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The motion of non-Brownian spheres settling in the midst of a suspension of like spheres has been 
experimentally studied under creeping flow conditions. A few glass spheres, marked with a thin 
coating of silver, were tracked in a suspension of unmarked glass spheres, made optically 
transparent by matching the index of refraction of the suspending fluid to that of the glass spheres. 
Particles were tracked with a real time digital imaging processing system. Particle trajectories were 
examined in the bulk region of the suspension for particle volume fractions ranging from 0% to 40% 
in 5% steps. Statistical analyses of local particle velocities yield the mean settling velocity, the RMS 
of the fuctuations of the vertical and horizontal particle velocity and the particle veloci[y 
autocorrelation functions. The long time fluctuating particle motion is demonstrated to be diffus&e 
in nature. Vertical and horizontal correlation times and self-diffusivities are found as a function of 
particle volume fraction, and a strongly anisotropic diffusion noted. 0 199.5 American Institute of’ 
Physics. :1 

1. INTRODUCTION 

The sedimentation of particles in a viscous fluid is one of 
the oldest engineering processes used to segregate particles 
from fluid, as well as to separate particles of different densi- 
ties or sizes. Although some progress has been made in un- 
derstanding the mean properties of a sedimenting suspen- 
sion, such as the mean particle sedimentation velocity, less is 
known about particle velocity fluctuations. One of the essen- 
tial difficulties lies in the incomplete understanding of the 
long range multibody hydrodynamic interactions, especially 
under the usual circumstance of concentrated suspensions. 

Throughout we shall confine our attention to suspensions 
composed of non-Brownian rigid spherical particles of equal 
size and density sedimenting in a Newtonian t&rid under 
creeping flow conditions. If the suspension is infinitely di- 
lute, the particle velocity is equal to Stokes’ settling velocity, 
V,=2 ap a”@9 7, where Ap=pp--pf is the difference be- 
tween the density of the particles and that of the fluid, a is 
the particle radius, 17 is the fluid viscosity, and g is the ac- 
celeration~due to gravity. As soon as the particle concentra- 
tion is increased, the motion of an individual sphere settling 
in the midst of a suspension of like spheres is affected by the 
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presence of the other particles in the fluid. In a uniformly 
concentrated suspension, the mean particle sedimentation ve- 
locity is noticeably smaller than theStokes’ velocity, and is 
given by (V) =f( c,h> Vs. ’ Here and in .the remainder of this 
paper, ( ) denotes an ensemble average. The function f( 4) is 
known as the hindered settling function and is a monotoni- 
cally decreasing function of the volume fraction of particles 
in the suspension, 4. There are three experimental methods 
for determining the hindered settling function. The first 
method is to measure the fall velocity of the interface at the 
top of the sedimenting suspension.2-4 The second is to mea- 
sure the variation with time of the total number of particles 
above a fixed horizontal plane in the interior of the 
suspensi0n.s The third is to measure the settling velocities of 
a marked particle in the bulk suspension region and to deter- 
mine an average settling speed.6 The most commonly found 
empirical law is that proposed by Richardson and Zaki,7 
f(4)=(1-4~)“, h w ere a value of IZ of the order of 5 usually 
represents experimental results for small particle Reynolds 
numbers, Re=pfVs al 7.l 

Although the suspension may be macroscopically homo- 
geneous, hydrodynamic interactions lead to changes in the 
suspension microstructure, and hence to changes in the par- 
ticle velocities during the settling process. Consequently, 
even in a monodisperse suspension, the instantaneous par- 
ticle velocities fluctuate about the mean sedimentation veloc- 
ity during the sedimentation process. Particles settle with dis- 
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tributions of velocities both parallel and perpendicular to the 
mean velocity. The variance (or the standard deviation) of 
the velocity distribution is the simplest measure of the par- 
ticle velocity fluctuations. The velocity fluctuations can lead 
to randomly fluctuating particle motions, which have a long 
time behavior characteristic of a diffusion process known as 
hydrodynamic self-diffusion. Large particle velocity fluctua- 
tions, ranging up to 46% of the mean, have been observed 
experimentally by Ham and Homsy6 during measurements of 
vertical velocities of a marked particle in quiescent sedi- 
menting suspensions. The long time behavior of the sedi- 
mentation velocity variance was shown to be characteristic 
of a diffusion process, and estimates of vertical self-diffusion 
coefficients were determined for particle concentrations 
ranging from 2.5% to 10%. Dimensionless self-diffusivities 
(based on length scale a and time scale alVs) were found to 
be O(1). In an experiment using a multiple light scattering 
technique and a fluidized bed,s the fluctuations in the sedi- 
mentation velocity were found comparable to the mean sedi- 
mentation velocity at concentration ranging from 15% to 
30%, but to decrease faster than the mean at higher concen- 
tration. 

It still remains a challenge to compute theoretically the 
effect of particle interactions on the mean sedimentation ve- 
locity and its variance over the entire range of particle con- 
centrations. Even for dilute suspensions, the direct summing 
of long range particle pair interactions leads to a divergent 
integral. In order to overcome this difficulty, Batchelor’ in- 
troduced a renormalization method and found the first cor- 
rection to the mean sedimentation velocity for a dilute, ran- 
dom, monodisperse suspension: {V)=Vs(l-6.554). Other 
methods have been developed to avoid this divergence 
problem,‘0-14 and the departure from unity of the hindered 
function has been shown to depend strongly upon the sus- 
pension microstructure.’ However, Batchelor’s renormaliza- 
tion does not resolve divergence difficulties associated with 
the velocity variance. For dilute, random suspensions, Caf- 
lisch and Luke” showed that the velocity variance and the 
self-diffusivity diverge when the characteristic dimension of 
the settling vessel is increased. A scaling argument for the 
divergence of the velocity fluctuations produced by the den- 
sity fluctuations has been also proposed by Hinch.t6 A reso- 
lution of this divergence has been suggested by Koch and 
Shaqfeh17 by introducing a Debye-like screening of particle 
velocity disturbance, which assumes that the integral of the 
pair distribution function (their 2.14) is exactly -1. The 
screening leads to particle velocity variance and self- 
diffusivity that are finite. 

