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Abstract

A difference between strong and weak flows explains why viscometric measurements
may be useless in some other engineering flows. Some useful rheological insights into the
strong flows with large polymer deformations can be obtained from simple-minded models.
The traditional models have overlooked the possibility of bead rotations and changes in size
which are important when there are deformations of the polymer. The large difference
in size between the nearly spherical and nearly fully extended configurations leads to large
stresses In strong flows whereas there are no detectable rheological effects in weak flows.
A new nonlinear dumb-bell model predicts that the polymer may be almost fully extended
In drag reduction, these extensions being aided by a hysteresis phenomenon. The new model
also allows predictions of the conditions in which mechanical degradation can occur.

Reésumeé

La différence entre les écoulements forts et faibles expligue pourquoi les mesures
viscométriques peuvent étre inutiles dans quelques autres écoulements industriels. Quelques
utiles apergus rhéologiques sur les forts écoulements peuvent étre obtenus & partir de
modeles simples. Les modéles traditionnels ne tiennent pas compte de rotations et des
changements de taille des grains qui sont importants quand il y a déformation du polymeére.
La grande différence de dimension entre les configurations presque sphérique et presque
completement étendue conduit A de fortes contraintes dans les écoulements forts alors qu’il
n'y a pas d'effets rhéologiques décelables dans les écoulements faibles. Un nouveau modéle
d’haltéres non-linéaires prévoit que le polymeére peut étre presque complétement étendu en
réduction de trainée, extension pouvant &tre facilitée par un phénomeéne d’hystérésis. Le
nouveau modele permet aussi de prévoir dans quelles conditions des dégradations mécaniques

peuvent avorr lieu.

Introduction

The dynamics of long chain macromolecules in dilute
solutions are complicated. A bulk flow deforms the
polymer competing against a restoring mechanism from
the thermal motions. In the undeformed state the
statistics are determined by the random walk of the
Imear chain which is due to some arbitrariness in the
siting of adjacent monomers. The random walk is
subject to the constraints of an excluded volume of
the monomers and an accompanying shell of solvent.

lonic polymers are also affected by charge repulsion
between the ionic subgroups and possible free ions
in eletcrolytic solvents. The discrete nature of the
solvent leads to Brownian motions in the chain confi-
guration. Long range interactions of the moving chain
with itself and with the bulk flow can be calculated
by treating the solvent as a continuum Newtonian fluid.
An inflexibility in the siting of adjacent monomers can
result in irreversible energy losses as the chain length
changes, and this has suggested the chain possesses an
internal viscosity.

The full problem as described above is so complicated
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that the mathematics is quite intractable. In the last
forty years physical chemists have made significant
progress in producing simplified tractable models.
Perhaps the most noteworthy group of models are the
bead-and-spring variety following the ideas of Rouse
and Zimm. These successfully predict the intrinsic
viscosity at zero shear rate and the relaxation spectrum
as displayed in the frequency dependence of the dyna-
mic viscosity. Such predictions are an essential tool for
polymer characterization in which gross properties like
molceular weight, flexibility, overall shape and openness
are related to easily measured bulk properties of a
solution. It is pertinent to observe, however, that the
physical chemist usually employs viscometric shear
flows (because of their experimental simplicity) and
often with shear rates less than the slowest polymer
relaxation rate.

The use of polymer solutions by chemical engineers
in technologically important problems such as turbulent
drag reduction and lubrication has uncovéred some
disturbing deficiencies in the standard characterizations.
From the measured minute changes in the viscosity of
a solution of a few parts per million of a high mole-
cular weight polymer, or the indetectable normal stress
differences, who could have expected the dramatic
reductions in skin friction ? Note these unexpected
phenomena usually occur in non-viscometric flows and
with deformation rates exceeding the slowest polymer
relaxation rate.

This paper attempts to provide an insight into the
different behaviours observed by physical chemists and
chemical engineers. It will be suggested that the diffe-
rence is due to the chemist only probing the chain in
a nearly spherical configuration whereas the engineer
extends the chain almost fully. Some new simplified
and tractable models will be introduced which help to
build up an understanding of the mechanics of highly
deformed polymers.

Strong and weak flows

About the simplest representation of a distorted poly-
mer is the elastic dumb-bell. While this limited model
can not answer many questions about macromolecular
behaviour, it does expose most clearly the key issues
in how much distortion of the chain can be expected
when it is subjected to a particular tlow history.

