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Self-Similar Capillary Pinchoff of an Inviscid Fluid
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We study how an axisymmetric drop of inviscid fluid breaks under the action of surface tension.
The evolution of various initial shapes is calculated numerically using a boundary-element method, and
finite-time breakage is observed in detail. The pinchoff region is shown to have lengths scalfit) as
where 7 is the time remaining until pinchoff, and is found to adopt a unique shape with two cones of
anglesl8.1° and112.8°, independent of the initial conditions. The velocity potential in the intermediate
region between the small pinchoff region and the large bulk of the drops is shown to take the form
Ar'2P,5(cosf) + Br/r + .... [S0031-9007(97)05092-8]

PACS numbers: 47.11.+j, 02.70.Pt, 47.20.Cq, 68.10.—m

Inviscid pinchoff is important in ink-jet printing, both surface moves with the normal component of velocity,
during the ejection of an ink drop and during the possibled¢ /dn.
subsequent breakage of airborne drops. We study the Laplace’s equation is solved numerically using a
latter which is the easier geometry to compute. Theboundary-element method based on a discretization of the
inviscid assumption is appropriate while the pinchofffollowing boundary integral equation which applies for
region is larger than a micron, where fluid propertiesx, on the surface of the drop [7-9]
are similar to those of water. At scales of order 10 nm, 2(x) 9G 1
viscosity becomes as important as inertia, and this has f(;—ds = ] d(x)—dS + —o(x,), (2)
been studied by numerous authors [1-3]. We present /s on s an 2
results for inviscid flow showing that th_e pinchof_f region \whereG is the free-space Green’s function
takes the form of a double cone, in which one side bends
back over the other with an internal angle greater than G(x:x,) = — 1
90°. Such a shape is strictly two dimensional, and so e 47|x — X,|
cannot be examined by a one-dimensional analysis, like I .
those used previously for slender jets [4]. Schulkes [5pnd @/9n denotes the normal derivative. Giveh at a
noted in an appendix that the contraction of an invisci et of n'odes ons, we can solve (2) f‘?fa‘f’/a”’ and )
liquid filament approaches a finite-time singularity, anddifférentiate along the surface to obtain the tangential
showed a cross-sectional shape that contains a backwan(@loCity 9¢/ds. Then, having found the surface velocity
facing region. Chen and Steen [6] recently studied thd @nd d¢/éz from (1), the surface position and surface
pinchoff of a soap-film bridge, both experimentally andPotential can be evolved in time. L
numerically, and found a similar double cone with angles Trials are pe_rformed using highly e.Iongated initial
12° and127°. They were in effect looking at a two-fluid §hapes resembling dur.nbbells.. Mpst trla}ls‘f start at rest,
case of inviscid pinchoff, with the same fluid on both € ¢ =0, but sozme trials begin W'th an initial velocity
sides of a massless soap film. They studied one specid¥ Settingé = er“P»(coss), wheree is 0(0.1) and P>
initial condition corresponding to a critical catenoidal 'S e Leégendre polynomial of order two in spherical

soap film. Further experimental evidence for a backwardgoordin_ates' For simpl.icity and speed of computation,
facing region in inviscid pinchoff is ambiguous, since left-to-right symmetry is imposed. The shapes are defined
tin cylindrical coordinates using nodes in thezR plane.

this region would form a dimple in the larger drop tha ) . . .
obscures the view of the pinchoff, and since it is difficult At first the drop recoils under surface tension, wobbling
with large amplitude capillary waves, and in some cases

to eliminate viscous effects and interfacial contamination. ot v def d sh he i .
We consider pinchoff of an inviscid incompressible lig- 2d0Pting extremely deformed shapes. The interesting
uid in air of negligible density. We assume axisymmetriccases are those which result in a finite-time pinchoff, or

potential flow,u = V¢, so the velocity potentiab satis- in other words which break up into smaller drops. Fig-
fies Laplace’s equatior¥>¢ = 0. The dynamic bound-

ure 1 shows such a case at 3 times during the evolution.
ary condition is the unsteady Bernoulli equation, Because of the imposed left-to-right symmetry, pinchoft
produces three drops with the middle one stationary.
p<% + 1 |V¢|2> + yk =0, (1) Numerically, the region near the pinchoff is resolved
at 2 by adaptive grid and adaptive time step techniques, but
wherek is the curvaturep the density, and’ the surface discussion of these techniques is beyond the scope of

tension. The kinematic boundary condition is that thethis paper.

