Microstructural studies for rheology

» Micro & macro views
» Einstein viscosity

» Rotations

» Deformations

» Interactions

> Polymers

» Others

Rotation of particles — rigid and dilute

Spheroid: axes a, b, b, aspect ratio r =

ol

rod r>1 e 7 <

Direction of axis p(t), unit vector.

Stokes flow by Oberbeck (1876). See Lamb. Uses ellipsoidal
harmonic function in place of spherical harmonic 1/r
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Rotation of particles

Macro stress
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Uni-axial straining
» Extensional viscosity rods
» Extensional viscosity disks
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Simple shear
» Shear viscosity
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Anisotropy
Brownian rotations
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» Macro stress
» Viscosities
» Closures

Rotation of particles

Microstructural evolution equation
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Straining less efficient at rotation by

Long rods ;z;i — +1 i.e. Upper Convective Derivative
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Flat disks :2+} — —1 i.e. Lower Convective Derivative
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Rotation of particles Micro—macro link: stress

Student Exercise

Show that
a(t) ... . ] G = —pl +2uE +2up[A(p-E-p)pp + B(pp - E + E - pp) + CE]
p(t)zm with q=Qxq+ 7E-q
q with A, B, C material constants depending on shape but not size
satisfies 5 A 5 c
P 2_il
— =Qxp+ o 5[E-p—p(p-E-p)]
Dt r°+1 r? 6In2r—11
F7%0 Sn2r—3) 2 2
Hence find p(t) for axisymmetric extensional flow and for simple r—0 3170r —% %
shear, starting from an arbitrary initial p(0).
Rotation in uni-axial straining Effective extensional viscosity for rods
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Het “( +¢3(|n2r—1.5)>

Largeat o < 1 if r > 1.
Now ¢ = 4%ab2 and r = %, o)

. 14 4mna’
Mozt = 17 9(In2r — 1.5)

so same as sphere of radius a its largest dimension (except for
factor 1.2(In2r — 1.5)).
Hence 5ppm of PEO can have a big effect in drag reduction.

U=E(x,—3y,—32)

rotates to

Aligns with stretching direction — maximum dissipation

rotates to

Aligns with inflow direction — maximum dissipation _ _ 3 _ o
Dilute requires na®> < 1, but extension by Batchelor to semi-dilute

b <1< or?
. 14 47na’
/'Lext = 9 In (b_l/z



Effective extensional viscosity for disks Behaviour in simple shear

U=(vy,0,0)

rotates to

. 10 10nb3
Next—ﬂ<1+¢3m> —M(l‘i' 9 >

where for disks b is the largest dimension

Rotates to flow direction — minimum dissipation

rotates to
(always the largest for Stokes flow).

No semi-dilute theory, yet. Rotates to lie in flow — minimum dissipation

Both Tumble: flip in 1/, then align for r/y (66 = 1/r with
0 =/r)

Effective shear viscosity Remarks

Jeffery orbits (1922)
Alignment gives k. < ph

¢ = 25(r’cos’ ¢ +sin’9)
. > This material anisotropy leads to anisotropy of macro flow.
0 = o) sin20sin2¢

_ _ _ Important to Turbulent Drag Reduction
Solution with orbit constant C.

tan¢ = rtanwt, w = - tan§ = Cr(r? cos® ¢ + sin® ¢) /2

r’+1’ Three measures of concentration of rods
2 - 3 *
Effective shear viscosity Leal & H (1971) P = aE T
ér = na’b for T
. 0.32r/Inr rods = nab®>  for permeabilit
Hshear — M 1 + ¢ . ¢ P /
3.1 disks

numerical coefficients depend on distribution across orbits, C.



Brownian rotations — for stress relaxation

Rotary diffusivity: for spheres, rods and disks

8mpa’
_ 3 8, 13
Drot = kT/87rua ) kT/3(|n2r — 15y’ kT/3ub

NB largest dimension, again
After flow is switched off, particles randomise orientation in time
1/6D  ~ 1 second for 1um in water.

State of alignment: probability density P(p, t) in orientation space
= unit sphere |p| = 1.
Fokker-Plank equation

oP

i V-(pP) = Dot V2P

p(p) earlier deterministic.

Extensional and shear viscosities

Small

strain-hardening

1 Orientation effects
Large
shear-thinning

Also N; > 0,
N> small < 0.

