Chapter 10 — Strong flows
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Birefreingent strand

— thin layer of high stress leagving a stagnation point

v

Wine-glass model of contraction flow

— anisotropic flow from anisotropic material

» Corner singularity

— fast flow with no relaxation

Limited-forec flows

v

— strain only to avoid relaxation

FENE modification

Finite Extension Nonlinear Elasticity
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Will use FENE, and if safe Oldroyd-B, in following strong flows

Oldroyd-B, and its limitations
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Steady extensional flow
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Microstructure deforms without limit if £ > %: A= e(2E=37)t

Need to limit deformation of microstructure

FENE flow past a sphere

Oldroyd-B gave decrease is drag
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Chilcott & Rallison 1988 JNNFM
Tirtaatmadja, Uhlherr & Sridhar 1990 JNNFM

FENE gives drag increase



.FENE flow past sphere ... birefringent strands

Boundary layers of high stress.

FENE drag increase from long wake of high stress |
Crude model: eyt in wake, ug elsewhere.
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. birefringent strands Analysis of birefringent strand in exit channel
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Solving (Student Exercise)

U(x) = £ (1 —e V ‘”‘iitax>

T 2a

Also cusps at rear stagnation point of bubbles.



Birefringent pipes Formation of a cusp at rear stagnation point of a bubble

Very low extension rate in the strand can fail to stretch the
microstruture, so relax, producing birefringent “pipes”.

Curvature increases wi
S extensibility of fluid

Rallsion & Malaga (2007) JNNFM 141
Harlen, H, Rallison (1992) JNNFM 44

FENE contraction flow ... FENE contraction flow

Oldroyd-B gave decrease is pressure drop
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FENE gives increase in pressure drop



.a champagne-glass model
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Bowl:
» Sink flow u = 57
> Stretching starts at L = £ =24 je. at rp = (Qr)'/3
g T or'’ T E
» Then deforms as A o uv? o r—*
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So fully stretched at A~ L%, atr = rE/Ll/2
Hence fully stretched only if De = 9% > [3/2.
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Fast flows with no relaxation

If Vu>> 1

DA 1

Recall material line elements

d
—0f =60 -
dt vu,

So 04 stretches when u increases, in steady flow §¢ oc u

Suggests steady solution  (g(¢) from matching to slower region)

A=g(¥)uu, sooc=—pl+2u0E + Gguu

Tensions in streamlines again

...a champagne-glass model

bowl >
\ N
— stem
/ B [ —
/ >
Stem:
> Fully stretched, A~ L2, 50 pext = 1o + GTL2 > g = fighear
d?u . 1 0%u
» Balance Mextﬁ = Mshearﬁw
» By small cone angle Af = \//ﬁ%
» Length of cone (rp — rc)/A6.
» Start up possible.

Flow anisotropy from material anisotropy: fiext > fishear | DR

Fast flows with no relaxation 2

Momemtum, ignoring viscous stress
0=-Vp+ Gg'/%u- Vg1/2u.

Euler equation!!

Anti-Bernoulli

p — 1 Ggu? = const

Dollet, Aubouy & Graner 2005 PRL



Fast flows with no relaxation 3

Potential flows g'/?u = V¢

Flow around sharp 270° corner: Hinch 1995 JNNFM

¢ = r*/3cos 29, ococr 3 =4 %in"3 20
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Alves, Oliviera & Pinho 2003 JNNFM
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Deforming with the flow

While line elements parallel to the flow are stretched o u,
perpendicular elements are squashed o 1/u, plus some shear.
Hence try

A = A\uu + p(uv + vu) + vvv
with u-v=0,v=1/u

Oldroyd-B becomes  Student Exercise
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y=v-(Vu+Vu') - u=—-v’V-v

Renardy (1994) JNNFM 52

Fast flows with no relaxation 4

The matching for

gl/z(l/’)v x (0,0,v) = g1/2U =Vo¢ =V x(0,0, %r2/3 sin %9)

SO

¢ = F(r’¥?sin %9) ~ f(r?/30) at small 6.

Near bndry, De <1 A, =1+ 272 = De =

{In fast core, De >1 A, = gu2 =r2/3 Match: {7 =r1/3

Now near the boundary

r=u=~rf, sof=r3so=n(rh)? =r"3=(r?39)7/3

Hence elsewhere
P = Cr'#/%sin”/3 %9.

Details of the boundary layers — very difficult

Capillary squeezing — controlled by relaxation

Surface tension x
rad (t)

Mass a=—

1
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)strain rate E(t)
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Momentum S =3uE + G(A—Ar)
a

Microstructure A,, = 2EA,, — %(Azzfl)

Solution a(t) = a(0)e /3" Student Exercise

Need slow E = 1/37 to stop A, relaxing from \/Ga
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... capillary squeezing Multi-mode generalisation

Oldroyd-B  a(t) = a(0)e=t/3"  does not break - a\ L, 1 ..
1
Experiments S1 fluid
pery So 1
Ai _ e—t/T,-
= = (0
a Exp: Liang & Mackley 1994 JNNFM Hence momentum equation
Thy: Entov & Hinch 1997 JNNFM X 1 /
ocoon _ At/ Ti
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a(t) = <G(t)>1/3 with relaxation G(t) = Z e t/Ti
X &

but filament eventually breaks in experiments
Spectrum needed to fit experiments at middle times

FENE capillary squeezing

Filament breaks in with FENE L = 20
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Exp: Liang & Mackley 1994 JNNFM

Thy: Entov & Hinch 1997 JNNFM