, 3)
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Figure 3 shows the shape of the pinchoff region,
>>>>>> where thez and R coordinates have been rescaled with
1.0 | P s 1 Rmin, Which has just been shown goes likéd/3. We
A observe the boundary of the drop collapsing onto a shape
characterized by two cones. The side with the small angle
corresponds to the satellite drop, and the other to the
] parent drop. Notice that the large angle is greater fitén
- measured internally, so that the two cones exert surface
tension forces in the same direction. The simulation
maintains a constant nodal density in the region near the
minimum. Figure 3 therefore suggests that there should
. . . . . be a similarity solution. The two cone angles can easily
'1'500 05 10 15 20 25 30 3s be obtained by fitting a straight line fro® = 5R, to
. 100R,in. The angles measured at various times during
FIG. 1. The shape of a typical drop which results in a finite- 2 trial are observed to approach a finite value. Plotting

time pinchoff is plotted at 3 times. Left-right symmetry is these angles versusi/iﬁ (which scales liker'/?) is found
imposed. The solid line is the initial shape, the points showempirically to give a fairly straight line a®, — 0
an intermediate shape, and the dashed line is the shape jygbm which we can extrapolate to the final cone angles
before pinchoff. In this and in subsequent figures, all vanablesfor each trial. It is remarkable to observe that for man
are nondimensionalized using, v, and a length scale of the ™ Lo . e " y
initial drop. trials starting from different initial conditions all seem to
settle on the same pair of cone angles;.; = 18.1°
and aj,e. = 112.8°, as shown in Fig. 4. Certain initial
Dimensional analysis shows that the only nondimen<conditions result in a pinchoff region that opens the
sional grouping ofy, p, R, andr is yr?/R3p, wherer  opposite way (i.e., small satellite on the outside, and large
is the time until pinchoff. Assuming the behavior nearparent drop in the middle) but with the same pair of
pinchoff is locally determined and independent of initial angles. We attribute the different angles of Chen and

conditions, we anticipate that lengths in the pinchoff re-Steen [6] to the effect of an external fluid.
gion, both axial and radial, might scale as Dimensional analysis and the evidence of Figs. 3 and 4
<77_2 >1/3 point to a similarity solution of the form

— - (4)

p
To see this behavior in the numerical solutions, we plot in
Fig. 2 R3/? against actual time for two distinct points  \hereX — x/(y72/p)"/3. The rescaled potentidh still
Rmin and Ruose ON the pinchoff shape from one trial. satisfies Laplace’s equation and so there is no reduction
Although not necessary, we could use such a plot to
extrapolate to find the pinchoff timg sincer =1, — ¢.
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_ _ FIG. 3. The pinchoff shapes for one trial at various times
FIG. 2. The radiusR scales with7*? as demonstrated by collapse onto two cones when rescaled with minimum radius
plotting R*? against time: for two distinct points in the Ry (#) and centered 0By, (7). Inset shows key oR, over

pinchoff region. three decades.
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23 whered is measured from the axis of the cone ahd,
" | involves complete elliptic integralg(m) and K (m), and
is regular o0 = 6 < 7 [10]. We notice, however, that
21 the curvatures on the two cones have an opposite sign:
positive on the small cone and negative on the large
o 207 cone. For the small cone it is therefore necessary to
219t have another term balance the positiVe |> and positive
= curvature. The ¢/t term in the Bernoulli equation (1)
g8y can balance these positive terms if
177 $r (1, — 1)/, ©)
16 which is a source-flow solution &2¢ = 0 with velocity
15 , , x , decreasing linearly in time. To force all three terms in
0 0.0005 0.001 00015 0.002  0.0025 Eq. (1) to go likel/r, we therefore pose a far field in
R, A each cone
min
128 ¢ = Ar'?P )y(cosf) + Br/r + C + ..., (10)
126 + e i whereA, B, andC are constants. This form of the poten-
124 L o | tial has been confirmed by observiggvarying like r'/2
122 | | asr becom_es large, which i_s s:hown in Fig. 5. The slope
120 | ] for large r is AP, >(cos#) within an error of O(r=3/2),
° . s which gives first-order approximations @i, = 2.17
L8 | TR CLE andAsmai1 = —3.12. The constanB can similarly be ap-
o 6T LA y proximated by taking the slope of a plot 6/t ver-
%”114 - “*“‘ " sus1/r. For the same trial as in Fig. 5, this constant
T2 “"ZZ;WMM B is found to be—0.90 and —4.29 for the large and
110 } oot Y9%444.4., | ] small angle sides, respectively. On both si#eis nega-
s | e, | tive corresponding to source flows. Note, however, that
106 , , e T the leading-order'/? term dominates with flow from the
0 0.0005 0.001 00015 0.002  0.0025 small side to the large side. With these numerical values
Rm?n/‘* of A, B, and «, the three terms in the Bernoulli equa-

tion (1) become in the large cone0.90/r + 1.43/r —
FIG. 4. The cone angles from 11 different initial conditions 0 41/ failing to balance by.12/r (i.e., 9% error), and

all converge to the same values,,,;; = 18.1° (top panel) and ; _
aiage =~ 112.8° (bottom panel). Each angle is found by IeastIn the small cone-4.29/r + 1.24/r + 3.06/r = 0.01/r

squares fitting a line to the cone region. (i.e., 0.2% error).
The constantB is related toA and the cone angle

