Hyperbolic equations

Avoid numerically

► Advection + diffusion

OK if
$$\Delta x < D/U$$
. Then $D\Delta t < \Delta x^2$ gives $U\Delta t < \Delta x$

► Advection + reaction

OK if
$$\Delta x < U\tau$$
. Then $U\Delta t < \Delta x$ gives $\Delta t < \tau$

- ► Pure Advection
 - ▶ Problem 1 conserve past numerical errors
 - ▶ Problem 2 shocks = unresolved boundary layers = rarefaction waves and discontinuities ← unfriendly to high-order schemes

Hint: Reformulate with characteristics, i.e. Lagrangian

1.1 Simplest - unstable

First-order in time, central second-order in space

$$\frac{u_{\ell}^{n+1} - u_{\ell}^{n}}{\Delta t} = -c \frac{u_{\ell+1}^{n} - u_{\ell-1}^{n}}{2\Delta x}$$

$$ct = 0.0 (0.2) 1.0$$

 $\Delta x = 0.05$
 $c\Delta t = 0.0125$

Unstable

1. Simple smooth advection

$$u_t + cu_x = 0$$
,

and smooth initial condition

$$u(x) = \begin{cases} 4(x-1)^2(2-x)^2 & \text{in} \quad 1 \le x \le 2, \\ 0 & \text{otherwise.} \end{cases}$$

Take c constant, > 0.

Generalise to c(x), c(x, u) and vector $\mathbf{u}(\mathbf{x}, t)$

Finite differences easier for cooperation of spatial and temporal discretisations.

Write

$$u_{\ell}^{n} = u(x = \ell \Delta x, t = n \Delta t).$$

Stability analysis

Set $u_{\ell}^n = A^n e^{ik\ell\Delta x}$, (Fourier wave). To find A(k)

Algorithm $\rightarrow A = 1 - i\mu \sin \theta$ with $\mu = \frac{c\Delta t}{\Delta x}$ and $\theta = k\Delta x$.

Then |A| > 1 all μ ,

i.e. unstable all Δt .

Most unstable = short wave zigzag $\theta = \frac{\pi}{2}$

with
$$|A| = \sqrt{1 + \mu^2}$$

i.e.
$$u \sim (1 + \mu^2)^{t/2\Delta t}$$
.

1.2 Lax-Friedricks - too stable

Replacing u_{ℓ}^{n} in the time derivative by average $\frac{1}{2}(u_{\ell+1}^n + u_{\ell-1}^n)$.

$$\begin{array}{c|c}
t \\
n+1 \\
\hline
 & \\
\ell-1 \\
\end{array}$$

$$u_{\ell}^{n+1} = \frac{1}{2} \left(1 - \frac{c\Delta t}{\Delta x} \right) u_{\ell+1}^n + \frac{1}{2} \left(1 + \frac{c\Delta t}{\Delta x} \right) u_{\ell-1}^n.$$

Stability analysis $u_{\ell}^{n} = A^{n}e^{ik\ell\Delta x}$

$$A = \cos \theta - i\mu \sin \theta$$
 with $\mu = \frac{c\Delta t}{\Delta x}$ and $\theta = k\Delta x$

i.e. stable |A| < 1 all θ if

$$\mu = \frac{c\Delta t}{\Delta x} < 1$$
 CFL condition (Courant-Friedricks-Lewy)

Information propagates less than Δx in Δt

Longwave error analysis

Taylor series

$$u_{\ell+1}^{n} = u_{\ell}^{n} + \Delta x \, u_{x \, \ell}^{n} + \frac{1}{2} \Delta x^{2} \, u_{xx \, \ell}^{n} + \dots,$$

$$u_{\ell}^{n+1} = u_{\ell}^{n} + \Delta t \, u_{t \, \ell}^{n} + \frac{1}{2} \Delta t^{2} \, u_{t \, \ell}^{n} + \dots.$$

Algorithm + Lax trick $u_{tt} = c^2 u_{xx}$

$$u_t = -cu_x + \frac{1}{2}(1 - \mu^2)\frac{\Delta x^2}{\Delta t}u_{xx}.$$

Numerical diffusion

$$ct=0.0\,(0.2)\,1.0$$
 for $\Delta x=0.05$ continuous $c\Delta t=0.025$ dashed $c\Delta t=0.0125$

NB numerical diffusion \nearrow as $\Delta t \rightarrow 0$

Lax-Friedricks - too stable

Plots ct = 0.0 (0.2) 1.0, $\Delta x = 0.05$

unstable $\mu = c\Delta t/\Delta x = 1.1$

Stable but very damped

1.3 Upwinding – avoid downstream influence

$$\frac{u_{\ell}^{n+1} - u_{\ell}^{n}}{\Delta t} = -c \frac{u_{\ell}^{n} - u_{\ell-1}^{n}}{\Delta x}$$