Numerical simulations seem to provide fundamental in- 
sights into the sedimentation process.“-*r The difficulty here 
is again to compute the multibody hydrodynamic interac- 
tions. Current state of the art numerical computations suffer 
from two serious limitations. First, the number of particles is 
fairly small in some numerical simulations, and therefore 
size effects can become important, especially with low par- 
ticle concentrations. Second, hydrodynamic interactions are 
only computed at the lowest approximations (i.e., particle 
pair interactions) in some computations, and thus features of 
the suspension arising from multiparticle interactions are 

poorly approximated. Such interactions may not be negli- 
gible for any particle concentration. 

On a macroscopic scale, particle velocity fluctuations 
can lead to diffusion phenomena, and thus are important for 
the understanding of mixing processes that inhibit separa- 
tion. The observed spreading of the upper interface of a sedi- 
menting suspension has been attributed to a hydrodynamic 
gradient diffusion and gradient diffusivities have been esti- 
mated. Although such a gradient diffusivity and the self- 
diffusivity of the random walk in a uniform suspension are 
not expected to be the same, dimensionless gradient diffu- 
sivities reported by Davis and Hassen’ are of the same order 
of magnitude as dimensionless self-diffusivities estimated by 
Ham and Homsy.6 More recent experiments give much larger 
values of gradient diffusivities.” In a slightly different con- 
text of tluidized beds, Batchelor”” argued that hydrodynamic 
gradient diffusion plays the role of a stabilization mechanism 
against the growth of concentration wave instability. Stable 
regions of fluidization have been found experimentally, and 
estimates of gradient diffusivities have been deduced from 
Batchelor’s stability criterion.= Since these estimates were 
obtained at the instability threshold, and therefore, for large 
particle concentrations, no comparison can be made with the 
above experimental results that were obtained at low concen- 
trations. Finally, we should mention the related phenomenon 
of shear-induced hydrodynamic diffusion for which diffu- 
sivities in sheared monodisperse suspensions of spheres have 
been determined experimentally.“4’Z 

Our objective in this work was to measure particle ve- 
locity fluctuations and to analyze the long time behavior of 
the randomly fluctuating particle motion in the bulk region of 
sedimenting suspensions for a wide range of particle volume 
fractions up to 40%. To achieve this objective, a few glass 
spheres, marked with a thin coating of silver, were tracked in 
a suspension of unmarked glass spheres, made optically 
transparent by matching the index of refraction of the sus- 
pending fluid to that of the glass spheres. This index match- 
ing technique has been adapted from that of Ham and 
Homsy.b; Small particle tracking was performed with a real 
time digital imaging processing system. Local particle ve- 
locities, both parallel and perpendicular to gravity, were then 
deduced. Statistical analyses of the data yield the mean set- 
tling velocity, the vertical and horizontal particle velocity 
fluctuations, and the particle velocity autocorrelation func- 
tions. It was then possible to verify whether the long time 
behaviors of tluctuating vertical and horizontal particle mo- 
tions were characteristic of a diffusion process. 

The present paper is organized as follows. The experi- 
mental techniques are presented in Sec. II. In Sec. III we 
describe the statistical methods applied to analyze the experi- 
mental data. The experimental results are given in Sec. IV 
and discussed in Sec. V. 

II. EXPERIMENTAL TECHNIQUES 

A. Particles and fluid 

Following Ham and Homsy,’ the fluid and particles used 
in our experiments were chosen to meet several criteria. 
First, fluid and particles were chosen to have the same index 
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of refraction so that marked particles could be tracked in 
optically transparent suspensions. Second, the fluid was to be 
viscous enough to provide a small particle Reynolds number. 
Third, particle size was to be large enough to enable precise 
tracking of the marked particles. This last criterion also en- 
sured that Brownian effects were negligible for all experi- 
ments. 

The particles were glass beads with index of refraction 
1.5190t0.0002. The beads that were supplied presieved 
were further carefully resieved between two meshes having 
openings of 710 and 800 pm. The particle size distribution 
was analyzed by using a CCD camera and a digital imaging 
system (see Sec. II C for further information regarding the 
digital imaging system). From measurements of the pro- 
jected bead surfaces, the particle diameter distribution was 
found to be approximately Gaussian with a mean particle 
diameter of 788 ,um and a standard deviation of 34 ,um. The 
particle density was determined, using Archimedes’ prin- 
ciple, by measuring the volume variation when a weighted 
amount of particles was introduced into 100 cm3 of distilled 
water in a graduated vessel. The particle density was 
p,=2.53+0.02 gJcm3. 

A fraction of the particles was selected and then uni- 
formly silvered. The silvering process was performed by re- 
duction of an ammonia solution of silver nitrate by an alco- 
holic solution of saccharose. The thin coating of silver did 
not modify the bead settling characteristics. The silvered par- 
ticles were thus considered identical to the nonsilvered par- 
ticles and easily tracked in the midst of a suspension of like 
particles. 

The suspending fluid was an alkyl benzyl phthalate plas- 
ticizer, named Santicizer 278 and produced by Monsanto. To 
ensure a close index matching of the fluid with that of the 
glass beads, the laboratory room temperature was maintained 
at 2221 “C by using an air conditioner. At this temperature, 
the measured properties of this fluid are a refractive index of 
1.519020.0002, a viscosity of ~=13+2 P and a density of 
/J,=1.09~0.01 g/ cm3. The fluid viscosity was measured with 
a rheometer, and its Newtonian behavior was also verified. 

For this combination of particles and fluid, the particle 
Reynolds number, 2a Vspf/q was smaller than 10e3, and the 
Brownian P&let number was very large. 

B. Experimental procedure 

All of the experiments were performed in a rectangular, 
glass walled vessel having inner dimensions of 50.00?0.05 
cm high and 10.00+0.05 cm by 4.00+0.05 cm in the cross 
section. The width of the vessel was uniform to within 0.05 
cm. A vessel height of 50.00t0.05 cm was chosen to provide 
a long enough distance to reach the long time behavior. A 
vessel inner width of 4.00?0.05 cm was chosen to be small 
enough to avoid large convection currents, but large enough 
to avoid serious wall effects. To check whether a convection 
current existed in the vessel containing only the fluid, the 
trajectories of a few buoyant beads were examined. A small 
convection current due to a weak thermal gradient was no- 
ticed across the vessel. This convection current, which was 
less than low5 cm/s, is significantly less than the experimen- 
tal error of particle velocity measurement (see Sec. III for a 

further discussion). A further restriction on the width of the 
vessel comes from the difficulty of seeing a long way into 
the center of the suspension, despite the good optical match- 
ing. 

