Last time

- Accuracy first- and second-order
- Stability CFL condition
- Longwaves diffusion (odd), dispersion (even)
- ► Simplest unstable
- Lax Friedricks too stable, first-order, diffusion
- Upwinding stable, first-order, diffusion
- Crank-Nicolson, second-order, implicit, dispersion
- Lax Wendroff second-order, explicit, dispersion
- Angled second-order, explicit, dispersion

2. Simple advection of unsmooth ICs

$$u_t + cu_x = 0$$
, $c > 0$, const

with discontinuous initial conditions

$$u = \begin{cases} 1 & 2 \le x \le 3 \\ 0.2 & \text{otherwise} \end{cases}$$

Problems with errors $\Delta x^2 u_{xxx}$ when $u_x = \infty$

simple advection of unsmooth ICs

High-order schemes give spurious oscillations

Angled Derivative and Lax-Wendroff

simple advection of unsmooth ICs

Upwinding algorithm

No oscillations but lots of damping

Need new idea

3. Total Variation Diminishing

$$TV(u^n) = \sum_{\ell} |u_{\ell+1}^n - u_{\ell}^n|.$$

i.e. sum of all the differences between adjacent minima and maxima, so independent of numerical resolution.

A TVD algorithm: total variation does not increase in time

$$TV(u^{n+1}) \leq TV(u^n).$$

No spurious oscillations with new minima and maxima.

Preserves the monotonicity of a section of the solution.

Flux-limiters

Idea: method = low-order (Upwind) + high-order correction (LxW)

Limiter 1: switch off correction in oscillation

Limiter 2: reduce correction if gradient changes rapidly

First reformulated in conservation form with divergence of fluxes f

$$u_{\ell}^{n+1} = u_{\ell}^{n} - \frac{\Delta t}{\Delta x} \left(f_{\ell+\frac{1}{2}}^{n} - f_{\ell-\frac{1}{2}}^{n} \right).$$

For Upwinding plus Lax-Wendroff correction (for c > 0)

$$f_{\ell+\frac{1}{2}}^n = cu_\ell^n + \frac{1}{2}c(\Delta x - c\Delta t)u_{\ell+\frac{1}{2}}',$$
 where $u_{\ell+\frac{1}{2}}' = \frac{u_{\ell+1}^n - u_\ell^n}{\Delta x}$ to be limited by the upstream $\frac{u_\ell^n - u_{\ell-1}^n}{\Delta x}$.

(If c < 0, the upstream side switches)

eg flux-limiters - Minmod

$$a = \frac{u_{\ell+1}^n - u_{\ell}^n}{\Delta x}$$
 is to be limited by $b = \frac{u_{\ell}^n - u_{\ell-1}^n}{\Delta x}$

$$\underline{\mathbf{Minmod}}(a, b) = \begin{cases}
0 & \text{if } ab < 0 \\
a & \text{if } ab > 0 \text{ and } |a| < |b| \\
b & \text{if } ab > 0 \text{ and } |b| < |a|
\end{cases}$$

i.e. 0 in oscillation and smaller slope if monotone.

$$ct = 0.0 (0.2) 1.0$$

 $\Delta x = 0.05 \text{ and } c\Delta t = 0.0125$

eg flux-limiters – Superbee

i.e. 0 in oscillation and when monotone larger if less than twice smaller, otherwise smaller.

 $ct=0.0\,(0.2)\,1.0$ $\Delta x=0.05$ and $c\Delta t=0.0125$ slightly sharper than Minmod

4. Nonlinear advection

Conservative form

$$u_t + (f(u))_x = 0$$

Propagation form

$$u_t + f'(u)u_x = 0$$

Possibility of shockwaves e.g. f'(u) > 0 when $u_x < 0$.

Conservative scheme gives correct shock speed

Case of flux $f(u) = \frac{1}{2}u^2$. Shock speed V = 0.6Upwinding, $\Delta x = 0.05$, $\Delta t = 0.0125$, ct = 0.0 (0.4) 2.0

Continuous curve conservative scheme, V=0.59 Dashed curve propagation scheme, V=0.46

Godunov method

Three steps

- R. Reconstruct the solution into a simple form.
 Normally a constant in each grid block, occasionally linear.
 Note the discontinuities at the boundaries of the grid blocks.
- E. The simple form is evolved exactly.
 Constant parts are advected at a constant speed.
 The discontinuities are propagated as shockwaves or rarefaction waves.
 - The time-step must be limited by the CFL condition to stop discontinuities propagating through more than one grid block.
- A. The resulting function is averaged over grid blocks in preparation for step R of the next time-step.

Skip second step by using fluxes from upstream side, but which is upstream?

Godunov - upstream fluxes

For general flux f(u), information propagates at f'(u). Flux $f_{\ell+\frac{1}{2}}$ from grid block ℓ to grid block $\ell+1$

$$f_{\ell+\frac{1}{2}} = \begin{cases} f(u_{\ell}) & \text{if } f'(u_{\ell}) > 0, f'(u_{\ell+1}) > 0, \\ f(u_{\ell+1}) & \text{if } f'(u_{\ell}) < 0, f'(u_{\ell+1}) < 0, \end{cases}$$

$$f(u_{\ell}) & \text{if } f'(u_{\ell}) > 0, f'(u_{\ell+1}) < 0, V > 0, \\ f(u_{\ell+1}) & \text{if } f'(u_{\ell}) > 0, f'(u_{\ell+1}) < 0, V < 0, \\ f(u_{*}) & \text{if } f'(u_{\ell}) < 0, f'(u_{\ell+1}) > 0, \text{ where, } f'(u_{*}) = 0. \end{cases}$$

Last case rarefaction wave, so flux for value u_* which does not propagate $f(u_*) - f(u_*)$

shock speed V =
$$\frac{f(u_L) - f(u_R)}{u_L - u_L}$$

Further

Godonov to higher orders

Godonov is first-order in time and space, through the averaging, with large numerical diffusion $O(\Delta x^2/\Delta t)$

Replace piecewise constant by piecewise linear. Slopes can be flux-limited.

Extension to systems $\mathbf{u}(x, t)$.

– diagonalise $\mathbf{f}'(\mathbf{u})$ to find what information propagates in what direction.

Higher dimensions $u(\mathbf{x}, t)$

- Riemann solvers do not work

Finite Elements

- distribute fluxes over vertices