No lecture Thursday 17 February 2011

Next lecture Tuesday 22 February

Chapter 6

Numerics

Discretisation

Finite Elements

Spectral

Finite Differences

Pressure

Fractional time-step

FE pressure problems

Elliptic and hyperbolic

Elliptic part

Hyperbolic

Bench marks

Numerical problems

Discretisation

- ► Finite Elements
 - good for complex geometry
 - need good elliptic solver on unstructured grid
 - ▶ commercial code : Polyflow

Discretisation

- ► Finite Elements
 - good for complex geometry
 - need good elliptic solver on unstructured grid
 - ► commercial code : Polyflow
- Spectral
 - very accurate
 - only for periodic geometry
 - wavy-wall tube, turbulent drag reduction

Discretisation

- ► Finite Elements
 - good for complex geometry
 - need good elliptic solver on unstructured grid
 - ► commercial code : Polyflow
- Spectral
 - very accurate
 - only for periodic geometry
 - wavy-wall tube, turbulent drag reduction
- ▶ Finite differences
 - simple, so good for understanding underlying difficulties
 - only for simple geometry (but mappable)

▶ Divide domain into elements – triangles, quadrilaterals

- ▶ Divide domain into elements triangles, quadrilaterals
- ▶ Represent unknowns by simple functions over elements

$$\mathbf{u}(\mathbf{x}) = \sum_{i=1}^{N} \mathbf{f}_{i} \phi_{i}(\mathbf{x})$$

- ▶ Divide domain into elements triangles, quadrilaterals
- ▶ Represent unknowns by simple functions over elements

$$\mathbf{u}(\mathbf{x}) = \sum_{i=1}^{N} \mathbf{f}_{i} \phi_{i}(\mathbf{x})$$

E.G. for a triangle $(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3)$, $\phi_1(\mathbf{x}) = 1$ at vertex $\mathbf{x} = \mathbf{x}_1$ and vanishing at \mathbf{x}_2 and \mathbf{x}_3

$$\phi_1(\mathbf{x}) = \frac{(\mathbf{x} - \mathbf{x}_2) \times (\mathbf{x}_3 - \mathbf{x}_2) \cdot \hat{\mathbf{z}}}{(\mathbf{x}_1 - \mathbf{x}_2) \times (\mathbf{x}_3 - \mathbf{x}_2) \cdot \hat{\mathbf{z}}}$$

 Substitute into momentum/mass/stress equation and project (Galerkin)

$$\int \left(\rho \frac{Du}{Dt} - \nabla \cdot \sigma\right) \cdot \phi_s(\mathbf{x}) \, dV = 0, \qquad s = 1, 2, ..., N$$

 Substitute into momentum/mass/stress equation and project (Galerkin)

$$\int \left(\rho \frac{Du}{Dt} - \nabla \cdot \sigma\right) \cdot \phi_s(\mathbf{x}) \, dV = 0, \qquad s = 1, 2, ..., N$$

 Typical finite elements have less pressure modes than velocity, and sometimes more stress than velocity

 Spectral representation (Fourier, or Chebyshev, or Stokes' eigensolutions)

$$f(x) = \sum_{n=1}^{N} f_n e^{inx}$$

 Spectral representation (Fourier, or Chebyshev, or Stokes' eigensolutions)

$$f(x) = \sum_{n=1}^{N} f_n e^{inx}$$

▶ Possible problems with boundary conditions.

 Spectral representation (Fourier, or Chebyshev, or Stokes' eigensolutions)

$$f(x) = \sum_{n=1}^{N} f_n e^{inx}$$

- Possible problems with boundary conditions.
- ▶ Then differentiation

$$f'(x) = \sum_{n=0}^{N} f_n ine^{inx} + O(e^{-N})$$
 good

 Spectral representation (Fourier, or Chebyshev, or Stokes' eigensolutions)

$$f(x) = \sum_{n=1}^{N} f_n e^{inx}$$

- ▶ Possible problems with boundary conditions.
- ▶ Then differentiation

$$f'(x) = \sum_{n=0}^{N} f_n ine^{inx} + O(e^{-N})$$
 good

but products

$$f(x)g(x) = \sum_{n=1}^{N} \sum_{k=1}^{N} f_k g_{n-k} e^{inx}$$
 bad

 Spectral representation (Fourier, or Chebyshev, or Stokes' eigensolutions)

$$f(x) = \sum_{n=1}^{N} f_n e^{inx}$$

- Possible problems with boundary conditions.
- Then differentiation

$$f'(x) = \sum_{n=0}^{N} f_n ine^{inx} + O(e^{-N})$$
 good

but products

$$f(x)g(x) = \sum_{n=1}^{N} \sum_{k=1}^{N} f_k g_{n-k} e^{inx}$$
 bad

 So use pseudo-spectral – evaluate products in real space and derivatives in Fourier space.

