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Introduction

This lecture is too theoretical, so let's start with some practical examples. The
sedimentation of particles is one of the basic techniques available in chemiesl engineering to unmix
things - precisely the opposite of the subject of this volume! Sometimes the purpose of the
sedimentation is the recovery of the Hiquid as in the purificatien of water in sewage treatrnent plants,
while sometimes it is the collection of the particles as in the recovery of cream (fat globuls) from
milk., Different types of particles can be separated from one another a5 in the enrichment of mineral
ores. In the atmosphere rain drops, dust and pollution in ash fall out ander the action of gravity,
Where a fresh water river meets the saline sea water, the repulsive electrical forces between clay
platelets become screened by the counter-ions from the salt, so that the platelets can aggregate under
van der Waals forces, and the aggregates sediment thus sildng up the estuary with mud, In all theze
applicadons, one is interested in the time for the sedimentation, and also the structure of the
sediment.

1 will be concerned with the sedimentation of small particles for which the Reynolds
number is small. In water this means typically that the particles should be smaller than 0.1mm,
while in air the restiction is more severs at 10um. The main difficulty will be found to be the very
long range hydrodynamical internctions berween the particles.

One sphere
Balancing the Stokes drag 6apal with the weight of the particle (suitably compensated for
buoyancy) mg, we have the fall speed of an isolated sphere:

v, = mgf(6nna)
s
vﬂ

It will be recalled that the drag on a non-sphericat particle is less than that on the smallest enclose
sphere, but typically not less than one third of that value. Hence the above fall speed can be applied
as a good estimate 1o arbitrary shaped particles, including tenuous fractal ones.

Because the weight of a solid sphere increases with its volume, the sedimentation raie
increases with the square of the radivs of the sphere. Hence larger particles overtake smaller
particles, and this provides an efficient aggregation mechanism for cohesive (sticky) particles.

Now we have caleulated the flow cutside a falling sphere

u = V [3adr+aar’] + Voxx[3ac - 3ar]

it

I would like to note three features of this flow field for use later, First, the flow disturbance decays
very slowly, like O(1/). This will cause severe problems for nearly every theoretical calculation of
interactions between particles. Second, at a fixed large distance, the speed varies betweea 3Voa/r at
locaticns on the same horizontal plane as the particle to 3Vga/2r precisely above or below the
particle. This factor of 2 is due to the pressure field maintaining the flow as divergent-free. Finally
it should be noted that the {instantanecus) streamlines are converging above the particle and
diverging below.
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Two equal spheres )

The Stokes flow for two moving spheres can be obtained by a number of techniques. I is
possible 1o make a harmonic expansion in bi-spherical polar co-ordinates, resulting in a recurrence
relaton between the amplitedes. There are various numerical methods such as the boundary integral
method with a lubrication theory correction if the spheres are close. Finally there is a method of
reflections which will be explained in the next section.

By reversibility and the symmeiry, two equal spheres will fall at the same velocity, and so
they will net change their separation and orentation. Except when § = 0 or w/2, they will have a
horizonta) compenent of their fall velocity, This sideways motion leads 1o 2 horizontal mixing as a
suspension sediments, There is also a vertical mixing due to the variation of the vertical velocity
wirth the separadon of pairs,

Virg

The variation of the vertcal fall speed is sketched in the fipure. A pair will fall fagter than
an isolated sphere, roughly 50% faster for close pairs. Note that forr 4z, the extra velocity for
0 = 0 is roughly twice that for © = ®/2. This reflects the 2:1 variation noted in the flow outside an
tsolated sphere.

Merhod of reflection (a rather technical section )

This is an asymptotc method for calculating the interaction berween rwo greaty separated
spheres, r >>a. _ .
Reflection 0. In the lowest approximation each sphere is effectively isolated. Thus sphere 1
senerates a flow uy(x) as if sphere 2 is not present.