) ] ) ] ) by the Bernoulli equation or, equivalently, (7)@tx ).
to a simple ordinary differential equation as one finds

in similarity solutions for slender jets. The rescaled
kinematic and Bernoulli boundary conditions lose their 2.80 +
time dependence and become

2 285
GX + Vo) - V[ — F(X)] =0, (6) 200
IX VO — 10 + Lvopr + k=0 (7) o5 |

on arescaled interfage = F(X) in spherical coordinates.
As X — = in (6) and (7), the asymptotic behavior — ¢-3.00 |
is F — constant, corresponding to a cone, afdo 305 |
X'/2, corresponding to a steady flow withh o /2,

In order to interpret the latter result and to determine 3107

the multiplying coefficient, we return to the unscaled 315t

Bernoulli equation (1) and the numerical results. . ‘ ‘ ‘ N,

_The curvaturel /r of a cone might be balanced by the '3'2%.00 002 004 006 008 010 012

kinetic term|V |2 if ¢ « r'/2. To be a regular solution A

of V2¢ = 0, ¢ must have an angular dependence WhiChFIG 5 The lead der t b is AF2PL,(c0s0)

; ; ; . 5. e leading-order term inp is Ar'/2P;(cosf).

is the Legendre function of ordér, €., Lines fitted through the data at the latest time correspond to
¢1 o V1/2P1/2(COSH), (8) Alarge =217 andAsmall = —3.12.
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By solving (6) and (7) at successive orders, the solution The authors thank S.J. Cowley for driving the initial
on each side of the pinch can be expressed as power seriesestigation into the problem, J. M. Rallison for useful
- Y discussions during this work, and P.H. Steen for fruitful
— oy —3i/2 L ' . .
FX) =a + ;F’X ’ (11) communications and comparisons with his related work.
d(X,0) = AXl/zPl/z(cosé) This work is supported by Domino UK Ltd., Cambridge,
- as part of a larger body of work to study ink-jet printing,
+ x1/2 Z O, X 3Py, _1)n(cosh), (12) for which the authors are most grateful.
i=1
where the coefficients’; and ®; are determined by
the two parameterse and A. For example, F; =
_A(fPI/Z/de)la' The valuestiage = 112.8 o @small = [1] M.P. Brenner, J.R. Lister, and H.A. Stone, Phys. Fluids
18.1°, Ajarge = 2.17, @andAgmann = —3.12 are in principle 8, 2827 (1996)
determined by the requirement that the two far fields canp, J. Eggers, Phys. Rev. Lefl1, 3458 (1993).
be matched through the pinch. Our attempts to show thisj3] p 1. papageorgiou, Phys. Fluids 1529 (1995).
or to solve the rescaled equations in the pinch with (11)[4] L. Ting and J.B. Keller, SIAM J. Appl. Math50, 1533
and (12) as boundary conditions have been unsuccessful.  (1990).
This failure is of little concern as the answer would have [5] R.M.S. M. Schulkes, J. Fluid Mecl809, 277 (1996).
been numerical and no more revealing than the final[6] Y.-J. Chen and P.H. Steen, J. Fluid MecB41, 245

shape shown in Fig. 3. (1997). . .
In conclusion, we claim that the self-similar shape of [71 G.R. Baker, D.l. Meiron, and S.A. Orszag, Physica
inviscid pinchoff of a liquid drop in air scales with?/3 (Amsterdam)12D, 19 (1984).

and adopts unique angles o8.1° and 112.8°, indepen- ¢! tﬂér?dohoz%%%t"l'"?l%gz)and E.D. Cokelet, Proc. R. Soc.
dent (.)f the_|n|t|al conQ|t|0ns. It is clear that previous {99] C. Pozrikidis,Boundary Integral and Singularity Methods
one-dlmenS|opaI S_OIUt'OnS are unsgccessful becalﬂse th for Linearized Viscous FloWCambridge University Press,
backward-facing side of the shape is strictly two dimen-  campridge, UK, 1992).

sional. The form of the potential far from the pinchoff [10] M. Abramowitz and I.A. StegunHandbook of Mathe-
region could be used to solve for the self-similar shape in  matical Functions(Dover Publications, New York, NY,

this region. 1968).
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