The gross distortion of the random walk of the chain,
e.g. the expected end-to-end separation, is represented
by a single vector r which becomes the extension of a
spring separating two beads. The desire to remain in
the most probable undistorted spherical shape, through
the Brownian fluctuations in the chain configuration,
give the spring its elasticity. The linearized (Gaussian)
spring constant K is usually taken to be 3 k T/N b*

for N bonds with a persistence length 4. A bulk flow
u(x,t) = x-~/ U() distorts the polymer by exerting
a different hydrodynamic drag on the spherical beads
with friction constants 6 77 wa. For free draining
conditions @ o« N b, but for the more realistic condi-
tions including unsuppressible hydrodynamic nterac-
tions a o N1/2 5. The relative force balance for the
beads vyields an evolution equation for the distortion

Fr=r . VU — Ar

where A = K/6 7 pa. In more sophisticated bead-
and-spring necklaces which can depresent some internal
structure of the distortion, the gross magnitude of the
distortion relaxes with the longest relaxation time for A.

For simplicity consider flows with constant histories,
i.e. the §/ U seen by an advected particle i1s independent
of time. In such circumstances the linear evolution equa-
tion is solved in terms of exponential function of time.
Denote by ,\/U| the largest real part of an eigen-
value of the tensor Y U. The behaviour of the solu-
tion can then be divided into two classes. If |VU| < A
(a weak flow), the restoring force wins and the distor-
tion decays. If [‘G"U] > A (a strong flow) the distorting
flow wins and, within this crude model, the distortion
grows in time without bound. Because the stress is
related to the distortion, more dramatic rheological
effects must be expected in strong flows than in weak
flows. The first indication of the existence of strong
flows was Takserman-Krozer's study of the Rouse-
Zimm model in elongational flow.

The unsatisfactory feature of viscometric testing is
now exposed. Simple shear has the property that
'V U| identically vanishes whatever the magnitude of
the shear rate. Flows with this strange property are
very rare in the class of all possible types of tlow; In
fact they have the zero measure of a point In a plane.
The elastic dumb-bell model does demonstrate that
viscometric measurements do have a restricted appli-
cation. They will be useful in viscometric engineering
flows and in a partial polymer characterization, but they
might have little relevance to non-viscometric tlows,
i.e. most engineering flows.

The clear classification of flows by their strength
helps one understand turbulent drag reduction. In shear
flow turbulence the drag by the walls on the core is
exerted mainly by an irregular ejection of low momen-
tum wall fluid into the core with an associated return
circulation. These bursts and sweeps are typified by
jet-like elongational flows in contradistinction to simple
shear flows. Thus this part of the turbulence giving
rise to drag is intrinsically of a strong flow type,
|V U| = 0. At the onset of drag reduction it is con-
jectured that the magnitude of the flow strength |\/ U]
(where U is the local bulk velocity in the active regions
and not the mean velocity) reaches the critical value
of A, and that this heralds the changeover to a strong
{low rheology which differs greatly from the rheology



of weak flows. The point of onset being determined
by such a critical flow strength is commonly known
as the time hypothesis. The hypothesis is experimentally
supported by U=/v being of the same order of magni-
tude as & T/u N#/25H% Both these two time scales
need refinements before a good correlation will be
given by the time hypothesis.

Nonlinearities

The elastic dumb-bell model is an oversimplification.
An ultracautious person might admit that it only sug-
gests classes of strong and weak flows in which the
polymer 1s significantly and is hardly distorted. Now
the suggestion of highly distorted polymers must be
considered further.

Implicit within the modelling of the elastic dumb-bell,
and also of the bead-and-spring necklace, are two
linearizations which are applicable to low distortion
conditions but not to large distortions. First a linear
spring was taken instead of one like the full inverse
Langevin function which incorporates a finite exten-
stbility. This is only permissible if the distortion is
much less than the full extension, r €« N b. Second
and more subtly the hydrodynamics was linearized by
taking a constant friction factor for the beads. This
corresponds to taking a preaveraged hydrodynamic
interaction in the Rouse-Zimm theory. As soon as the
distortion is comparable with the radius of gyration the
hydrodynamic shielding of parts of the chain by other
parts is altered. Thus the second linearization requires
the more restrictive condition r « N1/2 5, The first
non-linearity to be investigated is therefore the hydro-
dynamics, and only if this predicts larger distortions
need the elasticity be made nonlinear.

