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Motivation

Refereeing :

Boyko, E. & Stone, H. A. (2022) Pressure-driven flow of the viscoelastic Oldroyd-B fluid in
narrow non-uniform geometries: analytical results and comparison with simulations. JFM 936

Recall:

Hinch, E.J. (1993) The flow of an Oldroyd fluid around a sharp corner. JNNFM 40

Realise: A new application for an old FAST trick!

2



Simplifications

1. Slowly varying = lubrication theory, with boost for tension in streamlines

2. Oldroyd-B

σ = −pI+ 2µ0e+ GA.

Microstructure A deforms with the flow (upper-convective time derivative), and relaxes

▽
A =

DA

Dt
− A ·∇u−∇uT · A = −1

τ
(A− I) .
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Fast flow trick

Fast = no time to relax

▽
A =

DA

Dt
− A ·∇u−∇uT · A = −1

τ
(A− I).

Solution: A = λ(ψ)uu

Plot variation along streamlines
through the contraction

Conclude A ∝ u2 on streamlines
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Fast flow 2

Hence predict stress and pressure drop for large De (> 0.3)

∆p = ∆p1 + c∆p2 −
9cDe
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Different planar contraction ratios, c = 1.0.
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Problem 1. Relaxation after the contraction

Too many recent papers have just found the pressure drop in the contraction .

Contraction in 0 ≤ x ≤ 1

Planar contraction
De = 0.5, H = 2, c = 1.0

Need to go to x = 8
for 95% relaxation
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exit channel correction

Planar contraction De = 0.5, H = 2, c = 1.0
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Problem 2. Non-smooth boundary

Discontinuity of slope of boundary,
→ discontinuity in y -velocity

(in lubrication theory picture),
→ δ-function of vorticity,
→ jump in direction of elastic stresses

Axx(0+) = Axx(0−),

Axy (0+) = Axy (0−) + ηAxx(0−),

Ayy (0+) = Ayy (0−) + 2ηAxy (0−) + η2Axx .

where η = yH ′(0+)/H2(0)

Avoid with smooth boundary or streamline coordinates
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Problem 3. Naive small-De expansion

▽
A =

DA

Dt
− A ·∇u−∇uT · A = − 1

De
(A− I) .

Iterate

A = I − De
▽
I + De2

▽▽
I − De3

▽▽▽
I + De4

▽▽▽▽
I + . . .

with no opportunity to satisfy inlet stress boundary condition.

Several recent papers have made this naive expansion to many, O(De8), erroneous terms.
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For hyperbolic contraction

R(z) =
1

(1 + βz)1/2

with jump in shape (so fail to satisfy inlet condition)

A22 = 1− DeβF + De2β2F 2 − De3β3F 3 + · · · .

Summing

A22 =
1

1 + DeβF
.

and similar for A12 and A11.

This is the exact/similarity solution of Sialmas & Housiadas, NOT satisfy inlet stress condtion.

Panagiotis Sialmas & Kostas D. Housiadas (2025) An exact solution of the lubrication equations for

the Oldroyd-B model in a hyperbolic pipe JNNFM 335
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Problem 4: Similarity solutions fails badly at Dee > 1
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Conclusions

▶ Progress: Fast flow

▶ Problem: need long exit channel

▶ Problem: need smooth geoemtry

▶ Problem: small-De expansion could be naive (wrong)

▶ Problem: a new similarity solutions fails badly at Dee > 1
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