Average stress over distribution P

Averaged stress

o = —pl +2uE + 2u¢[AE : (pppp)
+ B(E-(pp) + (pp)-E) + CE + FDrot(pp)]

Last F D, term is entropic stress.
Extra material constant F = 3r2/(In2r — 0.5) for rods and 12/7r
for disks.

Averaging
(pp) = / ppP dp
Ip|=1

Solve Fokker-Plank: numerical, weak and strong Brownian
rotations

The closure problem

» Second moment of Fokker-Plank equation
> (pp) — - (pp) (pP) 2
;PP pp) (pp
2_
= 571 [E-(pp) + (pP)-E — 2(pppPp) : E]—6Ds0t [(PP) — /]
Hence this and stress need (pppp), so an infinite hierarchy.
» Simple ‘ad hoc’ closure

(ppPP) : E = (pP)(pPP) : E

» Better: correct in weak and strong limits

= £ [6(pp)-E-(pp) — (pp)(pp): E — 2/((pp)*:E — (pp): E)]

» New idea Brownian fields: simulate many random walks in
orientation space for each point of the complex flow.



Deformations

» Emulsions
» Rupture

» Theories
» Numerical

» Flexible thread

» Double layer

Rupture in shear flow

Hext Ea

Mint
Hext

Experiments: de Bruijn (1989) (=own), Grace (1982)
Theories: Barthes-Biesel (1972), Rallison (1981), Hinch & Acrivos (1980)

Emulsions - deformable microstructure

Reviews: Ann. Rev. Fluid Mech. Rallison (1984), Stone (1994)

» Dilute — single drop, volume 4{33

» T = surface tension (in rheology o and - not possible)

» Newtonian viscous drop fiint, solvent fioxt

Rupture if prext > % (normally)

time time

Irreversible reduction in size to a. = T /pextE, as coalescence very

slow.

Rupture difficult if ping < fext

Too slippery. Become long and thin. Rupture if

,UfextE > —

a

T O.54(uext/uint)2/3 simple shear
0.14 (uext/uint)l/(’ extension

but tip-streaming with mobile surfactants (makes rigid end-cap)

T
,ueXtE > ;056



Rupture difficult is simple shear if pint > 3ftext

» If internal very viscous ( fint > fext),

> then rotates with vorticity,

> rotating with vorticity, sees alternative stretching and
compression,

> hence deforms little.

» If internal fairly viscous (pint 2 3ftext),

» then deforms more,
» if deformed, rotates more slowly in stretching quadrant,

» if more deformed, rotates more slowly, so deforms even more,

etc etc

» until can rupture when pine < 3flext

Inefficiency of rotating by straining

Student Exercise
Consider the constitutive equation

o= —pl+2upE + GA
DA 1
— —Q-A+A-Q—a(E-A+A-E)=——(A-1
A QATAQ-a(E-ATAE)=—(A-1),

inflow u=(Q+E)-x.

Solve for ¢ in steady simple shear, finding the shear viscosity and
normal stress differences.

Find the condition on the parameters for the shear stress to be a
monotonic increasing function of the shear-rate
(non-shear-banding).

Theoretical studies: small deformations

Small ellipsoidal deformation
r=a(l+x-A(t)-x+ higher orders)
Stokes flow with help of computerised algebra manipulator

DA
2 _QA+AQ=2kE+ks(A-E+E-A)+...

Dt
— L (koA + kg(A-A) + ...

Hextd

0 = —pl + 2extE + 2ptextd [ k3E + kr(A-E+ E-A) + ...
(ks + k(A-A) + . ..

T
Mexta
with k, depending on viscosity ratio, A = fint/ ftext,

o 5 o 40(A\+1)

ki = 2(22+3)’ ko = (22+3)(191+16)
_ 5(A-1) _ _4

ks = 3(2A+3)° ks = 5313

k1 inefficiency of rotating by straining

Theoretical studies: small deformations 2

Equilibrium shapes before rupture
extension shear internal circulation,
tank-treading

Rheology before rupture
Small strain-hardening, small shear-thinning, N; > 0, N> < 0.

Repeated rupture leaves p* = constant.
Einstein: independent of size of particle, just depends on ¢.