The restrictions of the linearizations are often over-
looked : only certain deductions are valid. The linear
Rouse-Zimm theories are limited to the Newtonian
regime of the rheology. Thus two undesirable properties
of such theories, that the viscosity is independent of
shear rate and that there is no second normal stress
difference, are properties which are strictly speaking
outside the scope of the theories.

In this paper I wish to examine the consequence of
nonlinearrties in the hydrodynamics and the spring law.
I choose to ignore the important effects of excluded
volume, 1onic charge and knotting of the chain. While
these effects may not be negligible in practice, they
are auxiliary factors in the essential competition between
the bulk flow creating the distortion and the entropic
restoring mechanism. The study will proceed using
alternative simple models which isolate individual effects
and clearly illustrate the main issues. A full nonlinear
model incorporating all conceivable effects is not neces-
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sarily good, because it will be intractable and will cloud
the mechanics underlying the phenomena.

Elastic sphere model

Before the introduction of the necklace of beads and
springs, Cerf proposed this alternative to the elastic
dumb-bell which treats very well the solvent flow
around the distorting polymer. As in the elastic dumb-
bell only the gross distortion with no internal structure
is considered.

The deformed polymer is represented by an ellip-
soidal shaped particle of constant volume. The solvent
flow around the particle exerts distorting surface trac-
ttons. For the entropic restoring forces the particle is
given an elasticity which T will take to be linear at
non-infinitesimal deformations, i.e. neo-Hookean, The
resistance to changes in shape due to the chain moving
in a viscous solvent and also entangling with itself gives
the particle an internal viscosity which will exceed the
pure solvent viscosity.,

The beauty of the model is that if the particle starts
as a homogeneously stressed ellipsoid, e.g. a sphere at
rest, then it always remains an ellipsoid. The develop-
ment of the distortion can therefore be tracked into the
nonlinear regime using just five independent variables.
Even so the detailed mathematics is too complex to be
presented here. Two important results can however be
summarized. In the familiar bead-and-spring language
these can be described as the hydrodynamics implica-
tions that the beads should rotate and change size.

Rotation of beads

When the spin of the ellipsoidal particle in a bulk
flow NV U is examined, two independent contributions
are found arising separately from the vorticity and the
strain rate (the antisymmetric and symmetric parts of
N\ U). If there were no straining motion, the particle
would rotate exactly with the vorticity. The straining
motion 1s however not so completely successful due to
hydrodynamic shielding and the rigidity of the particle.
The particle spins, and also deforms, with a reduced
fraction of the strain rate. Only when the ellipsoid is
greatly stretched is the particle virtually advected by the
bulk flow.

The failure of the standard treatment of the bead-
and-spring models to display this reduced efficiency
of the straining motion on the spin can be traced to
a hidden assumption which allows the beads to rotate
freely with the local vorticity alone. Unnoticed in the
model the beads are usually held in universal joints.
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It the beads are to represent the hydrodynamic inter-
action of the chain with the solvent, then they should
assume the rotation as well as the translation of that
chain, a rotation which may well differ from the local
vorticity. The remedy is to prescribe the rotation of
the beads to be the same as the connecting spring and
to calculate this angular velocity from a couple balance.
The extension of the spring is still to be calculated
from a relative force balance. The result of the sug-
gested modification is to change the time derivative
from the convected Oldroyd derivative to something
partway between this and the Jaumann denvative.
As the spring extends the Oldroyd part of the mixture
dominates.

The consequences of the reduced efficiency of the
straining motions are not perceptible in the linear New-
toman regime of the rheology. Thus a physical chemist
interested in the dynamic viscosity need not bother
with the rotation of the beads. In the non-Newtonian
regime, however, the two undersirable properties of the
Rouse-Zimm models referred to earlier are ehiminated.
With the reduced efficiency of the straining motions
the viscosity shows a shear-thinning and a negative
second normal stress difference appears. These impor-
tant rheological features are also possessed by the
bead-and-spring models with the above modification
of the time derivative.

