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FINITE AMPLITUDE STEADY-STATE ONE-DIMENSIONAL WAVES
IN FLUIDIZED BEDS∗

YURI D. SOBRAL† AND E. JOHN HINCH‡

Abstract. In this work, we investigate one-dimensional concentration instabilities that occur in
fluidized beds. We use the averaged equations of motion for fluidized beds and use closure relations
for the stress tensors available in the literature. A linear stability analysis is carried out in order to
characterize the frequency, the propagation velocity, and the growth rates of small amplitude distur-
bances. A fully nonlinear transient numerical solution of the governing equations is also obtained.
The linear and nonlinear growth and saturation of concentration waves as they saturate, i.e., as they
reach a finite amplitude steady-state, is explored. The one-dimensional governing PDEs are recast
into a nonlinear ODE in the frame of reference moving with the velocity of the saturated waves. We
propose a numerical method to solve this eigenvalue problem, the result of which leads to the con-
centration profile, the wavelength, and the propagation velocity of the saturated waves. The results
are compared with the predictions of the linear theory, with the fully nonlinear transient numerical
simulations, and with the experimental data available. We explore some of the limits of validity of
the linear theory and of the closure models.
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1. Introduction. Consider the flow of a fluid through a set of solid particles.
The particles are supported by a perforated plate, and the flow is in the upward
direction. When the flow rate is small, the fluid flows through the set of particles as
if it was a porous medium. If the flow rate is increased to a level at which the drag
exerted on the particles by the fluid balances their weight corrected for buoyancy,
then some particles become mobile and a very small expansion of the region occupied
by the particles is observed. Any further increase on the flow rate would cause the
particles to become fully mobile and to occupy a larger region of the reservoir. At
this stage, the particles are said to be fluidized, and the system is usually referred to
as a fluidized bed. The name fluidized bed is due to the fact that the particles in this
condition can be stirred and poured as a fluid [1, 2].

Fluidized beds are unstable, and in actual devices the propagation of regions of
very low concentration of particles, called bubbles, are commonly observed [1]. There
have been several studies on this unstable nature [1, 2], and most of them tried to
connect the instability of plane wave perturbations of the homogeneous state of flu-
idization to the formation of bubbles [1, 2, 3, 4]. However, the natural evolution of
plane wave perturbation confined to one-dimensional systems is itself an interesting
problem of nonlinear wave evolution, having received the attention of several theoret-
ical [5, 6], numerical [3, 7], and experimental [8] investigations.
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Following the natural evolution of the subject so far, and mostly inspired by
the work of [8], the present study aims to address questions on the evolution of
concentration waves, i.e., the one-dimensional limit of instabilities in fluidized beds
is fully characterized in this work. We investigate in detail the evolution of small
amplitude linear instabilities into finite amplitude waves and characterize the steady-
state that is reached at this stage, herein referred to as the saturated wave regime.
The theory proposed to describe the saturated regime in [8], which was their major
rheological tool to characterize the particulate phase, is then explored analytically
and numerically, and the influence of physical parameters of the system is evaluated
in detail. In addition, some aspects of the new constitutive equations proposed from
the experiments in [8] are also briefly discussed.

2. Formulation of the problem. The governing equations used in this work
are those derived originally in [9] and more recently used in [3, 10]. We assume that
both the fluid and the fluidized particles are isothermal continua that interpenetrate
and interact through a surface without surface tension, so that the dynamics of the
flow is described by averaged equations of conservation of mass and momentum [9].

Let u denote the averaged velocity of the fluid phase and v that of the particulate
phase. The local concentration of particles is φ, and ρ stands for density and μ for
dynamical viscosity, the subscripts f or p indicating if the physical property refers
to the fluid or to the particulate phase, respectively. The continuity equation for the
particulate phase and for the fluid phase are written as

(2.1)
∂φ

∂t
+∇ · (vφ) = 0 and − ∂φ

∂t
+∇ · [u(1− φ)] = 0,

respectively. The momentum equation for the particulate phase is written as

(2.2) φρp

(
∂v

∂t
+ v · ∇v

)
= ∇ ·Tp + f + φ(ρp − ρf )g + φρf

(
∂u

∂t
+ u · ∇u

)
,

where the stress tensor of the particulate phase is represented by Tp and the fluid-
particle interaction force is denoted by f . A similar equation can be written for the
fluid phase, that is,

(2.3) (1− φ)ρf

(
∂u

∂t
+ u · ∇u

)
= ∇ ·Tf − f + (1− φ)ρfg,

where now Tf denotes the stress tensor of the fluid phase. The particulate phase
stress tensor is defined to be

(2.4) Tp = −pp(φ)I + μp(φ)

[
∇v +∇vT − 2

3
(∇ · v)I

]
,

where pp(φ) denotes the particle-phase pressure and μp(φ) the particle-phase viscosity,
both quantities being functions of the particle concentration. For the fluid phase, one
simply writes

(2.5) Tf = −pI+ μf

[
∇u+∇uT − 2

3
(∇ · u)I

]
,

where p is the pressure and μf the viscosity of the fluid phase. The fluid-particle
interaction force is given by

(2.6) f = β(φ)(u − v) + ρfϑ(φ)

[(
∂u

∂t
+ u · ∇u

)
−
(
∂v

∂t
+ v · ∇v

)]
+ φ∇ ·Tf ,
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where the first term denotes a linear viscous drag, the second term is a virtual mass
drag, and the third term is a pressure drag [9]. Here, β(φ) is a coefficient that is
determined from the Richardson and Zaki correlation ([11] and (2.10) below),

(2.7) β(φ) =
(ρp − ρf )g

vt

φ

(1− φ)n−1
,

with vt denoting the terminal velocity of the particles and with n being an experi-
mental parameter. The added mass coefficient for the particulate phase, despite being
dependent on the concentration of particles, is assumed to be identical to that of a
single sphere, so that the reduced added mass coefficient ϑ(φ) is given by

(2.8) ϑ(φ) =
1

2

1

1− φ
.