@/‘?
2

Reflection 1. In the first reflection, sphere 2 sees the flow u4(x). In the neighbourhood of sphere
2, we may expand this in a Taylor senies

1
u ) = ugx) + &-x).Vu, lxz + sl -x,)"VVu, |x2+

The first, dominant term is a uniform flow in the neighbourhood of sphere 2, and sphere 2
will respond to it just by moving faster than Va by precisely this exwra velocity. These corrections to
the speed of sphere 2 are O(Vga/r) + O(Vgadhd). o

The second, smaller term in the Taylor series is a linear velocity O{Voa®r2). This lincar
velocity variation will not change the speed at which sphere 2 falls. The vorticity will, however,
cause sphere 2 to rotate. As the rigid sphere cannot deform with the straining component of
Yy |y, the sphere will respond with a force-dipole O(Vga2a?).

The third, even smalier term in the Taylor series is a quadratic flow C}(Vga3fr3). We have
seen that Faxen's formula implies that sphere 2 will fall ar an extra velocity O(Vga3/i3). As the
sphere is rigid, it will also respond with a force-quadrupole O(Vga3/r3). .

It should be noted that while sphere 2 takes on various force-multipoles in response (o
sphere 1, the force-monopole is the weight of the particle and so is fixed. _
Reflection 2. Sphere 1 now sees the response of sphere 2 to uy(x), There will be the flow induced
by the O(V a2k dipole, the flow induced by the O(Vga3/r3) quadrupole, and many smaller effects.
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Sphere 1 will respond by moving at an extra velocity O(Vga2/2.a2/2) + O(Voadfrd.adfed), ie.
O(Vgar®) + O(Voab/i6), as well as some corrections 1o the stengths of the force-multipoles,

The algebraic details in proceeding 1o higher order terms (and even this farf) are tedious.
Fortunately the details are very predictable, and so it is possible to train a computer to manipulate the

gigcbr:}xi, %roceedjng easily out to 990 reflections. Techniques to accelerate the convergence can then
¢ applied.

Three equal spheres

As an amusing interlude, 1 present the results of a numerical simulation by van Rensburg in
Cambridge of the three spheres interacting. The pair 1-2 caich up with sphere 3. During the
collision, the central sphere 2 is pushed down out of the way thereby allowing spheres 1 and 3 to
come together. The new pair 1-3 then moves off faster, leaving sphere 2 behind.

j 1,03 ]
£zt 2,8 0!2 t=4
a3 3
l ’QQ -2 t:5
L:=2 o2 3
3o ep =6
L= 3 c1) é e

3q 2 L=7
)
Mary, N, particles in a cloud surrounded by clear fluid
A finite cloud of particies will behave like 2 suspended fluid drop which has a different
density and viscosity, but with no sirface tension. If the cloud starts spherical and the motion has a

low Reynolds number, then it happens that the cloud will remain spherical and it will move ata
velocity

U = NmgMauR

The factor 4 is for a cloud with a low volume fraction of particles ¢ = Na3 << 1, which will have an
effective viscosity equal 1o that of the clear fluid. The factor must be increased to § as ¢ increases
and the viscosity of the cloud becomes large.

It should be noted that the speed of the cloud is 3VR%/(2a2), i.e. much fasier than the fall
speed V of the individual particles. This large co-operanon effect is a result of the long range
O(1/r) hydrodynamic interacticns. In practice the Reynelds number for the motion of the cloud will
not be small, and so a modification will be needed to the above description.

-

Streamlines of fluid rehtive to moving clond

Manry particles dispersed uniformiy throughout a vessel with vertical side wails (and a bottor).

