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Andy’s speculation is correct, of course.



Coating flow flow on a rotating vertical disk

Lubrication theory for thin film h(x, t):

∂h

∂t
+∇ ·

(
Ω× xh + 1

3γh
3g
)

= −1
3α∇ · (h

3∇∇2h),∫
r≤1

h dA = π,

with small surface tension α = σh30/µΩR4 � 1,
and gravity γ = ρgh20/µΩR2.

What is the maximum load, γmax, without dripping?



Previously

Parmar, Tirumkudulu & Hinch (2009) PoF 21, 103102.

Experiments: γmax ≈ 0.30.
Numerics to γ = 0.12 with α = 10−5.
Asymptoics small γ, small α to O(γ3, αγ3) works to γ = 0.06.

Acrivos (2010) PoF Comment 22, 059101.

γmax =

(
8

15

)2

= 0.2844.



Zero surface tension, α = 0

Steady if (
Ω× xh + γh3g

)
· ∇h = 0,

i.e. h = const on off-set circle,∣∣x− γh2Ω× g
∣∣ = r ,

circles of radius r , centred at x = (−γh2, 0).

How does h vary across circles, i.e. h = H(r)?

Acrivos: at maximum load, all circles must pass through
x = (−1, 0),

so H(r) =
1

√
γmax

√
1− r

volume normalisation gives γmax = (8/15)2.



Small surface tension, α� 1

Study accumulative effect over a long time of small surface tension

h(x, t) ∼ H(r ,T ) + αh1(x,T ) with slow time T = αt.

Governed by

∂H

∂t
+∇ ·

(
Ω× xh1 + 1

3γh
3g
)

= −1
3∇ · (H

3∇∇2H).

Integrate around off-set circle to eliminate second term on LHS
(GKB 56, LGL EJH 70)



Technical details

The off-set circles give non-orthogonal co-ordinates

x = (r cos θ + X (r), r sin θ).

Metrics sorry to repeat symbols h and α

hr =
√

1 + 2X ′ cos θ + X ′2, hθ = r , hrhθ sinα = r(1+X ′ cos θ).

Hence curvature κ = ∇2h for h = H(r)

=
1

r(1 + X ′ cos θ)

[
∂

∂r

(
r

1 + X ′ cos θ

dH

dr

)
+

(X ′ + cos θ)X ′

(1 + X ′ cos θ)2
dH

dr

]
and this is only half potential terms.

And X (r) = −γH2(r) with unknown H.



. . . technical details

Then slow drift in distribution across circles governed by

∂H

∂T
= − 1

6π

∫ 2π

0

1

r

∂

∂r

[
rH3∇κ

]
⊥r dθ,

and first correction given by

h1 =
1

3r(1 + X ′ cos θ)

(√
1 + 2X ′ cos θ + X ′2

[
H3∇κ

]
⊥θ

+

∫ θ

0

∂

∂r

[
rH3∇κ

)
⊥r dθ

)
.



Numerics

Central space differencing, awkward for non-orthogonal cross
derivatives.

Explicit time-step, stability if

δT < 1
20

(
δr min

r
(1− X ′)

)4
but independent of δθ.

Typically, for γ = 0.2,

δr = δθ = 0.05, δT = 10−10

but attains equilibrium by T = 0.005.

Problem that circles intersect, X ′ > 1, for initial condition
H = 2(1− r2) when γ > 0.16. Hence must ramp up γ in time.



Results

Profiles of the coating on y = 0 for various γ
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Results

Capillary pressure at γ = 0.15
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due to high curvature as maximum h pushed to edge x = −1.



Results

O(α) correction h1(rθ) at γ = 0.15. Extreme values ±9 104
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Thicker below y = 0 where gradient of capillary pressure opposes
rotation, like gravity (clockwise rotation).



Results

Position of maximum thickness as γ varies
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Numerical data to γ = 0.210,
asymptotics 1st order −4γ, 2nd order −(2− 15

16γ)2γ,
and Acrivos’s speculation γmax = 0.2844.



Results

Separation of circles on y = 0 is 1− X ′
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If X ′ → 1 as γ → γmax with X = −γH2, then Acrivos

H → 1
√
γmax

√
1− r


