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» To calculate the flow of complex fluids, need governing

equations,

> in particular, the constitutive equation relating stress to flow

and its history.

» Either ‘ad hoc’, such as Oldroyd-B differential equation and
BKZ integral equation,

» Or look at microstructure for highly idealised systems and

derive their constitutive equations.

> Most will be suspensions of small particles in Newtonian

viscous solvent.
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Separation of length scales

Essential
Micro ¢ < L Macro

Micro = particle 1um Macro = flow, 1cm

» Micro and Macro time scales similar

> Need ¢ small for small micro-Reynolds number
2
Rey = 22 < 1,
otherwise possible macro-flow boundary layers &« /¢

But macro-Reynolds number Re; = ’WL can be large

» If £ £ L, then non-local rheology
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» Solve microstructure — tough, must idealise

» Extract macro-observables — easy

Here: suspension of particles in Newtonian viscous solvent
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1. Macro—micro connection

> Particles passively move with macro-flow u
» Particles actively rotate, deform & interact with
macro-shear Vu

both needing Rey < 1.
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2. Micro—macro connection

Macro = continuum = average/smear-out micro details

E.g. average over representative volume V with £ <« V1/3 <« L

1
J:/O'd\/
vV Jv

Also ensemble averaging and homogenisation

To be used in averaged = macro momentum equation

_[ouw I
p[at+u-Vu]—V-a+F

NB micro-Reynolds stresses (pu)'u’ small for Re; < 1.
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Reduction for suspension with Newtonian viscous solvent

Write:
o= —pl+2ue+o"

with pressure p, solvent viscosity i, strain-rate e,
and o non-zero only inside particles.

Average: -
o=—pl+2ue+ot

— 1
a*z/a+dV:n</ O'+d\/>
v 14 particle

with n number of particles per unit volume

with

types of particle
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Reduction for suspension with Newtonian viscous solvent 2

Inside rigid particles e =0, so 0 = 0.

Also 0jj = Ok(oikXj) — XjOkTjk, ignoring gravity Oxoj = 0,

SO
/ otdV = / o-nxdA
particle particle

so only need o on surface of particle. (Detailed cases soon.)
Hence

J——pl+2ue—|—n/ o-nxdA

particle

Integral called ‘stresslet’, is the force-dipole strength of the particle.
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Homogenisation: asymptotics for £ < L

Easier transport problem to exhibit method
V-k-VT=Q
with k & Q varying on macroscale x and microscale £ = x/e,

Multiscale asymptotic expansion

T(X; 6) ~ TO(Xv‘E) + 6T1(X,§) + 62 TZ(X7§)
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Homogenisation 2

Dekde To = 0

ie. T() = T(X)

Thus T varies only slowly at leading order, with microscale making
small perturbations.
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Dckde Ty = —0ckdy Ty

Solution Tj is linear in forcing 0y To, details depending on k(&):

T1(x,€) = A(§)0x To
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Homogenisation 4

OckOe To = Q — Dk To — Bckds Ty — Dykde Ty

Secularity: (RHS) = 0 else T, = O(£2) which contradicts
asymptoticity. (Periodicity not necessary.)

Hence I
0= <Q> - 8><<k>a>< To — ax<k87€>8x To

Hence macro description

VK*VT = Q* with k*:<k+kg?> and QF
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Homogenisation 5

NB: Leading order Ty uniform at microlevel, with therefore no
local heat transport

NB: Micro problem forced by V Ty. Need to solve

V- kV - Tmicro =0
Tricro — X - VT

Solution
Ticro = (X + EA)V To

Hence heat flux

<q> = <kVTmicro> = <k + 6kVA> VTO
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Einstein viscosity

Simplest — can show all details.

Highly idealised — many generalisations
» Spheres — no orientation problems
» Rigid — no deformation problems

» Dilute and Inert — no interactions problems

Micro problem

v

Isolated rigid sphere

v

force-free and couple-free
» in a general linear shearing flow VU
Stokes flow

v
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Stokes problem for Einstein viscosity

V-u=0 in r>a
0=—-Vp+uV?u in r>a

u=V+4+wxx on r=a with V, ,wconsts

u—>U+x-VU as r—

F:/ o-ndA =0, G:/ xxo-ndA=0

Split general linear shearing flow VU into symmetric strain-rate E
and antisymmetric vorticity €, i.e.

x-VU=E -x+Q x x

NB: Stokes problem is linear and instantaneous  Student Ex
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Solution of Stokes problem for Einstein viscosity

» F =0 gives V = U, i.e. translates with macro flow S.Ex
» G =0 gives w = , i.e. rotates with macro flow S.Ex

Then S.Ex
2> 5(x-E-x) <a3 35>

=U+E-x+Qxx—E-x—¢ — o -=
u + X+ X Xr5 X 272 3 5

x-E-x)a3
pm B

Evaluate viscous stress on particle Student Ex

Sp
U-n‘r:a = ZE - X

Evaluate particle contribution to macro/average stress

4
/ J-ndi:5uE—7ra3
particle 3
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Result for Einstein viscosity (1905)

4
o= —pl+2uE +5uE¢ with volume fraction ¢ = n%ra3

Hence effective viscosity

. 5
7 —u<1+2¢>>

> Result independent of type of flow — shear, extensional
» Result independent of particle size — OK polydisperse

» Einstein used another averaging of dissipation
which would not give normal stresses with o : E =0,
which arbitrarily cancelled divergent integrals (hydrodynamics

is long-ranged)
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