The horizontal homogeneity niles onr the strong convection of the previous section. We
will see in a later section about the Boycott effect thar the walls mnst be vertical in order to preserve
this horizontal hemogeneity. The existence of a fixed bottom of the vessel requires that the average
velocity in the suspension vanishes, <u> = 0. Here the fluid must move upwards in order to
compensate for the descending particles. This back flow in fluid hinders the fall of the particles and
leads to a sedimentation speed which is less than the fall speed of an isolated particle.
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We will caleulate the sedimentation speed for a dilute sus i i
‘ ' : ! pension with a small volume
fraction, ¢ << 1. In a dilute suspension, one might hope just to sum the effects berween pairs of
particles. If the velocity of a pair of particles at a separation 1 is written as Vo + AV(r), then naively

averaging over all possible separaticns which oceur with robabilit, 1
expression for the average fall speed P M PO would lead to the

v, + j AV() p) dr

Unfortunately the long range hydredynamic interactions make this inte i

g gral diverge, as
AV(r) =0O(1/r) and P — constant as r — e, Although only the fine details of the interaction
between pairs of particles is requited, there is however, 3 muiti-particle effect in that the important
back-flow in the fluid is non-zero only when all the partcies are considered,

Batchelor's renormalization

Batchelor noted that the fall speed of a pair of articles had the form at | ions
the earlier section on the method of reflections) p P #tTarge sepamtions (see

1 2
AV = (1 +op a“Vz)ul |H + higher reflections
4 =
The conributions from the first two terms are O(1/ry and O(1/3) which lead to divergent integrals,
Barchelor was, however, able to calculate their averages by some globul considerations. The
contribution from the higher reflecdons (which contain the fine details of the interactions between
pairs} is {1/ and this leads to a convergent integral with a value -1.5359Vy.
Batchelor identified the first term as representin & the velogity of the ?Iuid &l 2 positdon where
a test sphere could be located. Now the average velocity of the flufd must be asympictically - 9V

when © << 1, The centre of the test sphere cannot be located, however, within an excluded volume
shell a < r < 2a of any other sphere (or else the two spheres would overfap). Within this excluded
shell, an isolated sphere carries with it a flux of fluid 61:a3V0, and so the average velocity within the
fluid of the suspension at locatons where the test sphere can be placed is -5 .5(;'?\/0.

Batchelor constructed a similar argument for the second term, relating the average curvature

in the flow of the fluid (the average velocity is upward, but downward near each particle} to the
Average pressure gradient, and so finding an average G.5¢ V.

Hence the average fall speed in the suspension was found to be
v, (1-655¢+0@H)

Alternarive renormaiization

‘ I have developed an alternative approach which starts from the equations governing the
fluid cntside a rest particle. ©

-Vp + szu +pg = zpf o.n dA

where the sum is taken over all the ather particles in the suspension.
Now a second particle acts like :- (i) a distributed weight which induces a change in the fail
speed O(L/r) + O/, (i) a stress {force-dipole) which enhances the viscosity and induced a
COh(aII,}E% in the fall speed O¢1/r%) and (iif) higher reflections which induces a change in the fail speed
It the first two effects are mken onto the lefi-hand side of the equation, and we then average
over all possible second particles, we obtain an equation for the suspension
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Vg, + 114 20) V> + (p+ dptig

= J-'[ [s.ndA - weight - viscosity = O(h‘rfﬁ] p(r)dar

Actually the density has a more complicated form in the region a < r < 3a, and the buoyant pari
reduces the fall speed of the test sphere by -530Vy. The modification in the viscosity, which also has
a more complicated form in the region a < r < 3a, reduces the fal] speed by 205¢Vy/128. Adding in
the convergent contribution from the higher reflections recovers Batchelor's resulr,

This alternative renormalization vields the self-consistent field model (in the excluded shell
version) if one ignores all the higher reflections. This second renormalization is required when
tackling more severe hydrodynamic interactions such as those oceur in the 'porous medinm’
problem,

Measurements of the hindered sertling of a suspension

Barchelor's theoretical result has been tested against careful experimental data. The
asymptotic result fits the data well for ¢ < (.08, and beging to deviate significantly at ¢ = 0,1 where
the observations find 0.5V compared with the theoretical result 0.343V(. As ¢ increases o the
maximum packing value, the average fall speed drops to a small, but non-zero, value about
0.015Vy. This sitvation corresponds to the weight of the particies driving the fluid throngh a
packed bed.