Stability

$$|A|^2 = 1 - 4\mu(1 - \mu)\sin^2\frac{\theta}{2}$$
, i.e. stable if $\mu < 1$

Longwave error analysis

$$u_t = -cu_x + \frac{1}{2}(1-\mu)c\Delta x \, u_{xx}.$$

$$ct=0.0\,(0.2)\,1.0$$
 $\Delta x=0.05,\ \Delta t=0.25$ numerical diffusivity bounded as $\Delta t
ightarrow 0$

1.4 Crank-Nicolson – second-order, implicit

Central difference about mid-point $(\ell, n + \frac{1}{2})$

$$\frac{u_{\ell}^{n+1}-u_{\ell}^{n}}{\Delta t}=-\frac{c\Delta t}{4\Delta x}\left(u_{\ell+1}^{n+1}-u_{\ell-1}^{n+1}+u_{\ell+1}^{n}-u_{\ell-1}^{n}\right).$$

Stability

$$A = \frac{1 - \frac{1}{2}i\mu\sin\theta}{1 + \frac{1}{2}i\mu\sin\theta}.$$

i.e. |A| = 1 all μ : stable with no damping (?accurate large μ ?)

1.5 Lax-Wendroff – second-order, explicit

Upwinding corrected by subtracting off leading error

$$\frac{1}{2}(1-\mu)c\Delta x \left[u_{xx} \approx (u_{\ell+1}^n - 2u_{\ell}^n + u_{\ell-1}^n)/\Delta x^2\right]$$

and rearranging

$$u_{\ell}^{n+1} = u_{\ell}^{n} - \frac{c\Delta t}{2\Delta x} \left(u_{\ell+1}^{n} - u_{\ell-1}^{n} \right) + \frac{c^{2}\Delta t^{2}}{2\Delta x^{2}} \left(u_{\ell+1}^{n} - 2u_{\ell}^{n} + u_{\ell-1}^{n} \right)$$

Stability

$$|A|^2 = 1 - 4\mu^2(1 - \mu^2)\sin^4\frac{1}{2}\theta,$$
 stable if $\mu < 1$ (CFL)

Longwave errors

$$u_t = -cu_x - \frac{1}{6}(1-\mu^2)c\Delta x^2 u_{xxx}.$$

again numerical dispersion

Crank-Nicolson

Longwave error analysis

$$u_t = -cu_x - \frac{1}{12}(2 - \mu^2)c\Delta x^2 u_{xxx}.$$

 u_{xxx} means numerical dispersion

$$ct = 0.0 (0.2) 1.0$$

 $\Delta x = 0.05, c\Delta t = 0.025$

Slower short waves at the trailing edge

Lax-Wendroff

$$u_{\ell}^{n+1} = u_{\ell}^{n} - \frac{c\Delta t}{2\Delta x} \left(u_{\ell+1}^{n} - u_{\ell-1}^{n} \right) + \frac{c^{2}\Delta t^{2}}{2\Delta x^{2}} \left(u_{\ell+1}^{n} - 2u_{\ell}^{n} + u_{\ell-1}^{n} \right)$$

ct = 0.0 (0.2) 1.0 $\Delta x = 0.05, c\Delta t = 0.025$

Slower short waves at the trailing edge

1.6 Angled derivative – second-order, explicit, 3-level

Central difference about mid-point $(\ell - \frac{1}{2}, n)$

$$(u_t)_{\ell-\frac{1}{2}}^n = \frac{1}{2} \left(\frac{u_{\ell-1}^n - u_{\ell-1}^{n-1}}{\Delta t} + \frac{u_{\ell}^{n+1} - u_{\ell}^n}{\Delta t} \right) = -c(u_x)_{\ell-\frac{1}{2}}^n = c \frac{u_{\ell}^n - u_{\ell-1}^n}{\Delta x}.$$

Re-arranging

$$u_\ell^{n+1} = \left(1 - \frac{2c\Delta t}{\Delta x}\right)\left(u_\ell^n - u_{\ell-1}^n\right) + u_{\ell-1}^{n-1}.$$

Angled derivative

Start
$$u_\ell^1=u_\ell^0-rac{c\Delta t}{2\Delta x}(u_{\ell+1}^0-u_{\ell-1}^0)$$

$$ct = 0.0 (0.2) 1.0$$

 $\mu = 0.3$

Angled derivative

Stability

$$\left(Ae^{i\theta/2}\right)^2-2i(1-2\mu)\sin\frac{1}{2}\theta\left(Ae^{i\theta/2}\right)-1=0,$$

stable $\mu < 1$, but spurious (stable) second mode

Longwave errors

$$u_t = -cu_x + \frac{1}{12}(1-\mu)(1-2\mu)c\Delta x^2 u_{xxx}.$$

numerical dispersion, vanishes at $\mu = \frac{1}{2}$ (when exact!)

Conclusions for smooth problems

CFL stability: $\mu = \frac{c\Delta t}{\Delta x} < 1$ (typically)

 $\mathsf{Odd}\text{-}\mathsf{order}\;\mathsf{scehmes}\to\mathsf{numerical}\;\mathsf{diffusion}$

i.e. spreading and decay

Even-order schemes \rightarrow numerical dispersion

i.e spurious (typically trailing) oscillations