► Galerkin or collocation to satisfy governing equations

- ► Galerkin or collocation to satisfy governing equations
- ► Fast Transforms useful

- Galerkin or collocation to satisfy governing equations
- ► Fast Transforms useful
- Smooth OK, discontinuities bad (hidden at boundaries?)

- Galerkin or collocation to satisfy governing equations
- ► Fast Transforms useful
- Smooth OK, discontinuities bad (hidden at boundaries?)
- ► Aliasing chop top $\frac{1}{3}$ of spectrum

► Simple

- Simple
- Needs coordinate grid
 - gives organised labelling
 - consider conformal map

- Simple
- Needs coordinate grid
 - gives organised labelling
 - consider conformal map
- ▶ Differentiation central 2nd order

$$f'' \approx \frac{f(x+h) - 2f(x) + f(x-h)}{h^2}$$

- Simple
- Needs coordinate grid
 - gives organised labelling
 - consider conformal map
- ▶ Differentiation central 2nd order

$$f'' \approx \frac{f(x+h) - 2f(x) + f(x-h)}{h^2}$$

► Conservative, e.g.

$$\nabla^4 \psi = \nabla \times \nabla \cdot (\nabla + \nabla^T) \nabla \times \psi \neq \nabla^2 \nabla^2 \psi$$

Pressure ensures incompressibility

Pressure ensures incompressibility

Half step to u^* using no-slip BC

$$\frac{u^*-u^n}{\Delta t}=-(u\cdot\nabla u)^n+\nabla\cdot\sigma^n$$

Pressure ensures incompressibility

Half step to u^* using no-slip BC

$$\frac{u^*-u^n}{\Delta t}=-(u\cdot\nabla u)^n+\nabla\cdot\sigma^n$$

Project to incompressible

$$u^{n+1} = u^* - \Delta t \nabla p^{n+1}$$
, so $\nabla \cdot u^{n+1} = 0$

Pressure ensures incompressibility

Half step to u^* using no-slip BC

$$\frac{u^* - u^n}{\Delta t} = -(u \cdot \nabla u)^n + \nabla \cdot \sigma^n$$

Project to incompressible

$$u^{n+1} = u^* - \Delta t \nabla p^{n+1}$$
, so $\nabla \cdot u^{n+1} = 0$

i.e. solve

$$\Delta t \nabla^2 p^{n+1} = \nabla \cdot u^*$$

Pressure ensures incompressibility

Half step to u^* using no-slip BC

$$\frac{u^* - u^n}{\Delta t} = -(u \cdot \nabla u)^n + \nabla \cdot \sigma^n$$

Project to incompressible

$$u^{n+1} = u^* - \Delta t \nabla p^{n+1}$$
, so $\nabla \cdot u^{n+1} = 0$

i.e. solve

$$\Delta t \nabla^2 p^{n+1} = \nabla \cdot u^*$$

Also pressure update $O(\Delta t^2)$

FD pressure problems

Spurious pressure modes

$$+$$
 $+$ $-$ " $\nabla \rho = 0$ "

FD pressure problems

Spurious pressure modes

$$+$$
 - + $-$ " $\nabla p = 0$ " + - +

Avoided by staggered grid

FE pressure problems

lacktriangle Spurious pressure modes with "abla p = 0" – no staggered FE

FE pressure problems

- ▶ Spurious pressure modes with " $\nabla p = 0$ " no staggered FE
- Locking

One
$$\Delta$$
 has $1p + 3u + 3v$

All grid has 18p + 4u + 4v if no-slip bc

FE pressure problems

- ▶ Spurious pressure modes with " $\nabla p = 0$ " no staggered FE
- Locking

One
$$\Delta$$
 has $1p + 3u + 3v$

All grid has
$$18p + 4u + 4v$$
 if no-slip bc

Use 'bubble elements' with extra u, v at centre of triangles

Elliptic

Write EVSS = Elastic Viscous Split Stress

$$\sigma = -pI + 2\mu E + \sigma^{\text{elastic}},$$

where μ can be arbitrary and $\sigma^{\rm elastic}$ the remainder.

