Boundary Integral/Element Method

- For linear problems with known simple Greens functions
 e.g. potential flows, Stokes flows
- Good for complex geometry
- Very good for free surface problems needing only u on the surface

Greens identity (divergence theorem)

$$
\int_S \left(\phi \frac{\partial G}{\partial n} - \frac{\partial \phi}{\partial n} G \right) \, dS(x) = \int_V \left(\phi \nabla^2 G - \nabla^2 \phi \, G \right) \, dV(x)
$$

$$
= \int_V \phi(x) \delta(x - \xi) \, dV(x)
$$

$$
= \phi(\xi) \times \begin{cases}
0 & \text{if } \xi \text{ outside } V, \\
1 & \text{if } \xi \text{ inside } V, \\
\frac{1}{2} & \text{if } \xi \text{ on smooth } S, \\
\frac{1}{4} \Omega & \text{if } \xi \text{ at corner of } S \text{ with solid angle } \Omega.
\end{cases}
$$

Laplace equation

$$
\nabla^2 \phi = 0 \quad \text{in the volume } V
$$

$$
\phi \quad \text{or} \quad \frac{\partial \phi}{\partial n} \quad \text{given on the surface } S
$$

where n the unit normal to the surface out of the volume.

Need Greens function $G(x, \xi)$, viewing ξ as a fixed parameter

$$
\nabla_x G = \delta(x - \xi) \quad \text{for } x \text{ in } V
$$

G need not satisfy any BC on S

$$
\nabla_x \text{ means differentiate with respect to } x
$$

Boundary integral equation

For ξ on smooth S

$$
\frac{1}{2} \phi(\xi) = \int_S \left(\phi \frac{\partial G}{\partial n} - \frac{\partial \phi}{\partial n} G \right) \, dS(x)
$$

Either given $\phi|_S$, solve for $\frac{\partial \phi}{\partial n}|_S$

Or given $\frac{\partial \phi}{\partial n}|_S$, solve for $\phi|_S$

Then find ϕ inside V by evaluation integral with 1 replacing $\frac{1}{2}$

For exterior problem, add $\phi_\infty(\xi)$ to RHS of integral equation
Greens functions

Normally use ‘free-space’ Greens functions

\[G = -\frac{1}{4\pi |x - \xi|}, \quad \frac{\partial G}{\partial n} = \frac{(x - \xi) \cdot n(x)}{4\pi |x - \xi|^3} \]

in \(R^3 \):

and in \(R^2 \):

\[G = \frac{1}{2\pi} \ln |x - \xi|, \quad \frac{\partial G}{\partial n} = \frac{(x - \xi) \cdot n(x)}{2\pi |x - \xi|^2} \]

Become elliptic functions for axisymmetric

Sometimes use images so \(G \) satisfies BCs (simple geometries)

Integrand is singular

For fixed \(\xi \) on \(S \) and \(x \) moving on \(S \)

\[G \propto \frac{1}{|x - \xi|} \text{ in } R^3, \quad G \propto \ln |x - \xi| \text{ in } R^2. \]

Integrable but singular – take care numerically

On smooth \(S \)

\[n(x) \cdot (x - \xi) \sim \frac{1}{2} \kappa |x - \xi|^2, \]

where \(\kappa \) is the curvature. Hence

\[\frac{\partial G}{\partial n} \sim \frac{\kappa}{8\pi |x - \xi|} \text{ in } R^3, \quad G \propto \frac{\kappa}{4\pi} \text{ in } R^2. \]

So no more singular

Hence need numerically smooth \(S \)

Eigensolutions

Interior problem has one eigensolution

\[\phi = 1 \quad \text{and} \quad \frac{\partial \phi}{\partial n} = 0 \quad \text{on } S \]

corresponding to

\[\phi(x) = 1 \quad \text{in } V \]

Associated constraint

\[\int_S \frac{\partial \phi}{\partial n} dS = 0 \]

from zero volume sources in \(\nabla^2 \phi = 0 \quad \text{in } V. \)

Discretise

1. Divided up \(S \) into ‘panels’
 - in \(R^2 \) a curve divided into segments
 - in \(R^3 \) normally triangles

2. Represent unknowns \(\phi \) and \(\frac{\partial \phi}{\partial n} \) by basis functions \(f_i(x) \) over the panels, e.g. piecewise constants/linear (or B-splines)

\[\phi(x) = \sum \Phi_i f_i(x), \quad \frac{\partial \phi}{\partial n} = \sum D\Phi_i f_i(x) \]

with unknown amplitudes \(\Phi_i \) and \(D\Phi_i \).

