Chapter 4

Some simple flow calculations
Pipe flow for a power-law fluid
Capillary rheometry
Bingham vyield fluid in a Couette device
Rod-climbing
Unchanging flow field for a second-order fluid
Converging flow of rigid-rod suspension

Spinning an Oldroyd-B fluid
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Pipe flow for a power-law fluid

length L

radius a
Flux Q

Pressure drop Ap

Axial momentum

dp 10
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Ozr = ngall wi Owall = 2L .
Power-law fluid
dw

Ozr = H’j/n Wlth ’7 = —di
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Pipe flow for a power-law fluid 2

Integrating
1 1
<Uw>i R;‘i‘l _ r;‘i‘l
we= (2w y~~ 7
kR % +1

n=1 n<l

\
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So flattened profile

Near center, low o, so high p
Near wall, high o so low u

Hence volume flux

o R ApR\ "
C F+3\ 2Lk

Also wire coating, film draining, drop spreading & peristaltic
pumping
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Lubrication application: sphere approaching a wall

Gap Sphere radius a, minimum gap d

h(r) = d <1+2r;>

Mass flux Sphere approaching at velocity W
27rQ = P W

Power-law flow
@ K

(
dr {%d(lﬂ_%) 1+2n
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Lubrication application: sphere approaching a wall 2
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Note integrand like r—3" at large r,
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Lubrication application: sphere approaching a wall 2

w\" a\ 2 3n45 1\" [>® p2+n
Mg = [ — d(—) 0¥ (14 — / S A —
e=n(g) @ (@)% (1 5) [

Note integrand like r—3" at large r,
so need n > % for lubrication in gap to dominate.

Student Exercise
Find velocity of a sphere falling in a tight tube filled with
power-law fluid. Hint: Apra® = ApMng
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Capillary rheometry

Problem: To find (%) even though 4(r).

R
QR = / w27r dr
0
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Capillary rheometry 2

So as 0, x Ap

. o Q dinQ
Twall = 7R3 (3 T AP) ’

Slope of plot In @ vs In Ap, = 1 if Newtonian, = 3 power-law
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Capillary rheometry 2

So as 0, x Ap

. o Q dinQ
Vwall = _77TR3 (3‘|‘ dlnAP),

Slope of plot In @ vs In Ap, = 1 if Newtonian, = 3 power-law

1
n=s.

Then the shear-rate dependent viscosity is found from

Ow _ ApR
w2l

Hw =

Student Exercise: Similar analysis for a parallel plate rheometer.
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f-momentum

1d,, T
O—ﬁa (r O're) SO Urg—m
Bingham fluid
4 =0 if 0 < oy

org =0y + py if o >oy
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Bingham yield fluid in a Couette device 2

Yields inside surface at

r=ry =
2rloy

1. All yield ry > b
2. None yield ry < a
3. Partial yield a< ry < b

Ina < r < ry (yielding)

So
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Bingham vyield fluid in a Couette device 3

In ry < r < b (not yielding)

[

p

Continuity of uy at r = ry gives
Qrv(T))

Student exercise
Similarly in pipe flow
Similar in squeeze film, although too difficult for a few lectures.
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Rod-climbing for a second-order fluid

Flow =~ Newtonian

Qa2

ug = —
r

a
Q
A
z=h(r)
o ._rd <UQ
= dr \'r
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Second-order fluid
v
o=—pl+2uE —2aE + BE - E
So

Tor = Y
_ 1,p:2
O = —p+ zB’Y
ogo = —p+ (2a+ 1B8) 4

Ozz = —Pp



Rod-climbing for a second-order fluid 2

Second-order fluid
a:—p/+2uE—2aE+BE-E
So
Ogr = |y
o = —p+ 87

ogp = —p + (2o + 18) 5

Ozz = —Pp

To find p(r) and hence h(r)
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Unchanging flow field for a second-order fluid

Second-order fluid = Newtonian with small non-linear correction.
Student exercise Show

v D
V- <2E+4E-E> :EV2U+VU-V2U+V(E:E)

