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Rotation of particles — rigid and dilute

Spheroid: axes a, b, b, aspect ratio r = .

Y

rod r > 1 disk r <1

Direction of axis p(t), unit vector.

Stokes flow by Oberbeck (1876). See Lamb. Uses ellipsoidal
harmonic function in place of spherical harmonic 1/r

o0 ds’' 3 x?
, where ———— =1
/s<x> M7 (af +s7)1/2 E_; a7 + s(x)
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Rotation of particles

Microstructural evolution equation

D _
ﬁ?:prJrﬁﬁ[E-p—p(p-E-p)]

Straining less efficient at rotation by 7.

2 . . -
Long rods ﬁ — +1 i.e. Upper Convective Derivative

. 2_ . . —
Flat disks r2+i — —1 i.e. Lower Convective Derivative

>

x>



Rotation of particles

Student Exercise
Show that

t
p(t):M with q:qu+r2_1E-q
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Rotation of particles

Student Exercise
Show that

_qa(t) - s 2
p(t)_m with §=Qxq+ > 7E-q

satisfies

p 2
D =xp+ i [E-p—p(p-E-p)

Hence find p(t) for axisymmetric extensional flow and for simple
shear, starting from an arbitrary initial p(0).
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Micro—macro link: stress

o =—pl +2uE+2up[A(p-E-p)pp + B(pp - E+ E - pp) + CE]

with A, B, C material constants depending on shape but not size

A B C

r? 6In2r—11
r—o0 2(In2r—3) r2 2
r—0 10 .8 8

37r 3nr 3nr



Rotation in uni-axial straining

U = E(x, ,%% f%z)
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Rotation in uni-axial straining

U=E(x,—3y,—32)

S/ N\l
rotates to @
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Aligns with stretchlng direction — maximum dissipation
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Rotation in uni-axial straining

U= E(X’_%y7 _%Z)

S/ N\l
rotates to @
- N 7

Aligns with stretching direction — maximum dissipation

J
2F N

Aligns with inflow direction — maximum dissipation

g
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Effective extensional viscosity for rods

r2
* — 1 -
Hext “( +¢3(|n2r—1.5)>

Largeat o < 1if r > 1.
Now ¢ = 4Twab2 and r = §, so

_— 14 47na’
Haxt = 9(In2r — 1.5)

so same as sphere of radius a its largest dimension (except for
factor 1.2(In2r — 1.5)).
Hence 5ppm of PEO can have a big effect in drag reduction.

Dilute requires na®> < 1, but extension by Batchelor to semi-dilute

<1 or?
. 1 47na’
Hexty = M {1+ Ong 172
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Effective extensional viscosity for disks

10 10nb®
* = 1 — | = 1
Hext M( +¢37rr) 'u( + 9 >
where for disks b is the largest dimension

(always the largest for Stokes flow).

No semi-dilute theory, yet.
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Behaviour in simple shear

U= (vy,0,0)

Rotates to flow direction — minimum dissipation

Z rotates to

Rotates to lie in flow — minimum dissipation

Both Tumble: flip in 1/, then align for r/y (66 = 1/r with
0=n/r?
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Jeffery orbits (1922)

b = r27+1(r2c052q5+sin2d>)
0 = Rl sin20sin2g

Solution with orbit constant C.

tan¢g = rtanwt, w =

Sy tanf = Cr(r? cos? ¢ + sin? ¢)~1/2



Effective shear viscosity

Jeffery orbits (1922)

b = r27+1(r2c052q5+sin2¢>)
0 = Rl sin20sin2g

Solution with orbit constant C.

tan¢ = rtanwt, w = r]J:l,

tan§ = Cr(r? cos? ¢ + sin? ¢) ~1/2

Effective shear viscosity — Leal & H (1971)

0.32r/Inr rods
>Sk ear = 1 +
Fish : < ¢{3.1 disks)

numerical coefficients depend on distribution across orbits, C.
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Remarks

Alignment gives  pf < pdo

This material anisotropy leads to anisotropy of macro flow.

Important to Turbulent Drag Reduction

Three measures of concentration of rods

or> =nad for pul,
ér = na’b for Hihear
¢ = nab®>  for permeability
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Brownian rotations — for stress relaxation

Rotary diffusivity: for spheres, rods and disks

87 ua’
Diot = kT 5, kT ) ————— kT /8ub®
ot /87”” ’ /3(|n 2r —1.5)’ /3“

NB largest dimension, again
After flow is switched off, particles randomise orientation in time
1/6D  ~ 1 second for 1pum in water.

