Chapter 10 — Strong flows

v

Birefreingent strand

— thin layer of high stress leaqving a stagnation point

v

Wine-glass model of contraction flow

— anisotropic flow from anisotropic material

v

Corner singularity

— fast flow with no relaxation

v

Limited-forec flows

— strain only to avoid relaxation
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Oldroyd-B, and its limitations

DA 1
— =A-Vu+Vu -A-Z=(A-1I
Dt UV 7'( )

o= —pl+2upE + GfA

Steady extensional flow

Hext J :
I
I

) ) . _1
Microstructure deforms without limit if E > %: A= e(RE-2)t

Need to limit deformation of microstructure
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FENE modification

Finite Extension Nonlinear Elasticity

DA f
—=A. T A-—(A-1
Dr Vu+ Vu 7_( )

o= —pl+2uE + GfA
f—Li2 keeps A < L2
~ L2 —trace A P

Will use FENE, and if safe Oldroyd-B, in following strong flows



FENE flow past a sphere

Oldroyd-B gave decrease is drag
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.FENE flow past sphere

FENE drag increase from long wake of high stress

Chilcott & Rallison 1988 JNNFM

Cressely & Hocquart 1980 Opt Act

“Birefringent strand”



. birefringent strands

Boundary layers of high stress.
Crude model: eyt in wake, pg elsewhere.
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. birefringent strands

Can apply to all flows with stagnation points, e.g.

Harlen, Rallison & Chilcott 1990 JNNFM

Also cusps at rear stagnation point of bubbles.
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Analysis of birefringent strand in exit channel

y
y=a
U(x)
I — y
y=0 [ — —
Flux Q, constan
y=-a

Lubrication flow

M&m:uuf;y+w—uawi;”

Force balance on strand
0u)™ 0 (50U

Solving (Student Exercise)

U(x) = 3Q (1 —e V ‘”iirax>

T 2a



Birefringent pipes

Very low extension rate in the strand can fail to stretch the
microstruture, so relax, producing birefringent “pipes”.
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Harlen, H, Rallison (1992) JNNFM 44



Formation of a cusp at rear stagnation point of a bubble

Curvature increases wi
extensibility of fluid

Rallsion & Malaga (2007) JNNFM 141



FENE contraction flow

Oldroyd-B gave decrease is pressure drop

Experiments

FENE L =5
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FENE gives increase in pressure drop



.FENE contraction flow

Increase in pressure drop from long upstream vortex

FENE L =5 Experiments
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.a champagne-glass model

bowh
\ I
- stem
P o
re ©
Bowl:
> Sink flow u= %
> Stretching starts at 1 = F = 8r’ ie. at rp = (Qr)/3
» Then deforms as A x u2 o rt

So fully stretched at A~ L%, atr = rE/Ll/2
Hence fully stretched only if De = % > 132,

v
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» Balance

Hext W = HUshear rj ﬁ

By small cone angle Af =, /%
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Length of cone (rp — rc)/A6.
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» Fully stretched, A ~ L2, 50 ptext = fto + GTL% >> 1o = fishear
9%u 1 9%u
» Balance

Hext W = HUshear rj w

By small cone angle Af =, /%
ex

Length of cone (rp — rc)/A6.
Start up possible.

v

v

v

Szabo, Rallison & H (1997) JNNFM 72

Flow anisotropy from material anisotropy: flext > fishear | DR
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Fast flows with no relaxation

If Vu>1

DA 1
— =A-Vu+Vu -A- (A
Dt T

Recall material line elements

d
200 =130-Vu,

So 4 stretches when u increases, in steady flow §¢ o u

Suggests steady solution  (g(1)) from matching to slower region)
A=g()uu, sooc=—pl+2upE + Gguu

Tensions in streamlines again
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Fast flows with no relaxation 2

Momemtum, ignoring viscous stress
0=—-Vp+ Gg*%u-vg'/?u.

Euler equation!!

Anti-Bernoulli

p— %Ggu2 = const

Dollet, Aubouy & Graner 2005 PRL
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Fast flows with no relaxation 3

Potential flows g1/?u = V¢

Flow around sharp 270° corner: Hinch 1995 JNNFM
o= r?/3 cos %9, oo r2/3 = rt4/9 sin’/3 %9
0.0
\; 3-1.0
¥ Zs
=20
-2.5
=25 =20 =15 -1.0 -0.5
® log (r/H:) ® log (r/H 5)

Alves, Oliviera & Pinho 2003 JNNFM
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Fast flows with no relaxation 4
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Fast flows with no relaxation 4
The matching for v
gl/z(lb)v x (0,0,%) = g1/2u =Vo¢ =V x (0,0, %r2/3 sin %9)

so
¢ = F(r¥?sin 0) ~ f(r?/39) at small 6.

In fast core, De > 1 A, = gu? =r"2/3 y=r1/3
Match:
Near bndry, De <1 A, =1+ 292 =De=12

Now near the boundary

r=u=~rf, sof=r"3 so=n(rh)?=r"3=(r?/30)"/3

Hence elsewhere
_ ~14/9 . 7/32
= Cr sin/> £6.

Details of the boundary layers — very difficult
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Deforming with the flow

While line elements parallel to the flow are stretched o< u,
perpendicular elements are squashed o 1/u, plus some shear.

Hence try

A = Auu + p(uv + vu) + vvv
with u-v=0 and v=1/u

Oldroyd-B becomes  Student Exercise

1
u-Vyp = 121/ ——Uu
u T
u-Vv = = (v—u?
Yo

with

y=v-(Vu+Vu') u=—-1’V-v

Renardy (1994) JNNFM 52
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Capillary squeezing — controlled by relaxation

Surface tension y
rad (t) strain rate E(t)

Ea

Mass a= —%

Momentum L. B0k + G(Azz—Ar)

a
Microstructure A,, = 2EA,, — 1(Azzfl)

T

Solution a(t) = a(0)e™t/3" Student Exercise

Need slow E = 1/37 to stop A, relaxing from y/Ga



. capillary squeezing

Oldroyd-B  a(t) = a(0)et/3"  does not break

Experiments S1 fluid

Exp: Liang & Mackley 1994 JNNFM

Thy: Entov & Hinch 1997 JNNFM

but filament eventually breaks in experiments



Multi-mode generalisation



Multi-mode generalisation

So




Multi-mode generalisation

Alzz =2 (E = _2a> Alzz - ?IAlzz

So )
i —t/7;
“= 50

Hence momentum equation

x 1 .
S axee




Multi-mode generalisation

Alzz =2 (E = _2a> Alzz - ?IAlzz

So )
i —t/7;
“= 50

Hence momentum equation

x 1 .
S axee

G(t)\"?
a(t) = (> with relaxation G(t) = Zgie—t/ﬂ



Multi-mode generalisation

Alzz =2 (E = _2a> Alzz - ?IAlzz

So
1

F —t)r
Izz_ a4(t)e /T

Hence momentum equation

x 1 .
S axee

G(t)\"?
a(t) = ( > with relaxation G(t) = Zgie—t/ﬂ

X

Spectrum needed to fit experiments at middle times



FENE capillary squeezing

Filament breaks in with FENE L = 20

Exp: Liang & Mackley 1994 JNNFM

Thy: Entov & Hinch 1997 JNNFM