We now restrict our attention to one-dimensional disturbances. However, before
presenting the one-dimensional equations, a few simplifications can be carried out.
The first one is that the momentum equation for the fluid phase is not necessary if
one seeks the solutions of (2.1) and (2.2) for φ, v, and u, where v and u are the
one-dimensional representations of v and u, respectively. Moreover, by adding and
integrating the one-dimensional versions of (2.1), we obtain the mean flow rate in the
fluidized bed q,

(2.9) q = φv + (1− φ)u,

that relates the velocity of the fluid and of the particles algebraically. The quantity q
is related to the homogeneous concentration in the fluidized bed φo and the particle
terminal velocity by the Richardson and Zaki correlation [11], that is,

(2.10) q = vt(1− φo)
n.

The one-dimensional version of the momentum equation for the particulate phase,
(2.2), is written as

φ(ρp + ϑρf )

(
∂v

∂t
+ v

∂v

∂x

)
− φρf (1 + ϑ)

(
∂u

∂t
+ u

∂u

∂x

)
+

∂pp
∂x

=
4

3

∂

∂x

(
μp

∂v

∂x

)
+ β(u− v)− φ(ρp − ρf )g.

(2.11)

Finally, the continuity equation for the particulate phase in one-dimension is given by

(2.12)
∂φ

∂t
+

∂

∂x
(vφ) = 0.

3. Linear stability analysis. In this section, we investigate the stability of
small amplitude waves propagating along one-dimensional fluidized beds. The results
from this section will be used as references in the analyses of the results of the following
sections.

The one-dimensional equations (2.11) and (2.12) are linearized around the homo-
geneous state of fluidization, that is, φ = φo + φ1, u = q/(1 − φo) + u1, and v = v1
with φ1, u1, and v1 being small. Combining the perturbed equations to successively
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write terms in u1 and v1 in terms of φ1, we then obtain one single equation in terms
of particle concentration disturbances:

(3.1) A∂2φ1

∂t2
− B ∂3φ1

∂x2∂t
+ C ∂

2φ1

∂t∂x
−D∂2φ1

∂x2
+ E ∂φ1

∂x
+ F ∂φ1

∂t
= 0.

The coefficients in (3.1) are given by

A = (ρp + ρfϑ(φo)) +
φo

1− φo
ρf (1 + ϑ(φo)), B =

4

3

μp(φo)

φo
,

C =
2φoρfq

(1 − φo)2
(1 + ϑ(φo)), D =

dpp
dφ

∣∣∣∣
φo

− q2φoρf
(1− φo)3

(1 + ϑ(φo)),

E =
β(φo)q

(1 − φo)2
+

q

1− φo

dβ

dφ

∣∣∣∣
φo

+ (ρp − ρf )g, F =
β(φo)

φo(1− φo)
,

(3.2)

and depend on the physical parameters of the fluidized bed and on the concentration
of particles at the state of homogeneous fluidization, φo. Equation (3.1) is the basis
of the stability analysis developed in this work.

Imposing plane wave disturbances as φ1 ∼ exp(i(κx − ωt)), where κ denotes the
wave number and ω the frequency of the disturbances, (3.1) can be rewritten as

(3.3) −Aiω2 + Biκ2ω + Cκω −Dκ2 + Eiκ−Fiω = 0,

from which the dispersion relation of the disturbances can be found.
The first approximation that can be made is to consider initially the case where

there are neither inertial effects nor particle-phase pressure effects. This case is ob-
tained by setting to zero in (3.3) the coefficients associated to inertial and particle-
phase pressure mechanisms, that is, A = C = D = 0. In this case, the dispersion
relation is found to be given by

(3.4) ω =
Eκ

F + Bκ2
=

coκ

1 + 	2κ2
,

where co is the kinematic wave speed, defined as

(3.5) co =
E
F = vtnφo(1− φo)

n−1,

and where the viscous length scale 	 is defined as

(3.6) 	2 =
B
F =

4

3

μp(φo)

φo

vt(1− φo)
n

g(ρp − ρf )
.

The velocity of disturbances can be determined from the dispersion relation given
in (3.4):

(3.7) c =
ω

κ
=

co
1 + 	2κ2

.

These results allow us to conclude that the propagation of the waves in fluidized
beds is mainly dominated by viscosity, drag, and weight corrected for buoyancy and
that, on the absence of inertial and particle-phase pressure mechanisms, there is nei-
ther growth nor decay of the disturbances, i.e., there is only propagation of modes
with velocities given by (3.7).
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However, when the full version of (3.3) is considered and inertial terms are present,
a different behavior is observed. There are now two approaches that can be followed to
investigate the stability of fluidized beds: a temporal approach, in which the growth
rate in time of the amplitudes is determined, or a spatial approach, where the growth
rate in space is determined. Because of the convective nature of the instabilities
in fluidized beds [12], it is more convenient to investigate the spatial growth of the
concentration disturbances rather than their temporal growth. In this case, it is
assumed that the wave number is complex, that is, κ = κr + iκi, and the frequency
of the disturbances is real. The real part κr is the usual wave number, and κi is the
spatial growth rate of the disturbances. Solving (3.3) for κ = κ(ω), we obtain

(3.8) κ =
−Cω − Ei
D − Biω ±

√
(Cω + Ei)2 + 4 (D − Biω) (Aω + Fiω)

D − Biω .

