
Fluid Dynamics II E.J. Hinch, October 2012

Example Sheet 2

1. A force is applied to a cube at its centre in a direction normal to one flat surface.
Using reversibility in space, show that the cube moves in the direction of the applied
force, also without rotating. Now using linearity, deduce that in all orientations a cube
of uniform density sediments vertically without rotating. [Hints: resolve force into
components, and isotropy.]

[** What of a tetrahedron, an ellipsoid and a helix? **]

2. Show that in Stokes flow two equal spheres arbitrarily aligned fall under gravity at
constant separation, i.e. neither separating nor coming closer together.

3. If the strain-rate tensor e(x) vanishes throughout a connected region, show that the
flow is rigid body motion. [Hint: first show ∂2u1/∂x2∂x3 ≡ 0.]

Show that if the surface traction is specified on a bounding surface, then the Stokes
flow in the interior is unique to within the addition of a rigid body motion.

4. Derive the Stokes flow outside a rotating rigid sphere

u(x) = Ω × x
a3

r3
and p = 0.

Show that the couple exerted on the sphere is −8πµa3Ω.

5. If A(x) is a vector harmonic function, i.e. ∇2A = 0, show that

u = 2A−∇(A·x) and p = −2µ∇·A

satisfy the Stokes equation. Calculate the stress tensor.
For a sphere of radius a translating at velocity V through a fluid which is otherwise

at rest, the harmonic function takes the form

A = αaV 1
r + βa3 (V · ∇)∇ 1

r ,

(Why?) Find the constants α and β.

6. Consider a spherical bubble of radius a in a uniform flow U. Recall the expression
obtained in lectures for the Stokes flow outside a sphere of the form

u(x) = Uf(r) + x(U · x)g(r).

Applying boundary conditions on r = a of no normal component of velocity and no
tangential component of surface traction, find the flow u(x). Find the drag force
4πµaU.

7. Find upper and lower bounds for the couple on a tetrahedron rotating about its
centre in a viscous fluid.

Please notify all errors to ejh1@cam.ac.uk.
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8. A spherical annulus of incompressible viscous liquid occupies the region R1(t) < r <
R2(t) between two free surfaces on which pressures (normal traction) P1(t) and P2(t)
are applied. The resulting flow is spherically symmetric. Show (neglecting inertia and
surface tension)

d

dt

(
R3

1

)
=

π(P1 − P2)

µV
R3

1

(
R3

1 + 3V/4π
)
,

where V is the constant volume of the liquid. [Hints: ur = A/r2 (why?) and σrr =
−p+ 2µ∂u/∂r in this flow.]

Show that if P1−P2 is maintained positive and constant, then R1 becomes infinite
in a finite time. What happens if P1 − P2 is maintained negative and constant.

9. Fluid is contained in the region −α < θ < α between two rigid hinged plates. Thus
the velocity components in plane polar coordinates satisfy

ur = 0, uθ = ∓ωr on θ = ±α.

Neglecting inertia forces, show that a solution to the Stokes problem may be found in
the form

ψ = 1
2ωr

2g(θ)

and find the function g(θ). Deduce the pressure field p(r, θ). Discuss the limitations of
the model. [Does denominator of g vanish?]

10. Viscous fluid is contained between two planes y = ±a and a two-dimensional flow
with streamfunction ψ(x, y) is generated by some agency (e.g. a rotating cylinder) near
x = y = 0. It is required to find the form of the flow field for large positive x. Find
the general solution of ∇4ψ = 0 of the form

ψ = f(y)e−kx Re k > 0,

for which f(y) is an even function of y, and hence show that k is determined by the
equation

2ka+ sin 2ka = 0.

Show that this equation as no real roots. The equation has complex roots, that with
the smallest real part being 2ka = 4.2± 2.3i. Sketch the streamlines of the flow.
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