Experiments were carried out by introducing weighted 
amounts of fluid and marked and unmarked particles into the 
vessel to reach the desired particle volume concentration. 
The concentrations were varied throughout the range 
0%<&40% in 5% steps. The experimental relative error in 
particle concentration measurements was 1.5%. The quantity 
of marked beads added to the unmarked beads was varied, 
depending upon the concentration. Typically, between lo-50 
marked beads were added, respectively, for small and large 
concentrations. 

During the experiments, the vessel was held in a fixed 
position on a rail, with the vessel walls oriented vertically 
within 0.05 cm. A CCD camera (512X512 pixels), which 
could slide vertically, was fixed on the same rail in front of 
the vessel. A set of halogen lamps were placed behind the 
vessel, producing a homogeneous illumination of the suspen- 
sion. The intensity of the light, as well as the camera lens 
opening, were chosen to ensure the best contrast between the 
marked particles and the transparent suspension. The CCD 
camera was focused in the median plane of the vessel. The 
depth of field of the imaging system was the depth of the 
vessel. For most of the experiments, the size of a marked 
particle corresponded to approximately ten pixels. For large 
concentrations (+=40%), a magnification was used, which 
made the particles approximately 20 pixels (see Sec. II C for 
further discussion regarding sampling problems). The CCD 
camera recorded trajectories of marked particles settling in a 
square window of approximately 6 cmX6 cm located in the 
middle of the vessel. The location of the recording window 
was chosen to be far from the sedimentation front and the 
sediment growth, as well as far from the vessel walls. For the 
smallest concentrations, the window was not long enough to 
obtain the long time behavior. In this case, two windows 
were used. A particle was tracked in an upper window, and 
then, when it reached the window bottom, the camera was 
suddenly slid down and the particle was tracked in a lower 
window, which had a small overlap with the upper window, 
thereby providing measurement continuity. This last proce- 
dure, used only when &lo%, was more tedious since only 
one particle could be tracked per experiment. For larger con- 
centrations, a single window was used, and several particles 
could be tracked simultaneously in one experiment. 

Each sedimentation experiment consisted of mixing the 
suspension and then tracking particle(s) inside the imaging 
window (or the two windows for the small concentrations). 
The procedure for each experiment was identical. The sus- 
pension was mixed with a small propeller fixed at the end of 
a shaft driven by a variable-speed drill motor. The propeller 
was moved randomly within the suspension for several min- 
utes in order to obtain a uniform particle distribution 
throughout the suspension. Caution was taken not to entrain 
any air bubbles through the liquid-air interface. The suspen- 
sion was then allowed to settle for a short time until a sedi- 
mentation front had time to form between the suspension and 
the clear fluid. After this short time, and as soon as at least 

14 Phys. Fluids, Vol. 7, No. 1, January 1995 Nicolai et a/. 

Downloaded 13 Jul 2009 to 131.111.16.20. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



one marked particle entered the window, particle tracking in the program, because the former would have a resolution 
began. The experiment was terminated when the sedimenta- of 0.1 pixels. Considerable reprogramming would be needed, 
tion front arrived 4 cm above the marked particle(s). Suffi- and the code could take much longer. Therefore, this possi- 
cient experiments were performed at each concentration to bility has not yet been explored. Finally, it should be men- 
provide a statistically satisfactory data ensemble (see Sec. III tioned that the sampling time (of the order of 2 s) was always 
for further information regarding the statistical analysis of smaller than the time a particle takes to traverse the record- 
data). ing window (at least of the order of 200 s). 

Additional experiments were performed to examine the 
settling velocity of a single sphere in the fluid (i.e., the case 
of infinitely dilute suspensions, +=O%). The sphere was 
placed into the top of the median plane of the vessel contain- 
ing only the fluid. The sphere was then allowed to settle, and 
particle tracking began inside the two imaging windows as 
soon as the sphere reached the top of the upper window. The 
experiment ended when the sphere reached the bottom of the 
lower window. 

The files that contained the horizontal and vertical coor- 
dinates, >U, and Xl1 respectively, of the settling particles as 
function of time, t, were then analyzed with a spreadsheet 
software (Microsoft Excel 4.0). In the remainder of the pa- 
per, the indices 11 and I denote quantities parallel and per- 
pendicular to gravity. 

Ill. STATISTICAL DATA ANALYSIS 

C. Particle tracking method 

Particle tracking was performed with a real time digital 
imaging processing system. The system consisted of a min- 
iature CCD video camera (XC-77CE, 512X512 pixels) con- 
nected to a fast and intelligent image processing and acqui- 
sition board (Matrox Image 1280), located in a personal 
computer (Dell 466SE with an Intel 486 processor at 66 
MHz) operating with digital imaging software (Visilog 4.1 
by Noesis). The tracking in real time was achieved with a 
specially designed program, which used some of the soft- 
ware functions and was then included as a function into the 
software package. The program consisted of the following 
steps performed for a chosen number of loops, which de- 
pended on the average time for a particle to cross the imag- 
ing window(s) at a given concentration: image acquisition; 
image threshold for obtaining a binary image, where only the 
projections of the marked particles onto the window plane 
could be seen; small binary image erosion to suppress any 
small impurities, other than the particles; ultimate image ero- 
sion in order that particle projection centers are represented 
by isolated pixels; localization of the isolated pixels; and 
recording of the horizontal and vertical coordinates of the 
particle centers as well as the acquisition time into a file. 

The experimental error in the particle center measure- 
ment was of the order of one pixel. The time between two 
image acquisitions, that is, the sampling time, had an average 
value of 2 s and varied slightly during particle settling, de- 
pending upon the speed of the different steps of the program. 
The sampling time was determined very accurately from the 
on-board real time image processor. Sampling problems can 
arise when the particles moved one pixel, which is the un- 
certainty in the particle center measurement, during the sam- 
pling time (also see Sets. IV B and IV C for a further dis- 
cussion). This occurred, in particular, at large concentrations, 
where the particle settling speed was small. This “pixel 
noise” could be avoided by increasing the sampling time. 
However, there are problems in increasing it. Indeed, the 
sampling time should be kept much smaller than the corre- 
lation time (see Sets. III B and IV C). At large concentration, 
the simplest modification was just to use a larger magnifica- 
tion. A future possibility would be to use a center of mass 
after the small binary erosion instead of the ultimate erosion 

A. Mean velocity and standard deviation 

The first objective of this work was to compute mean 
velocities and velocity fluctuations. The main issue was to 
choose a correct statistical ensemble of data over which to 
average. Horizontal and vertical local velocities of a particle 
were calculated over each sampling time interval. For a 
given particle concentration, histograms of all local veloci- 
ties were then examined. Mean and standard deviation, (V) 
and uU , respectively, of the local velocities for all times and 
all tracked particles for this concentration were then deter- 
mined. Both statistical and experimental errors were com- 
puted. 