The phenomenon of hindered settling has some significant implications for the diffusion of
particles mn a suspension. The diffusive flux of particles down a concentration gradient does fest the
hindering effect, whereas the random watk of one marked test sphere in a spatiaily homogeneons
suspension does rot. The latter random walk is however made complicated by hydrodynamic
interactions, there being a shor time diffusivity {whers the other particles effectively slow the test
sphere by enhancing the viscosity) and a long time diffusivity (in which the test sphere is retarded
by an accumulation of other spheres hlocking its way ahead). It should also be noted that when
particle interactions are taken into account dynarnic Tight scattering does not measure any of the
above diffusivites,

Batchelor's theory for sedimentation of a suspension of spheres has been extended to
polydisperse suspensions {in which one must calculate the probability distribution of pairs now that
they do move relative to one another) and to suspensions with short range interaciive forces
(attractve forces leading to more close pairs and hence a higher settling speed).

Flucruarions and dispersion

So far we have concentrated on the average fall speed of the particles in the suspension.
Some spheres, however, will be mavelling faster than the average and some slower. These
fluctuations around the average will lead to a dispersion or mixing process. The diffusivity is given
by

2a

K = J <v'({t)v'(t+1) > dt
0

An artempt 1o evaluate this expression for a dilute suspension leads 10 a divergent integral : fora
pair of particles separated by distance 1, v' = O(Vga/r} and the time for Brownian motion 1o change
the separation is r</D, which gives an integrand (Vy2a%/D) independent of r. The slightly sasier
question of the r.m.s. of the velocity fluctuations also leads to a divergent integral. It is not known
how to renommalize these two probizms.

One can begin to understand the problem with the velocity fluctuations by considering a box
of size L containing N uniformly distributed particles. Now following an idea by Russ Caflish if
we divide the box into two equal volumes by a vertical plane, one half of the box will contain N/2 -
N particies, while the other half will contain N/2 + YN
The exira weight in the one side will drive a convection current

Vo~ fmg el = velwm®
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if the convection is limited by friction forces. Thus the flucruations become larger with increasing
the box size, and indeed experiments are observed to be dominated by strong coavection in the
initial moments. One can speculate that afier some time these convection currents will remove
horizontal fluctuations in the number density down to the irreducible scale of interparticle
separations, a¢-13. This would lead to a prediction of fluctuations O(Vgd!/3).

in many experiments the inidal large convection currents are limited by inerta rather than
viscous forces with

1
v o~ (g e
As this result for high Reynolds number decreases with the size of the box, whereas the fluctuations

increase for low Reynolds numbers, one might expect that the observed fluctuation be those with a
lengih scale which gives a Reynolds number of order uniry, ie.

v o~ vPovawn ™

It is even less clear in this case how the state of the suspension evolves in timme. Please note that the
above discussion is very speculative,

Hydrodynamic screening by reorientation _
The ideas in this section are new, speculative and coniroversial - they are the result of a
collaboration with Eric Shaqfeh and Don Koch who come to 2 different conclusion!

“
@ convecging flow of 2

&7 diverging flow of 1

Consider the two rod-like particles in the figure sedimenting under graviry. Because
particle 1 points downwards more than particle 2, it will fall faster and hence overtake particle 2.
Now particle ! is in the converging flow behind particle 2, and this makes particle 1 align more with
the direction of gravity. On the other hand particle 2 is in the diverging flow in front of particle 1,
and this makes particle 2 align more with the horizontal. These Q(1/12) rotations of the particle will
speed up particle 1 and slow down particle 2. This change in speed accumulates over tire OV
and so particle 1 overtakes particle 2 ar 3 faster speed O(1/r) due to the reorientation.