Related to the rheological property of a shear-
thinning viscosity is the behaviour of the marcomolecule
at high shear rates. In the standard treatment with its
constant shear viscosity the expected length of the
polymer increases with the shear rate. Although simple
shear was classified as an intrinsically weak flow
((VU| = 0) in the elastic dumb-bell model study, in
fact it 1s a marginal case. The effect of the neglected
configurational diffusion on a marginal case leads to
an expansion in size with shear rate; albeit an algebraic
growth as opposed to the exponential growth in non-
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marginal cases. Mathematically, shear flow has a critical
flow strength which is infinity. In the elastic sphere
model, as well as in the bead-and-spring models with
the rotational modification, the macromolecular size
tends to a definite finite limit at high shear rates. Thus
in reality simple shear flow is not a marginal case as
appears in the standard elastic dumb-bell but is strictly
weak.

Size of beads

In a strong flow, |‘U’U\ > A, the linearized bead-
and-spring models indicate there is no stable equilibrium
state which 1s near the spherical undeformed shape.
The polymer must start to deform indefinitely in time,
which of course takes it outside the linearizations of
those models. The elastic sphere model enables the
deformation to be followed into the regime where the
hydrodynamics is nonlinear.

The simplest flow in which to consider the develop-
ment of a large deformation is elongational motion
(axisymmetric straining). Here the ellipsoid of Cerf is
coaxial with the flow and can be specified by the
length of its longest semi-diameter, r. A detailed calcu-
lation yields two contributions to the rate of deforma-
tion, 7, one proportional to the flow strength |\ Ul =E
— the elongation rate, and one proportional to the
elastic relaxation rate A. The variation of these two
contributions with deformation is indicated in figure 1,
in which » = 1 represents a sphere.

The flow makes the sphere distort at a rate less
than E. Here the deforming inefficiency of straining
motion is due to the internal viscosity. At large defor-
mations the flow simply advects the particle with a
distort rate Er. The relaxation rate initially increases
Iinearly with the distortion like A (» — 1). At larger

F1G. 1. — The contributions to the rate of deformation of the ellipsoid.



deformations the relaxation rate reaches a maximum
and them drops like A r—1. The drop 1s the result of
three active effects. In a neo-Hookean material as the
distortion r increases the elastic restoring stress increases
proportional to A{r—r—1/2). But the cross-sectional
area is decreasing ltke 1/r, so that the restoring force
exerted by one half of the ellipsoid on the other remains
roughly constant. To obtain the relaxation rate from
the restoring force it is necessary to divide by the
appropriate drag factor. The detailed calculation of the
viscous flow around a deforming ellipsoid shows the
drag factor increases virtually proportional to the largest
linear dimension of the particle, . The drop In the
relaxation rate is a feature of the neo-Hookean assump-
tion which is not exhibited by more realistic models
of the elasticity.

Subtracting off the relaxation rate from the distortion
rate yields the evolution of the ellipsoidal particle.
There are two possibilities, acocrding to E = A (wtth
a number of order unity suppressed as shown In
figure 2.

~ E > A

'

Fic. 2. — Strong and weak flows for the ellipsoid.

If A 1s large enough the relaxation rate can exceed
the flow distortion rate, and there 1s an equiltbrium
at a value of r less than a modest finite limit. If A
is not sufficiently large the restoring forces which
start from zero never catch up with the runaway flow
forces. The critical flow strength phenomenon of the
[inear models is therefore carried over into the hydro-
dynamically nonlinear models. The critical value of
E/X is slightly different to the value in the linear
theories which s computed from the imtial slopes of
the curves. An extra, strictly from the ineheucrvet
the curves. An extra, strictly nonlinear phenomenon
is that even when the flow is subcritical the particle
can start an indefinite extension if it is inttially suffi-
ciently distorted, ie. r mitially exceeds the second
intersection in figure 2.
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The nonlinear hydrodynamics do not lead to a
steady equilibrium where none existed In the linear
regime. On the contrary the gap between the restoring
and flow forces 1s widened. The underlying mehcanism
of this runaway is the increasing friction factor, the
drag increases like the length of the distorted polymer.
The larger the distortion the longer the length provided
which the flow can grasp. A basic result for Stokes
flow is that the viscous resistance to translation, rota-
tion (not about the axis of a thin straight particle)
and extension is almost entirely determined by the
largest linear dimension and 1s not greatly influenced
by shape, surface area or volume. This fact i1s central
in the slender-body theory for Stokes flow which
relates the drag per unit length of the body to the local
slip velocity.

The standard bead-and-spring models can be modi-
fied to include the nonlinear effect of increasing drag
by making the bead size change with the linear dimen-
sion of the chain which it hydrodynamically represents.
To some extent the increasing drag i1s already incor-
porated in those necklace models with dominant hydro-
dynamic interactions which are not preaveraged.

