities and 
complex boundary shapes. We have selected the Hele- 
Shaw system, in preference to a slab of porous material, for 
a number of reasons: the geometry is easier to control, the 
dispersion process is simpler to model numerically (at least 
at early times), visualization is easier, and permeability 
variations can be introduced in a controlled manner. In 
addition, this system provides a good representation of 
fractures, which are an important component of low- 
porosity rocks and in waste containment problems. 

A. Experimental setup 

The model fracture” consists of the space between two 
circular and parallel 1 cm thick glass plates (Fig. 4). The 
fracture aperture is fixed by a 1 mm thick rubber ring 
placed between the plates at their edges. To prevent water 
leaks, silicon glue and elastic clips uniformly distributed 
around the cell are used. Two holes of 1 mm diameter have 
been drilled in the upper glass plate; they are symmetrical 
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FIG. 4. Schematic view of the experimental setup with the circular cell 
used in the experiments. 

with respect to the plate center and spaced by a==2 cm. 
They are used as the fluid inlet A and outlet B, and rep- 
resent, respectively, the source and the sink of the dipole. 
We have used two cells of different radii: R =6 cm and 
R = 11 cm, but with the same thickness and the same spac- 
ing a in order to study the influence of the ratio R/a. 

The cell is initially filled with a solution of water and 
sodium nitrate of salt mass concentration C, which flows 
through the model. Then we inject at point A at the initial 
time the same solution but with a different concentration 
C,. The total injected fluid volume in all experiments is in 
the order of 80 ml. The concentration is determined by the 
electrical conductivity of the fluid. Conductivity variations 
of the mixture are monitored at the outlet of the cell with 
a Dionex low volume conductivity detector: The dead vol- 
ume of the injection and detection circuits are of the order 
of 0.5 cm3 compared to respective model volumes of 11.5 
and 38 cm3. The conductance measurement are performed 
with a Hewlett Packard 4192A impedance meter at a fre- 
quency of 500 kHz for which capacitance effects in the 
electrodes and measurement circuits are minimized. A 
thermocouple is inserted near the electrodes in order to 
correct the conductivity for temperature variations which 
are recorded simultaneously with those of conductivity. 
Fluid is injected at a constant flow rate by a Harvard sy- 
ringe pump with a continuous constant velocity displace- 
ment. The flow rates, which vary from 0.006 to 0.15 ml/ 
mn, are controlled precisely and are reproducible to f 1%. 

In order to measure precisely the distribution of the 
tracer transit times through the cell, we first determine the 
dead volume associated with the inlet and outlet tubes by 
directly connecting both tubes (connection AB) . We have 
analyzed the tracer dispersion in all the tubes (by using the 
same solutions as in the experiments). The time variation 
of tracer concentration is Gaussian as expected for Taylor 
dispersion in a tube and can be fitted to solutions of the 

FIG. 5. View of the experimental cell (R =6 cm, a = 2 cm, d=O. 1 cm) 
after injection of dye (Q=O.O53 ml/s, t=7CO s). 

usual convection-diffusion equation. We obtain in this way 
the mean transit time associated with the dead volume of 
the connection tubes. These measurements were performed 
at the beginning of the dispersion experiments in the cell of 
smallest diameter (R = 6 cm). Once the experiment has 
been completed, we rinse the cell by injecting the solution 
of concentration Ci at point B until it is again saturated 
with that solution (during the cleaning process, we inject 
about five times the solution volume used during the ex- 
periment itself). 

B. Experimental measurements 

We first examine visually the spreading of an injected 
solution containing some dye (amaranth red) in Fig. 5. At 
very short times, t.he dyed part of the surface has a circular 
shape because of the radial velocity field very close to the 
source. As expected, the first tracer particles reaching the 
sink point follow the direct path from the source. At later 
times, the dyed surface has the shape of a cardioid and is 
quite similar to that shown in Fig. 2 (continuous lines) 
corresponding to the 2-D approximation. Compared to the 
approximation of the perfect dipole in an infinite 2-D me- 
dium (dotted lines), the shape of the invaded zone is very 
similar at short times; at longer times the growth is con- 
strained as expected by the cell boundary (particularly in 
the direction of the source-sink axis) and a dye-free zone is 
seen near the rim. The growth of the cardioid slows with 
time since the velocity of the dye particles located at the 
boundary quickly decreases with distance. 