Elliptic

Write EVSS = Elastic Viscous Split Stress

$$\sigma = -pI + 2\mu E + \sigma^{\text{elastic}},$$

where μ can be arbitrary and $\sigma^{\rm elastic}$ the remainder.

Then instantaneous Stokes flow driven by elastic stress

$$-\nabla p + \mu \nabla^2 u = -\nabla \cdot \sigma^{\text{elastic}}$$

Elliptic

Write EVSS = Elastic Viscous Split Stress

$$\sigma = -pI + 2\mu E + \sigma^{\text{elastic}},$$

where μ can be arbitrary and $\sigma^{\rm elastic}$ the remainder.

Then instantaneous Stokes flow driven by elastic stress

$$-\nabla p + \mu \nabla^2 u = -\nabla \cdot \sigma^{\text{elastic}}$$

Need fast elliptic solver

Elliptic

Write EVSS = Elastic Viscous Split Stress

$$\sigma = -pI + 2\mu E + \sigma^{\text{elastic}},$$

where μ can be arbitrary and $\sigma^{\rm elastic}$ the remainder.

Then instantaneous Stokes flow driven by elastic stress

$$-\nabla p + \mu \nabla^2 u = -\nabla \cdot \sigma^{\text{elastic}}$$

Need fast elliptic solver

conjugate gradients

Elliptic

Write EVSS = Elastic Viscous Split Stress

$$\sigma = -pI + 2\mu E + \sigma^{\text{elastic}},$$

where μ can be arbitrary and $\sigma^{\rm elastic}$ the remainder.

Then instantaneous Stokes flow driven by elastic stress

$$-\nabla p + \mu \nabla^2 u = -\nabla \cdot \sigma^{\text{elastic}}$$

Need fast elliptic solver

- conjugate gradients
- multigrid

Elliptic

 ${\sf Write}\ {\sf EVSS} = {\sf Elastic}\ {\sf Viscous}\ {\sf Split}\ {\sf Stress}$

$$\sigma = -pI + 2\mu E + \sigma^{\text{elastic}},$$

where μ can be arbitrary and $\sigma^{\rm elastic}$ the remainder.

Then instantaneous Stokes flow driven by elastic stress

$$-\nabla p + \mu \nabla^2 u = -\nabla \cdot \sigma^{\text{elastic}}$$

Need fast elliptic solver

- conjugate gradients
- multigrid
- domain decomposition

Elliptic part 2

▶ Possible $\mu(x)$

Elliptic part 2

- ▶ Possible $\mu(x)$
- ▶ Possible anisotropic μ , e.g. FENE AI + IA

Elliptic part 2

- ▶ Possible $\mu(x)$
- ▶ Possible anisotropic μ , e.g. FENE AI + IA
- Fast relaxed modes

$$\mu = \mu_0 + \sum_{\tau_i \ll \dot{\gamma}^{-1}} G_i \tau_i$$

Stress equation is hyperbolic PDE

$$\frac{D\sigma}{Dt} = F(\sigma, \nabla u) \qquad \text{minor difficulty}$$

Stress equation is hyperbolic PDE

$$\frac{D\sigma}{Dt} = F(\sigma, \nabla u) \qquad \text{minor difficulty}$$

or streamwise integral equation (but DE better)

$$\sigma(t) = \int_{-\infty}^{t} G(t-s)A^{T}A_{ts}Dt$$

Stress equation is hyperbolic PDE

$$\frac{D\sigma}{Dt} = F(\sigma, \nabla u) \qquad \text{minor difficulty}$$

or streamwise integral equation (but DE better)

$$\sigma(t) = \int_{0}^{t} G(t-s)A^{T}A_{ts}Dt$$

Finite Differences

second-order with 'flux-limiters', e.g. MINMOD

Stress equation is hyperbolic PDE

$$\frac{D\sigma}{Dt} = F(\sigma, \nabla u) \qquad \text{minor difficulty}$$

or streamwise integral equation (but DE better)

$$\sigma(t) = \int_{0}^{t} G(t-s)A^{T}A_{ts}Dt$$

Finite Differences

- second-order with 'flux-limiters', e.g. MINMOD
- use characteristics = streamlines

