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Position of particles

Few forwards

n -+ Xxp

Most
backwards

If in contact: X, = Xp41 — 2Xp + Xn—1

Continuum approximation: x; = Xp,, with wave speed 1.

Non-continuum effect: X,(t = c0) < 0
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Simple mechanics
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Answers more complicated
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Rebound velocities

Chain of 25 particle, 20 rebound

—5p(00) N

Rebound energy S n=3/2 is finite

—3/47 RN
n o Ifso Rebound momentum 3~ n=3/4 is infinite

But why n—3/4? Not diffusion.



Key: propagation of an impulse wave
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Key: propagation of an impulse wave

t =135, 245, 35.2, 45.7
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Peak velocity decreases slowly.  How?
Width of pulse increases slowly.  How?
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Spreading wave which conserves energy

Slowly varying amplitude and wavelength of propagation wave of

constant form £(.)
n—t
=01 (5 )

_ a
Xp ~ ——f'

A
Kinetic energy (potential energy similar)

Zxﬁ x %)\

1

Then

Conservation gives \ o a®, and so X, o< a~

Replot for different t, x,a against (n— ny)/a°,
where nq is last in contact, and a = xp,.



Key: propagation of an impulse wave
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Replot for different t, Xx,a against (n— ny)/a°,

t =135, 245, 35.2, 45.7
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Scaling for spreading wave : A(t)?

If touching
Xn = Xp+1 — 2Xp + Xp—1

Second approximation for continuum limit
_ 1
Xtt = Xnn + 5 Xnnnn
with "'numerical diffusion’.
Transform to moving coordinate N =n—t
2 =1
Xtt + 2XNt = {5 XNNNN

To balance last two terms, use similarity variable N/t'/3.

Hence \ o t1/3
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Results for spreading wave

wavelength A o t1/3
displacements x, = a x t1/6
velocities X = a/\ « t—1/6

Forward moving momentum

P = Zx,, (a/A)\ o t/°

Rate of ejecting momentum backwards in ‘rocket effect’
Xn(00) At = —P oc t75/8

At time between particles rebounding = 1 (wave speed = 1)

Hence rebound velocities

Xpn(00) —t75/0 = _p=5/6
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Similarity solution

Try X(”? t) = t1/6f (6 = %) N Xtr = Xpn + %Xnnnn

So " =8¢ —4f

Xpa

(n—nl—13)/a°

Solution f = [~ Ai2(—2'3y) dy



The % shift

Near to back of the wave £ = &
f o f(G) (L-35(6—%)°+...)

Correction for ejected velocities at t—5/°

xn(t) ~ £OF(€) + £25(¢ ~ &o)
Ball n detaches at t, where £ = &y + 0§ if x,(tn) = xpt1(tn), i.e.

t=%/% [f(&) (20 +20 — 2) = 8] =0
and detaches with known velocity

—L1f(&)t™%/0 =5, = t7%/0 [£(&0)26° - ]

Hence § = %.



Finite chain of N: number fly off and their velocities

When wave reaches end at t = N.
width of wave 1.5N/3 and velocities 1.4N~1/° and less.



Finite chain of N: number fly off and their velocities

When wave reaches end at t = N.
width of wave 1.5N1/3 and velocities 1.4N~1/6 and less.

N = 100 ¢, 200 +, 400 [, 800 x

14f3

VN6 ol ®

0 0.2 0.4 0.6 0.8 1 12 14 16 18

(N —n)N-1/3
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Questions: Answers

» How many fly off at the far end?  1.5N1/3

At what velocities?  Vjy = 1.4N"1/6

» How many rebound?  Most

At what velocities?  V,, = —0.16n"/6

Simple mechanics
Simple questions
Answers more complicated

For linear force law. Next nonlinear Hertz contacts
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Hertz contacts

Radius R
Contact radius a
Overlap o
Geometry: a = v2R)
. ) ) )
Strain = — Stress = E—, elastic modulus E
a a

g \/EE R1/253/2
2

Force = 7ra2E5 = 30-17)



Impulse wave propagating down a Hertzian chain
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No spreading: nonlinearity balances ‘diffusion’



Impulse wave propagating down a Hertzian chain

Xn

No spreading: nonlinearity balances ‘diffusion’

Two fly off end: Vi = 0.984, Vyy_; = 0.149,
(Vn_2 =0.004, Vjy_3 =102, V, 4 =3x1079)



Rebound velocities for Hertzian chain
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Nesterenko's (1984) solitary wave (long wave approx)

ou 1 ABu

_ 3/2 - _ Lo 1 ou
x=D [(Dx) } where Du = Upid = Up 1~ 5o+ 2553

Travelling wave solution x,(t) = f({ = n— Vt)
1
V2f'/ — f’/3/2 + i (f'l3/2) + T]éfll/zflll
with solution

VZi=2AY2 ' = Asin® \/gg 0<é<T

Set A = 1.0064 for energy = 0.9937
Predict V =0.896 Max x, =0.902 [x,] =1.875
Numerical V =0.841 Max x, =0.681 [x,] =1.354
Wave not so long with just 4 balls
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Impact by two

Two solitary waves
3
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Balls fly of end:
from first wave at 1.234, 0.186,
from second wave at 0.647, 0.090



Impact by three

Three solitary waves
4

From first wave at 1.336, 0.203,
second at 0.951, 0.141,
third at 0.469, 0.054



Impact by K

2K fly off at far end
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Impact by K

~ %K rebound at velocities > 0.01.
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Newton's cradle

Final velocities of position n after impact by K

n| K=1 K=2 K=3 K=4
1]-0.0711 -0.1126 -0.1397 0.0112
2 | -0.0303 -0.0420 0.1996 0.8729
3 1-0.0145 0.2145 0.7855 1.0145
4 | 0.1270 0.8004 1.0420 1.0303
51 09888 1.1397 1.1126 1.0711

Extra forward
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Granular media

Barchan dunes

Aeolian sand transport
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Splash experiment in Rennes

Oger & Valance

Pressurized Vacuum cell
Valve 3 chamber Valve 2 Rail
< Air gllﬁ\/,,,\(\
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Oger & Valance

Splash of particles
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Splash experiment in Rennes

Splash of particles
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Spin in billiards

Before After if 4 > 0.2 Later, rolling again

— 1 4
V=1 0 0 1 2 =

— 1 4
w=-1 0 —0.5 0.5 —7 -3
Energy 7 6 17

_ L ~ (869 -z (359

Imv2 5 5 (86%) 35 (35%)

Energy lost through spinning rather than restitution



Newton's cradle

Final velocities of position n after impact by K

n| K=1 K=2 K=3 K=4
1]-0.0711 -0.1126 -0.1397 0.0112
2 | -0.0303 -0.0420 0.1996 0.8729
3 1-0.0145 0.2145 0.7855 1.0145
4 | 0.1270 0.8004 1.0420 1.0303
51 09888 1.1397 1.1126 1.0711

Extra forward