Next we measured the time variation C(t) of the con- 
ductivity of the fluid flowing out of the model for different 
flow-rate values. Figure 6 displays the variation of thelog- 
arithm of the normalized concentration C(t) 
-[CL’,--C(t)]/(C,-C,) as a function of loglo for the 
two experimental models corresponding to R/a=5.5 and 
R/a=3. We note that the asymptotic conductivity C, is 
measured directly at the outlet syringe, since small errors 
in the value of C, may induce large changes of the slope 
S ln[C(t)]/S In t. Both curves have a linear part corre- 
sponding to the power-law regime. As expected, the slope 

Phys. Fluids, Vol. 6, No. 1, January 1994 Kurowski et a/. 113 

Downloaded 13 Jul 2009 to 131.111.16.20. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



L.5 2.0 2.5 3.0 3.5 4.0 
h3, t 

(b) 

-15 ‘, 8 I I I 
2.0 2.5 3.0 

hk7 
3.5 4.0 

t 

FIG. 6. Variation of log,, C(t) with log,, t (s) (Q=O.O06 ml/s) for two 
experimental models: (a) R/u=5.5 (R=ll cm, a=2 cm, d=O.l cm); 
(b) R/a=3 (R=6 cm, a=2 cm, d=O.l cm). 

is larger for the model with the smallest R/u value. This 
confirms the strong influence of the outer boundary condi- 
tion; the two slopes are, respectively, equal to -0.48 and 
-0.6 which is slightly larger than the values from Table I 
and, as expected, markedly different from the value - l/3 
for an infinite model. More generally, the values of the 
exponent depend on the flow rate and range between 0.35 
and 0.45 for R/a=5.5 while they are of the order of 0.5 for 
Wa=3. 

The curve for R/a= 3 displays a marked downward 
curvature at long times, corresponding to the transitions 
toward an exponential relaxation regime. The total injected 
volume was, however, not sufficient to allow for a direct 
determination of the characteristic time constant. As ex- 
pected, this effect was less apparent for R/a = 5.5 where the 
relaxation time is about six times large& 

Figure 7 displays the variation of C(t) for R/a= 3 at 
several flow rate values, as a function of the ratio Y;,,/Vt of 
the injected fluid volume and of the fracture volume. The 
variation is compared to the corresponding theoretical 
curve of Fig. 3 (dotted line). The various experimental 
curves overlay rather well and their shape follows closely 
that of the theoretical curves. The shift between these series 
of data may be due to dead volume effects or errors in the 
initial time values. 

In order to compare more precisely the experimental 
and numerical results, we have superimposed in Fig. 8 
experimental normalized displaced volume variations 
V(t) / V, corresponding to different flow rates (R = 6 cm). 
Using Eq. (8)) V(t) is computed and plotted as a function 
of the normalized injected volume. We  observe first that, as 
for C(t), the variation of V( t)/V, with ~i~j/V, is almost 

I 1 1 
0 2 4 Vq Nt 6 

FIG, 7. Variation of the experimental normalized concentration C(f) as 
a function of the normalized injected volume Vi,,j/V, for 4 different injec- 
tion flow rates (R=6 cm, a=2 cm, d=O.l cm, V, is the total volume of 
the experimental cell). The dotted line corresponds to the theoretical 
predictions of the 2-D convective model with the same values of R and a. 

independent of the flow rate (but for the slowest one for 
which the corresponding curve is slightly above the oth- 
ers) . We  have also plotted on the same graph variations of 
V(t) predicted for a perfect dipole in an infinite medium 
[2/3 power law of Eq. (7b)] and curves corresponding the 
numerical 2-D computations of the previous section for the 
same R/a ratio. The latter correspond well to the experi- 
mental curves but for a shift in the time scales. On the 
contrary, the perfect dipole model does not agree with the 
experimental data at all: this was to be expected since the 
corresponding variation of V(t) diverges at long times 
while all experimental variations should tend toward a fi- 
nite limit. 

In summary, all experimental results confirm that the 
convective 2-D models give a good quantitative description 
of the dispersion curves except at very low flow rates where 

,. 
1.2- 

l.O- 

6 i 8 

FIG. 8. Variation of the normalized volume V(f)/V, occupied by the 
injected fluid as a function of the normalized injected volume Vi”i/V, for 
4 different injection flow rates (R =6 cm, a=2 cm+ d=O.l cm, V, is the 
total volume of the experimental cell). The lower dotted line corresponds 
to the theoretical predictions of the 2-D convective model with the same 
values of R and a, the upper dotted line corresponds to the predictions for 
a=0 and R-CO. 
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the displacement of the original solution seems to be 
slightly accelerated. Therefore, Taylor dispersion due to 
the Poiseuille how profile between the plates does not seem 
to play a dominant role. However, experimental limitations 
have prevented us from verifying some of the predictions of 
the convective model, such as the existence of an exponen- 
tial relaxation process at long times and the corresponding 
relaxation rate. 

