The much-neglected Second Normal Stress Difference

John Hinch

CMS-DAMTP, University of Cambridge

September 24, 2020

What are normal stresses?

In simple shear $\mathbf{u} = (\gamma y, 0, 0)$, the stress tensor is

$$\sigma = \begin{pmatrix} \sigma_{xx} & \sigma_{xy} & 0\\ \sigma_{xy} & \sigma_{yy} & 0\\ 0 & 0 & \sigma_{zz} \end{pmatrix},$$

with off-diagonal tangential viscous dissipative stresses, and diagonal normal stresses, which do no work.

In a Newtonian viscous fluid, the normal stresses are equal $\sigma_{xx} = \sigma_{yy} = \sigma_{zz}$ and equal to (negative) pressure.

In a visco-elastic fluid, the normal stresses are not equal. We consider their differences

$$N_1 = \sigma_{xx} - \sigma_{yy}, \quad N_2 = \sigma_{yy} - \sigma_{zz}.$$

 N_1 (dominant for polymers) is a tension in the streamlines.

Effect of N_1 on flow – tension in the streamlines

- Rod climbing
- Secondary flows
- Migration of particles to centre of pipe flow
- Stabilisation of jets
- Purely-elastic Taylor-Couette instability
- Co-extrusion instability

For polymers and microstructures of fibres:

Thus tension in the streamlines, N_1 .

And no N_2 from fibres – why much neglected.

Need a thick microstructure that can be compressed, e.g. droplets in an emulsion

Then spin by vorticity to align with flow gives $N_2 = \sigma_{yy} - \sigma_{zz} < 0$.

 $N_2 < 0$ is tension in the vortex lines.

Associated non-affine behaviour

- remark for rheologists only

Thick microstructures, unlike thin fibres, strain with reduced efficiency, $\theta < 100\%$.

So deform with

$$abla \mathbf{u}
ightarrow rac{1}{2} \left(
abla \mathbf{u} -
abla \mathbf{u}^T
ight) + heta rac{1}{2} \left(
abla \mathbf{u} +
abla \mathbf{u}^T
ight)$$

This gives a second normal stress difference and shear-thinning.

$$N_2 \propto -rac{ heta(1- heta)\gamma^2}{1+(1- heta^2)\gamma^2}, \quad \mu_p \propto rac{ heta}{1+(1- heta^2)\gamma^2},$$

Another origin of N_2

In non-Brownian suspensions, particles impact in the x-direction, leading to a pressure, $\sigma_{xx} < 0$.

When concentrated $\phi > 20\%$, they also impact layer above and below, leading to a similar pressure $\sigma_{yy} \approx \sigma_{xx}$ (force-chains at 45° to flow), so $N_1 \approx 0$.

Easier to pass in z-direction, so $\sigma_{zz} \approx 0$, so $N_2 = \sigma_{yy} - \sigma_{zz} < 0$.

Boyer, Pouliquen & Guazzelli (2017)

- Bowing of interface in Tanner tilted channel
- Longitudinal vortices in granular chute flow
- Negative rod-climbing
- Edge instability in rheometers
- Lopsided de-wetting on a vertical fibre

Tanner's tilted trough

Inclined V-shaped open channel

Kuo & Tanner 1974

Higher shear-rate in centre

 \rightarrow higher tension in vortex lines in centre,

 \rightarrow pull fluid to centre

 \rightarrow surface bows up

Same mechanism for longitudinal vortices in granular chute flow?

Standard analysis

Beavers & Joseph 1975

$$h(r) = rac{1}{
ho g} \left(rac{1}{4} N_1 + N_2 \right) rac{a^2}{r^2}$$

For polymers, $N_1 > 0$ and $N_2 \approx 0$, so climbs h > 0, by tension in streamlines

For concentrated non-Brownian suspensions, $N_1 \approx 0$ and $N_2 < 0$, so h < 0 dips (negative climb) by tension in the vertical vortex lines

Boyer, Pouliquen & Guazzelli 2017

Edge instability in rheometer

At edge of plate-plate rheometer, top plate coming towards you, bottom away. Perturb liquid interface, in at *A*.

Contours of constant u must meet interface at 90°.

Crowding of contours at A,

- \rightarrow increase shear-rate at A,
 - \rightarrow higher tension in vortex lines at A,
 - \rightarrow pulls A further into liquid.

Hemmingway & Fielding 2017, Tanner 1993

Lopsided de-wetting of coating on a vertical fibre

Boulogne, Pauchard & Giorgiutti-Dauphiné 2012

- Thicker side
 - \rightarrow higher shear-rate
 - \rightarrow higher tension in vortex lines
 - \rightarrow pulls round to make thicker

Lopsided de-wetting of coating on a vertical fibre

Lubrication equations for thin coating. Case no z-variations, $h(\theta, t)$

Dotted blue is a steady state which wets only 0 $\leq heta \leq$ 1.9071

Lopsided de-wetting of coating on a vertical fibre

Draining of small region to right

Small region drains as $t^{-1/4}$

$$h(\pi)\sim rac{1+\cos L}{t^{1/4}}\left(rac{K((\pi-L)\cos L+\sin L)}{4Q\sin^5 L}
ight)^{1/4}$$

cf P.S.Hammond 1983

- Bowing of interface in Tanner tilted channel
- Longitudinal vortices in granular chute flow
- Negative rod-climbing
- Edge instability in rheometers
- Lopsided de-wetting on a vertical fibre

 N_2 should not have been neglected!

The last problem combines

- Practical application of mathematics L'Oréal
- Non-Newtonian fluid mechanics
- Surface tension, if not Marangoni
- Asymptotic analysis

Four aspects of Anthony's pioneering work of the 1950s.

Happy birthday Anthony