Hyperbolic equations

Avoid numerically

» Advection + diffusion
OK if Ax < D/U. Then DAt < Ax? gives UAt < Ax

» Advection + reaction
OK if Ax < Ur. Then UAt < Ax gives At < T

» Pure Advection
» Problem 1 conserve past numerical errors
» Problem 2 shocks = unresolved boundary layers = rarefaction

waves and discontinuities <— unfriendly to high-order schemes

Hint: Reformulate with characteristics, i.e. Lagrangian

1.1 Simplest - unstable

First-order in time, central second-order in space

n+1
n+1 n n __.n
A e R o |

At a 2Ax n X

ct =0.0(0.2)1.0
Ax =0.05
cAt = 0.0125

Unstable

1. Simple smooth advection

uy + cu, =0,

and smooth initial condition

u(x) = 4(x—1)2(2—x)? in 1 g x <2,
0 otherwise.

Take ¢ constant, > 0.
Generalise to c(x), ¢(x, u) and vector u(x, t)

Finite differences easier for cooperation of spatial and temporal
discretisations.

Write
uj = u(x = lAx, t = nAt).

Stability analysis

Set uf = A"e/k*Ax (Fourier wave). To find A(k)

Algorithm — A =1 — jusin 6 with = <£* and 0 = kAx.

Then |A| > 1 all g,

i.e. unstable all At.

— \ _ T
Most unstable = short wave zigzag 6 = 7

with [A] = /1 + u?

e u~ (14 p?)t/2AL



1.2 Lax-Friedricks — too stable

t
Replacing vy in the time derivative n+1
1
by average §(u£+1 + uj ). . .
-1 +1
1 cAt 1 cAt
U£+1 = 5 <1 — AX) Ug_'_]_ + 5 <1 + AX) Ug_l.

Stability analysis u] = AN @iktAx

A
A= cosf—iusin® with u— CTt and 0 = kAx
X

i.e. stable |[A| < 1 all 6 if

At
p= CA— <1 CFL condition (Courant-Friedricks-Lewy)
X

Information propagates less than Ax in At

Longwave error analysis

Taylor series
1A,2
Uy = ug + Axuc g + 50X Uy + ..,
uft™t = u) + Atue )+ AP U]+

Algorithm + Lax trick uy = c?uyy

Ax?

At
Numerical diffusion

up = —cy + (1 — p?)

ct =0.0(0.2)1.0

for Ax = 0.05
continuous cAt = 0.025
dashed cAt = 0.0125

Lax-Friedricks — too stable

Plots ¢t = 0.0(0.2) 1.0, Ax = 0.05

unstable p = cAt/Ax =1.1 stable 1 = 0.5

Stable but very damped

1.3 Upwinding — avoid downstream influence

t
n+1
e B
At Ax n X
» -1/
Stability

A2 =1 — 4p(1 — p)sin? %, i.e. stable if <1

Longwave error analysis

U = —cCuy + %(1 — [4)CAX Uyy.

ct =0.0(0.2)1.0
Ax =0.05 At =0.25
numerical diffusivity bounded
as At — 0




1.4 Crank-Nicolson — second-order, implicit
Central difference about mid-point (¢, n + %)

t
n+1

n X

(-1 ¢ (+1

umtt —yn cAt
¢ 0 _ +1 +1
At - _4AX (ug-i-l - g—l + ug—i-l - ug—l) :
Stability .
1—3ipsind
_ 2
1+ %i,usin&

i.e. |JA| =1 all u: stable with no damping (?accurate large u?)

1.5 Lax-Wendroff — second-order, explicit
Upwinding corrected by subtracting off leading error
(1 — p)eAx [uee & (U] g — 2u] + uf_1)/AX]

and rearranging

2N 2
1 cAt ccAt
“£+ =uf — 2Ax (“£+1 - Ug—l) + DAX2 (“£+1 —2uj + “571)
Stability

2 2 2y i 41
|AI® =1 —4p(1 — p*)sin® 50,
stable if 4 < 1 (CFL)
Longwave errors
U = —Cly — é(l — u2)ch2uXXX.

again numerical dispersion

Crank-Nicolson

Longwave error analysis

1
Us = —Cly — E(2 — U2 AX? Uy

Uyxxx Means numerical dispersion

ct =0.0(0.2)1.0
Ax =0.05, cAt = 0.025

Slower short waves at the trailing edge

Lax-Wendroff

1 cAt c?At?
”ZJF =uy — 2Ax (U£+1 - Ue—1) + OAX2 (”£+1 —2u; + U?—l)

ct =0.0(0.2)1.0
Ax = 0.05, cAt =0.025

0 1 2 3 4 5

Slower short waves at the trailing edge



1.6 Angled derivative — second-order, explicit, 3-level Angled derivative

Central difference about mid-point (¢ — 5, n)
Stability
o\ 2 .
(Ae'9/2) — 2i(1 — 21) sin 16 (Ae"’/2) —1=0,

stable ;1 < 1, but spurious (stable) second mode

Longwave errors

U = —Cly + 1—12(1 —p)(1 - 2,u)ch2 Usox -

. numerical dispersion, vanishes at o = 1 (when exact!)
Re-arranging

2cAt
it = (1 — ) (uf — ufq) +u) ]

Angled derivative Conclusions for smooth problems
A
Start u} = u — SRE(ud, — ul ;)

CFL stability: u = At <1 (typically)

Odd-order scehmes — numerical diffusion

ct =0.0(0.2)1.0 i.e. spreading and decay
u=0.3

Even-order schemes — numerical dispersion

i.e spurious (typically trailing) oscillations