The statistical error in the mean was given by the stan- 
dard error in the mean, with its familiar significance as the 
68% confidence limit, which was defined as the standard 
deviation divided by the square root of the number of uncor- 
related observations of the local velocities.26 We assumed 
that the local velocities remain correlated only during the 
time for the velocity autocorrelation function to drop to the 
noise level, as estimated by the analysis described in Sec. 
III B. Typically, for each particle concentration, the number 
of uncorrelated local velocities was of the order of 500. The 
statistical ensemble was therefore found sufficient to produce 
meaningful statistics. 

The experimental errors in the mean and standard devia- 
tion were also estimated by computing the usual propagation 
of errors in simple measurements, such as the particle coor- 
dinates and sampling time.26 It should be mentioned that the 
experimental error in the local velocity can become large for 
high concentration with a small image magnification, since, 
in that last case, the particles moved about one pixel, which 
is the uncertainty in the particle center measurement, during 
the sampling time. This “pixel noise” has little effect on the 
mean velocity when averaging over a long time, but can 
produce artificially high fluctuations in the local velocity. 
Therefore, since the above method for computing standard 
deviations suffers a little from “pixel noise” at the higher 
concentrations, an alternative method is proposed in Sec. 
III B. It should be mentioned that since the experimental 
errors were always found to be larger than the statistical 
errors, they were considered the more representative. 

Finally, it should be noted that the above analysis pre- 
sumed the validity of the ergodic hypothesis since local ve- 
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locities of different particles were supposed statistically iden- 
tical to local velocities of a single particle along its 
trajectory. Since it treated all observation equally, the analy- 
sis assumed that the system did not age during each trajec- 
tory. 

6. Velocity fluctuation autocorrelation functions 

The second objective of this work was to determine the 
long time behavior of the fluctuating particle motions. This 
could be achieved by examining whether particle velocity 
became uncorrelated, and consequently by computing par- 
ticle velocity fluctuation autocorrelation functions. The data 
reduction began with the computation of the local particle 
velocities sampled over a constant time interval for each par- 
ticle. Since the sampling time slightly varied along a particle 
trajectory, the horizontal and vertical coordinates of each set- 
tling particle were linearly interpolated for constant time in- 
tervals. The constant time interval was chosen to be the mean 
sampling time, At=3 s. The horizontal and vertical local 
particle velocities were then calculated over each interval. 
The horizontal and vertical velocity fluctuation autocorrela- 
tion functions, denoted C(t) (CL and Cl/, respectivelyj, 
could therefore be computed as C(t) = ( V’ (to) V’ (t + to)) en- 
semble averaged over different particle trajectories and dif- 
ferent starting times to. Here V’ = V- (V) is the local veloc- 
ity fluctuation, where (V) was taken as the mean (horizontal 
or vertical) velocity calculated for the chosen set of particles 
by means of the method described in Sec. III A. npically, 
for each particle concentration, 30 particles were chosen with 
trajectories longer than a dimensionless time of 200 (based 
on time scale a/V,). A number of 30 particles was found 
sufficient to reduce noticeably the statistical fluctuations. In 
forming the velocity autocorrelation functions C(t), we used 
for the starting times, t,,, all the different observation times 
for the selected trajectories. While there is little new infor- 
mation from all the starting times, to, within a correlation 
time, some random experimental noise is removed by treat- 
ing all the observations equally. The errors in the correlation 
functions were given by the standard error in the mean, 
which was defined as the standard deviation divided by the 
square root of the number of uncorrelated data, that is, the 
68% confidence limits.% 

It was then possible to verify whether the autocorrelation 
functions were decaying in time. When the functions de- 
creased toward zero, correlation times and self-diffusivities 
were estimated. Two methods were used to compute the cor- 
relation times. The first method (exponential fit method) 
could only be used when the function decayed as a single 
exponential in time, that is, C(t) =C(O) exp(t/t,). The loga- 
rithm of the function was fitted to a straight line with the 
method of weighted least squaresZ6 and the correlation time, 
t, (tcl and t,$, was then deduced. The second method (in- 
tegral method) could always be applied. It was based upon 
the definition of the correlation time as 
t,= [ l/C(O)] JyC(t)dt. Practically, the integration was per- 
formed from t = 0 to t = t, , the time at which the autocorre- 
lation function began to oscillate around zero (the oscilla- 
tions are due to statistical iluctuations). Finally, self- 
diffusivities, denoted D (DL and OS), could be obtained in 

terms of the correlation functions via D = JyC(t)dt, that is, 
D = C(O)t, . Self-diffusivities were found by using the above 
two methods. The estimates of the errors in self-diffusivities 
are a combination of errors in simple measurements and sta- 
tistical errors due to a finite number of observed particle 
trajectories.“6 

In order to treat all observations equally, a slightly dif- 
ferent definition of the velocity correlation function was 
used in the calculation of this integral. The velocity fluctua- 
tion autocorrelation function was calculated as 
ctt> ‘~‘trajectories,t~ V’(t,,+ t)V’(tO)/~‘trajectories numbers of 
observations at t= 0. This method of calculation prevents a 
few, uncertain observations at large separation times domi- 
nating the integral. For short separation t, the number of 
observation at t = 0 is not much different from that at t, and 
hence, this definition is not much different from the previous 
definition. 

