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Bead-and-Spring model of isolated polymer chain

– simplest, only gross distortion, Kuhn & Kuhn 1945, Kramers 1946

R

κ

a

Ε

I Flow distortion = Stokes drag = 6πµa(R ·∇U − Ṙ)
a = 1

6bN
0.5 → N0.6

I Resisted by entropic spring force = κR, κ = 3kT
Nb2

Hence

Ṙ = R ·∇U − 1
2τ R with τ = 0.8kT/µ(N1/2b)3
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Bead-and-Spring model of isolated polymer chain 2

I Adding Brownian motion of the beads: A = 〈RR〉

∇
A ≡ DA

Dt
− A·∇U −∇UT ·A = −1

τ

(
A− Nb2

3
I

)
σ = −pI + 2µE + nκA

with n number of chains per unit volume.

– Oldroyd-B constitutive equation with UCD time derivative
∇
A
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Rheological properties

Shear

I µ = constant, N1 ∝ γ2, N2 = 0.

I Distortion xy : aγτ × a

Extension

I µ

Eτ
0.5 !

I Distortion ∝ e(2E−
1
τ
)t

I For TDR: small shear and large extensional viscosities
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Refinements

1. (boring) Spectrum of internal modes: Rouse 53, Zimm 56
with pre-averaged hydrodynamics

2. (boring) Polydisperse molecular weights
3. (important) Finite extensibility – to stop infinite growth

∝ e(2E−
1
τ
)t

I Nonlinear spring force – inverse Langevin law

F (R) =
kT

b
L−1

(
R

Nb

)
with L(x) = coth x − 1

x

I F.E.N.E approximation

F (R) =
kT

Nb2
R

1− R2/L2
with fully extended length L = Nb

I FENE-P closure〈
RR/(1− R2/L2)

〉
= 〈RR〉 /(1− 〈R2〉/L2)

but “molecular individualism”
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FENE-P constitutive equation

∇
A = −1

τ

L2

L2 − traceA

(
A− a2

3
I
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σ = −pI + 2µE + nκ
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L2 − traceA
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1 + naL2
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More refinements

4. Nonlinear bead friction

Hydrodynamic drag increase with size 6πµ(a→ R)

µext = 1 + nL3 and hysteresis

5. Rotation of the beads – simple shear not so simple

Couple balance

Afine
∇
A −→ non-affine

◦
A− traceA

3 + traceA
(A·E + E ·A)

inefficiency of straining



More refinements

4. Nonlinear bead friction
Hydrodynamic drag increase with size 6πµ(a→ R)

µext = 1 + nL3 and hysteresis

5. Rotation of the beads – simple shear not so simple

Couple balance

Afine
∇
A −→ non-affine

◦
A− traceA

3 + traceA
(A·E + E ·A)

inefficiency of straining



More refinements

4. Nonlinear bead friction
Hydrodynamic drag increase with size 6πµ(a→ R)

µext = 1 + nL3 and hysteresis

5. Rotation of the beads – simple shear not so simple

Couple balance

Afine
∇
A −→ non-affine

◦
A− traceA

3 + traceA
(A·E + E ·A)

inefficiency of straining



More refinements

4. Nonlinear bead friction
Hydrodynamic drag increase with size 6πµ(a→ R)

µext = 1 + nL3 and hysteresis

5. Rotation of the beads – simple shear not so simple

Couple balance

Afine
∇
A −→ non-affine

◦
A− traceA

3 + traceA
(A·E + E ·A)

inefficiency of straining



More refinements

4. Nonlinear bead friction
Hydrodynamic drag increase with size 6πµ(a→ R)

µext = 1 + nL3 and hysteresis

5. Rotation of the beads – simple shear not so simple

Couple balance

Afine
∇
A −→ non-affine

◦
A− traceA

3 + traceA
(A·E + E ·A)

inefficiency of straining



More refinements

4. Nonlinear bead friction
Hydrodynamic drag increase with size 6πµ(a→ R)

µext = 1 + nL3 and hysteresis

5. Rotation of the beads – simple shear not so simple

Couple balance

Afine
∇
A −→ non-affine

◦
A− traceA

3 + traceA
(A·E + E ·A)

inefficiency of straining



One more refinement

6. Dissipative stress – nonlinear internal modes

Simulations show growing stretched segments

segment length ∝ R2

L
, number ∝ L2

R2
, dissipation ∝ R4

L

σ = −pI + 2µ

(
1 + n

(traceA)2

L

)
E + nκ

L2

L2 − traceA
A

Good for contraction flows
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Unravelling a polymer chain in an extensional flow

Simulation of chain with N = 100 in uni-axial straining motion at
strains Et = 0.8, 1.6, 2.4.