Now in a steady state there will be a constant flux of particles like 1 overiaking particles like
2. With a constant flux, there will be reduction in the probability distribution where the particles are
travelling faster, .. Agrop = -O(9/1). This slowly decaying change in the pair probability
disuibution leads to a diverging integral f\fﬂapmh('r)r dr in the caleulation of the effect of particle
interactions on the average sedimentation rate.

The resolution of this divergence may be as follows. Particie 2 will not see the average
veloeity outside particle 1 as in the pure fluid, uy, but will see the average velocity outside particle 1
as in the suspension, <ir>y, and the deficit of particles near particle 1 will make <u>; decay to zero
much faster than does 11, because the far-field reflects the total weight (force- pole solution). Now
the angular velocity of particle 2 induced by particle 1 will be O(V<u>q). Integrating this along 4
trajectory will lead to a reorientation O{<u>g), and so a net change in the probability density
Aprob = - k¢<u>y. The constant k has 1o be determined by averaging over all the initial
orientations of particles 1 and 2, although I argued in the previous paragraph that it must be
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positive. The equation goveming <u>) will be the Stokes equation with a bupyancy term varying 10
teflect Aprobir), L.e.

0 = -Ve<p> + uvqul + {pgAprob = - kg<u>)

Id-Iience <u> has exponentally screened solutions like expi{- $12r), and so the divergence difficulties
S4ppear.

I should point cut that Don Koch and Eric Shagfeh belisve that the constant k is negative,
and 50 there is an excess rather than a deficit of other particles in the neighbourhood of the test
particle. This excess would lead o an instability of the suspension by & spontanecus aggregation.

Theorecal studies of the sedimentation of concentrated suspension

1t is worth noting two soundly based theorstical approaches. One is flow through periodic
media. There are numerical results for the drag (and hence the sedimentation rate) for spheres at the
maximum packing of # number of different latdces. The other, more general, promising approach is
the Stokesian dynamics pioneered by Brady and Bossis.

Mixture of particles

As mentioned earlier, the theoretical studies of sedimentation may be extended to mixtures
of different types of particles. There are sore minor technical complicadons in the calculation of the
probability distribution for the separation between different types of particles in the cases where
pairs of particles stay nearby one another in a periodic relatve motion instead of one particle steadily
overtaking the other. These studies, however, give no indication of the fascinating phenorenon
which occurs at moderate concentrations § > 20%.

With a mixwmre of two types of particies, one heavier than the suspending fluid and one
lighter, one would expect the downward flux of the heavy particles to hinder the upward motion of
the light particles, thus leading to s reduction in the sedimentation speeds. At moderate
concentrations, however, the two types of particles separate from one another into vertical columns
several particles thick, and these columns move at greatly enhanced speeds, typically 10V, just as
the macroscopic finite cloud moves faster than an isolated particle, The formation of these streaming
columns has been studied in Cambridge theoretically by Barchelor as an instability and
experimentally by van Rensburg observing a gzomerical blockage (1o light ones rising by heavy
ones descending) which is convectvely unstable. In practice there is a complication that the
Reynolds numbers for the streaming columns is not small,

Formation of sedimentation shocks in a horizontally homogeneous suspension

We now turn to some macroscopic phenomena. First we consider a suspension
sedimenting in a vessel with vertical side walls, which will preserve the assumed horizontal
homogeneity. Varations of the concentration in the vertical, ¢(z,t) will be considered. We assume
that the sedimentation speed depends only on the local concentration, te, v(¢). With no bulk
convection currents, the conservation of the particles is given by

gt o
5 0o =0

This may be re-wiitten in the hyperbolic form
dc  dive) dc

ol e =

_ST d¢l oz

The hindered settling phenomenon means that, while d{v)/dd starts from Vg at ¢ = 1, it decreases
rapidly to negative values before increasing at a small negative value at maximum packing. Thus
lower values of & propagate faster than higher values. This leads to the formation of sharp shocks if



the initial concentration has lower values located
The spcegi of these shocks can be calculated from
resulting in (9, V. - ¢V, - 9.).