Finally, another method to estimate the velocity standard 
deviation is to compute the square root of the experimenta 
value of C(O), which is based on the subset of 30 particles 
with long trajectories. However, “pixel noise,” which can be 
recognized to be present by a sharp initial drop in the veloc- 
ity correlation is a problem at high concentrations (see Sec. 
IV C). This “pixel noise” can be avoided by using the ex- 
trapolated value of the exponential fit of C(t) back to t=O 
instead of the experimental value of C(0). Again, the esti- 
mates of the errors are a combination of errors in simple 
measurements and statistical errors due to a finite number of 
observed particle trajectories.‘6 It should be noted that “pixel 
noise” has a negligible effect on the diffusivity, as calculated 
as an integral over the velocity correlation function, because 
the contribution of the single erroneous initial point to the 
integral is very small. 

C. Second-order moments of the particle 
displacement 

Another method to investigate the long time behavior of 
the fluctuating particle motions was to compute the second- 
order moment of the particle displacement. From the inter- 
polated horizontal and vertical coordinates of the settling 
particles, the horizontal and vertical second-order moments 
of the particle displacement fluctuations, denoted Mz (MZL 
and M,II, respectively), were calculated for a given particle 
concentration as M2(t) = ([X(t,+ t) -X(to) - ( V)t12) en- 
semble averaged over different particle trajectories and dif- 
ferent starting times to. The set of particles was chosen to be 
the same as that for the correlation function determination 
summarized in Sec. III B. The average (V) was taken as the 
mean (horizontal or vertical) velocity calculated for this set 
of particles by means of the method described in Sec. III A. 
The uncertainties in the moments were given by the standard 
error in the mean, which was defined as the standard devia- 
tion divided by the square root of the number of uncorrelated 
data.“6 A diffusive behavior was characterized by a linear 
growth with time of the second-order moments after few 
correlation times. The second-order moments were fitted to a 
straight line with the method of weighted least squaresZ6 and 
the self-diffusivities were then extracted from the slope of 
this fitted line (the second-order moment method). It should 
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FIG. 1. ‘&JO typical trajectories in the laboratory reference frame (a) and 
same particle trajectories in the mean settling reference frame (b) for 
<p=30%. 

be noted that this second-order moments method for evalu- 
ating the diffusivity is closely related to the correlation func- 
tion method at the end of Sec. III B, which uses the modified 
correlation function. This method based on displacements is 
also insensitive to the problems of “pixel noise.” 

IV. EXPERIMENTAL RESULTS 

A. Particle trajectories 

IAvo typical particle trajectories are presented in Fig. 
I(a) for +=30%. These trajectories are rather tortuous, and 

q Horizontal q Vertical 

0.6 

q q “! 0 -3 00 N 
‘: ? ? d d 4 

Velocity, V* 

FIG. 2. Histograms of the horizontal and vertical velocity fluctuations for 
4=30% (the velocities, V*, are made dimensionless by scaling with V,). 

exhibit large as well as small loops. In Fig. l(b), trajectories 
of the same particles are displayed in the mean settling ref- 
erence frame. The particle motion fluctuations are strongly 
anisotropic, with vertical fluctuations much larger than hori- 
zontal fluctuations. The particle trajectories relative to the 
mean velocity demonstrate graphically that there are several 
independent events, i.e., that the data are sufficiently long in 
time to’observe a long time behavior. 

B. Mean velocities and velocity fluctuations 

Histograms of the velocities are all found to be very 
smooth and approximately Gaussian, as illustrated for 
+=30% in Fig. 2, and therefore to be well represented by the 
mean and the variance. Table I presents the measured depen- 
dence of the dimensionless horizontal and vertical mean ve- 
locities, (V,)* and (V$*, and the standard deviations, u,*L 
and a& upon the particle concentration. All the values have 
been made dimensionless by scaling with the Stokes’ veloc- 
ity of an isolated sphere calculated with the Stokes’ formula 
given in the introduction, V,=O.O37+-0.005 cm/s (the error 
bar is mainly due to particle size dispersion). The measured 
mean vertical velocity of an isolated sphere (@O%) is 0.038 
fO.OO1 cm/s, in good agreement with the theoretical value 

TABLE I. Dimensionless horizontal and vertical mean velocities, (VA)* and (V,,)‘, and standard deviations, I& and ~$1. The results are made dimensionless 
by scaling with the theoretical value of the Stokes’ velocity, V, . 

4 0.050~0.001 0.100+0.001 0.150+0.002 0.200+-0.003 0.250+0.003 0.300?0.004 0.350t0.004 0.400”0.005 

(V,)* From all local velocities 0.06 20.03 0.01 20.05 0.01 to.02 0.02 k-o.03 0.00 20.02 0.00 LO.02 
{VP)” From all local velocities 0.8 to.1 0.7 tO.l 0.57 20.08 0.39 LO.06 0.29 20.04 0.17 20.03 
TL From all local velocities 0.33 f0.04 0.35 to.05 0.32 20.04 0.24 20.03 0.24 20.03 0.19 kO.03 
41 From experimental C(0) 0.27 LO.04 0.31 +0.0.5 0.28 20.04 0.21 LO.03 0.19 to.03 0.16 ~0.02 
6% From extrapolated C(0) 0.27 ‘0.04 0.31 20.04 0.29 20.04 0.21 +0.03 0.17 20.02 0.15 to.02 
4n From all local velocities 0.62 -to.08 0.68 to.09 0.61 +O.pS 0.44 to.06 0.39 20.05 0.29 It-o.04 
4n From experimental C(0) 0.51 k-o.08 0.61 kO.09 0.54 -CO.08 0.37 ‘0.06 0.34 -co.05 0.26 20.04 
en From extrapolated C(0) 0.54 t0.08 0.65 LO.09 0.57 +0.08 0.38 20.05 0.34 f0.05 0.27 20.04 

-0.005+0.009 
0.14 k-o.02 
0.14 LO.02 
0.12 -I-o.02 
0.11 +-0.01 
0.19 20.03 
0.17 20.03 
0.17 k-o.02 

0.006+0.009 
0.07 “0.01 
0.07 ~0.01 
0.06 20.01 
0.05 to.01 
0.09 kO.01 
0.08 TO.01 
0.07 -)10.01 
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FIG. 3. Hindered settling function. The solid circles are the experimental 
data and the dotted curve corresponds to the Richardson-Zaki law with 
n=5. 

of the Stokes’ velocity, V, , within the uncertainty range. The 
measured mean horizontal velocities are zero within error 
bars. 