A nonlinear dumb-bell model

Because the nonlinear hydrodynamics leads to an
indefinite extension of the polymer in strong flows, a
nonlinear elasticity which reflects the finite extensibility
must be considered. The correct nonlinear elastic law
for freely hinged bonds i1s that described by the inverse
Langevin function. In reality the bonds are far from
freely hinged and the Langevin spring does not apply.
The effect of hindered rotation is to reduce the mitial
linearity constant for the same fully extended length.
For the purposes of exposition I will use an elastic
law proportional to r L/(LL—r). This shares with the
correct nonlinear law, whatever it be, three general
features : — a linear region vanishing at zero defor-
mation r = 0, an infinite force restricting extensions
to r < L, and variations on a length scale of the full
extension L rather than the radius of gyration of the
undeformed macromolecule. If the ignored effects of
excluded volume and charge repulsion were taken into
account, then there would be variations in the details
of the elastic law on the scale of the radius of gyration.

In this section I wish to study the way in which the
non-linear elasticity brings an equilibrium in strong
flows. This is most simply understood in the case of
elongational flow. Of the two nonlinear hydrodynamic
effects only the changing bead size enters this distor-
tion problem with a single degree of freedom. The full
tensorial system including the modification to the bead
rotation 1s not required. The bead size nonlinearity
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will be approximated by taking a fricion constant
6 g pla + r), where « is the undeformed size and
r is the deformation. This approximation, like that
chosen for the elasticity, is not the correct form but
it retains the important feature of always using the
largest linear dimension.

Combining the nonlinear bead size and nonlinear
clasticity in the relative force balance yields an evolution
equation

a L

a +r L —r

r=FEr - Ar

The first term represents the flow distortion while the
second represents the entropic restoring mechanism.
Care is needed in making deductions from the above
equation which depend only on its general features
and not on the incorrect details. Consistent with this
caution all results will be presented with constants
of order unity suppressed, because these constants must
be sought from better detailed models.

To understand the nonlinear equilibration of a strong
flow it is useful to consider the same graphs as in the
elastic sphere model, plotting as functions of the
deformation the contributions to the deformation rate
from the flow and elastic forces. There 1s a new crtical
flow strength A a/L, which together with the old
critical strength A divide the flows into three classes
as indicated in figure 3. If the flow is strong in the
Jinear theory, then the flow forces build up to such
Jarge magnitudes by the time they are balanced by
the nonlinear clasticity that the equilibrium has to
have very nearly full extension, r = L. — a A/E. When
the flow is moderately weak in the linear theory, the
equilibrium can be either extended r > 1/2 L or little
deformed r < 2a. As shown in the second graph,
the choice of the cquilibrium depends on the initial
conditions, whether it is larger or smaller than the
nstable middle equilibrium. Only when the flow is

very weak E < Aa/L does the extended equilibrium
leaving a nearly spherical equilibrium to which all 1mtial
conditions must tend.

Hysteresis

There is an interesting consequence of the manner in
which one of the stable equilibria of the moderately
weak flow disappears at the critical flow strengths.
Variations of the flow strength in time can give rise
to a hysteresis. A strong flow Is needed to crack open
the undeformed random coil, but once extended into
a long fibre the macromolecule can be maintained there
by a much reduced flow strength because of the
increased size on while the distorting flow can grasp.

The clarity of the hysteresis mechanics seen in the
new dumb-bell model is slightly misleading. When
diffusion in the configuration of the dumb-bell 1s
added, the hysteresis apparently disappears. Regrettably
there is a unique steady solution for the probability
density function which prescribes a distribution between
the two stable equilibria. This steady distribution 1s
only established, however, after sufficient time for the
equilibria to have leaked information to one another
about their populations, leaking via very improbable
intermediate states. By an anology from statistical me-
chanics, the rate of settling down to the equilibrium
distribution is E-exp {— (E/A — a/L)L3%/a*} which
can be expected to be exceptionally slow. A typical
(transient) experiment operating on time scales of the
order of E 1 would observe therefore an effectively
steady state exibiting the hysteresis, and would not
notice the much slower drift to the real steady state
which has no hysteresis.

