No lecture Thursday 17 February 2011

Next lecture Tuesday 22 February



Chapter 6

Numerics

Discretisation
Finite Elements
Spectral

Finite Differences

Pressure
Fractional time-step

FE pressure problems

Elliptic and hyperbolic
Elliptic part
Hyperbolic

Bench marks

Numerical problems



Discretisation

» Finite Elements
» good for complex geometry
» need good elliptic solver on unstructured grid
» commercial code : POLYFLOW



Discretisation

» Finite Elements
» good for complex geometry
» need good elliptic solver on unstructured grid
» commercial code : POLYFLOW
» Spectral
> very accurate
» only for periodic geometry
— wavy-wall tube, turbulent drag reduction



Discretisation

» Finite Elements

» good for complex geometry

» need good elliptic solver on unstructured grid

» commercial code : POLYFLOW
» Spectral

> very accurate

» only for periodic geometry

— wavy-wall tube, turbulent drag reduction

» Finite differences

» simple, so good for understanding underlying difficulties
» only for simple geometry (but mappable)
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Finite Elements

» Divide domain into elements — triangles, quadrilaterals

» Represent unknowns by simple functions over elements
N
u(x) =) figi(x)

E.G. for a triangle (x1,x2,x3),
¢1(x) =1 at vertex x = x3 and vanishing at x, and x3

P1(x) =

(x —x2) X (x3 —x2) - 2
(Xl—Xz)X(X3—X2)-2
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» Substitute into momentum/mass/stress equation and project

(Galerkin)



Finite Elements 2

» Substitute into momentum/mass/stress equation and project

(Galerkin)

» Typical finite elements have less pressure modes than velocity,

and sometimes more stress than velocity
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Spectral

» Spectral representation (Fourier, or Chebyshev, or Stokes’
eigensolutions)

N
Fx) =) fae™

> Possible problems with boundary conditions.

» Then differentiation
N .
f'(x) = Z frine™ + O(e™N)  good
» but products

N N
F()g(x) =) fignre™ bad
n k

» So use pseudo-spectral — evaluate products in real space and
derivatives in Fourier space.
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Spectral 2

v

Galerkin or collocation to satisfy governing equations

Fast Transforms useful

v

v

Smooth OK, discontinuities bad (hidden at boundaries?)

v

Aliasing — chop top % of spectrum
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Finite Differences

» Simple
» Needs coordinate grid

> gives organised labelling
» consider conformal map

» Differentiation — central 2™¢ order

f(x+ h) —2f(x)+ f(x — h)

1"
M = 12

» Conservative, e.g.

Vi =V x V- (V+VNV x ¢ # V2V
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Fractional time-step

Pressure ensures incompressibility

Half step to u* using no-slip BC

ut —u”

Az =—(u-Vu)"+V-o"

Project to incompressible
u"tt =y — AtVp L, so V-u™l=0

i.e. solve
AtV p"tl =V . u*

Also pressure update O(At?)
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FD pressure problems

Spurious pressure modes

+ = o+
- 4 - “Vp=0"
+ = o+
Avoided by staggered grid

v O,y

u p u Oxx

Oyy
c
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FE pressure problems

» Spurious pressure modes with “Vp = 0" — no staggered FE
> Locking

uv
One A has 1p+3u+ 3v

uv uv

All grid has 18p + 4u + 4v
if no-slip bc

Use ‘bubble elements’ with extra u, v at centre of triangles



Elliptic

Write EVSS = Elastic Viscous Split Stress
o= —p/ + 2/J,E _’_O_elaustic7

where 1 can be arbitrary and ¢°!#%¢ the remainder.



Elliptic

Write EVSS = Elastic Viscous Split Stress
o= —p/ + 2/J,E _’_O_elaustic7
where 1 can be arbitrary and ¢°!#%¢ the remainder.