The experimental dimensionless settling speeds, (V$*, 
decrease with 4, as displayed in Fig. 3. The logarithm of the 
experimental hindered settling function has been fitted to a 
linear function of the logarithm of l- 4 by the method of 
weighted least squaresmz6 A Richardson-Zaki7 law, 
f(4) = Cl- 4)“7 with n=5.0?0.3 is in fairly good agree- 
ment with the experimental data (the correlation coefficient 
of the linear fit is 0.99). 

The horizontal .and vertica1 veIocity fluctuations, czL 
and &$ have been determined by means of the three meth- 
ods described in Sets. III A and III B. The velocity fluctua- 
tions estimated by these three methods match within error 
bars. However, since “pixel noise” contributes a small sys- 
tematic erroneous increase for the two first methods at high 
concentration, the numbers deduced from the extrapolated 
value of C(0) are quoted for the values of the fluctuations at 
+=35% and 40% in the remainder of this paper. It should be 
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FIG. 4. The verticat relative velocity fluctuations, u~~~/(VI$, vs 4. The solid 
circles are the experimental data computed from the local velocities and the 
open circles from the extrapolated values of C(0). 
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FIG. 5. The ratio between the vertical and horizontal standard deviations, 
uu~~/uVL , vs 4. The solid squares are the experimental data computed from 
the local velocities and the open squares from the extrapolated values of 
C(O). 

mentioned that an important part of the error in dimension- 
less standard deviation comes from the error in Stokes’ ve- 
locity. 

The velocity fluctuations also decrease with concentra- 
tion. In order to examine the importance of the velocity flue- 
tuations, the relative velocity fluctuations in the vertical, 
cr,l$(Vj$, are plotted versus 4 in Fig. 4. Clearly, the relative 
fluctuations are large, ranging between 0.75-+0.01 and 1.7 
kO.3. The relative vertical velocity fluctuations increase at 
low concentration, reach a maximum of 1.720.3 at $=30% 
and then decrease at higher concentration. The ratio between 
the vertical and horizontal standard deviations, ~;ll/‘+~~, 
which characterizes the anisotropy of the velocity fluctua- 
tions, is plotted versus 4 in Fig. 5. This ratio is approxi- 
mately 1.9 for low concentration and then decreases with 
increasing concentration, to reach a value of about 1.6 for 
+=40%. In order to show the effect of “pixel noise” at high 
concentrations, data computed from the local velocities, and 
from the extrapolated values of C(0) have been plotted for 
+=35% and 40% in Figs. 4 and 5. It should be noticed that 
the error bars for this last method are large, since they cor- 
respond to statistical errors due to a small number (typically 
30) of observed trajectories. 

C. Velocity autocorrelation functions and correlation 
times and lengths 

Normalized velocity fluctuation autocorrelation func- 
tions, C(t*)lC(O), for both horizontal and vertical direc- 
tions; are shown in Fig. 6 for three different particle concen- 
trations. In these curves, the time, t*, has been made 
dimensionless by scaling with the Stokes’ time, a/V,. The 
correlation functions always decrease as a single exponential 
toward zero, which demonstrates that particle velocity al- 
ways become uncorrelated. Moreover, the velocities seem to 
become uncorrelated around a dimensionless time t” -60 for 
all concentrations. In all cases, when the functions approach 
zero, the oscillations around zero are due to statistical noise. 
In addition, the horizontal and vertical correlation functions 
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have a similar relaxation. As a general trend, the decay of the 
vertical correlation functions is slightly slower than that of 
the horizontal correlation functions. It should also be men- 
tioned that the large image magnification was needed at 
+=40%. Indeed, when the small magnification was used, 
both correlation functions experience a sharp decrease to 
zero at early times, which is not as strong as that for the large 
magnification. This short time jump is the sign of “pixel 
noise” due to sampling problems mentioned in Sec. II C. 
Such small jumps can, in fact, be seen in Fig. 6(c), with a 
drop of 30% for the vertical motion and 43% for the hori- 

0.0 0.1 0.2 0.3 0.4 
Concentration 

FIG. 7. The dimensionless horizontal and vertical correlation lengths, Z,*L 
and I,*, vs 4. The solid circles are the experimental data for the vertical 
direction and the open circles for the horizontal direction. 
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FIG. 6. Normalized velocity fluctuation autocorrelation functions for +=5% 
(a), 20% (b), and 40% (c). The solid circles are the experimental data for the 
vertical functions and the open circles for the horizontal functions. The 
uncertainty range is indicated for three data points on the vertical functions 
(the same uncertainty range is obtained for the horizontal functions). 

zontal motion at +=40%. Smaller jumps are also discernible 
at 4=35%, but do not occur at lower concentrations. As 
mentioned in Sets. III B and IV B, this “pixel noise” can be 
avoided by using the extrapolated value of C(t) back to t=O. 
These corrected values of C(0) were used to compute the 
correlation times and lengths in Table II and Fig. 7, and to 
normalize the velocity autocorrelation functions at +=35% 
and 40%. 

Table II presents the dimensionless correlation times, t,*l 
and rql (based on time scale a/V,), determined by means of 
the integral method and the exponential fit method described 
in Sec. III B (the correlation coefficients of the fit are better 
than 0.99). The correlation times estimated with both meth- 
ods match within error bars. As a general trend, the correla- 
tion time seems independent of concentration and vertical 
times are slightly longer than horizontal times. It should be 
noted that, for all experiments, the correlation times are 
larger than the measurement sampling time (~2 s), thereby 
ensuring a statistically correct sampling of data. 

A correlation length can be roughly estimated by 
tccru=D/~u=(t~)1’2 , where the interrelated quantities, 
t, ,a; [ = C(0)1’2] and D, are computed using the same sta- 
tistical ensemble of data (see Sec. III B). It should be noted 
that this correlation length is the distance the particle moves 
with the fluctuation of the velocity while the velocity re- 
mains correlated, and is not the spatial correlation length. 
The dimensionless vertical and horizontal correlation 
lengths, l,*I and Z$ (based on length scale a), both decrease 
with 4, as shown in Table II and Fig. 7, where the correlation 
lengths estimated from the integral method are plotted versus 
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TABLE II. Dimensionless horizontal and vertical correlation times, t:; and t$, and correlation lengths, 1:; and 131. The results are made dimensionless by 
scaling with the time a/V, and with the length a. 