3.1. Numerical solutions for the full one-dimensional problem. In order
to understand the connection between the small amplitude, linear instabilities, and the
finite-amplitude, nonlinear steady-state, we solve (2.9), (2.11), and (2.12) numerically.
We use a standard second-order finite-difference scheme for spatial derivatives and
integrate the equations in time using a Crank–Nicholson method.

The simulations are set up in such a way as to reproduce the experiments that
were carried out in [8]. On the experiments, the fluidized bed was excited by a piston
located on the entrance of the bed (also working as a distributor) that oscillated with
controlled frequency and amplitude. This condition is reproduced numerically by
setting the concentration at the entrance as

(3.9) φent = φo [1 + ε sin(2πft)] ,

where f is the frequency and ε is the amplitude of the oscillations. Given this con-
centration, the velocity of the particulate phase at the entrance of the bed is given
by the condition that the drag and weight corrected for buoyancy balance each other,
which gives

(3.10) vent = q − vt(1− φent)
n.

The fluid velocity at the entrance is then calculated using (2.9). The exit condition is
obtained by imposing zero second derivatives at the exit, so that the waves can exit
the integration domain without affecting the solution. In addition, in order to avoid
any kind of contamination originated from possible wave reflections from the exit
boundary condition, the boundary was placed very far from the entrance and very far
from where the instabilities are expected to reach the finite-amplitude steady-state.

Finally, the initial condition for the simulations is the homogeneous fluidization
state, that is, φ(x, 0) = φo, v(x, 0) = 0, and u(x, 0) = q/(1− φo).

4. Closure of the particle phase stress tensor. In order to carry on with
the analyses, the constitutive equation for the stress tensor of the particulate phase,
(2.4), needs now to be closed, i.e., the particle-phase pressure and the particle-phase
viscosity functions need to be known. This is, in fact, the most important pressing
problem in the modeling of fluidized beds using the two fluid assumption [8, 9].



252 YURI D. SOBRAL AND E. JOHN HINCH

4.1. Particle-phase viscosity. In this work, we use the constitutive relation
for the particle-phase viscosity that was obtained experimentally in [8]:

(4.1) μp(φ) = 0.18
ρpdpvt
φrlp − φ

,

with dp denoting the diameter of the particles, vt denoting the terminal velocity of the
particles, and φrlp denoting a random loose packing concentration, which is not a well
defined physical quantity. From the experiments in [8], φrlp was found to be related
to the critical concentration φc (below which the fluidized bed becomes unstable) as

(4.2) φrlp = φc + 0.025.

We note here that since the experiments, as well as the theory that generated the
proposal of the constitutive equation for the particle-phase viscosity in [8] were one-
dimensional, (4.1) also includes contributions from the second coefficient of viscosity,
ηp, that is,

(4.3) μp =
4

3
μ∗
p + ηp,

where μ∗
p would denote purely the shear viscosity of the particulate phase.

4.2. Particle-phase pressure. There are also propositions for the particle-
phase pressure in [8]. However, the experimental data did not allow the authors to
propose one single expression, but rather two, depending on the choice of the density
scale. These equations are

(4.4)
dpp
dφ

=
7

10
ρfv

2
t or

dpp
dφ

=
2

10
ρpv

2
t ,

which indicate a linear dependence of pp on φ.
The constitutive equations presented in (4.4) were obtained in [8] using an inverse

problem approach to find the constitutive relations from the experimentally measured
wave profiles. Despite the great achievement of measuring the particle-phase pressure
experimentally, there is a significant scatter in the data and, because of that, the
authors were unable to choose between the two formulas in (4.4).

Unfortunately, it seems that the linear model for the particle-phase pressure,
(4.4), has some limitations. For every combination of physical parameters, there is a
critical value of the concentration of particles φc below which the system goes unstable.
Above this value, the fluidization is particulate and no instabilities are observed in the
flow. The connection of this observation with the linear theory is straightforward: the
growth rates should shift from being negative for all modes (stable state) to a state
where they are positive for a certain range of modes as the homogeneous concentration
decreases below φc.

In order to investigate this further, we will focus our attention to one particular
experiment carried out in [8], their combination 6, for which the physical parameters
are as follows:
(4.5)

ρf = 0.997± 0.002 g/cm3, μf = 0.9± 0.02 cP, dp = 685± 30 μm,
ρp = 4.08± 0.01 g/cm3, vt = 16.4± 0.40 cm/s, φmp = 0.612± 0.005,

φrlp = 0.580± 0.005, φo = 0.549± 0.005, n = 3.25± 0.04.
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Fig. 1. On the left, growth rates obtained for the physical parameters of this simulation are given

in (4.5) and different φo with
dpp
dφ

= 187.71(cgs). On the right, similar results for
dpp
dφ

= 131.04(cgs).