State of alignment: probability density P(p,t) in orientation space
= unit sphere |p| = 1.
Fokker-Plank equation

oP

—— 4+ V-(pP) = Dot V?P
at‘FV(F’) ¢V

p(p) earlier deterministic.
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Average stress over distribution P

Averaged stress

o = —pl +2uE + 2u¢[AE : (pppP)
+ B(E-(pp) + (pp)-E) + CE + F Drot (PP)]

Last F D,y term is entropic stress.

Extra material constant F = 3r?/(In2r — 0.5) for rods and 12/7r
for disks.

Averaging

(pp) = / ppP dp
Ip=1

Solve Fokker-Plank: numerical, weak and strong Brownian
rotations
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Extensional and shear viscosities

o
13
X ¢rr2inr Sma”

strain-hardening

4/15

}6 E/D ) )
1 Orientation effects
%Sﬁf

,,,,,,,,,,,,,,,,,,, 4 6r~2/15Inr
Large
shear-thinning

._——¢r22nr (DIy) 13

Also Ny > 0,
0.32¢ rlint N2 small < 0.

6 "3 vy/D
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The closure problem

» Second moment of Fokker-Plank equation

%mp) —Q-(pp)(pp)-Q

= 5L [E-(pp) + (pP)-E — 2(pppp) : E]—6Drot [(pp) — 3]

Hence this and stress need (pppp), so an infinite hierarchy.
» Simple ‘ad hoc’ closure

(pppP) : E = (pp)(pp) : E

> Better: correct in weak and strong limits

= £ [6(pp)-E-(pp) — (pp)(pP): E — 2I((pp)*: E — (pp): E)]

» New idea Brownian fields: simulate many random walks in
orientation space for each point of the complex flow.



Rotations

v

Rotation of particles

Macro stress

v

v

Uni-axial straining

» Extensional viscosity rods
» Extensional viscosity disks

v

Simple shear
» Shear viscosity

v

Anisotropy
Brownian rotations

» Macro stress
» Viscosities
» Closures

v



Microstructural studies for rheology

» Micro & macro views
» Einstein viscosity

» Rotations

» Deformations

» Interactions

> Polymers

» Others



Deformations

» Emulsions
» Rupture

» Theories
» Numerical

» Flexible thread

» Double layer



Emulsions - deformable microstructure



Emulsions - deformable microstructure

Reviews: Ann. Rev. Fluid Mech. Rallison (1984), Stone (1994)



Emulsions - deformable microstructure

Reviews: Ann. Rev. Fluid Mech. Rallison (1984), Stone (1994)

» Dilute — single drop, volume 4{33



Emulsions - deformable microstructure

Reviews: Ann. Rev. Fluid Mech. Rallison (1984), Stone (1994)

» Dilute — single drop, volume 4{33

» T = surface tension (in rheology o and « not possible)



Emulsions - deformable microstructure

Reviews: Ann. Rev. Fluid Mech. Rallison (1984), Stone (1994)

» Dilute — single drop, volume 4{33

» T = surface tension (in rheology o and « not possible)

> Newtonian viscous drop fiint, solvent froxt



Emulsions - deformable microstructure

Reviews: Ann. Rev. Fluid Mech. Rallison (1984), Stone (1994)

» Dilute — single drop, volume 4{33

» T = surface tension (in rheology o and « not possible)

> Newtonian viscous drop fiint, solvent froxt

Rupture if frext > é (normally)



Emulsions - deformable microstructure

Reviews: Ann. Rev. Fluid Mech. Rallison (1984), Stone (1994)

» Dilute — single drop, volume 4{33

» T = surface tension (in rheology o and « not possible)

> Newtonian viscous drop fiint, solvent froxt

Rupture if frext > é (normally)

S/

\Q/



Emulsions - deformable microstructure

Reviews: Ann. Rev. Fluid Mech. Rallison (1984), Stone (1994)

» Dilute — single drop, volume 4{33

» T = surface tension (in rheology o and « not possible)

> Newtonian viscous drop fiint, solvent froxt

Rupture if frext > é (normally)

SN SN

T
\Q/ N/



Emulsions - deformable microstructure

Reviews: Ann. Rev. Fluid Mech. Rallison (1984), Stone (1994)

» Dilute — single drop, volume 4{33

» T = surface tension (in rheology o and « not possible)

> Newtonian viscous drop fiint, solvent froxt

Rupture if frext > é (normally)
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Emulsions - deformable microstructure

Reviews: Ann. Rev. Fluid Mech. Rallison (1984), Stone (1994)

» Dilute — single drop, volume 4{ a3

» T = surface tension (in rheology o and « not possible)

> Newtonian viscous drop fiint, solvent froxt

Rupture if frext > EL (normally)

R N N
Q tme D e O o O
N /7 N /7N /7

Irreversible reduction in size to a, = T /uextE, as coalescence very
slow.