4 0.050~0.001 0.100~0.001 0.150?0.002 0.200+0.003 0.250t0.003 0.300+0.004 0.350+0.004 0.400~0.005 

CL Exponential fit 1423 1222 1122 1222 24-t-4 17+3 2023 2324 
method 

t* CL Integral method 15r3 1222 1122 12k2 20+4 162.3 2023 2224 
231 Exponential fit 1823 1623 1623 21+3 27k4 2524 25+4 2825 

method 
teS1 Integral method 1924 1723 16+3 2124 23+-4 25t-5 2624 2624 
1* CL Exponential fit 3.920.4 3.8k0.3 3.21’0.3 2.5 20.2 4.320.3 2.6kO.2 2.1kO.2 1.1to.1 

I* Cl 
I* 
4 

method 
Integral method 
Exponential fit 

3.9zo.4 3.720.3 3.0t0.2 2.5 ro.2 3.920.4 2.4’0.2 ’ 2.1+0.1 1.0~0.1 
9.820.8 10.5kO.8 8.9kO.7 8.1k0.6 9.220.6 6.6f0.5 4.320.3 2.120.2 

I* 
4 

method 
Integral method 9.520.8 10.5?0.8 8.420.7 7.8i0.6 7.820.6 6.5-t-0.5 4.520.3 1.920.1 

$. The vertical correlation length is always. larger than the 
horizontal correlation length. However, this anisotropy de- 
creases with increasing concentration. At large concentration, 
the correlation lengths are of the order of a particle radius. It 
should be noted that the correlation length is always much 
smaller than the vessel inner width. 

D. Hydrod&tnic self-diffusivities 

The diffusive behavior of the particle motion fluctuations 
can be established by two means, as described in Sec. III. 
First, study of the velocity correlation functions shows that 
the particle velocity becomes uncorrelated at all concentra- 
tions. Integrals of the correlation functions always reach 
saturation values, which are defined as the self-diffusivities, 
around t*=60, as illustrated for 4=30% in Fig. 8. The inte- 
grals are made dimensionless with a length scale a and a 
time scale a/V,. Second, second-order moments of the par- 
ticle displacement fluctuation6 always grow linearly with 
time after a few correlation times, i.e., after the first curved 
part, for all concentrations (the correlation coefficients of the 
linear fit described in Sec. III C are better than 0.99). This 
behavior is illustrated for 9=30% in Fig. 9, where the 

Time, t* 

FIG. 8. Dimensionless integrals of the velocity autocorrelation functions for FIG. 9. Dimensionless second-order moments of the particle displacement 
qS=30%. The solid circles are the experimental data for the vertical direction fluctuations for +=30%. The solid circles are the experimental data for the 
and the open circles for the horizontal direction. The solid lines indicate the vertical direction and the open circles for the horizontal direction. The solid 
68% confidence limit. lines indicate the 68% confidence limit. 
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second-order moments are made dimensionless by scaling 
with the length scale a. 

Table III gives the dimensionless self-diffusivities, 0: 
and Df (based on length scale a and time scale a/Vs), de- 
termined by means of the three methods described in Sec. 
III. The self-diffusivities estimated 8with the different meth- 
ods match within error bars. The diffusion process is strongly 
anisotropic. Vertical self-diffusivities are larger than horizon- 
tal self-diffusivities, as seen clearly in Figs. 8 and 9. Again, 
this anisotropy decreases with increasing concentration. Ver- 
tical and horizontal self-diffusivities decrease with particle 
concentration, as displayed in Fig. 10, where the self- 
diffusivities estimated from the integral method are plotted 
versus 4. It should be noted that the datum for 9=5% is 
slightly smaller than that for +=lO%. However, because of 
the large error bar, it is difficult to say whether this corre- 
sponds to a significant trend. Another scaling can be built 
with the time scale al(V$, which uses the mean settling 
velocity in place of the Stokes’ velocity. The self-diffusivities 
made dimensionless with this alternative scaling seem to be 
independent of concentration over a substantial concentra- 
tion range, in which the mean velocity varies by a factor of 

. 700 

g 600 

i!i 

z 
500 

3 
400 

a 3 300 

-3 G 200 
8 aJ 100 m 

0 
0 50 100 150 200 

Time, t” 

Nicolai et al. 

Downloaded 13 Jul 2009 to 131.111.16.20. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



TABLE III. Dimensionless horizontal and vertical self-diffusivities, 0: and D. The results are made dimension&,s by scaling with aVs . 

4 0.05OZO.001 0.100~0.001 0.150+0.002 0.200’0.003 0.250+0.003 0.300~0.004 0.350+0.004 0.400-1-0.005 

DT Second-order 0.9t0.1 l.O”_o.l 0.920.1 0.5ZkO.l 0.7kO.l 0.4+0.1 0.21+0.03 0.04+0.01 
moment method 

0: Exponential 1.120.2 1.2’0.2 0.920.2 0.5ZO.l 0.820.1 0.420.1 0.23”0.04 0.05+0.01 
fit method 

0: Integral method 1.0t0.2 1.120.2 0.920.1 0.520.1 0.8-tO.l 0.420.1 023~0.03 0.05-1-0.01 

D f Second-order 4Rco.7 6.4k0.9 4.220.6 2620.4 2.6k0.4 1.6kO.2 0.8tO.l 0.15t0.02 
moment method 

“$ Exponential 5.321.0 6.81’1.2 5.120.9 3.120.5 3.2205 1.8?0.3 0.720.1 0.15r0.03 
fit method 

Dp* Integral method 4.920.7 6.4kl.0 4.520.7 2.920.4 2.720.4 1.720.2 0.8LO.l 0.14~kO.02 

5, as shown in Fig. 11. The self-diffusivities decrease in this 
scaling above ~$=30%. 

V. DISCUSSIONS AND CONCLUDING REMARKS 

In this work, the motion of sedimenting non-Brownian 
spheres has been examined experimentally at low Reynolds 
numbers. A few marked spheres were tracked in the bulk of 
the suspension of like spheres, using a real time digital im- 
aging processing system. Particle trajectories were examined 
for particle concentrations ranging from 0% to 40% in 5% 
steps, and a statistical analysis of local particle velocities was 
performed. 

