Time integration

Issues

» Accuracy

> Cost
» CPU = cost/stepx #steps,
» storage,
> programmer'’s time

» Stability
Spatial discretisation (typically FE or Spectral)
— ur = F(u, t)

» Treat by black-box time-integrator

» OR recognise spatial structure (typically only for FD)



Stability in time

1. Unstable algorithm — bad!
— numerics blow up all At, usually rapidly, often oscillates

2. Conditionally stable — normal
— stable if At not too big

3. Unconditionally stable — slightly dangerous
— stable all At, inaccurate large At

‘Stable’ =7
(i) numerics decays, even if physics does not
(i) numerics do not blow up for all t
(iii) numerics do not blow up much, i.e. converge fixed t
e.g. need At < a—+ b/t



Lax equivalence theorem

For a well-posed linear problem,
a consistent approximation (local error — 0 as At — 0)
converges to the correct solution

if and only if the algorithm is stable



Stiffness, for uy = F(u, t)

How do small disturbances grow/decay?
Linearise + freeze coefficients — occasionally wrong

Sur = F'(uo, to)du
Find eigenvalues A of F'(up, to)
StIff if Amax > Amin,  typically by 10%

Stability controlled by largest |\|, need

const

At <
| Almax

— may represent boring time behaviour on fine scales
If so, use unconditionally stable algorithm with big At and
inaccurate rending of boring fine details



Forward Euler — 1st order, explicit

For uy = A\u
un+1 —uyn
= \u"
At
Hence

un+1 — (1 4 )\At)n:t/At Ul

— Myl as At —0

Case A real and negative: stable if At < ﬁ



Forward Euler — 1st order, explicit

Case \ purely imaginary
1+t = (1+]APAR)? > 1 all At
so “unstable”

Now
(L Ay s B Jurace

i.e. does not blow up much (e) if

2Ine

At < ——
< A2t



Backward Euler — 1st order, implicit

For uy = A\u

n+1 u”

At

n 1 "
e (1—)\At) 1o

Very stable  just unstable in |1 — AAt| < 1

= A"t

So

But inaccurate if At large
E.g. A real and negative & large At = 1/|)\| gives

u(t) ~ e)\tln2 of e)\t



Mid-point Euler — 2nd order, explicit

Simple to recode the first-order Forward Euler to make
second-order

ut —u"
= F(u", t,)
1 s +n
1At
un—&—l_un
T = F(u*’ tn+%)

Same stability as Forward Euler



Crank-Nicolson — 2nd order implicit

For uy = A\u

N n+1 n
u _ )\u +u

At 2

NB: RHS uses unknown ™!, not a problem for this simple linear
problem. Solution
1 n
n 1+ 5)\At 0
= —5——| v
— 5AAt

Case Re(\) < 0 stable all At

Case X imaginary  amplitude correctly constant all At
although phase drifts



Leap frog - 2nd order, explicit

—u
2At
Two-term recurrence relation

n+1 n—1
u
—_— ="

U 20At -y =0
has solutions u” = A#7 + BO" with 6+ = AAt + V1 + A\2At?

So
U™~ e)\nAt + 6(_]_)nef)\nAt

Spurious solution blows up if Re(\) <0

But stable for purely imaginary A & At < 1/|)]|



Runge-Kutta

E.g. standard 4th order RK, for u; = F(u, t)
dut = AtF(u", t")
du® = AtF(u + dut, " + IAt)
du® = AtF(u" + 3du?, t" + L At)
du* = AtF(u" + 1duv?, t" + 1At)
u"t =" 4 g(du + 2du? + 2du® + du*)

NB: 4 function calls per step — very expensive
Can vary At after each step — adaptive

Good stability, need At < P\I



Error control for RK4

Take 2 steps of At from u”
U™ = A4 2bAL + ...
Take 1 step of 2At from u”
u* = A+ b2At) + ...

Extrapolating, 5th order estimate of answer

16 n+2 1 *

15" 15"
Estimate of error

3710(11* _ un+2)

— decide if to decrease/increase At



Implicit Runge-Kutta

)At)
)At)

dut = AtF (u”+ Tdu' + (3 = F)du?, ¢+ (4 -

o ol

+

Bl

du? = AtF (u" + (L + B)dut + Ldu?, "+ (
u"tt =y 4 %du1 + %du2
Iterate to find du' and du? — very expensive

Stable all At if Re(A) <0



Multi-step methods — use information from previous steps

AB3 Adams-Bashforth, 3rd order, explicit

At
u"tt =y P (23F, — 16F,—1 + 5F,_2)

AM4 Adams-Moulton, 4th order, implicit

At
untl = 4 o (9F, 41+ 19F, —5F,_1 + Fn_2)

NB uses 1 function evaluation per step — good
NB difficult to start or change step size At — bad
NB Stable At < 1/|)|

Predictor-corrector
ABS3 sufficiently good estimate for u"! to use in AM4 F,1,
but then 2 function evaluations per step



Sympletic integrators

For Hamiltonian (non-dissipative) systems

. OH . 9H
Pi=—p =5,

conserve H and projections of volume of phase-space
NB Important for integration to long times.

Sympletic integrators have same conservations properties for a
numerical approximation to the Hamiltonian H™™(At)

NB must keep At fixed

E.g. Stormer-Verlet (sort of leap-frog) — for molecular dynamics
p"tz = p" + LAtF(r")
= At%p”*'%

Pl = pta 4 LAEF(rY)



Navier-Stokes — different methods for different terms

For uy + uuy = uyx (no pressure, yet)

un+1 —uyn
At

=— (uux)"+%

1 1 1
ulf = 20! ul T ol - 20 ]
+ 2AX?

implicit on diffusion for stability at boring fine scales

AB3 explicit on safe advection

5

(uux)"Jr% =3 (23(uux)"7% - 16(qu)"7% + 5(qu)"75)

Iserles Zig-Zag — 2nd order and sort of upwinding

n+1 n n+1 _  n+l n__,,n
n_,'_% _ u; + u; ui+1 uj + u; Uiy if u">0
2 2Ax 2Ax !

(uuy)

Lagrangian methods in u - Vu dominant



Pressure update - 2nd order, exact projectionto V-u =20

Split time-step

u* —uyn 1 1 u*+u”
Az — (uuy)™2 = Vp"2 £V <2>
Projection
"t = vt + AtV

with

V2"t = —v.u*/At  with BC At(%nﬂ =uBC —

- 8/7 - "n n

Update

Vp™t: = Vp" 1 — V (¢" — LyArv2entl)

Tangential BC
AtV

utang = utang