IV. NUMERICAL MODELING OF THE EFFECT OF 
TAYLOR DISPERSION AND MOLECULAR DIFFUSION 
ON THE DISPERSION PROCESS 

In order to investigate the limits of validity of the con- 
vective model, we now turn to a more realistic numerical 
study. We perform Monte-Carlo numerical simulations, 
taking into account both the etfect of the Poiseuille velocity 
profile between the parallel plates and molecular 
diffusion.‘2 This will allow us to analyze the effects of the 
Taylor dispersion process and of the diffusive exchange of 
the tracer in very low velocity zones. 

In these simulations, the tracer is assumed sufficiently 
dilute that tracer particles move independently of each 
other. One follows the radial and vertical displacements of 
a large number of particles moving in the Hele-Shaw cell. 
The initial condition consists of releasing all the particles at 
t-0 from a given small initial radius r,= 1 mm at a height 
z. chosen in an interval of thickness d. The starting posi- 
tions of the particles on the circle are uniformly distributed 
according to the radial nature of the flow field close to the 
source. In order to reproduce the experimental conditions, 
z. is modulated according to the local flux of fluid with a 
parabolic profile. The motion of each particle is the com- 
bination of the effects of molecular diffusion (represented 
by a Brownian motion) and convection. 

We use the Hele-Shaw approximation in which the 
local velocity is taken to be the product of the 2-D dipole 
field computed from Eq. ( 19) and the parabolic Poiseuille 
velocity profile between the plates. The Hele-Shaw approx- 
imation is valid except very near the injection point and the 
rim of the plates, because of the large ratio between the 
spacing of the plates and their radius. The duration At of 
each step is selected to decrease inversely with the local 
velocity in order to keep the length of the convective dis- 
placements below a limit. The random Brownian motion is 
simulated by performing at each time step a random jump 
of length ,/bmtht, where D, is the molecular diffusion 
coefficient and At is the time step; the direction of the steps 
is random and distributed uniformly in all directions. The 
amplitude ,/m of the random steps has been chosen so 
that the variance of any coordinate after n independent 
steps is 

[x(t)--x(0)]‘=n6DmAt~=~2Dmt, (25) 

where the factor l/3 represents the variance of a random 
coordinate chosen uniformly on a unit sphere. 

Zero flux boundary conditions at the top, bottom, and 
rim of the cell are implemented by suppressing those ran- 
dom steps that would take the particle outside the cell. The 

sequence of convective and diffusive displacements is re- 
peated until the particle arrives within a distance r. from 
the outlet: the corresponding time, nAt, is the transit time 
of the particle. The process is repeated for a very large 
number of particles (up to 30 000). The total computing 
time is typically several hours on a Sun Spare or a Silicon 
Graphics Indigo workstation. After all the individual tran- 
sit times have been determined, one computes the equiva- 
lent of the experimental concentration variation curves: it 
is the complement of the integrated histogram of the indi- 
vidual transit times. In order to take into account the very 
broad transit time distribution and the lower number of 
particles at very long times, three different spacings be- 
tween histogram points were used. 

Figures 9 (a)-9 (d) display the simulated concentra- 
tion variation curve obtained for the several values of flow 
rate, for the two outside diameters of 6 cm [(a) and (b)] 
and 11 cm [(c) and (d)], and for the thickness d=O.l cm. 
Both log-log plots and semilog plots are shown to allow 
the separate identification of the power law and the expo- 
nential relaxation. The flow rates are characterized by a 
P&let number Pe=Q/D,d (this definition has been cho- 
sen because it is independent of position in the cell). All 
times have been normalized by that of first arrival in the 
purely convective 2-D case at the same flow rate: the con- 
vective curve has also been superimposed onto the others. 
At all velocities but the smallest, the variation of C(t) with 
the normalized time is almost independent of the flow rate 
in the range of t for which C(t) follows a power law [Figs. 
9(a) and 9(c)]. At times short compared to the transverse 
diffusion time, the Taylor approximation is not valid and 
the first arrival time is shorter than in the 2-D approxima- 
tion (it corresponds to the maximum of the velocity profile 
in the center of the channel, equal to 1.5 times the mean 
velocity). At very long times, in the exponential decay 
regime, the variations of C(t) at the fastest flow rates co- 
incide with the convective 2-D model [Figs. 9(b) and 
g(d)]. 

