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Bead-and-Spring model of isolated polymer chain Bead-and-Spring model of isolated polymer chain 2

— simplest, only gross distortion, Kuhn & Kuhn 1945, Kramers 1946
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with n number of chains per unit volume.

Hence

R=R-VU~- LR with 7=08kT/u(N'?b)3



Rheological properties Refinements

Shear 1. (boring) Spectrum of internal modes: Rouse 53, Zimm 56
with pre-averaged hydrodynamics

» 1 = constant, Ny 'yz, Ny = 0.
2. (boring) Polydisperse molecular weights

» Distortion xy: ayT X a . . o e
! e 3. (important) Finite extensibility — to stop infinite growth
- e(2E—})t
Extension . . : :
» Nonlinear spring force — inverse Langevin law
>
§ kT R
| F(R) = Tﬁfl <Nb> with £(x) = cothx — 1
» F.E.N.E approximation
kT R .
» Distortion oc e(2E—7)t » FENE-P closure

: S RR/(1— R?*/L?)) = (RR) /(1 — (R?)/L?
» For TDR: small shear and large extensional viscosities (R V) = iR A0 = R
but “molecular individualism”

FENE-P constitutive equation More refinements

4. Nonlinear bead friction
Hydrodynamic drag increase with size 67u(a — R)
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7= P A S o L2 — trace AA 5. Rotation of the beads — simple shear not so simple
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inefficiency of straining



One more refinement

6. Dissipative stress — nonlinear internal modes
Simulations show growing stretched segments

2 2 4
t length b L dissipati R
segment length « —, number x —; issipation o —
g g 1t 5 p i
(trace A)? L?
=—pl+2u(1 —— | E — A
? pi+ M( L] +nHL2—traceA

Good for contraction flows

Simplified 1D ‘kinks’ model

» t =0: 1D random walk, N steps of +1
> t > 0: floppy inextensible string in u = Ex

> arc lengths satisfy

$i = zE(=siy1+ 25 — si_1)

» Large gobble small

Unravelling a polymer chain in an extensional flow

Simulation of chain with N = 100 in uni-axial straining motion at

strains Et = 0.8, 1.6, 2.4.
PR =

PP, < S

» Growing stretched segments

» Two ends not on opposite sides

Kinks model 2

10-3% 10-2% 10-1% 100° 101® 102°
Ase—2Et

Distribution of lengths #(t)
scaled by e?ft

Number of segments n(t)

Scalings
nl =N N n = Ne 2Et
Vnl = R =/ Neft (= e?Ft

H 94



Evidence of a dissipative stress

Original data of Sridhar, Tirtaatmadja, Nguyen & Gupta 1991 plotted
as viscosity as function of time
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Replotted a function of strain = strain-ratextime

Relaxation of fully stretched chain

Long times - Rouse relaxation Short times finite

Stress relasation: Decay of 11,1 stvess compnent s & Long i es

Intermediate times
o~ kTNt~ 1/2

Improved algorithms for Brownian simulations

1. Mid-point time-stepping avoids evaluating V-D
Keep random force fixed in time-step, but vary friction

2. Replace very stiff (fast) bonds with rigid + correction
potential

a b
—kTVInVdetM-1 with M1 = Z mflag Og
i beads : 8X,' 8x,—

where rigid constraints are g(x1,...,xy) = 0 and stiff spring
energy %|Vg"\2

3. Stress by subtraction of large At~1/2 term with zero average

T(x"+ X" TAX"F"
Grassia, Nitsche & H 95

Constitutive equation — options

Z\ 1fA /
= (A=)
o= —pl+2uE + GfA

Oldroyd B =1

FENE-P  f = [2/(L? —trace A)
Nonlinear bead friction h = y/trace A/3
New form of stress

vV vV VYV

o= —pl +2uE +2uq(A: E)A+ GVtrace AA

» Last term for finite stress when fully stretched

> 1g term (o< N=1/2) for enhanced dissipation
Good for positive pressure drops and large upstream vortices
in contraction flows.



Reptation model of De Gennes 1971 - often reformulated Diffusion out of tube

Chain moves in tube defined by topological constraints from other

: At later time:
chains.
Fraction of original tube surviving
Chain disengages from tube by diffusing along its length
3 L —r2t/m
2 2
L 3 ~n

0= D = kT /6muL ™

Diffusion gives linear viscoelasticity G’ oc wl/2
Modulus G = nkT — p* = Grp o< M®  (expts M3#)

Doi-Edwards rheology 1978 Refinements

1. Chain retraction

Deformation of the tube by a shear flow.
deform — @%@ retract — Of

Chain returns in Rouse time to natural length — loss of
Unit segments of the tube u aligned by flow: segments

) ) 2. Chain fluctuations
u —> Au with Finger tensor A
3. Other chains reptate — release topological constraints

Stress “Double reptation” of Des Cloiseaux 1990. bimodal blends
[ee) 1 2 / 3kT A*u A*u 4. 2 & 3 give M X M3'4
_ = —p°Ss/T
o(t) = n/o Z p2e ? Nsegements 2 a< |A*ul2 > ds 5. Advected constraint release Marrucci 1996
P
surving tube  segment tension % . % + BVu: (uu)
. . . * 71
with relative deformation A™ = A(t)A™"(t — s). 6. Flow changes tube volume or cross-section

A BKZ integral constitutive equation
Problem maximum in shear stress



Chain trapped in a fast shearing lattice

Lattice for other chains

more shear —

central section pulling chain out of arms — high dissipative stresses

lanniruberto, Marrucci & H 98

Test of Pom-Pom model — Blackwell 2002

Transient Viscosity /Pa.s
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Fit: Linear Viscoelastic data and Steady Uni-axial Extension.
Predict: Transient Shear and Transient Normal Stress

Transient Viscosity First Normal Stress Difference in Shear

Uniaxial Extension
7

Stress /10° Pa

Data from Miinstedt
and Laun (1979)
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IUPAC-A data Mintedt & Laun (1979)

Branched ponmers — typical in industry

Very difficult to pull branches into central tube

H X eXP(/\/Iarm/lwentangle)
Pom-Pom model of Tom McLeish and Ron Larson 1999

Stress: o = G\°S
v
Orientation: S = B/traceB B=-1(B-1

TO

Stretch: A=Vu:S—2(A—1) while A< Anax

with TO = Tarm(MC/ME)3 and TS = Tarm(MC/ME)2 and
Tarm = eXp(Marm/ME) where MC = Mcrossbar and ME = Mentanglement-

Other microstructural studies
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Electro- and Magneto- -rheological fluids
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Associating polymers

Surfactants - micells
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» Aging materials
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Modelling ‘Molecular individualism’ and closure problems