Rupture in shear flow

o= rimental Lts
=B += Grace,” 1982 rosets
E A= Barthes-Biesel, 1372
7 X = Ral.LLson, 1981
] V= Hinch + ferivos, 1980
4 L]
L e +
P
o \+‘§L *
T O | N+ b
_— £+~7 T +
573
,UJext, Ea c \'\Q o
s ] e :
Fal éo +
g i ‘7\ [ 3P
T
(SR
=] PR L W B e L R AL e
10 10 10 10 10 10
Viscosity ratio
Hint
Hext

Experiments: de Bruijn (1989) (=own), Grace (1982)
Theories: Barthes-Biesel (1972), Rallison (1981), Hinch & Acrivos (1980)
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Rupture difficult if i << fhexs

Too slippery. Become long and thin. Rupture if

T | 0.54 (ttext/ tin 23 simple sh
HextE > { (Hext/ print) simple shear

a 0.14(uext/uint)1/6 extension

but tip-streaming with mobile surfactants (makes rigid end-cap)

T
,ueXtE > ;056
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Rupture difficult is simple shear if fiint > 3ptext

» If internal very viscous ( fint >> fext ),
> then rotates with vorticity,
» rotating with vorticity, sees alternative stretching and
compression,
» hence deforms little.

» If internal fairly viscous (pint 2 3ftext),
» then deforms more,
» if deformed, rotates more slowly in stretching quadrant,

» if more deformed, rotates more slowly, so deforms even more,
etc etc

> until can rupture when ping < 3ftext
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Theoretical studies: small deformations

Small ellipsoidal deformation
r=a(l+x-A(t)-x+ higher orders)
Stokes flow with help of computerised algebra manipulator

DA
Bp ~ VATAQ=2KE + hs(A-E+E-A)+ ...

— T (koA + ks(A-A) + ...

Mextd

0= —pl + 2pextE + 2,uext<75[k3E + kz(A-E+ E-A) + ...

Mexta

with k, depending on viscosity ratio, A\ = fint/ flext,

_ __5 _ 40(A+1)

ki = 2(22+3)’ ko = (22+3)(191+16)
_ 5(A-1) _ 4

ks = 3(2213)° ki = 233

ki1 inefficiency of rotating by straining

T (kA + kg(A-A) + ...



Inefficiency of rotating by straining

Student Exercise
Consider the constitutive equation

o= —pl +2ugE + GA
DA 1
— —Q-A+A-Q—-a(E-A+A-E)=—(A—-1
Q. ALAQ-a(EALAE)= (A1),

inflow u=(Q+E)-x.

Solve for o in steady simple shear, finding the shear viscosity and
normal stress differences.

Find the condition on the parameters for the shear stress to be a
monotonic increasing function of the shear-rate
(non-shear-banding).
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Theoretical studies: small deformations 2

Equilibrium shapes before rupture
extension shear

internal circulation,
O O tank-treading

Rheology before rupture
Small strain-hardening, small shear-thinning, Ny > 0, N> < 0.

Repeated rupture leaves p* =2 constant.
Einstein: independent of size of particle, just depends on ¢.

Form of constitutive equation

d T
—(state) & o linearin E &
dt Hexta



deformation

Numerical studies: boundary integral method
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FiGue 12. Steady-state results as a function of capillary number for ¢ = 10%, (a) average

steady-state drop (b) drop (¢) shear stress of drops, and {d)
contribution of drops to normal stresses: first normal stress difference (solid curves), second normal
stress difference (dashed curves); 4= 0 (+), i =02 (O, 2= 1(0), =2 (&), A =5 ().

