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Bead-and-Spring model of isolated polymer chain

— simplest, only gross distortion, Kuhn & Kuhn 1945, Kramers 1946
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> Flow distortion = Stokes drag = 6mpua(R-VU — R)

a= 1bNOS — NOO
__ 3kT

> Resisted by entropic spring force = kR, K= 2

Hence

R=RVU- LR with 7=0.8kT/u(N"?b)?
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Bead-and-Spring model of isolated polymer chain 2

» Adding Brownian motion of the beads: A = (RR)

v DA ;
= A=—Z(A- 1
=5, ~AVU-VU ( : )

= —pl +2uE + nkA

with n number of chains per unit volume.

v
— Oldroyd-B constitutive equation with UCD time derivative A
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Rheological properties

Shear
» 1 = constant, Nj x 72, N> = 0.
» Distortion xy: ayT X a

Extension

> p

05 !/ Er

. 1
» Distortion ox e(2E—7)t

» For TDR: small shear and large extensional viscosities






Refinements

1. (boring) Spectrum of internal modes: Rouse 53, Zimm 56
with pre-averaged hydrodynamics



Refinements

1. (boring) Spectrum of internal modes: Rouse 53, Zimm 56
with pre-averaged hydrodynamics
2. (boring) Polydisperse molecular weights



Refinements

1. (boring) Spectrum of internal modes: Rouse 53, Zimm 56
with pre-averaged hydrodynamics

2. (boring) Polydisperse molecular weights

3. (important) Finite extensibility — to stop infinite growth

x e(2E7%)t



Refinements

1. (boring) Spectrum of internal modes: Rouse 53, Zimm 56
with pre-averaged hydrodynamics

2. (boring) Polydisperse molecular weights

3. (important) Finite extensibility — to stop infinite growth

- e(2E7%)t
» Nonlinear spring force — inverse Langevin law
kT R
F(R) = 75*1 (Nb) with  £(x) = cothx — 1



Refinements

1. (boring) Spectrum of internal modes: Rouse 53, Zimm 56
with pre-averaged hydrodynamics

2. (boring) Polydisperse molecular weights

3. (important) Finite extensibility — to stop infinite growth

- e(2E7%)t
» Nonlinear spring force — inverse Langevin law
kT R
F(R) = 75*1 (Nb) with  £(x) = cothx — 1
» F.E.N.E approximation
kT R
F(R)= —-——=—5 with fully extended length L= Nb

Nb21— R?][2



Refinements

1. (boring) Spectrum of internal modes: Rouse 53, Zimm 56
with pre-averaged hydrodynamics

2. (boring) Polydisperse molecular weights

3. (important) Finite extensibility — to stop infinite growth

- e(2E7%)t
» Nonlinear spring force — inverse Langevin law
kT R
F(R) = 75*1 (Nb) with  £(x) = cothx — 1
» F.E.N.E approximation
kT R
F(R) = Ww Wlth fU”y extended |ength L= Nb

» FENE-P closure
(RR/(1—R?/L%)) = (RR) /(1 — (R?*)/L?)



Refinements

1. (boring) Spectrum of internal modes: Rouse 53, Zimm 56
with pre-averaged hydrodynamics

2. (boring) Polydisperse molecular weights

3. (important) Finite extensibility — to stop infinite growth

- e(2E7%)t
» Nonlinear spring force — inverse Langevin law
kT R
F(R) = 75*1 (Nb) with  £(x) = cothx — 1
» F.E.N.E approximation
kT R
F(R) = Ww Wlth fU”y extended |ength L= Nb

» FENE-P closure
(RR/(1—R?/L%)) = (RR) /(1 — (R?*)/L?)

but “molecular individualism”
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FENE-P constitutive equation

Vo1 L2 a’
A=~ (a-Zy
7'L2—traceA< 3 )

L2
= —pl +2uE — A
g plzp +rmLz—traceA
Hext
1+ nal?

Er
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More refinements

4. Nonlinear bead friction
Hydrodynamic drag increase with size 6wpu(a — R)

Lext = 1+ nl3 and hysteresis

5. Rotation of the beads — simple shear not so simple

AV O VA\,/-\ Couple balance

trace A

\Y% o
Afine A — non-affine A— ————
3+ trace A

(A-E + E-A)

inefficiency of straining
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One more refinement

6. Dissipative stress — nonlinear internal modes
Simulations show growing stretched segments

2 2 4
t length b L dissipati R
segment length o« —, number o — issipation o< —
g g L ) R27 p L
(trace A)? L?
=—pl+2u(1l —F— | E ——A
7 pit M( L] T race A

Good for contraction flows
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Unravelling a polymer chain in an extensional flow

Simulation of chain with N = 100 in uni-axial straining motion at

strains Et = 0.8, 1.6, 2.4.
/\J\W

e S D

» Growing stretched segments

» Two ends not on opposite sides
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Simplified 1D ‘kinks" model

