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Stress relaxation is a special property of non-Newtonian fluids
» not in elastic solids

» not in viscous fluids

Hence
non-Newtonian # % elastic solid + % viscous fluid

Important relaxation time 7 of stress/microstructure.
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1o solvent viscosity, G elastic modulus, 7 relaxation time.
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v

Takes 7 to build up to steady state

v

steady deformation = shear rate v X memory time 7
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Microstructure

D . 1

Stress o
o=—pl +2uE+ G(A-1)

Weak flow: Vu <1, so A=/+awith|a <1

Da 1
— +—a=2E
Dt+Ta

Start up:

a=ir(1-e") o =poi+Gir (1-e*/")



E.G. linear visco-elasticity for Oldroyd-B

Microstructure A:

T 1
— —Vu' A-A-Vu+—-(A-1)=
Dr u u ( 1)=0

Stress o
o=—pl+2upE+G(A-1)

Weak flow: Vu <1, so A=/+awith|a <1

Da 1
— +—a=2E
Dt+7'a

Start up:
a=AT (1 — e*t/T) o= oy + GAT (1 — e*t/T)

Stopping; a=Are T o=Giret/”



Linear visco-elasticity — common to all fluid models
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Linear visco-elasticity — common to all fluid models

1o solvent viscosity, G elastic modulus, 7 relaxation time.
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v

Steady state viscosity g + G7

v

Takes 7 to build up to steady state

v

steady deformation = shear rate v X memory time 7

NB steady flows are unsteady Lagrangian.
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Numerical Oldroyd-B
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Ap scaled by Stokes using steady-state viscosity o + G7T.

But if flow fast, lower pressure drop from early-time viscosity 0.

Oldroyd-B has no big increase in Ap, and no big upstream vortex
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Flow past a sphere  — Lagrangian unsteady

Numerical Oldroyd-B

Drag

- Drag
Stokes

Stokes -

[ S

Ur/L

Drag scaled by Stokes using steady-state viscosity g + G7.
But if flow fast lower, lower drag from early-time viscosity 1.

Oldroyd-B has no big increase in drag, and no big wake
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.and negative wakes

Experiment

V(mmis)

Bisgaard 1983 JNNFM

Unrelaxed elastic stress in wake, cancelled by negative viscous flow.
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Tension in streamlines

— relaxation + slightly nonlinear effect

shear strain rotation
oo L O
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microstructure shear stress normal stress

Shear stress = G x (rate = 7) x (memory time = 7)

Normal stress (tension in streamlines) = shear stress x~7.



Tension in streamlines

» Rod climbing

» Secondary circulation

» Migration into chains

» Migration to centre of pipe

» Falling rods align with gravity
» Stabilisation of jets

» Co-extrusion instability

» Taylor-Couette instability