Taking as reference the set of parameters in (4.5), the values of the particle-phase
pressure predicted by (4.4) are

(4.6)
dpp
dφ

=
7

10
ρfv

2
t = 187.71 (cgs) or

dpp
dφ

=
2

10
ρpv

2
t = 219.47 (cgs),

where cgs stands for the units of pressure in the centimetre-gram-second system of
units. From (4.5), we have that φc = 0.555. We choose to set the particle-phase
pressure using the smaller value in (4.6) and plot the spatial growth rates in Figure 1

as predicted by (3.8). We observe that for
dpp

dφ = 187.71(cgs), all the modes are
stable down to the very dilute homogeneous concentration of φo = 0.482 ± 0.001.
This means that any configuration with φo ≥ 0.483 is stable. Therefore, simulations
launched with particle-phase pressure given by (4.4) and φo > 0.483 will generate no
results, since any excitation will be decay during the linear phase of its evolution.
The larger value in (4.6) would decrease even further the value of the actual φc for
this set of parameters. The right plot in Figure 1 shows that the transition from a
stable to an unstable state at φo = 0.555 occurs if

dpp

dφ ≈ 131.04(cgs). Therefore, in

order to try to recover the experimental results using a linear model similar to (4.6),
the model for the particle-phase pressure would have to be

(4.7)
dpp
dφ

= 131.04(cgs) ≈ 1

2
ρfv

2
t .

However, with this model, the system with parameters such as those in (4.5) and
φ0 = 0.549 will be stable for all disturbances such that f > 0.56Hz. Therefore, the
experimental results obtained in [8] would not be achievable in these simulations.

A vast range of unexpected behavior was obtained from the simulations when
the linear particle-phase pressure model was used. If we use the very high values of
particle-phase pressure given by (4.6) and (4.7), the small amplitude linearly stable
modes do not evolve to a nonlinear state. If we start with larger amplitudes, the
results are not too different. If we use smaller values of particle-phase pressure, the
simulations collapsed before reaching a steady-state with very large amplitudes and
maximum concentrations near to φ = φrlp = 0.58. Finally, other phenomena such
as period doubling could be observed with this linear particle-phase pressure model,
especially when low frequencies and low particle-phase pressures were combined.

A careful examination of the data used in [8] to derive the model in (4.4) gives
a hint that the linear model for the particle-phase pressure is not adequate. In fact,
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Fig. 2. Validation of the code for very small amplitude spatially evolving waves: spatial growth
rates κi (left) and wavelength λ (right) of the waves. Results obtained for the parameters as in (4.5).

there is a considerable variation of pp with φ− φo, most importantly for those points

for positive φ − φo. This is an indication that there should be a dependence of
dpp

dφ

on φ− φo. Furthermore, different combinations in [8] presented different dependence
with respect on φ− φo.

Therefore, we have opted to use a particle-phase pressure model that is available
in the literature that seems to have the right functional behavior with respect to φ.
We have chosen the ad-hoc model used by [3], given by

(4.8) pp(φ) = σφ3 exp

(
rφ

φmp − φ

)
,

where φmp is the maximum packing concentration and σ and r are constants that
should be carefully chosen in order to respect the experimental data regarding the
critical concentration for each set of parameters. The values used in this work were
φmp = 0.64, σ = 0.667, and r = 0.3. Other values of these parameters, and the
limitations of this model, will be investigated in section 5.

5. Evolution of concentration waves toward saturation. The code devel-
oped here was validated by taking very small amplitude waves and tracking their
growth along the fluidized bed and comparing their growth rates and wavelengths
with respect to those predicted by the linear stability theory. The result can be seen
in Figure 2.

The evolution of small amplitude waves toward saturation can be seen in Figure 3.
The excitation imposed at the entrance of the bed has a very small amplitude, ε1 =
10−4, and the frequency is f = 1.6Hz. Superimposed on the profiles, we plot the
value of the amplitudes of the waves. It is clear that, as the waves propagate, the
amplitude grows and saturates to a well defined value, reaching a steady-state.

The striking feature of the evolution of the waves toward a steady state is the
fact that the linear stability theory predicts the growth of the waves correctly up to
amplitudes corresponding to φmax − φmin ≈ 0.01. After that, when the amplitude
of the waves has grown to a significant value for the nonlinear effects to become
important, the saturation process starts to occur, resulting in a slower growth rate
that eventually becomes zero when the saturation amplitude is reached.

We conclude, therefore, that the theoretical and analytical results of linear sta-
bility analysis can be used much further than initially thought. This can be helpful
when we address the stability of two-dimensional disturbances, as in [10, 13], where
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Fig. 4. Spatio-temporal plot of the steady-state waves for the simulation in Figure 3. The space
value 0 corresponds roughly to z = 400cm.

a more evolved (linear) state needs to be set up as the initial condition of numerical
simulations.

The spatio-temporal diagram for the waves at approximately 400cm from the
distributor, for the same simulation as in Figure 3, is presented in Figure 4. It shows
that a steady-state is actually achieved: crests and troughs of the concentration waves
propagate at constant velocity of roughly c ≈ 4.3 cm/s toward the right.

We now analyze the properties of the steady-state wave profiles obtained in the
simulations and the influence of the two most important control parameters of the
spatial analysis set up: the excitation frequency and the concentration of particles
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Results obtained for the parameters as in (4.5) and plotted against a normalized wavelength.

at homogeneous fluidization. Note that the saturated state is solely defined by the
physical parameters of the system and the frequency of excitation and does not depend
on the value of ε.

