Time integration

Issues
» Accuracy

> Cost
» CPU = cost/step x #steps,
> storage,
> programmer’s time

» Stability
Spatial discretisation (typically FE or Spectral)
— ur = F(u,t)

» Treat by black-box time-integrator
» OR recognise spatial structure (typically only for FD)

Lax equivalence theorem

For a well-posed linear problem,
a consistent approximation (local error — 0 as At — 0)
converges to the correct solution

if and only if the algorithm is stable

Stability in time

1. Unstable algorithm — bad!
— numerics blow up all At, usually rapidly, often oscillates

2. Conditionally stable — normal
— stable if At not too big

3. Unconditionally stable — slightly dangerous
— stable all At, inaccurate large At

‘Stable’ =7
(i) numerics decays, even if physics does not
(i) numerics do not blow up for all t

(iii) numerics do not blow up much, i.e. converge fixed t
e.g. need At < a+ b/t

Stiffness, for uy = F(u, t)

How do small disturbances grow/decay?

Linearise + freeze coefficients — occasionally wrong
Suy = F'(uo, to)du

Find eigenvalues A of F'(up, to)

Stiff if Amax > Amin,  typically by 10*

Stability controlled by largest |\|, need

const

At <

|/\|max

— may represent boring time behaviour on fine scales
If so, use unconditionally stable algorithm with big At and
inaccurate rending of boring fine details



Forward Euler — 1st order, explicit

For uy = Au

Hence

un+1 — (1 _|_ )\At)n:t/At Ul

—~ Myl as At —0

Case A real and negative: stable if At < I%\I
Crank-Nicolson — 2nd order implicit
For us = Au
un+1 —_uyn un+1 4"
=A
At 2

NB: RHS uses unknown u"*1, not a problem for this simple linear

problem. Solution
1 n
i 1+ 5MAt 0
1—IAAt

Case Re(\) <0 stable all At

Case A imaginary  amplitude correctly constant all At

although phase drifts

Case A purely imaginary
14+ AAt = (14 2A) 2 >1 all At
\

so “unstable”

Now
(14 ARAR)Y2AE A0 ppPate

i.e. does not blow up much (e) if

2lne

At < ——
< A2t

Backward Euler — 1st order, implicit

For us = Au

n __ ]' "
“e\1oaar)

Very stable  just unstable in |1 — AAt] < 1

But inaccurate if At large
E.g. A real and negative & large At = 1/|)\| gives

u(t)Ne/\tIn2 cf e)\t



Leap frog - 2nd order, explicit Runge-Kutta

E.g. standard 4th order RK, for u; = F(u, t)

du* = AtF(u", t")
Two-term recurrence relation du? = AtF(u" + 1du "+ 1At)
dud = AtF(u” +5 Ldu? t" + IAt)
du* = AtF(u" + 1du®, t" + 1At)
u™ = 0"+ L(du' + 2duP + 2duP + du)

o 2AAt" — "t =0
has solutions u” = A#7 + BO" with 0+ = AAt + V1 + A2At2

So
U~ eMBE L e(—1)ne ANAT NB: 4 function calls per step — very expensive

Spurious solution blows up if Re(\) < 0 Can vary At after each step — adaptive

But stable for purely imaginary A & At < 1/|)]| Good stability, need At 5 I)\I

Error control for RK4 Implicit Runge-Kutta

Take 2 steps of At from u”

T2 A4 2bALY + ...

Take 1 step of 2At from u” dut = AtF (un i %dul (- i)du £ (4 - é)AO
ut = A+ b2AL) + ... du? = AF (u" + (3 + F)dut + Jdu?, ¢+ (§ + ) At)
Extrapolating, 5th order estimate of answer u™t =y %du1 + %du2
Eun—&—Z _ iu* lterate to find du® and du? — very expensive
15 15

i <
Estimate of error Stable all At if Re(A\) <0

%(U* o un+2)

— decide if to decrease/increase At



Multi-step methods — use information from previous steps
AB3 Adams-Bashforth, 3rd order, explicit

A
= th (23F, — 16Fy_1 + 5F,_»)

AM4 Adams-Moulton, 4th order, implicit

At
Ut 4 2a (9Fni1 +19F, = 5F, 1 + Foo)

NB uses 1 function evaluation per step — good
NB difficult to start or change step size At — bad
NB Stable At < 1/|)|

Predictor-corrector
ABS3 sufficiently good estimate for u"*! to use in AM4 F, 1,
but then 2 function evaluations per step

Navier-Stokes — different methods for different terms

For us + uuy = ux (no pressure, yet)

un+1 n

—u n+l
= —(uu 2
At (uus)
n+1 n+1 n+1 n n n
n Uiy =20 s Aol — 20 ol

2A X2

implicit on diffusion for stability at boring fine scales

AB3 explicit on safe advection

()™ 2 = & (23(uux)"7% — 16 (u)" "7 + 5(uux)"’g)

Iserles Zig-Zag — 2nd order and sort of upwinding

n+1 n n+1 n+1 n n
u"t + ol Uiy —u; u; — u; .
_ i i ( i+1 i + i i—1 if ulp >0

N|=

n+
(uus) 2 2Ax 2Ax

Lagrangian methods in u - Vu dominant

Sympletic integrators

For Hamiltonian (non-dissipative) systems

COH . oH
dq;’ T o

pi =

conserve H and projections of volume of phase-space
NB Important for integration to long times.

Sympletic integrators have same conservations properties for a
numerical approximation to the Hamiltonian H™"™(At)
NB must keep At fixed
E.g. Stormer-Verlet (sort of leap-frog) — for molecular dynamics
p"tz = p" + IAF(r")
Pl pn +At%p”+%

pn+1 — pn+% + %Atl:(rn+1)

Pressure update - 2nd order, exact projection to V-u =0

Split time-step
u* —u"

At

* n
=— (uux)"+% — Vp"_% + V2 (u —; u )

Projection
un+1 = U+ Atv¢n+1

with

2, n+1 * . 8¢n+1 BC *
V"t = =V - ut /At with BC At 5, = Un —u

n

Update
Vp™t: = Vp"i =V (" — LuAevient)

Tangential BC
BC —Athb”

* j—
utang - utang