If u(x,t) and pi(x, t) satisfy Newtonian Stokes flow
0=—Vpi + uVu and V-u =0,

then same u(x,t) with different ps(x, t) satisfies (Giesekus)
second-order fluid equation

V-o=0
v
oc=—pr+2uE —2aE+ BE - E
with

D
B =—4a and pp = p1 — 3% +aE-E Student Exercise
7



Unchanging flow field for a second-order fluid 2

Similar results with no restriction of « and 3
» Planar flows — Tanner & Pipkin

» unidirectional flows — Langlois, Rivlin & Pipkin
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Converging flow of rigid-rod suspension

Rheology: an anisotropic viscosity in direction of rods/fibres p

0 = —pl + 2pshcar E + 2ptexsPP(P - E - P)

In 2-D sink flow, radial flow u, = f(6)/r and rods align radially
pr=1
So with pressure g(0)/r? the stress is

8 f B f! g f
O = _2_2(,“5"',“&‘)?3 Org = MSIZ’ gpp = _ﬁ+2ﬂsr7-



Converging flow of rigid-rod suspension 2

f-momentum
dog  100g9 20,9

or r 00 r 0

SO
g = psf’



Converging flow of rigid-rod suspension 2

f-momentum
dog  100g9 20,9

0
or r 00 r
so
g = psf’
Radial momentum
aUrr 18090 Orr — 098 -0

or r 00 r
so

'+ (4 + 2Me> f = const
Hs



Converging flow of rigid-rod suspension 2

f-momentum
dog  100g9 20,9

0
or r 00 r
so
g = psf’
Radial momentum
8Urr 18090 Orr — 098 -0

or r 00 r
so

'+ (4 + 2Me> f = const
Hs

A compression in f-direction of \/1 + f1e/2ps
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Converging flow of rigid-rod suspension 3

Newtonian flow has recirculation region if angle > «

A/ \
Non—Newtonian Fluid
Newtonian Fluid

Rigid-rod suspension, with the compression in 6-direction, has
recirculation region at angle =7

Anisotropy in rheology leads to anisotropy in flow

Also 3D sink flow.
Also flow round a sharp corner (rods along streamlines).
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Spinning an Oldroyd-B fluid

Volume flux

Q = 7R*w

Tension, ignoring surface tension, gravity and inertia

F = 7R%0,,
Oldroyd-B

o= —pl+2uE + GA

DA 1
— =A-V Vul - A—=(A-1
Dt Ve T( )
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So

dArr
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w _
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Spinning an Oldroyd-B fluid 2

So
dA, dw 1
Wiz T gy Al
dA,, daw 1
= 2Azzi -~ Azz -1
v dz dz 7'( )

Free surface

d
or =0, so p= _NTZV + GAn

Momentum equation
_ Fw

dw F
Ozz = 3ME + G(Azz - Arr) = W Q

This equation gives dw/dz which the can use in dA_/dz equations

above.



Spinning an Oldroyd-B fluid 3

Newtonian limit Tdw/dz < 1

dw dw
Arr'\‘l_ YR Azz'\‘]- W
wa o dz
SO E
Ozz ™~ 3(:”’ + GT)iw = 6W

SO
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Spinning an Oldroyd-B fluid 4

Elastic limit pdw/dz, GA,, < GA_,

Fw Fw
— = Ozz ™~ GA227 or Azz ~ —=
Q GQ
substitute into
dA,, dw 1
=2A,— — (A, -1 small
v dz dz 7'( (¢ small))
for
dw _, dw 1
dz dz T
with solution
w=wy+ E, independent of F !
T

Need stretch to avoid relaxation



	Some simple flow calculations
	Pipe flow for a power-law fluid
	Capillary rheometry
	Bingham yield fluid in a Couette device
	Rod-climbing
	Unchanging flow field for a second-order fluid
	Converging flow of rigid-rod suspension
	Spinning an Oldroyd-B fluid