The form of the saturated wave profiles changes significantly with the frequency
of excitation, as can be observed on the left plot in Figure 5. Lower frequency modes
are more asymmetric and have much larger amplitudes. On the other hand, high
frequency modes exhibit small amplitudes and nearly no asymmetry on the wave
profile. Note the asymmetry of the thin region of lower concentrations and the wide
region of large concentrations. This is in total agreement with the experimental
results in [8] and the numerical results obtained in [3, 6] for different constitutive
models.

In fact, the asymmetry of the wave profiles can be understood from the linear
stability analysis. The absence of inertia and particle-phase pressure in the model
implies that modes have no growth rates, that is, they only propagate up the bed
with velocity given by (3.7). Therefore, neutral modes are modes in which inertial and
particle-phase pressure mechanisms balance perfectly. The dispersion relation curves
presented in Figure 2 show that as the frequency of the disturbances increases, there
will be a frequency with zero growth rate and, therefore, modes with frequencies close
to that have smaller imbalances of inertia and particle-phase pressure and smaller
amplitudes, tending toward a symmetric profile and toward the amplitude of the
excitation in the limit of the neutral growth frequency.

The influence of the homogeneous concentration can be seen on the right plot
in Figure 5. For the same excitation frequency, in more concentrated fluidized beds,
the waves tend to have smaller amplitudes and less asymmetries. The general trend
can be observed in Figure 6, where not only the amplitude but also the wavelength
of the disturbances is plotted against the homogeneous concentration. From the
expression used for the particle-phase pressure pp in (4.8), we observe that higher
concentration beds will have higher levels of particle-phase pressure and, for that
reason, the imbalance with the inertial term will be smaller. It is surprising to see
that the wavelength of the disturbances is not very sensitive to φo, although, at a very
low concentration, many unforced disturbances are excited and contaminate the finite-
amplitude steady-state of the forced mode. The measurements presented in Figure 6
were obtained by averaging over an interval of several wavelengths. Because of these
unforced modes, both the wavelength and the amplitude of the forced disturbances
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oscillate over this long interval. The error-bars indicate the amount of fluctuation
observed on these measurements.

The choice of (4.8) as the particle-phase pressure model used throughout this work
was based on previous studies, for example, [3], where it was shown that it reproduces
qualitatively the behavior of the dynamics of fluidized beds, and is supported by the
lack of more consistent models. The choice of the constants P and r appearing in
the model has to be made carefully, in order to respect the critical concentration for
the onset of instabilities. However, this choice is not unique, and herein lies a major
limitation of the exponential model of (4.8).

Four possible combinations of parameters that respect the experimental critical
concentration for the onset of instabilities for the set of parameters in (4.5) are shown
below:

(5.1)
Comb. 1: P = 51.766, r = 0.03; Comb. 2: P = 0.667, r = 0.3;
Comb. 3: P = 0.01879, r = 0.6; Comb. 4: P = 0.0006853, r = 0.9.

Using the combinations of parameters in (5.1), the dispersion relations and the sat-
urated wave profiles could be obtained and are shown in Figure 7. The dispersion
relations show that the behavior of the modes is significantly altered by the changes
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of particle-phase pressure. For instance, modes of frequency f = 1.6Hz can either be
stable or unstable, with growth rates varying roughly by a factor of 3. Looking at
the saturated wave profiles in Figure 7, not only does the shape of the waves change,
but also its amplitude, with variations in φmax − φmin that can be as large as 0.01.
On the other hand, as expected, the particle-phase pressure did not affect at all the
wavelength of the saturated waves shown in Figure 7.

Unfortunately, since a reliable and consistent model for particle-phase pressure
has not been obtained, either experimentally or theoretically, most of the results in
this work have a strong qualitative character but might lack in some quantitative com-
parisons with experiments. Therefore, discrepancies of the simulation results with the
experimental data must be related to the particle-phase pressure and, more generally,
with the uncertainties in all the closure models used in the two-fluid formulation.

6. Saturated waves theory. Experimental observations have shown that one-
dimensional concentration waves grow in liquid fluidized beds and reach a steady
state: they propagate at constant velocity with unchanged form and amplitude. This
state is generally referred to as a saturated wave, and we were able to reproduce it
in the previous section. Based on these observations, a saturated wave theory that
describes such a finite-amplitude steady-state regime can be derived. This was first
presented in [8] and, in fact, was their major tool to obtain the constitutive relations
presented in (4.1) and (4.4).

The basic assumption of this saturated wave theory is that the waves propagate
with constant velocity c up the fluidized bed. Therefore, they are stationary in the
frame of reference moving with this velocity, defined by the transformation Z = x−ct.
The velocities of the fluid and of the particulate phases in this frame of reference are
written as, respectively, u(Z) = u(x, t) − c and v(Z) = v(x, t) − c, and the particle
concentration is now φ(Z) = φ(x, t). The one-dimensional continuity equation for the
particulate phase and the fluid phase written on the new variables are, respectively,

−u
dφ

dZ
+ (1− φ)

du

dZ
= 0 and v

dφ

dZ
+ φ

dv

dZ
= 0.(6.1)

A direct integration of the second equation in (6.1) gives that v = −cφo/φ, so that,
together with (2.9), the velocity of the fluid phase is given by

(6.2) u =
q − cφo

1− φ
.

One can then eliminate u and v from the momentum equation of the particulate phase
in (2.11), written on the new variables, to obtain the following equation in terms of
particle concentration only:

(6.3)
4

3
cφo

d

dZ

[
μp(φ)

φ2

dφ

dZ

]
+

[
F2(φ)− dpp

dφ

]
dφ

dZ
+ F1(φ) = 0.