Finite Elements

▶ PUPG – Streamline Upwinding Petrov Galerkin:

$$\int (\text{stress equation}) \cdot (\phi + h\hat{u} \cdot \nabla \phi) \, dV = 0,$$

Finite Elements

▶ PUPG – Streamline Upwinding Petrov Galerkin:

$$\int (\text{stress equation}) \cdot (\phi + h\hat{u} \cdot \nabla \phi) \, dV = 0,$$

Finite Elements

▶ PUPG – Streamline Upwinding Petrov Galerkin:

$$\int (\text{stress equation}) \cdot (\phi + h\hat{u} \cdot \nabla \phi) \, dV = 0,$$

but large numerical diffusion

Lagrangian FE

Finite Elements

▶ PUPG – Streamline Upwinding Petrov Galerkin:

$$\int (\text{stress equation}) \cdot (\phi + h\hat{u} \cdot \nabla \phi) \, dV = 0,$$

- Lagrangian FE
 - ▶ exact $\int \nabla uDt$

Finite Elements

▶ PUPG – Streamline Upwinding Petrov Galerkin:

$$\int (\text{stress equation}) \cdot (\phi + h\hat{u} \cdot \nabla \phi) \, dV = 0,$$

- Lagrangian FE
 - exact $\int \nabla uDt$
 - needs regridding

Finite Elements

▶ PUPG – Streamline Upwinding Petrov Galerkin:

$$\int (\text{stress equation}) \cdot (\phi + h\hat{u} \cdot \nabla \phi) \, dV = 0,$$

- ► Lagrangian FE
 - exact $\int \nabla u Dt$
 - needs regridding
 - no fast elliptic solver

Typical erroneous treatment of hyperbolic stress equation

Continuous curve is correct solution. Others have spurious oscillations.

International campaign tackling bench-mark problems

International campaign tackling bench-mark problems

1. Sphere in a tube, 2:1 diam Dominated by shear

International campaign tackling bench-mark problems

1. Sphere in a tube, 2:1 diam Dominated by shear

2. Contraction, 4:1 Difficult sharp corner

3. Journal bearing Good for spectral

3. Journal bearing Good for spectral

4. Wavy-wall pipe Good for spectral

3. Journal bearing Good for spectral

4. Wavy-wall pipe Good for spectral

Eventually different algorithms produced the same results!

► Convergence tests rarely done (well)

- Convergence tests rarely done (well)
- New numerical instability

- ► Convergence tests rarely done (well)
- ► New numerical instability
- lacktriangle Corner singularity ightarrow mess downstream

- ► Convergence tests rarely done (well)
- ► New numerical instability
- ightharpoonup Corner singularity ightharpoonup mess downstream
- ► Thin layers of high stress

- ► Convergence tests rarely done (well)
- New numerical instability
- ▶ Corner singularity → mess downstream
- ► Thin layers of high stress
- Limiting (maximum) value of *De*, e.g. sphere in a tube:
 - ▶ UCM $De_{max} = 2.17$
 - ightharpoonup O-B $De_{
 m max}=1.28$ Fan (2003) JNNFM 110

New numerical instability

Plotting σ_{xx}/σ_{xy} vs $\Delta y/\Delta x$

Need
$$\Delta y < \Delta x \frac{\sigma_{xy}}{\sigma_{xx}}$$
 to resolve direction of large \emph{N}_1

Thin layers of high stress Flow past a sphere in a tube

Need to resolve

 Need FENE modification of Oldroyd-B to avoid negative viscosities

- Need FENE modification of Oldroyd-B to avoid negative viscosities
- Smooth corners in contraction flow

- Need FENE modification of Oldroyd-B to avoid negative viscosities
- Smooth corners in contraction flow
- lacktriangle Contraction ightarrow Expansion, avoids long relaxation distance

- Need FENE modification of Oldroyd-B to avoid negative viscosities
- Smooth corners in contraction flow
- ightharpoonup Contraction ightarrow Expansion, avoids long relaxation distance
- Micro-Macro Brownian fields, with same random Brownian forces in all spatial blocks, see later