Different A. No rupture for A =5 (*)
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Flexible thread — deformable microstructure

Position x(s, t), arc length s, tension T (s, t)
Slender-body theory with 2:1 drag L:||, S.Ex

x=xVU+ T'x + 3Tx"
Inextensibility |x'| = 1 gives S.Ex

T" _ %(x”)ZT =—x-VU-xX' and T =0 at ends

% Snap straight

H 76
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Electrical double layer on isolated sphere

— another deformable microstructure

v

Charged colloidal particle.

v

Solvent ions dissociate,

v

forming neutralising cloud around particle.

v

Screening distance Debye 71, with k2 = Z,-n,-z,-zez/ekT.

v

In flow, cloud distorts a little

» — very small change in Einstein %
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Hydrodynamic interactions for rigid spheres

Hydrodynamic: difficult long-ranged
Rigid spheres : two bad ideas

Dilute — between pairs (mostly)

Q//Q 8 0 (O

Reversible (spheres + Stokes flow) — return to original streamlines

But minimum separation is %10_4 radius — sensitive to roughness
(typically 1%) when do not return to original streamlines.
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Summing dilute interactions

Divergent integral from Vu ~ —
P
Need renormalisation: Batchelor or mean-field hierarchy.

pt = p[1+ 256+ 6.0¢°]

» 6.0 for strong Brownian motion
> 7.6 for strong extensional flow

» 225 for strong shear flow, depends on distribution on closed
orbits

Small strain-hardening, small shear-thinning



Test of Batchelor ¢? result

pt = p[1+ 254+ 6.0¢°]

Fig. 14.17. Low shear viscosity for dilute suspensions of hard spheres (Russel, 1980): O,
data for polystyrene latices (a=42, 87nm) in water (Saunders, 1961); ——,
theory of Batchelor (1977).
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Experiments — concentrated

Effective viscosities in shear flow

Fig. 14.3. Relative steady shear viscosity as function of Peclet number for polystyrene
latices of radii listed in Table 14.3 dispersed in water (——) and benzyl alcohol
or meta-cresol (O @) (Krieger, 1972).
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Stokesian Dynamics

— (mostly) pairwise additive hydrodynamics

Jamming/locking — clusters across the compressive quadrant

Brady & Bossis (1985)

Fragile clusters if include soft repulsion or Brownian motion



Stokesian Dynamics 2

Effective viscosity in shear flow
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Stokesian Dynamics ~ van der Werff et al. (1989)
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Electrical double-layer interactions

Interaction distance r,:

¢? coefficient as function of
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Experiments — concentrated

Stress as function of shear-rate at different pH.
Suspension of 0.33um aluminium particles at ¢ = 0.3
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Experiments — concentrated

Stress as function of shear-rate at different pH.
Suspension of 0.33um aluminium particles at ¢ = 0.3
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Fig.3 : Courbes d'écoulement de suspensions d'alumine P772SB, en fonction du pH,
$,=0,30.
Ducerf (Grenoble PhD 1992)
Note yield stress very sensitive to pH
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Interactions — van der Waals

Attraction — aggregation
— gel (conc) or suspension of flocs (dilute)

Possible model of size of flocs R

d
» Number of particles in floc N = <R) ,d =237
a

v

R 3
Volume fraction of flocs ¢goc = @ (a)

Collision between two flocs

v

> Hydro force 6muRyR = Bond force Fpx number of
bonds N %

Hence ¢foc = ¢

» So strong shear-thinning and yields stress ¢F;,/a°.

Fp
6 pazy

v

Breakdown of structure in rheology (%)
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Interactions — fibres

Cannot pack with random orientation if
or>1
leads to spontaneous alignment, nematic phase transition

Note extensional viscosity o ¢r? can be big while random,
but shear viscosity o ¢r is only big if aligned.

Disk not random if ¢% > 1.
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Interactions — drops

» No jamming/locking of drops (cf rigid spheres)

» small deformation avoid geometric frustration
» slippery particle, no co-rotation problems

» Faster flow — more deformed — wider gaps in collisions

» Deformed shape has lower collision cross-section
so ‘dilute’ at ¢ = 0.3, blood works!



Numerical studies: boundary integral method

»=0.3, Ca= pextya/ T =03 A =1, vt =10,
12 drops, each 320 triangles.



Numerical studies: boundary integral method 3

deformation o | | angle

N1, N

Ca
Figure 10. Steady-state results as a function of capillary number for 7 = 1. (a) Average sicady-state
drop deformation, (b) drop oricntation, {c) shear stress contribution of drops, and (d) contribution
of drops to normal stresses: first normal stress difference (solid curves), second normal stress
difference (dashed curves); ¢ = 0 (O), = 10% (D), ¢ = 20% (+), ¢ = 30% (A

A =1, different ¢ = 0,0.1,0.2,0.3. Effectively dilute at ¢ = 0.3.



Numerical studies: boundary integral method 4

Reduced cross-section for collisions

into flow
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