The experimentally inferred hindered settling function 
was found to be in fairly good agreement with a 
Richardson-Zaki law, f(4) = (l-(b)” with y1=5.0t0.3. Al- 
though the velocity of the sedimentation front and the aver- 
age settling speed in the bulk of the suspension are not ex- 
pected to be exactly the same, the same order of magnitude 
for the index n is found in the present measurements as in 
previous determinations of the sedimentation front speed.’ 
An index of order 5 has also been obtained in numerical 
simulationsaa Experiments by Ham and Homsy6 for a 
slightly lower concentration range (2.5%~+10%) gave a 
lower value of it, which was attributed to structure develop- 
ment that arose even in initially well-mixed suspensions. In 
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FIG. 10. The horizontal and vertical self-diffusivities made dimensionless 
by scaling with a V, vs 4. The solid circles are the experimental data for the 
vertical direction and the open circles for the horizontal direction. 

the present measurements, the mean horizontal velocity has 
been found equal to zero within experimental uncertainty. 
This finding confirms that the experiments were not per- 
turbed by any mean convective flow. 

The fluctuations in settling speed have been found to be 
large, ranging between 75% and 170% of the mean. The 
relative fluctuations increase at low concentrations to reach a 
maximum value of 170% at +=30% and then decrease at 
higher concentrations. It has indeed been presumed that they 
vary between zero at +=O%, where a particle is isolated, and 
zero again at close packing (+60%), and to present a maxi- 
mum in between.” The present experimental estimates of the 
vertical velocity fluctuations are larger than those of Ham 
and Homsy’ (=46% of the mean for 4=5%), though still 
less than the theoretical prediction of Koch and Shaqfeh17 
(=UV,). They are also of the same order of magnitude as 
the results of the experiments of Xue et al8 The decrease of 
the relative velocity fluctuations above +=30% in these later 
experiments is, however, much stronger than in the present 
experiments. In addition, in the present work, the velocity 
fluctuations have been found to be strongly anisotropic. Ver- 
tical fluctuations are approximately twice as large as horizon- 
tal fluctuations for 5<+15%. The anisotropy in velocity 
fluctuation decreases with further increasing concentration. 

The diffusive behavior of the fluctuating particle motion 

Scaling with mean velocity 
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FIG. 11. The horizontal and vertical self-diffusivities made dimensionless 
by scaling with u(Vl$ vs 4. The solid circles are the experimental data for 
the vertical direction and the open circles for the horizontal direction. 
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has been demonstrated by examining the relaxation of the 
particle velocity autocorrelation functions, as well as by 
studying the second-order moments of the particle displace- 
ments. This finding confirms and extends the results of Ham 
and Homsy.6 Vertical and horizontal correlation times and 
lengths, as well as vertical and horizontal self-diffusivities 
have been found as a function of 4. The measured correla- 
tion times are independent of the concentration. The vertical 
times are slightly larger than the horizontal times. The self- 
diffusivities decrease with increasing concentration. Since by 
definition the self-diffusivity is the product of the correlation 
time with the velocity variance, the self-diffusivity decreases 
with concentration like the variance. Moreover, the self- 
diffusivities normalized on the measured mean vertical ve- 
locity are constant over a substantial range of concentration 
in which the mean varies. These findings seem to suggest 
that the correct scaling would be to use the mean settling 
velocity. It should be noted that this scaling is more subtle, in 
that the velocity fluctuations do not scale with the mean ve- 
locity, and the correlation length is not constant. The present 
work also shows the strong anisotropy of the diffusion pro- 
cess in a fashion similar to other problems, e.g., hydrody- 
namic dispersion in porous media. Again, this anisotropy de- 
creases with concentration. 

These experimental findings are different from the nu- 
merical results of Ladd,“) who found a very large difference 
of time scales for horizontal and vertical velocity autocorre- 
lation functions. In a recent work, Koch” examined the role 
of the vertical periodic boundaries on the diffusion process 
for box-size limited sedimenting point particles. The above 
difference in time scales was attributed to the periodic 
boundaries imposed in the vertical direction in the cubic-box 
numerical simulation, which do not exist in the present ex- 
periments with an oblong vessel. Some recent numerical 
simulations in Cambridge= of point particles sedimenting in 
a periodic box have suggested that an impenetrable lower 
boundary is important in reducing the vertical-horizontal an- 
isotropy to realistic proportions. 

The present vertical self-diffusivity is of the same order 
of magnitude as the result of the experiments of Ham and 
Homsy’ (Dll-56aVs) for +=5%. The decrease of the self- 
diffusivity with increasing concentration in the Ham and 
Homsy experiments is, however, stronger than in the present 
experiments. The present experimental value of the vertical 
self-diffusivity for r$=5% is also close to the value predicted 
by the hydrodynamic screening theory17 (D~1=0.52aVs~-’ 
= 10.4~ V,). Koch” recently showed that a much larger 
value of the self-diffusivity was obtained for box-size limited 
point particles in a large aspect ratio cell, but again this may 
be due to the lack of an impenetrable lower boundary.= To 
complete this discussion, it should be also mentioned that the 
vertical self-diffusivity at low concentrations is of the same 
order of magnitude as that determined from the monolayer 
simulation of Lester.29 

An interesting finding of the present work is the decrease 
of self-diffusivities and anisotropy for large concentrations. 
The following considerations can give some clues to this 
behavior. At large particle concentration, the hindrance is 
very high, and a particle is locked into a settling cluster of 

particles. The basic mechanism for diffusion may be the fluc- 
tuating motion of clusters instead of the fluctuating motion of 
single particles. Collective motion of small clusters has been 
observed for a high concentration in the numerical simula- 
tions of Ladd.” In the present experiments, video recordings 
of the sedimenting suspension show very strong local fluc- 
tuations of the concentration. Additional experimental and 
theoretical work is necessary to understand thoroughly this 
large concentration regime, as well as the dependence of the 
self-diffusivities and correlation times with concentration. 

Finally, since all the experiments were performed in the 
same size vessel, the problem of whether the velocity fluc- 
tuations and self-diffusivities vary with the vessel size, as has 
been suggested by some theories,15>t6 was not specifically 
addressed in the present paper. However, the estimated cor- 
relation lengths are always much smaller than the vessel in- 
ner width. This consideration seems to suggest that the ex- 
periments would not be affected by the vessel size. 
Additional experiments are, however, needed to give a defi- 
nite answer to this question. This problem is examined in 
another study, where the inner vessel width is varied.30 
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