» t =0: 1D random walk, N steps of +1
> t > 0: floppy inextensible string in u = Ex

» arc lengths satisfy

5,‘ = %E(_Ser]_ + 25,' — S,',l)

> Large gobble small
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Kinks model 2

10-3% 10-2% 10-1% 100% 101% 102%

Ase-2Et

Distribution of lengths #(t)
scaled by e2Et

Number of segments n(t)

Scalings

nl =N R n = Ne 2Et
Vnl = R = +/NeFt ¢ = eFt

H 94



Evidence of a dissipative stress

Original data of Sridhar, Tirtaatmadja, Nguyen & Gupta 1991 plotted
as viscosity as function of time
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Improved algorithms for Brownian simulations

1. Mid-point time-stepping avoids evaluating V-D
Keep random force fixed in time-step, but vary friction
2. Replace very stiff (fast) bonds with rigid + correction
potential

a b
—kTVInVdet M~ with M12= 3" -108” Jg
i beads : 8X,‘ 8X,’

where rigid constraints are g?(xi,...,xy) = 0 and stiff spring
energy %\VgaF

3. Stress by subtraction of large At~1/2 term with zero average

%(X” —|—x"+1)f” — %Axnf"

Grassia, Nitsche & H 95



Relaxation of fully stretched chain

Long times - Rouse relaxation

Stres relaation: Decay of (1,1 stress component vs - Long imes.
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Relaxation of fully stretched chain

Long times - Rouse relaxation Short times finite

Stres relaation: Decay of (1,1 stress component vs - Long imes.

o/3N3 vs Nt

Intermediate times
o~ kTN?2¢t~1/2
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Constitutive equation — options

vV v v v

Ae—Lra—i
= —f(A=1)
o = —pl +2uE + GFA

Oldroyd B f =1

FENE-P f = 12/(L? — trace A)
Nonlinear bead friction h = /trace A/3
New form of stress

o= —pl+2uE +2u4(A: E)A+ GVitrace AA

» Last term for finite stress when fully stretched

> g term (oc N=1/2) for enhanced dissipation
Good for positive pressure drops and large upstream vortices
in contraction flows.
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Reptation model of De Gennes 1971 - often reformulated

Chain moves in tube defined by topological constraints from other
chains.

Chain disengages from tube by diffusing along its length

L2 3

07D = kT J6muLl ™

Modulus G = nkT — u* = Gp o M3 (expts M3#4)
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Diffusion out of tube

At later time:

Fraction of original tube surviving

Diffusion gives linear viscoelasticity G’ o w'/?
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Doi-Edwards rheology 1978

Deformation of the tube by a shear flow.

f

Unit segments of the tube u aligned by flow:

u —> Au with Finger tensor A

Stress

2 /7 3kT /A*u A*u
= n/ Z ps/To Nsegements < ]A*u|2 > ds

survmg tube  segment tension

with relative deformation A* = A(t)A~1(t — s).
A BKZ integral constitutive equation
Problem maximum in shear stress
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Refinements

1. Chain retraction

deform — @\f@ retract — JQ

Chain returns in Rouse time to natural length — loss of
segments

2. Chain fluctuations

3. Other chains reptate — release topological constraints
“Double reptation” of Des Cloiseaux 1990. bimodal blends

4. 2 & 3 give o< M34

5. Advected constraint release Marrucci 1996

1 —>%+BVU:<UU>

D

6. Flow changes tube volume or cross-section
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Chain trapped in a fast shearing lattice

Lattice for other chains

more shear —

central section pulling chain out of arms — high dissipative stresses

lanniruberto, Marrucci & H 98
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Branched polymers — typical in industry

Very difficult to pull branches into central tube

H X eXp(Marm/Mentangle)
Pom-Pom model of Tom McLeish and Ron Larson 1999

Stress: o = GA°S
v
Orientation: S = B/traceB B=-1(B-I

TO

Stretch: A=Vu:S— %(A —1) while X< Amax

with 70 = Tarm(Mc /Mg)? and 75 = Tarm(Mc/Mg)? and
Tarm = exp(Marm/ME) where M¢c = Mcrossbar and Mg = Mentanglement-
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Test of Pom-Pom model — Blackwell 2002

Fit: Linear Viscoelastic data and Steady Uni-axial Extension.
Predict: Transient Shear and Transient Normal Stress

; Transient Viscosity

Sa

Transient Viscosity /Pa.s
5

Data from Miinstedt
and Laun (1979)
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First Normal Stress Difference in Shear
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IUPAC-A data Miintedt & Laun (1979)
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Other microstructural studies

v

Electro- and Magneto- -rheological fluids

v

Associating polymers

» Surfactants - micells
» Aging materials
» GENERIC

v

Modelling ‘Molecular individualism’ and closure problems
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