
Fluid Dynamics II E.J. Hinch, October 2012

Example Sheet 3

1. A rigid sphere of radius a falls through a fluid of viscosity µ under gravity towards
a horizontal rigid plane. Use lubrication theory to show that, when the minimum gap
h0 is very small, the speed of approach of the sphere is

h0W/6πµa
2,

where W is the weight of the sphere corrected for buoyancy.

2. Oil is forced by a pressure difference ∆p through the narrow gap between two parallel
circular cylinders of radius a with axes 2a + b apart. Show that, provided b � a and
ρb3∆p� µ2a, the volume flux is approximately

2b5/2∆p

9πa1/2µ

when the cylinders are fixed.
Show also that when the two cylinders rotate with angular velocities Ω1 and Ω2

in opposite directions, the change in the volume flux is

2
3ab(Ω1 + Ω2).

3. A viscous fluid coats the outer surface of a cylinder of radius a which rotates with
angular velocity Ω about its axis which is horizontal. The angle θ is measured from
the horizontal on the rising side. Show that the volume flux per unit length Q(θ, t) is
related to the thickness h(θ, t) of the fluid layer by

Q = Ωah− g

3ν
h3 cos θ,

and deduce an evolution equation for h(θ, t).
Consider now the possibility of a steady state with Q = const, h = h(θ). Show

that a steady solution with h(θ) continuous and 2π-periodic exists only if

Ωa > (9Q2g/4ν)1/3.

4. A two-dimensional drop h(x, t) spreads on a horizontal table. Assuming that the
drop has become a thin layer, find how the drops spreads. [It is not possible to integrate
the volume in closed form.]

5. The walls of a channel are porous and separated by a distance d. Fluid is driven
through the channel by a pressure gradient G = −∂p/∂x, and at the same time suction
is applied to one wall of the channel providing a cross flow with uniform transverse
component of velocity V , fluid being supplied at this rate at the other wall. Find and
sketch the steady velocity and vorticity distributions in the fluid (i) when V d/ν � 1
and (ii) when V d/ν � 1.
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6. Viscous fluid fills an annulus a < r < b between a long stationary cylinder r = b and
a long cylinder r = a rotating at angular velocity Ω. Find the axisymmetric velocity
field, ignoring end effects.

Suppose now that the two cylinders are porous, and a pressure difference is applied
so that there is a radial flow −V a/r. Find the new steady flow around the cylinder
when V a/ν < 2 and V a/ν > 2. Comment on the flow structure when V a/ν � 1.

Find the torque that must be applied to maintain the motion.

7. Starting from the Navier-Stokes equations for incompressible viscous flow with con-
servative forces, obtain the vorticity equation

Dω

Dt
= ω ·∇u + ν∇2ω.

Interpret the terms in the equation.
At time t = 0 a concentration of vorticity is created along the z-axis, with the

same circulation Γ around the axis at each z. The fluid is viscous and incompressible,
and for t > 0 has only an azimuthal velocity v, say. Show that there is a similarity
solution of the form vr/Γ = f(η), where r = (x2 + y2)1/2 and η is a suitable similarity
variable. Further show that all conditions are satisfied by

f(η) = 1
2π (1− e−η), η = r2/4νt.

Show also that the total vorticity in the flow remains constant at Γ for all t > 0. Sketch
v as a function of r.

8. Calculate the vorticity ω associated with the velocity field

u = (−αx− yf(r, t), −αy + xf(r, t), 2αz) ,

where α is a positive constant, and f(r, t) depends on r = (x2 + y2)1/2 and time t.
Hence show that the velocity field represents a dynamically possible motion if f(r, t)
satisfies

2f + r
∂f

∂r
= Aγ(t)e−γ(t)r

2

,

where

γ(t) =
α

2ν

(
1± e−2α(t−t0)

)−1

,

and A and t0 are constants.
Show that in the case where the minus sign is taken γ is approximately 1/[4ν(t−t0)]

when t only just exceeds t0. Which terms in the vorticity equation dominate when this
approximation holds?
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