Form of constitutive equation

d T
—(state) & o linear in E &
dt Mextd



Numerical studies: boundary integral method

deformation angle

Oxy N1, N

Different A. No rupture for A =5 (*)

Electrical double layer on isolated sphere

— another deformable microstructure

v

Charged colloidal particle.

v

Solvent ions dissociate,

v

forming neutralising cloud around particle.

v

Screening distance Debye x~1, with k% = ):,-n,-zl-zez/ekT.

v

In flow, cloud distorts a little
5

» — very small change in Einstein 3.

Flexible thread — deformable microstructure

Position x(s, t), arc length s, tension T(s, t)
Slender-body theory with 2:1 drag L:||, S.Ex

x =x-VU+ T'x' + 3 Tx"
Inextensibility [x'| =1 gives S.Ex
T —i(x")’T = —x/-VU-x' and T =0 at ends

Snap straight
H 76

Interactions

v

Hydrodynamic
> Dilute
» Experiments
> Numerical

v

Electrical double-layer

» Concentrated

van der Waals

v

v

Fibres
» Drops

» Numerical



Hydrodynamic interactions for rigid spheres Summing dilute interactions

1
Divergent integral from Vu ~ —
C P
Hydrodynamic: difficult long-ranged Need renormalisation: Batchelor or mean-field hierarchy.
Rigid spheres : two bad ideas
= p[1+ 256+ 6.0¢°
Dilute — between pairs (mostly) : )

» 6.0 for strong Brownian motion
Reversible (spheres + Stokes flow) — return to original streamlines

But minimum separation is %10_4 radius — sensitive to roughness » =5 for strong shear flow, depends on distribution on closed

(typically 1%) when do not return to original streamlines. orbits

» 7.6 for strong extensional flow

Small strain-hardening, small shear-thinning

Test of Batchelor ¢? result Experiments — concentrated

Effective viscosities in shear flow
< Ho 1o
p* = p [1+25¢ + 6.04°]

slope 6.0 Moo

Moo —

Einstein 2.5—

Russel, Saville, Schowalter 1989 ,ua3’y/kT [0)

Russel, Saville, Schowalter 1989



Stokesian Dynamics

— (mostly) pairwise additive hydrodynamics

Jamming/locking — clusters across the compressive quadrant

Brady & Bossis (1985)

Fragile clusters if include soft repulsion or Brownian motion

Electrical double-layer interactions

Interaction distance r,:

2.2
GC a K“e—n(r*—2a)

*

bupayr, =

e = i <1 +2.5¢ + 2.8 <;>5>

¢? coefficient as function of =

re\ o .
(—) = velocity ~yr,
a
x force distance r.

I

X volume ¢ <;)3

Stokesian Dynamics 2

Effective viscosity in shear flow

‘Stokesian Dynamics’ Brady & Bossis
Ann. Rev. Fluid Mech. (1988)

Experiments — concentrated

Foss & Brady (2000)

Stress as function of shear-rate at different pH.
Suspension of 0.33pum aluminium particles at ¢ = 0.3

Note yield stress very sensitive to pH

Ducerf (Grenoble PhD 1992)



Interactions — van der Waals Interactions — fibres

Attraction — aggregation
— gel (conc) or suspension of flocs (dilute)

Possible model of size of flocs R g Cannot pack with random orientation if
R
» Number of particles in floc N = (a) ,d =237 or>1
3
> Volume fraction of flocs ¢goc = ¢ <R> leads to spontaneous alignment, nematic phase transition
» Collision between two flocs Note extensional viscosity o ¢r? can be big while random,
> Hydro force 6mpuRYR = Bond force F,x number of but shear viscosity o< ¢r is only big if aligned.
bonds N5 ) N
E Disk not random if ¢ > 1.
> Hence Pfloc = ¢7b2
6mpasy
> So strong shear-thinning and yields stress ¢F,/a°.
Breakdown of structure in rheology 1(7)
Interactions — drops Numerical studies: boundary integral method

» No jamming/locking of drops (cf rigid spheres)

» small deformation avoid geometric frustration
> slippery particle, no co-rotation problems
$»=0.3, Ca= pextya/T =03 A=1, vt =10,
» Faster flow — more deformed — wider gaps in collisions 12 drops, each 320 triangles.
» Deformed shape has lower collision cross-section

so ‘dilute’ at ¢ = 0.3, blood works!



Numerical studies: boundary integral method 3 Numerical studies: boundary integral method 4

deformation angle

Reduced cross-section for collisions

into flow

Oxy N1, N>

A =1, different ¢ = 0,0.1,0.2,0.3. Effectively dilute at ¢ = 0.3.



