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Self-Similar Capillary Pinchoff of an Inviscid Fluid
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We study how an axisymmetric drop of inviscid fluid breaks under the action of surface tens
The evolution of various initial shapes is calculated numerically using a boundary-element method,
finite-time breakage is observed in detail. The pinchoff region is shown to have lengths scaling ast2y3,
wheret is the time remaining until pinchoff, and is found to adopt a unique shape with two cones
angles18.1± and112.8±, independent of the initial conditions. The velocity potential in the intermedia
region between the small pinchoff region and the large bulk of the drops is shown to take the f
Ar1y2P1y2scosud 1 Btyr 1 . . . . [S0031-9007(97)05092-8]

PACS numbers: 47.11.+ j, 02.70.Pt, 47.20.Cq, 68.10.–m
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Inviscid pinchoff is important in ink-jet printing, both
during the ejection of an ink drop and during the possib
subsequent breakage of airborne drops. We study
latter which is the easier geometry to compute. Th
inviscid assumption is appropriate while the pincho
region is larger than a micron, where fluid propertie
are similar to those of water. At scales of order 10 nm
viscosity becomes as important as inertia, and this h
been studied by numerous authors [1–3]. We pres
results for inviscid flow showing that the pinchoff region
takes the form of a double cone, in which one side ben
back over the other with an internal angle greater th
90±. Such a shape is strictly two dimensional, and s
cannot be examined by a one-dimensional analysis, l
those used previously for slender jets [4]. Schulkes [
noted in an appendix that the contraction of an invisc
liquid filament approaches a finite-time singularity, an
showed a cross-sectional shape that contains a backw
facing region. Chen and Steen [6] recently studied t
pinchoff of a soap-film bridge, both experimentally an
numerically, and found a similar double cone with angle
12± and127±. They were in effect looking at a two-fluid
case of inviscid pinchoff, with the same fluid on bot
sides of a massless soap film. They studied one spe
initial condition corresponding to a critical catenoida
soap film. Further experimental evidence for a backwar
facing region in inviscid pinchoff is ambiguous, sinc
this region would form a dimple in the larger drop tha
obscures the view of the pinchoff, and since it is difficu
to eliminate viscous effects and interfacial contaminatio

We consider pinchoff of an inviscid incompressible liq
uid in air of negligible density. We assume axisymmetr
potential flow,u ­ =f, so the velocity potentialf satis-
fies Laplace’s equation,=2f ­ 0. The dynamic bound-
ary condition is the unsteady Bernoulli equation,

r

µ
≠f

≠t
1

1
2

j=fj2
∂

1 gk ­ 0 , (1)

wherek is the curvature,r the density, andg the surface
tension. The kinematic boundary condition is that th
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surface moves with the normal component of velocity
≠fy≠n.

Laplace’s equation is solved numerically using
boundary-element method based on a discretization of t
following boundary integral equation which applies fo
xo on the surfaceS of the drop [7–9]Z

S
G

≠fsxd
≠n

dS ­
Z

S
fsxd

≠G
≠n

dS 1
1
2

fsxod , (2)

whereG is the free-space Green’s function

Gsx; xod ­ 2
1

4pjx 2 xoj
, (3)

and ≠y≠n denotes the normal derivative. Givenf at a
set of nodes onS, we can solve (2) for≠fy≠n, and
differentiate along the surface to obtain the tangenti
velocity ≠fy≠s. Then, having found the surface velocity
u and ≠fy≠t from (1), the surface position and surface
potential can be evolved in time.