In this equation,

(6.4) F1(φ) = φg(ρp − ρf )

[
vt(1− φo)

n − c(1 − φo/φ)

vt(1 − φ)n
− 1

]

represents the drag (first term) and the weight corrected for buoyancy (second term),
and

(6.5) F2(φ) =
φρf (1 + ϑ(φ))

(1− φ)3
[vt(1− φo)

n − c(1− φo)]
2 + (ρp + ϑ(φ)ρf )

(
cφo

φ

)2
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represents the inertia of the fluid phase (first term) and that of the particulate phase
(second term). Similarly to that observed in the linear case, the dynamics of the
saturated waves is mostly determined by the balance between viscous effects, the first
term in (6.3), drag and weight corrected for buoyancy, the third term in (6.3), with
the inertial and particle pressure contributions, the second term in (6.3), being small
corrections.

The boundary conditions for (6.3) are that the solution has to have the minima
(or maxima) of the concentration of particles on the extremities of one wavelength,
that is,

(6.6)
dφ

dZ
= 0 at Z = 0 and Z = λ,

where λ = 2πκ−1 is the wavelength of the disturbances.

6.1. An approximate analytic solution. An approximate analytical solution
for the steady-state finite-amplitude waves was derived in [14]. This was achieved by
performing further simplifications on (6.3). The first simplification is to neglect the
inertial and particle-phase pressure effects and to linearize F1(φ) around the homoge-
neous state. Using the constitutive law for the particle-phase viscosity in (4.1), (6.3)
is now written as

(6.7)
d

dZ

[
1

(φrlp − φ)

dφ

dZ

]
+ G(φ− φo) = 0,

assuming that 1/φ2 ≈ 1/φ2
o inside the outer derivative on the right-hand side of (6.3),

and with

(6.8) G =
co − nc

c	2(φrlp − φo)
.

Now, defining the change of variables Ψ = − ln (φrlp − φ), (6.7) becomes

(6.9)
d2Ψ

dZ2
+ G(e−Ψo − e−Ψ) = 0,

where Ψo stands for Ψ(φo). Multiplying (6.9) by dΨ/dZ and integrating once with
respect to Z, we get

(6.10)

(
dΨ

dZ

)2

+ 2GΨe−Ψo + 2Ge−Ψ = constant = 2GΨmaxe
−Ψo + 2Ge−Ψmax ,

the constant being found by the condition of zero derivative at the maximum con-
centration of the wave profile. For large amplitude waves, near the maximum region,
Ψ ≈ Ψmax and (6.10) can be further simplified to

(6.11)

(
dΨ

dZ

)2

+ 2G(Ψmax −Ψ)e−Ψo = 0.

Finally, integrating this equation and returning to the variable φ, we obtain

(6.12) φ = φrlp − (φrlp − φmax)e
G
2 (φrlp−φo)Z

2

.
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In addition to (6.12) found in [8], we used the same arguments to find an approx-
imation for φ near the minimum concentration regions:

(6.13) φ = φrlp − (φrlp − φmin)

[
cosh

(G(φrlp − φmin)

4
Z

)]−2

.

Furthermore, a relationship between the maximum and the minimum concentrations
can be obtained from (6.10), that is

(6.14) (Ψmin −Ψmax) e
−Ψo + e−Ψmin − e−Ψmax = 0.

It should be noted that the velocity of propagation of the waves was assumed to be
known in this derivation. It is also observed that (6.12) does not provide an oscillatory
profile, therefore being unable to determine the wavelength of the disturbances.

6.2. Numerical solutions of the saturated regime equations. The main
difficulty in finding a solution to (6.3) is that it is an eigenvalue problem, i.e., both
the concentration profile and the velocity of propagation of the waves have to be
determined as a solution of the problem. Therefore, in addition to (6.3) and its
boundary condition, another equation is necessary.

Multiplying (6.3) by μp(φ)/φ
2 × dφ

dZ and integrating the resulting equation over
one wavelength, taking into account the boundary condition in (6.6) and the condition
for periodicity, the following integral restriction can be obtained:

(6.15)

∫ λ

0

μp(φ)

[
F2(φ)− dpp

dφ

](
1

φ

dφ

dZ

)2

dZ = 0.

Now, (6.15), together with (6.3) and (6.6), form a system that can be solved numeri-
cally for both φ(Z) and c.

The process implemented to find a solution of (6.3), (6.6), and (6.15) is the follow-
ing: for a given set of the physical parameters, an arbitrary value of the propagation
velocity is chosen in the interval (0, co). Using this value of c, (6.3) is integrated via
a Runge–Kutta scheme of fourth order, starting from the initial state of minimum
concentration φmin at Z = 0. The integration is performed until the next minimum of
the concentration of particles is found, that is, after one wavelength λ is integrated.
However, since c might not be the correct value, the minimum found does not neces-
sarily have the same value as the initial input value at Z = 0, and we would have not
found a steady-state profile. This integral constraint in (6.15) is a better test to verify
that the wave obtained actually corresponds to the steady-state finite-amplitude we
are looking for. This integral is evaluated numerically by a Simpson rule. The profile
obtained via the Runge–Kutta integration is used to check the integral restriction: if
(6.15) is not satisfied, then another guess for c must be tried. A bisection method is
used to find c iteratively in order to satisfy (6.15). Finally, in order to find the wave
profile for a given frequency f , another bisection method was coupled to the method
described above to find the correct φmin necessary to have the desired f . Therefore,
the solution of (6.3), (6.6), and (6.15) by this method provides not only the wave
profile and the wavelength λ of the disturbances but also their propagation velocity c.

