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Example Sheet 1

1. Show that steady simple shear flow u = (γy, 0, 0) is the sum of a planar extensional

flow (whose principal axes should be determined) and a solid body rotation. Show that

the Navier-Stokes equations are satisfied if the pressure is constant and the body force

vanishes. If the flow is maintained between two plates at y = 0 and y = h, find the

forces on the plates.

2. Consider the two-dimensional linear flow

u = (αx− 1
2ωy,−αy + 1

2ωx).

Confirm that this flow is incompressible and find its streamfunction. Show that the

streamlines are elliptic or hyperbolic according to whether |α|<> 1
2 |ω|.

Evaluate ρu ·∇u and find a pressure field to balance it. Discuss the minimal or

maximal nature of the pressure at the origin in terms of the streamline pattern.

3. Show for a volume V with a stationary rigid boundary that the total rate of

dissipation of energy can be written alternatively as

2µ

∫
V

eijeij dV = µ

∫
V

ω2 dV, where ω = |∇ × u|

[It follows that if the flow is irrotational, there is no dissipation: why?]

4. Fluid flows steadily through a cylindrical tube parallel to the z-axis with velocity

u = (0, 0, w(x, y)), under a uniform pressure gradient G = −dp/dz. Show that the

Navier-Stokes equations with no body force are satisfied provided

∇2w = −G/µ,

and state the appropriate boundary conditions.

For a tube with an elliptical cross-section with semi-axes a and b, show that

w = w0

(
1− x2

a2
− y2

b2

)
,

finding w0. Show that the volume flux (i.e. the volume of fluid passing any section of

the tube per unit time) is given by

Q =
πa3b3G

4(a2 + b2)µ
.

Now specialise to circular cross-section, b = a. Show that the viscous stress on the

boundary, which you may take to be σrz = µ∂w/∂r, produces an axial force 4πµw0L

on a length L of the tube, and that this balances the pressure difference exerted across

the ends LGπa2. Further show that the dissipation within the tube is 2πµw2
0L and this

is equal to the rate of working against the pressure difference across the ends LGQ.
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5. Two incompressible fluids of the same density ρ and viscosities µB and µT flow

steadily, one on top of the other, down a plane inclined at an angle α to the horizontal.

The depths of the layers (normal to the plane) are uniform and equal to hB and hT
respectively.

Using coordinates x down the plane and y perpendicular to it, write down the

boundary conditions on the plane, on the interface between the two layers and on

the top free surface. Find the pressure field and velocity field in each fluid on the

assumption that they depend only on y. Observe that the velocity profile in the bottom

layer depends on hT but not µT . Why?

6. A plane rigid boundary of a semi-infinite domain of fluid oscillates in its own plane

with velocity U cosωt, and the fluid is at rest at infinity. Find the velocity field. [Hint:

use e−κ(1+i)z with κ2 = ω/2ν.] Show that the time-averaged rate of dissipation of

energy in the fluid is
1
2ρU

2
(
1
2νω

)1/2
per unit area of the boundary. Verify that this is equal to the time average of the rate

of work of the boundary on the fluid (per unit area).

7. Viscous fluid is contained in the space between two coaxial cylinders r = a and

b (> a), which may be consider to be of infinite length. The inner cylinder rotates with

steady angular velocity Ω about its axis and the outer cylinder is at rest. The velocity

field in the fluid is steady and of the form u = (0, v(r), 0) in cylindrical polar coordi-

nates, and the pressure varies only in the radial direction. Look up the components

of the Navier-Stokes equations in these coordinates, say in Appendix 2 of Batchelor

or Wikipedia. [Alternatively work in Cartesians, with u = (yf(r),−xf(r), 0) with

r2 = x2 + y2, using ∂xf = xf ′/r.] Show that

v(r) = Ar +B/r,

where A and B are to be determined. Calculate the torque per unit length that must

be applied to the inner cylinder to maintain the motion. [Use the component eθr of

the strain-rate tensor in cylindrical polars, given by 2eθr = r d (v/r) /dr in this flow.]

8*. Fluid having kinematic viscosity ν and density ρ is confined between a fixed plate

at y = h and a plate at y = 0 whose velocity is (U cosωt, 0, 0), where U is a constant.

There is no body force and the pressure is independent of x. Explain the physical

significance of the dimensionless number S = ωh2/ν.

Assuming that the flow remains time-periodic and unidirectional, find expressions

for the flow profile and the time-average rate of working Φ per unit area by the plates

on the fluid.

Sketch the velocity profile and evaluate Φ in the limits S → 0 and S → ∞, and

explain why in these limits Φ becomes independent of ω and h respectively.
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