Trials are performed using highly elongated initia
shapes resembling dumbbells. Most trials start at re
i.e., f ­ 0, but some trials begin with an initial velocity
by settingf ­ er2P2scosud, wheree is Os0.1d and P2

is the Legendre polynomial of order two in spherica
coordinates. For simplicity and speed of computatio
left-to-right symmetry is imposed. The shapes are defin
in cylindrical coordinates usingn nodes in thezR plane.
At first the drop recoils under surface tension, wobblin
with large amplitude capillary waves, and in some cas
adopting extremely deformed shapes. The interesti
cases are those which result in a finite-time pinchoff, o
in other words which break up into smaller drops. Fig
ure 1 shows such a case at 3 times during the evolutio
Because of the imposed left-to-right symmetry, pincho
produces three drops with the middle one stationar
Numerically, the region near the pinchoff is resolve
by adaptive grid and adaptive time step techniques, b
discussion of these techniques is beyond the scope
this paper.
© 1998 The American Physical Society
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FIG. 1. The shape of a typical drop which results in a finite
time pinchoff is plotted at 3 times. Left-right symmetry is
imposed. The solid line is the initial shape, the points sho
an intermediate shape, and the dashed line is the shape
before pinchoff. In this and in subsequent figures, all variabl
are nondimensionalized usingr, g, and a length scale of the
initial drop.

Dimensional analysis shows that the only nondime
sional grouping ofg, r, R, andt is gt2yR3r, wheret

is the time until pinchoff. Assuming the behavior nea
pinchoff is locally determined and independent of initia
conditions, we anticipate that lengths in the pinchoff r
gion, both axial and radial, might scale asµ

gt2

r

∂1y3

. (4)

To see this behavior in the numerical solutions, we plot
Fig. 2 R 3y2 against actual timet for two distinct points
Rmin and Rnose on the pinchoff shape from one trial
Although not necessary, we could use such a plot
extrapolate to find the pinchoff timetp sincet ­ tp 2 t.

FIG. 2. The radiusR scales witht2y3 as demonstrated by
plotting R3y2 against timet for two distinct points in the
pinchoff region.
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Figure 3 shows the shape of the pinchoff regio
where thez and R coordinates have been rescaled w
Rmin, which has just been shown goes liket2y3. We
observe the boundary of the drop collapsing onto a sh
characterized by two cones. The side with the small an
corresponds to the satellite drop, and the other to
parent drop. Notice that the large angle is greater than90±

measured internally, so that the two cones exert surf
tension forces in the same direction. The simulati
maintains a constant nodal density in the region near
minimum. Figure 3 therefore suggests that there sho
be a similarity solution. The two cone angles can eas
be obtained by fitting a straight line fromR ­ 5Rmin to
100Rmin. The angles measured at various times dur
a trial are observed to approach a finite value. Plott
these angles versusR

3y4
min (which scales liket1y2) is found

empirically to give a fairly straight line asRmin ! 0
from which we can extrapolate to the final cone ang
for each trial. It is remarkable to observe that for ma
trials starting from different initial conditions all seem t
settle on the same pair of cone angles:asmall ­ 18.1±

and alarge ­ 112.8±, as shown in Fig. 4. Certain initia
conditions result in a pinchoff region that opens t
opposite way (i.e., small satellite on the outside, and la
parent drop in the middle) but with the same pair
angles. We attribute the different angles of Chen a
Steen [6] to the effect of an external fluid.

Dimensional analysis and the evidence of Figs. 3 an
point to a similarity solution of the form

fsx, td ­

µ
g2t

r2

∂1y3

FsXd , (5)

whereX ­ xysgt2yrd1y3. The rescaled potentialF still
satisfies Laplace’s equation and so there is no reduc

FIG. 3. The pinchoff shapes for one trial at various tim
collapse onto two cones when rescaled with minimum rad
Rminstd and centered onzminstd. Inset shows key ofRmin over
three decades.
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FIG. 4. The cone angles from 11 different initial condition
all converge to the same values,asmall ø 18.1± (top panel) and
alarge ø 112.8± (bottom panel). Each angle is found by leas
squares fitting a line to the cone region.

to a simple ordinary differential equation as one find
in similarity solutions for slender jets. The rescale
kinematic and Bernoulli boundary conditions lose the
time dependence and become

s 2
3 X 1 =Fd ? =fu 2 FsXdg ­ 0 , (6)

2
3 X ? =F 2

1
3 F 1

1
2 j=Fj2 1 k ­ 0 (7)

on a rescaled interfaceu ­ FsXd in spherical coordinates.
As X ! ` in (6) and (7), the asymptotic behavior
is F ! constant, corresponding to a cone, andF ~

X1y2, corresponding to a steady flow withf ~ r1y2.
In order to interpret the latter result and to determin
the multiplying coefficient, we return to the unscale
Bernoulli equation (1) and the numerical results.