6.3. Concentration profiles in the saturated regime. Figure 8 shows a
wave profile found using the method described in the previous section. It is observed
that the concentration waves have a flat wide top, where viscous effects dominate the
shape of the wave, as opposed to the less viscous narrow regions around the minima,
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and all other parameters as in (4.5).

where drag and weight correct for buoyancy dominate. In addition, one observes a
subtle asymmetry of the wave profile, caused by the inertia of the flow. We note here
that these general trends are in agreement with the experimental observations of [8].
The propagation velocity of these waves was found to be c = 4.322 cm/s, similar to
the one calculated in Figure 4.

Due to the fact that the waves presented in Figure 8 are plotted in a modified
spatial coordinate, as opposed to a temporal coordinate, the asymmetry of the waves
observed in Figure 8 is the opposite to that observed in the experimental data obtained
in [8], but similar to that obtained in [3]. In fact, as discussed in [4], this apparent
inconsistency comes from the assumption of the particle-phase pressure model (4.8):
the particle-phase pressure might not grow without bounds as φ → φmp, as discussed
in [2], or maybe it does, but with a different functional behavior, that can even be
different when in the compression or in the expansion phases of a concentration wave,
as recently suggested in [7]. All these might be crucial to reproduce the experimental
asymmetry of the waves.

If one neglects the inertial and particle-phase pressure terms in (6.3), a symmetri-
cal profile is obtained, as can be seen on the left picture in Figure 9. Note that inertia
and particle-phase pressure terms are only neglected in (6.3), that is, the calculation
of the profile still needs to satisfy (6.15). The propagation velocity and the wavelength
of the wave are almost unaffected by that simplification, as already suggested by the
linearized studies when inertia is neglected.
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Fig. 10. Left. Comparison of the saturated wave profiles obtained for different frequencies.
Right. Amplitudes of the waves as a function of the frequency. The black circle identifies the linear
theory limit of zero amplitude. In both plots, φo = 0.549 and all other parameters as in (4.5).

The comparison of the results obtained from the numerical solution with the
approximate analytical solution obtained in (6.12) is presented on the right picture in
Figure 9. In order to compare the results, the maximum and minimum concentrations
and the propagation velocity of the saturated waves have to be given to (6.12) and
(6.13). It is seen that the analytical solution in (6.12) can only describe the flat
top near the maximum concentration of the wave profiles, whereas the solution in
(6.13) can only describe the regions near the minimum concentration. Note that
these expressions are being compared with the wave profile obtained without inertia
and particle-phase pressure terms in (6.3), since this was part of the simplifications
necessary to obtain the analytical solutions. Therefore, (6.12) and (6.13) cannot
capture any asymmetry of the wave. In addition, if we assume φmax = 0.56770461
from the numerical solution, (6.14) predicts φmin = 0.5171059, very close to the value
of φmin = 0.51779590, calculated from the numerical solution.

The influence of the frequency of the disturbances on the shape of the steady-
state profiles is observed in Figure 10, where the amplitude of the waves, defined as
1
2 (φmax − φmin), is plotted as a function of the frequency of the waves. We observe
that the amplitude and the asymmetry of the profiles are reduced as the frequency in-
creases. In fact, the waves show a more sinusoidal profile as their frequency approaches
the frequency of neutral growth disturbance predicted from the linear stability, which
is f ≈ 1.97Hz. We also observe that there is a tendency for waves of low frequency to
have similar amplitudes, indicating that there might be a maximum amplitude for a
given set of physical parameters. Unfortunately, the simulations could not be pushed
further to the low frequency limit, as convergence is not reached, mainly because the
integral in (6.15) never reaches zero.

Figure 11 shows the dependence of the propagation velocity and the wavelength of
the saturated waves with the frequency of the disturbances and compares the results
with the predictions of the linear theory. We observe that the velocity of the high
frequency modes are very similar to those predicted by the linear theory. As the
frequency decreases and the amplitude (i.e., the non-linearity) of the waves increase,
the velocity drifts away from the linear theory, although no more than 5% slower than
the linear theory prediction. This is in qualitative agreement with the results obtained
in [3], where the variations of the velocity of the saturated waves was not greater than
10%. Therefore, the linear theory predictions of the velocity of propagation of the
waves in surprisingly good, even for large amplitude waves.
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Finally, Figure 12 gives the velocities of the fluid and particulate phases as seen in
the laboratory frame for the concentration wave shown in Figure 8. It is observed that
the particulate-phase velocity is in phase with the concentration profile, whereas the
fluid-phase is out of phase by π. The fluid phase velocity oscillates around the value
q/(1−φo), that is, the velocity of the fluid in the homogeneous fluidization state. The
particulate-phase velocity, however, oscillates around zero. This indicates that higher
concentration regions travel upward and the lower concentration regions downward.
This is associated with the mechanism of propagation of the concentration waves in
fluidized beds, where the particles from the lower surface of a wave fall toward the
front of the next wave (usually referred to as “rain of particles”), as widely described
in the observations in the literature, for example, [8].

7. Comparisons of the two methods. We shall now compare the results
obtained for the full theory from the finite-difference simulations and the saturated
wave theory for the saturated waves. We will also attempt to make some comparisons
with the experimental data available in [8] for the set of parameters presented in (4.5).