At lower velocities, the decay of the concentration to- 
ward its asymptotic value is accelerated. This can be ex- 
plained by diffusion of tracer located close to the rim of the 
model toward higher velocity flow lines. The curves from 
Figs. 9(b) and 9 (d) seem to indicate that at long times 
there is a transition toward an exponential relaxation with 
a time constant rc2 equal to a fraction of rc which seems to 
be roughly constant. Changing the flow rate only modifies 
the fraction of tracer particles for which the transit time is 
shortened by this effect. 

Let us now estimate the fraction of the total flow rate 
influenced by molecular diffusion in the part of the fluid 
particle trajectories located near the edge to the rim (P 
zR). Using Eqs. (14) and (17b), we estimate that the 
transit time in this region is of the order of r : this allows 
the tracer to diffuse over a distance Sr = r- D,,rc from the 
model rim (r=R). The streamfunction varies then from 0 
to SY rue(r)& so that 

&D SYzs-g && -&. r- 
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FIG. 9. Numerical Monte-Carlo simulation results compared to 2-D con- 
vection computation. Variation of normalized concentration C(t) com- 
puted using Monte-Carlo simulations as a function of the normalized 
injected volume rii,/V, for different injection flow rates. 
(5-Pe=Q/D,d=142, 4--P,=1420, 3--P,=7100, 2--P,=142000, 
1- P,=710 000). The dotted line (coinciding most of the time with 
curves 1 and 2) corresponds to the 2-D convective simulation. (a) log- 
log plot; (b) semilog plot: (R=6 cm, u=2 cm, d=O.l cm); (c) log-log 
plot; (d) semilog plot: (R=ll cm, a=2 cm, d=O.l cm). 

The perturbed flow lines correspond to \I, values be- 
tween 0 and 6Y: they represent a relative fraction sQ/Q 
=SYd/Q of the total flow so that 

(27) 

Here, sQ/Q is th_e order of magnitude of the relative con- 
centration value C below which the relaxation curve will be 
perturbed: for P,-7100, corresponding to curve 3, one 
has: 8Q/Qa7 10m3 (R/a=J) in reasonable order of mag- 
nitude agreement with the numerical simulation curves of 
Figs. 9 (a)-9 (d) . We also verify qualitatively that the effect 
of diffusion decreases with the flow rate and is negligible 
for the two highest Pe values [in this case, C(t) cdincides 
very well with the 2-D convective variation]. Equation 
(27) also predicts that the perturbation should slowly de- 
crease at larger values of the radius R for a given Pe value: 
this is indeed the case in Fig. 9 for Pe=7100. Let us note 
that the term l/fle is reminiscent of boundary layers ef- 
fect which involve transverse molecular diffusion as in the 
present case. At the lowest velocity which we analyzed 
(Pe = 142)) the power law part of the curve is significantly 
higher than the convective curve: it is likely that diffusion 
is strong enough so that at intermediate times tracer can 
diffuse into low velocity outer zones and move out only 
later. 

V. CONCLUSIONS 

We have shown in the present paper that transmission 
tracer dispersion in a dipole geometry has characteristics 
completely different from those of “normal” Gaussian 
tracer dispersion in 1-D flows in homogeneous porous me- 
dia. 

Once the global size R of the system is large compared 
to the source-sink distance a, the tracer concentration vari- 
ation follows a power law in time when the penetration 
depth of the corresponding particle trajectories is in the 
range between a and R. The limit of the exponent is - l/3 
when R/a -+ CQ ; at lower R/a, its value becomes nearer 0.5. 
At very long times, a cutoff appears and the tracer concen- 
tration decays exponentially with a time constant depend- 
ing on the global size of the system. This exponential re- 
laxation may be accelerated by molecular diffusion into 
and out of low velocity zones close to the boundary. This 
effect is important at low flow rates and at large R/u. Other 
than these effects, the convective 2-D model neglecting the 
parabolic velocity profile between the plates and molecular 
diffusion accounts for most experimental observations at 
medium and long times. Only at very low flow rates is 
molecular diffusion significant. At very short times, the 
dispersion is controlled by short flow paths between the 
source and the sink. The transit time distribution is then 
also influenced by the diffusion across the liquid layer: this 
determines the effectiveness of the Taylor dispersion. 

In conclusion, the results reported in this paper dem- 
onstrate that, in a layered or fracture geometry, the drain- 
age of an initially saturating fluid by a dipole flow is very 
inefficient because of the rapid increase of the transit time 
with distance. These results might be extended to a thin 
layer of porous medium by replacing molecular diffusion 
by the (more significant) convective dispersion associated 
with porous media flows. A further valuable extension of 
our results would involve a systematic study of the char- 
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acteristics of the long-time tail, since field configurations 
involve enormous values of R/a. 
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