The curvature1yr of a cone might be balanced by the
kinetic termj=fj2 if f ~ r1y2. To be a regular solution
of =2f ­ 0, f must have an angular dependence whic
is the Legendre function of order1

2 , i.e.,

f1 ~ r1y2P1y2scosud , (8)
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whereu is measured from the axis of the cone andP1y2
involves complete elliptic integralsEsmd and Ksmd, and
is regular on0 # u , p [10]. We notice, however, that
the curvatures on the two cones have an opposite sig
positive on the small cone and negative on the larg
cone. For the small cone it is therefore necessary t
have another term balance the positivej=fj2 and positive
curvature. The≠fy≠t term in the Bernoulli equation (1)
can balance these positive terms if

f2 ~ stp 2 tdyr , (9)

which is a source-flow solution of=2f ­ 0 with velocity
decreasing linearly in time. To force all three terms in
Eq. (1) to go like1yr, we therefore pose a far field in
each cone

f ­ Ar1y2P1y2scosud 1 Btyr 1 C 1 . . . , (10)

whereA, B, andC are constants. This form of the poten-
tial has been confirmed by observingf varying like r1y2

asr becomes large, which is shown in Fig. 5. The slope
for large r is AP1y2scosud within an error ofOsr23y2d,
which gives first-order approximations ofAlarge ­ 2.17
andAsmall ­ 23.12. The constantB can similarly be ap-
proximated by taking the slope of a plot of≠fy≠t ver-
sus 1yr . For the same trial as in Fig. 5, this constant
B is found to be20.90 and 24.29 for the large and
small angle sides, respectively. On both sidesB is nega-
tive corresponding to source flows. Note, however, tha
the leading-orderr1y2 term dominates with flow from the
small side to the large side. With these numerical value
of A, B, and a, the three terms in the Bernoulli equa-
tion (1) become in the large cone20.90yr 1 1.43yr 2

0.41yr failing to balance by0.12yr (i.e., 9% error), and
in the small cone24.29yr 1 1.24yr 1 3.06yr ­ 0.01yr
(i.e., 0.2% error).

The constantB is related toA and the cone anglea
by the Bernoulli equation or, equivalently, (7) atOsX21d.

FIG. 5. The leading-order term inf is Ar1y2P1y2scosud.
Lines fitted through the data at the latest time correspond t
Alarge ­ 2.17 andAsmall ­ 23.12.
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By solving (6) and (7) at successive orders, the soluti
on each side of the pinch can be expressed as power se

FsXd ­ a 1
X̀
i­1

FiX
23iy2, (11)

FsX, ud ­ AX1y2P1y2scosud

1 X1y2
X̀
i­1

FiX
23iy2P3si21dy2scosud , (12)

where the coefficientsFi and Fi are determined by
the two parametersa and A. For example, F1 ­
2AsdP1y2ydudja. The valuesalarge ­ 112.8±, asmall ­
18.1±, Alarge ­ 2.17, andAsmall ­ 23.12 are in principle
determined by the requirement that the two far fields c
be matched through the pinch. Our attempts to show t
or to solve the rescaled equations in the pinch with (1
and (12) as boundary conditions have been unsucces
This failure is of little concern as the answer would hav
been numerical and no more revealing than the fin
shape shown in Fig. 3.

In conclusion, we claim that the self-similar shape
inviscid pinchoff of a liquid drop in air scales witht2y3

and adopts unique angles of18.1± and 112.8±, indepen-
dent of the initial conditions. It is clear that previou
one-dimensional solutions are unsuccessful because
backward-facing side of the shape is strictly two dime
sional. The form of the potential far from the pinchof
region could be used to solve for the self-similar shape
this region.
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