above higher values (the stable configuradon!).
conserving the flux of particles across the shock,

24

In practice the shocks are observed to be ve
N t ) Ty sharp. The stucture of th
been studied theoretically because of the complications of the local inhomogeneity i:{? Otgg Zehlzstl‘lm
loss of close groups of particles which fail fuster than the front, e

Seuling in an inclined vessel - the Boycott effect

This interesting phenc i i i i
of reseann S erest g puienemenon has recently received much attention by Activos and 2 serjes
When separating particles from the fluid in a test wbe. it | i
] Y ! L , 1t 13 an established 1 i
to tlt the test tube in order to reduce the setling ime by a factor of about 3. ’Fhisarzfirt?ég?np;ﬁu?e
reflects the fict that the particles need only fall the shorter distance vertically across the be inslggl
of the whale length of the tube, in order to clear the fluid, ’ *

e 4
':':f.:;_ -I.’-"'“}:: .

There are some interesting details in the motion. As the part
clear fiuid near the upper side wall, This layer of clear fluid is vcgy blfégsa;‘?l;riges){’)lgz:: :tlafL }r'ggglf
greater speed than V. We can estimate the thickness of this thin layer 6 and its speed U by (i)
balancing the viscous and bucyqncy forces in the layer plJ/82 = ApgcosB and (ii) conservin ythe
flux of clear fluid generated VsinGH = US. This yields él = {{Htan/Apg) 3 and U =V, sinG%Lr‘S
This fast layer of buoyant clear fluid suffers a shear flow instability which is partially sta%ilized by
gravity when the wbe is either nearly vertical (low flux in layer} or nearly horizontal (stron'y
stratification). This instability limits the practical application to industrial separators because gt
re-mixes the clear fluid with the suspension, !

Student exercise

Where a fresh water river meets the saline sea water, the repulsi i
: s sive electrical fore
clay platelers become screened by the counter-ions from the salt, sg that the platelets cancii);:gcaclg
under van der Waals forces, and the aggregates sediment thus silting up the estuary with mud
There are many similar siruations in industry where the small suspended particles suddenly become

awractive and so are precipitated. The exercise is 1o predict the & i
C time for
predict the structure of the pracipitate. P or e particles o fall out and 0

[*F

Initiaily the particles and their clusters are small and so they come into contact by Erownian
moton. Thus the aggregates grow accerding to D.L.A. in its cluster-cluster form. At a critical size,
however, their sedimentation speed becomes significant and thereafter the aggregates grow by the
larger {fasier) aggregates sweeping up the smaller onss. This growth will perhaps be limited by the
strength of the bonds in the aggregates compared with the fluid sresses due to the falling. In some
applicadons there will also be some fhuid stresses due 1o convective motions or imposed stirming.
For comnpact bodies rather than the tenuous fractal aggregates, [ believe the critieal size for
sedimentation o be mportant is about 10pm.

When the growth of the aggregates is understood, it is possible to predict the time it takes
for the pardeles to fall ont. We would also like o know the structure of the precipitate. The density
of the precipitate would give the height it occupies - in elementary chemisiry experiments I can recall
the precipitate at the bottom of a test itbe occupied more than ten times the volume of the filtered and
dried material. Cne could also find the strength of the precipitate and consider whether it would
compact under its own weight - there are some embarrassing industrial problems where some waste
material will not compact and so i occupies a large volume. For drying the precipitate one would
like to know its permeability, assumming that the flnid was not actively bonded to the solids,

1 gave a third review lecture on the motion of an interface between two liquids. Much of the
material on the deformation and breakup of small drops in shearing flows has been described clearly
in an article by T.M. Rallison in the Annual Reviews of Fluid Mechanics in 1984,
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