Then instantaneous Stokes flow driven by elastic stress

_Vp 4 ,UV2U — _v . O_elastic



Elliptic

Write EVSS = Elastic Viscous Split Stress
o= —p/ + 2/J,E _’_O_elaustic7
where 1 can be arbitrary and ¢°!#%¢ the remainder.

Then instantaneous Stokes flow driven by elastic stress

_Vp 4 ,UVQU — _v . O_elastic

Need fast elliptic solver



Elliptic

Write EVSS = Elastic Viscous Split Stress
o= —p/ + 2/J,E _’_O_elaustic7
where 1 can be arbitrary and ¢°!#%¢ the remainder.

Then instantaneous Stokes flow driven by elastic stress

_Vp 4 ,UVQU — _v . O_elastic

Need fast elliptic solver

> conjugate gradients



Elliptic

Write EVSS = Elastic Viscous Split Stress
o= —p/ + 2/J,E _’_O_elaustic7
where 1 can be arbitrary and ¢°!#%¢ the remainder.

Then instantaneous Stokes flow driven by elastic stress

_Vp 4 ,UVQU — _v . O_elastic

Need fast elliptic solver
> conjugate gradients

> multigrid



Elliptic

Write EVSS = Elastic Viscous Split Stress
o= —p/ + 2/J,E _’_O_elaustic7
where 1 can be arbitrary and ¢°!#%¢ the remainder.

Then instantaneous Stokes flow driven by elastic stress

_Vp 4 ,UVQU — _v . O_elastic

Need fast elliptic solver
> conjugate gradients
> multigrid

» domain decomposition
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Elliptic part 2
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Elliptic part 2

» Possible p(x)
» Possible anisotropic i, e.g. FENE Al + /A
> Fast relaxed modes

p=pno+ > Gi
Tyt
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Hyperbolic part

Stress equation is hyperbolic PDE

Do

Dr = F(o,Vu) minor difficulty

or streamwise integral equation (but DE better)

o(t) = /t Gt — s)AT AuDt

Finite Differences
» second-order with ‘flux-limiters’, e.g. MINMOD

» use characteristics = streamlines
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Hyperbolic part 2

Finite Elements
» PUPG — Streamline Upwinding Petrov Galerkin:

/(stress equation) - (¢ + htr - V¢) dV =0,

but large numerical diffusion
» Lagrangian FE
» exact [ VuDt

> needs regridding
» no fast elliptic solver



Hyperbolic part 3

Typical erroneous treatment of hyperbolic stress equation

400 -(p)

300

0 -5 o0 s 0 15 2
cxial distance

Continuous curve is correct solution.
Others have spurious oscillations.
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Bench marks

International campaign tackling bench-mark problems

1. Sphere in a tube, 2:1 diam
Dominated by shear

2. Contraction, 4:1 %@
Difficult sharp corner #‘77777
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Bench marks 2

//
3. Journal bearing
Good for spectral
——

m

4. Wavy-wall pipe T
Good for spectral ~

w

Eventually different algorithms produced the same results!
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Numerical problems

v

Convergence tests rarely done (well)
» New numerical instability

» Corner singularity — mess downstream

v

Thin layers of high stress

v

Limiting (maximum) value of De, e.g. sphere in a tube:

» UCM Depax = 2.17

> O-B Depayx = 1.28 Fan (2003) JNNFM 110



Numerical problems 2

New numerical instability
Plotting o /0y, vs Ay/Ax

! F——f——t—————
005 01 02 04 08 16 32
oAy

o
Need Ay < Ax—Y to resolve direction of large N;

O xx



Numerical problems 3

Thin layers of high stress
Flow past a sphere in a tube

Need to resolve
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Other problems

v

Need FENE modification of Oldroyd-B to avoid negative

viscosities

Smooth corners in contraction flow

v

v

Contraction — Expansion, avoids long relaxation distance

v

Micro-Macro Brownian fields, with same random Brownian

forces in all spatial blocks, see later
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