I Growing stretched segments

I Two ends not on opposite sides
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Simplified 1D ‘kinks’ model

I t = 0: 1D random walk, N steps of ±1

I t > 0: floppy inextensible string in u = Ex

I arc lengths satisfy

ṡi = 1
4E (−si+1 + 2si − si−1)

I Large gobble small
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Kinks model 2

Number of segments n(t)

Distribution of lengths `(t)
scaled by e2Et

Scalings {
n` = N
√
n` = R =

√
NeEt

−→

{
n = Ne−2Et

` = e2Et

H 94
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Evidence of a dissipative stress

Original data of Sridhar, Tirtaatmadja, Nguyen & Gupta 1991 plotted
as viscosity as function of time

Replotted a function of strain = strain-rate×time



Improved algorithms for Brownian simulations

1. Mid-point time-stepping avoids evaluating ∇·D
Keep random force fixed in time-step, but vary friction

2. Replace very stiff (fast) bonds with rigid + correction
potential

−kT∇ ln
√

detM−1 with M−1 ab =
∑

i beads

m−1i

∂ga

∂xi
· ∂g

b

∂xi

where rigid constraints are ga(x1, . . . , xN) = 0 and stiff spring
energy 1

2 |∇g
a|2

3. Stress by subtraction of large ∆t−1/2 term with zero average

1
2(xn + xn+1)f n −→ 1

2∆xnf n

Grassia, Nitsche & H 95
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Relaxation of fully stretched chain

Long times - Rouse relaxation
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Constitutive equation – options

∇
A = − 1

hτ
f (A− I )

σ = −pI + 2µE + Gf A

I Oldroyd B f = 1

I FENE-P f = L2/(L2 − traceA)

I Nonlinear bead friction h =
√

traceA/3

I New form of stress

σ = −pI + 2µE + 2µd(A : E )A + G
√

traceAA

I Last term for finite stress when fully stretched
I µd term (∝ N−1/2) for enhanced dissipation

Good for positive pressure drops and large upstream vortices
in contraction flows.
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I µd term (∝ N−1/2) for enhanced dissipation

Good for positive pressure drops and large upstream vortices
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Reptation model of De Gennes 1971 – often reformulated

Chain moves in tube defined by topological constraints from other
chains.
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L2

D = kT/6πµL
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Modulus G = nkT −→ µ∗ = GτD ∝ M3 (expts M3.4)
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Doi-Edwards rheology 1978

Deformation of the tube by a shear flow.
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|A∗u|2
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surving tube segment tension

with relative deformation A∗ = A(t)A−1(t − s).
A BKZ integral constitutive equation
Problem maximum in shear stress
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Refinements

1. Chain retraction

deform → retract →

Chain returns in Rouse time to natural length −→ loss of
segments

2. Chain fluctuations

3. Other chains reptate → release topological constraints
“Double reptation” of Des Cloiseaux 1990. bimodal blends

4. 2 & 3 give µ ∝ M3.4

5. Advected constraint release Marrucci 1996

1
τD
−→ 1

τD
+ β∇u : 〈uu〉

6. Flow changes tube volume or cross-section
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Chain trapped in a fast shearing lattice

Lattice for other chains

more shear →

central section pulling chain out of arms → high dissipative stresses

Ianniruberto, Marrucci & H 98
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Branched polymers – typical in industry

Very difficult to pull branches into central tube
µ ∝ exp(Marm/Mentangle)
Pom-Pom model of Tom McLeish and Ron Larson 1999

Stress: σ = Gλ2S

Orientation: S = B/traceB
∇
B = − 1

τO
(B− I)

Stretch: λ̇ = ∇u : S− 1
τS

(λ− 1) while λ < λmax

with τO = τarm(MC/ME )3 and τS = τarm(MC/ME )2 and

τarm ∼= exp(Marm/ME ) where MC = Mcrossbar and ME = Mentanglement.
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Test of Pom-Pom model – Blackwell 2002

Fit: Linear Viscoelastic data and Steady Uni-axial Extension.

Predict: Transient Shear and Transient Normal Stress

IUPAC-A data Müntedt & Laun (1979)
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