A comparison of the profiles obtained from the two different methods is presented
on the left plot in Figure 13. It is observed that the matching of the profiles is not
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On both plots, physical parameters are given in (4.5).

perfect, even thought they were meant to be the results of a finite-amplitude steady-
state wave profile for a same set of physical parameters of the system. Although
the result from the unsteady finite-differences simulations has a remarkably similar
asymmetry and virtually the same wavelength as that by the saturated wave theory, it
has a considerably smaller amplitude. The wavelength found via the finite-difference
method is λ = 2.6047cm, whereas that found via the saturated wave theory is λ =
2.6224cm. Note that this small difference is of the order of the discretization accuracy.
The amplitude found via the finite-difference method is 0.0454, whereas that found
via the saturated wave theory is 0.0499, that is, around 10% larger.

If we set the minimum concentration for the calculation of the saturated wave
theory equal to the one obtained on the finite-difference calculation, the profile ob-
tained is presented on the right plot in Figure 13. We observe that now the agreement
of the amplitudes is better, with the saturated wave theory predicting 0.0428, about
5% smaller than the one obtained by the finite-difference method. However, the
wavelength is about 10% shorter and the frequency of the new wave is f = 1.715Hz.

As observed in the literature [8], a broad spectrum of unforced higher harmonics
can be excited and propagate in experiments and also on the solution of (2.9), (2.11),
and (2.12). Therefore, the different nonlinear interactions in the finite-difference sim-
ulations do not lead to profiles that are not purely of the desired forced frequency, as
the solution obtained via (6.3) does. The fact that the wave profile obtained from the
unsteady finite-differences simulations has a smaller amplitude than the mode with
the same frequency calculated by the saturated wave theory in Figure 13, character-
istic of high frequency waves, and that a better agreement in the amplitude of the
waves is achieved for waves of higher frequencies in the saturated wave theory, cor-
roborate this idea. In addition, as the problem lies in the amplitude of the waves, the
uncertainty in the particle-phase pressure and the way that it interacts nonlinearly
with other modes might also play a role in the differences observed in Figure 13.

Figure 14 shows the wavelength and the amplitude of the finite-amplitude steady-
state wave profile, obtained with the unsteady finite-differences simulations and with
the saturated wave theory, with respect to the frequency of the waves. These results
are also compared with the experimental data available in [8]. The wavelength of the
disturbances is very well captured by both methods and is in very good agreement
with the experiments and, surprisingly, with the linear theory, for most of the range of
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obtained using via the unsteady finite-differences simulations and via the saturated wave theory with
the experimental results available in [8]. The physical parameters given in (4.5).

frequencies investigated here. This shows that the wavelength of the waves does not
change as they grow from small linear disturbances to a finite-amplitude nonlinear
steady-state.

In the low frequency limit, the presence of unavoidable higher harmonics in the
flow leads to an underestimation of the wavelength. On the other hand, the higher
frequencies limit is more subtle. The linear stability analysis results in Figure 2 show
that that frequencies higher than approximately 2Hz have negative spatial growth
rates and cannot be excited, grow, and reach the finite-amplitude steady-state in a
fluidized bed for this set of parameters. Therefore, it is not possible to generate
these modes in the simulations. The existence of a finite-amplitude steady-state with
f = 2.2Hz in the experiments indicates that the model for the particle-phase pressure
is not providing an accurate cut-off of the frequencies.

Despite the amplitudes obtained with the two different methodologies in Figure 14
agree within 10%, they do not agree with the experimental results, for the reasons
mentioned previously in this section. It seems that the trend of the dependence of
the amplitudes on the frequency is well captured at the moderate frequencies, even
though more experimental points would be necessary to confirm this. Moreover, the
absence of experimental points for the lower frequencies, as well as the inability of the
saturated wave theory to determine the wave profiles at very low frequencies, restrict
our analysis on the behavior of the amplitudes in this regime. Similar remarks hold for
the results presented in Figure 15, where the maximum and minimum concentrations
of the finite-amplitude steady-state waves are presented. It is observed, however, that
the disagreement of the maximum concentrations is more pronounced than that of the
minimum concentration. Therefore, one may conclude that not only the uncertainties
in the particle-phase pressure, responsible for setting the asymmetry and the mini-
mum concentration of the waves, but also in the particle-phase viscosity (uncertainty
specially critical in the definition of φrlp [8]) are linked to the behavior observed here.

8. Final remarks. In this work we have investigated the behavior of one-
dimensional instabilities in fluidized beds, from the range of very small amplitudes
to finite amplitude steady states. We observed that the linear theory can be used
to predict correctly the growth of the waves not only for small amplitudes, but also
up to moderate amplitudes. Saturated waves were obtained as the solution of an
eigenvalue problem, composed of an ordinary differential equation and an integral
restriction, and there is a very good agreement with the waves obtained as the result
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Fig. 15. Comparison of the maximum (left) and minimum (right) concentration of particles
obtained for the saturated waves using the unsteady finite-differences simulations and the saturated
wave theory with the experimental results available in [8]. The physical parameters given in (4.5).

of the evolution of small amplitude disturbances. The concentration profiles obtained
in saturated regime are unique for each set of parameters and depend significantly on
the constitutive models used for the particulate phase properties. Therefore, despite
the good qualitative predictions of the two-fluid formulation, quantitative compar-
isons with experiments still have to be improved. In fact, more experimental and
theoretical work has to be devoted to understanding of the closure relations of the
two-fluid formulation of fluidized beds.
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