The hystercsis is particularly relevant to the inter-
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Strong Moderately weak
E > ) A >E > Aa/L

Very Weak
da/L>E

Fig. 3. — Classes of flow strengths for the nonlinear dumb-bell.



mittent conditions in turbulence. Only the active parts
of the turbulence need be strong enough to stretch
the spherical coil out into the very extended fibre.
Thereafter the quieter regions could still maintain the
cxtended state. The ratio of the two cntical flow
strengths 1s L/e¢ which is roughly 100 for synthetic
polymers like PEQ at a molecular weight of 10%

The modes of extension and collapse are also helptul
in intermittent conditions. The extension 1s exponential
taking a time 8/E to change size by the above factor
of 100. The collapse is algebratc thereby taking 100/A
to change the same size. Thus the macromolecule need
only be in the active regions for 8 A/E % of the
time (and note E > A beyond onset) in order that the
cxtension be maintained without any help from the
quieter reglons.

Stress levels

An understanding is now posisble into how very
dilute polymer solutions which show no change in
shear viscosity can have a drastic effect on turbulence.
However high the shear rate, simple shear 1s an intrin-
sically weak flow, |V/U| =0, in which the macro-
moleucle remains ncarly spherical. In such a configu-
ration the fractional change in the viscosity 1s n &,
where »n 1s the number density of macromolecules and
« the undeformed size. For 100 ppm 10% PEQO this
ts 1073, i.e. not measurable, On the other hand tur-
bulence contains some strong flows as discussed earlicr,
Beyond the onset point ] expect a substantial number
of the macromolecules to be nearly fully extended.
For this configuration the fractional change in the
viscosity (a concept with a limited use in a strictly
anisotropic material) is increased to »n L3, which would
be 10% rather than the weak flow 10—% above. Such
large changes in the rheology can be expected to modity
the flow dramatically.

Of interest for drag reduction, a final prediction
from the new nonlinear dumb-bell concerns mechanical
degradation. The tenston in the dumb-bell spring, 1.e.
in the monomer chain, 18 JU,‘VU\ L2 in the extendead
states. In water with a deformation rate in the active
turbulent regions of 10" sec—1! (corresponding to a fric-
tion velocity of 30 ecm—1! in «.,“/p), this estimate for
10 PEQ is 10—% Newtons., This compares with the
C—C bond strength, If the [20 kcal/mol 18 reduced
to a binding energy per bond and then divided by the
bond length, the typical binding force 1s 6-10—*
Newtons. Thus strong turbulence can be expected to
cause mechanical degradation of high molecular wetght
synthetic polymers.
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Conclusions

The differecnce between strong and weak flows
explains why viscometric measurements may be useless
in some other engineering flows. Some useful rheolo-
gical insights into the strong flows with large polymer
deformations can be obtained from simpleminded mo-
dels. The traditional models have overlooked the possi-
bility of bead rotations and changes in size which are
important when there are large deformations of the
polvmer. The large difference in size between the nearly
spherical and the nearly fully extended configurations
leads to large stresses in strong flows whereas there
are no detectable rheological effects 1n weak flows.
A new nonlinear dumb-bell model predicts that the
polvmers may be almost fully extended in drag reduc-
tion, these extensions being aided by a hysteresis phe-
nomenon. The new model also allows predictions of
the conditions in which mechanical degradation can
occur.

This paper reports only some first results for the
highly deformed regime. Work in progress 1nvolves
investigations into the hysteresis phenomenon in shear
flow, the non-Newtonian fluid mechanics of the new
constitutive equations in stmple geometries, and further
models which improve on the details,

Discussion

M. Zakin : Conditioned sampling measurements by Kline’s
group at Stanford and by Willmarth and Lee show ins-
tantaneous values of v’ which are an order of magnitude
or more greater than average values of #'v" near the wall.
These instantaneous effects may provide the “ strong ”
shear effects yvou called for.

Auteur: The existence of large instantaneous values of
local wall strain rate compared with the rms value, le.
intermittancy, make well explain some of the witld scatlter
in the time hypothesis correlations for onsei, because the
intermittancy does change iwth Reynolds number.

M. Harnoy: Your molecular models are anisotropic so
that the stress tensor cannot be calculated from one com-
ponent fo the stress. Are the models materially frame in-
different ?

Auteur: 1) All molecular models are automatically ma-
tertal frame indifferent. They are based only on the laws of
physics which of course are independent of the frame of
the observes.

2) In the non-Newtonian regime molecular models are
anisotropic, and hence knowing one stress comiponent it is
not possible to predict the full stress tensor (by the Newto-
nian law).