3. Satisfy integral equation at collocation points
 or by least squares or with weighted integrals.

Suitable collocations points are:
- centre of panels for piecewise constant basis functions
- vertices of panels for piecewise linear basis functions.
Discretised integral equation

One thus forms a discretised version of the integral equation in terms of the amplitudes Φ_i and $D\Phi_i$

$$\left(\frac{1}{2}I - D\mathcal{G}\right)\Phi = -\mathcal{G}D\Phi,$$

where the matrix elements are

$$D\mathcal{G}_{ij} = \int_S f_j(x) \frac{\partial G}{\partial n}(x, \xi) \, dS(x), \quad \text{and} \quad \mathcal{G}_{ij} = \int_S f_i(x) G(x, \xi) \, dS(x),$$

both evaluated at $\xi = x_i$.

Evaluation of \mathcal{G} and $D\mathcal{G}$

Short range integrals (if splines must use B-splines)

Often use Gaussian integration – avoids singular point $x = \xi$

Often use trapezoidal integration for $|i - j| > 3$ or 4

Gaussian poor for self and next-to-self panels $|i - j| \leq 1$

8pt Gaussian → error 3×10^{-15} in $\int_0^\pi \sin x$ x, but 9×10^{-3} in $\int_0^\frac{1}{2} \ln x$

So subtract off the singularity and evaluate analytically

$$G(x, \xi) \sim a(\xi) \ln |x - \xi| + \text{regular term},$$

$$\int_{\xi - \delta_1}^{\xi + \delta_2} a(\xi) \ln |x - \xi| \, dx = a(\xi) (\delta_2 \ln \delta_2 - \delta_2 + \delta_1 \ln \delta_1 - \delta_1).$$

Regular term safely by the trapezoidal rule.
Similarly the next-to-self panel, if not one more beyond.

Avoiding eigensolution

Invert singular matrices

$$\left(\frac{1}{2}I - D\mathcal{G}\right)\Phi = -\mathcal{G}D\Phi,$$

in space orthogonal to eigensolution

Fix 1 Rely on truncation error to keep condition number finite

Fix 2 Make eigenvalue α rather than 0

$$A' = A + \alpha e e^\dagger$$

For interior problem

$$e = (1, 1, \ldots, 1) \quad \text{and} \quad (e^\dagger)_i = \int_S f_i \, dS$$

(so long as $\sum f_i(x) \equiv 1$)

Tests

In two dimensions

$$\phi = r^k \cos k\theta$$

with $\frac{\partial \phi}{\partial n} = n \cdot \nabla \phi = n_r k r^{k-1} \cos k\theta - n_\theta k r^{k-1} \sin k\theta$,

and similarly in three dimensions.

Test error is $O(\Delta x^2)$ if piecewise linear basis functions, and $O(\Delta x^4)$ if cubic splines
Costs

Boundary integral method has unknowns only on surface, so costs less?

- Volume method N^2 points in 2D, N^3 points in 3D
 - Fast Poisson solver (need regular geometry) $N \ln N$ steps
 - Cost $N^3 \ln N$ or $N^4 \ln N$

- Surface method $4N$ points in 2D, $6N^2$ points in 3D
 - Boundary integral method has dense matrix $\frac{1}{3}(\cdot)^3$ inversion
 - Costs $11N^3$ or $72N^6$

But BIM good for complex or ∞ geometry

Reduce cost to $(\cdot)^2$ by iteration from last time-step

Try Fast Multipoles

Free surface potential flows

Start time step with known surface $S(t)$ and potential $\phi(x, t)$ known on S
Use BIM to find $\partial \phi / \partial n$ on S, $\rightarrow \nabla \phi$
Evolve surface $\frac{Dx}{Dt} = \nabla \phi$ for points on S
Evolve surface potential $\frac{D\phi}{Dt} = \frac{1}{2} |\nabla \phi|^2 - \frac{g \cdot x}{\rho \kappa} - \rho_{atm}$ for points x on S,

Capillary waves mean $\Delta t < \sqrt{\rho / \gamma} \Delta x^{3/2}$
A good test is the vibration frequencies of an isolated drop.
Problem: conserve energy \rightarrow accumulate numerical noise in short capillary waves, so smooth or Fourier filter

Stokes flows

$$\frac{1}{2} u(\xi) = \int_S \left((\sigma \cdot n) \cdot G - u \cdot K \cdot n \right) dS(x),$$

with the Greens function, called a Stokeslet, and its derivative

$$G = \frac{1}{8 \pi \mu} \left(\frac{1}{r} + \frac{rr}{r^3} \right) \quad \text{and} \quad K = -\frac{3}{4 \pi} \frac{rr}{r^5}, \quad \text{where} \quad r = x - \xi.$$

For drops, outside minus inside, so only need $[\sigma \cdot n] = -\gamma \kappa n$

$$\frac{1}{2} (\mu_{in} + \mu_{out}) u(\xi) = \int_S \left([\sigma \cdot n] \cdot G - (\mu_{in} - \mu_{out}) u \cdot K \cdot n \right) dS(x),$$

Eigensolutions of rigid body motion for interior problem $- no motion from constant pressure