
Last time

I Accuracy – first- and second-order

I Stability – CFL condition

I Longwaves – diffusion (odd), dispersion (even)

I Simplest – unstable

I Lax Friedricks – too stable, first-order, diffusion

I Upwinding – stable, first-order, diffusion

I Crank-Nicolson, second-order, implicit, dispersion

I Lax Wendroff – second-order, explicit, dispersion

I Angled second-order, explicit, dispersion



2. Simple advection of unsmooth ICs

ut + cux = 0, c > 0, const

with discontinuous initial conditions

u =

{
1 2 ≤ x ≤ 3

0.2 otherwise

Problems with errors ∆x2uxxx when ux =∞



simple advection of unsmooth ICs

High-order schemes give spurious oscillations

Angled Derivative and Lax-Wendroff
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simple advection of unsmooth ICs

Upwinding algorithm
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No oscillations but lots of damping

Need new idea



3. Total Variation Diminishing

TV (un) =
∑
`

|un`+1 − un` |.

i.e. sum of all the differences between adjacent minima and
maxima, so independent of numerical resolution.

A TVD algorithm: total variation does not increase in time

TV (un+1) ≤ TV (un).

No spurious oscillations with new minima and maxima.

Preserves the monotonicity of a section of the solution.



Flux-limiters

Idea: method = low-order (Upwind) + high-order correction (LxW)
Limiter 1: switch off correction in oscillation
Limiter 2: reduce correction if gradient changes rapidly

First reformulated in conservation form with divergence of fluxes f

un+1
` = un` −

∆t

∆x

(
f n
`+ 1

2
− f n

`− 1
2

)
.

For Upwinding plus Lax-Wendroff correction (for c > 0)

f n
`+

1
2

= cun` + 1
2c(∆x − c∆t)u′

`+ 1
2
,

where u′
`+ 1

2
=

un`+1 − un`
∆x

to be limited by the upstream
un` − un`−1

∆x
.

(If c < 0, the upstream side switches)



eg flux-limiters – Minmod

a =
un`+1 − un`

∆x
is to be limited by b =

un` − un`−1
∆x

Minmod(a, b) =


0 if ab < 0

a if ab > 0 and |a| < |b|
b if ab > 0 and |b| < |a|

i.e. 0 in oscillation and smaller slope if monotone.
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ct = 0.0 (0.2) 1.0
∆x = 0.05 and c∆t = 0.0125



eg flux-limiters – Superbee

Superbee(a, b) =


0 if ab < 0,

a if ab > 0 and
(
|a| < 1

2 |b| or |b| < |a| < 2|b|
)
,

b if ab > 0 and
(
|b| < 1

2 |a| or |a| < |b| < 2|a|
)

i.e. 0 in oscillation and when monotone larger if less than twice
smaller, otherwise smaller.
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ct = 0.0 (0.2) 1.0
∆x = 0.05 and c∆t = 0.0125
slightly sharper than Minmod



4. Nonlinear advection

Conservative form
ut + (f (u))x = 0

Propagation form
ut + f ′(u)ux = 0

Possibility of shockwaves e.g. f ′(u) > 0 when ux < 0.

-x

6 uL

uR
shock speed V =

f (uL)− f (uR)

uL − uL



Conservative scheme gives correct shock speed

Case of flux f (u) = 1
2u

2. Shock speed V = 0.6
Upwinding, ∆x = 0.05, ∆t = 0.0125, ct = 0.0 (0.4) 2.0
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Continuous curve conservative scheme, V = 0.59
Dashed curve propagation scheme, V = 0.46



Godunov method

Three steps

R. Reconstruct the solution into a simple form.
Normally a constant in each grid block, occasionally linear.
Note the discontinuities at the boundaries of the grid blocks.

E. The simple form is evolved exactly.
Constant parts are advected at a constant speed.
The discontinuities are propagated as shockwaves or
rarefaction waves.
The time-step must be limited by the CFL condition to stop
discontinuities propagating through more than one grid block.

A. The resulting function is averaged over grid blocks in
preparation for step R of the next time-step.

Skip second step by using fluxes from upstream side, but which is
upstream?



Godunov - upstream fluxes

For general flux f (u), information propagates at f ′(u).
Flux f`+ 1

2
from grid block ` to grid block ` + 1

f`+ 1
2

=



f (u`) if f ′(u`) > 0, f ′(u`+1) > 0,

f (u`+1) if f ′(u`) < 0, f ′(u`+1) < 0,

f (u`) if f ′(u`) > 0, f ′(u`+1) < 0,V > 0,

f (u`+1) if f ′(u`) > 0, f ′(u`+1) < 0,V < 0,

f (u∗) if f ′(u`) < 0, f ′(u`+1) > 0, where, f ′(u∗) = 0.

Last case rarefaction wave, so flux for value u∗ which does not
propagate
shock speed V = f (uL)−f (uR)

uL−uL



Further

Godonov to higher orders
Godonov is first-order in time and space, through the

averaging, with large numerical diffusion O(∆x2/∆t)
Replace piecewise constant by piecewise linear. Slopes can be

flux-limited.

Extension to systems u(x , t).
– diagonalise f ′(u) to find what information propagates in

what direction.

Higher dimensions u(x, t)
– Riemann solvers do not work

Finite Elements
– distribute fluxes over vertices


