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P R E F A C E  

Understanding of the process of magnetic field generation by 
self-inductive action in electrically conducting fluids (or 'dynamo 
theory' as the subject is commonly called) has advanced dramati- 
cally over the last decade. The subject divides naturally into its 
kinematic and dynamic aspects, neither of which were at all well 
understood prior to about 1960. The situation has been trans- 
formed by the development of the two-scale approach advocated by 
M. Steenbeck, F. Krause and K.-H. Radler in 1966, an approach 
that provides essential insights into the effects of fluid motion 
having either a random ingredient, or a space-periodic ingredient, 
over which spatial averages may usefully be defined. Largely as a 
result of this development, the kinematic aspect of dynamo theory is 
now broadly understood, and recent inroads have been made on the 
much more difficult dynamic aspects also. 

Although a number of specialised reviews have appeared treating 
dynamo theory in both solar and terrestrial contexts, this mono- 
graph provides, 1 believe, the first self-contained treatment of the 
subject in book form. I have tried to focus attention on the more 
fundamental aspects of the subject, and to this end have included in 
the early chapters a treatment of those basic results of magneto- 
hydrodynamics that underly the theory. I have also however 
included two brief chapters concerning the magnetic fields of the 
Earth and the Sun, and the relevant physical properties of these 
bodies, and I have made frequent reference in later chapters to 
specific applications of the theory in terrestrial and solar contexts. 
Thus, although written from the point of view of a theoretically 
oriented fluid dynamicist, I hope that the book will be found useful 
by graduate students and researchers in geophysics and 
astrophysics, particularly those whose main concern is geomagnet- 
ism or solar magnetism. 

My treatment of the subject is based upon a course of lectures 
given in various forms over a number of years to graduate students 
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reading Part I11 of the Mathematical Tripos at Cambridge Univer- 
sity. I was also privileged to present the course to students of the 
3me Cycle in Theoretical Mechanics at the UniversitC Pierre et 
Marie Curie, Paris, during the academic year 1975-6. The material 
of all the chapters, except the difficult chapter 8 on the theory of S. 1. 
Braginskii, has been subjected in this way to student criticism, and 
has greatly benefited in the process. 

The single idea which recurs throughout and which I hope gives 
some unity to the treatment is the idea of 'lack of reflexional 
symmetry' of a fluid flow, the simplest measure of which is its 
'helicity'. In a sense, this is a book about helicity; the invariance and 
topological interpretation of this pseudo-scalar quantity are discus- 
sed at an early stage (chapter 2) and the central importance of 
helicity in the dynamo context is emphasised in chapters 7 and 8. 
Helicity is also the theme of chapter 10 (on helical wave motions) 
and of chapter 11, in which its influence in turbulent flows with and 
without magnetic fields is discussed. A preliminary and much 
abbreviated account of some of these topics has already appeared in 
my review article (Moffatt, 1976) in volume 16 of Advances in 
Applied Mechanics. 

It is a pleasure to record my gratitude to many colleagues with 
whom I have enjoyed discussions and correspondence on dynamo 
theory; in particular to Willi Deinzer, David Gubbins, Uriel Frisch, 
Robert Kraichnan, Fritz Krause, Willem Malkus, Karl-Heinz 
Radler, Paul Roberts, Michael Stix and Nigel Weiss; also to Glyn 
Roberts, Andrew Soward and Michael Proctor whose initial 
research it was my privilege to supervise, and who have since made 
striking contributions to the subject; and finally to George Batch- 
elor who as Editor of this series, has given constant encouragement 
and advice. To those who have criticised the manuscript and helped 
eliminate errors in it, I offer warm thanks, while retaining full 
responsibility for any errors, omissions and obscurities that may 
remain. 

I completed the writing during the year 1975-6 spent at the 
UniversitC Pierre et Marie Curie, and am grateful to M. Paul 
Germain and M. Henri Cabannes and their colleagues of the 
Laboratoire de MCcanique ThCorique for inviting me to work in 
such a stimulating and agreeable environment. 



CHAPTER I 

I N T R O D U C T I O N  
A N D  H I S T O R I C A L  B A C K G R O U N D  

'How could a rotating body such as the Sun become a magnet?' This 
was the title of a famous 'brief communication' from Sir Joseph 
Larmor in 19 19 to the British Association for the Advancement of 
Science; and the question was certainly a natural one since the 
origin of the magnetic field of the Sun was at that time a total 
mystery. Curiously, the magnetic field of the Earth did not then 
excite similar inquiry, because it was still believed that this could be 
explained in terms of permanent magnetisation. However it has 
now long been known that the temperature of the Earth's interior is 
well above the critical temperature (the Curie point) at which 
ferromagnetic materials lose their 'permanent' magnetisation and 
that some other explanation for the Earth's magnetic field must be 
found. The fact that a large fraction of the Earth's interior is now 
known (by inference from seismological observations) to be in a 
liquid state is profoundly relevant to the problem. 

Not only the Earth and the Sun; it is probably safe to state that a 
magnetic field is a normal accompaniment of any cosmic body that is 
both fluid (wholly or in part) and rotating. There appears to be a sort 
of universal validity about this statement which applies quite irres- 
pective of the length-scales considered. For example, on the planet- 
ary length-scale, Jupiter shares with the Earth the property of 
strong rotation (its rotation period being approximately 10 hours) 
and it is believed to have a fluid interior composed of an alloy of 
liquid metallic hydrogen and helium (Hide, 1974); it exhibits a 
surface magnetic field of order 10 gauss in magnitude1 (as compared 
with the Earth's field of order 1 gauss). On the stellar length-scale 
magnetic fields as weak as the solar field ( - l  gauss) cannot be 
detected in general; there are however numerous examples of stars 

The international unit of magnetic field is the tesla (T), and 1T = 1 Wb m-2 = 
1 o4 gauss. 
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which rotate with periods ranging from several days to several 
months, and with detectable surface magnetic fields in the range 102 
to 3 X lo4 gauss (Preston, 1967). And on the galactic length-scale, 
our own galaxy rotates about the normal to the plane of its disc with 
a period of order 3 X 10' years and exhibits a galactic-scale magnetic 
field roughly confined to the plane of the disc whose typical mag- 
nitude is of order 3 or 4 X 1 0 - ~  gauss. 

The detailed character of these naturally occurring~magnetic 
fields and the manner in which they evolve in time will be described 
in subsequent chapters; for the moment it is enough to state that it is 
the mere existence of these fields (irrespective of their detailed 
properties) which provides the initial motivation for the various 
investigations which will be described in this monograph. 

Larmor put forward three alternative and very tentative sugges- 
tions concerning the origin of the Sun's magnetic field, only one of 
which has in any sense stood the test of time. This suggestion, which 
is fundamental to hydromagnetic dynamo theory, was that motion 
of the electrically conducting fluid within the rotating body, 
might by its inductive action in flowing across the magnetic field 
generate just those currents J(x) required to provide the self-same 
field B(x). 

This type of 'bootstrap' effect is most simply illustrated with 
reference to a system consisting entirely of solid (rather than fluid) 
conductors. This is the 'homopolar' disc dynamo (Bullard, 1955) 
illustrated in fig. 1.1. A solid copper disc rotates about its axis with 
angular velocity R, and a current path between its rim and its axle is 
provided by the wire twisted as shown in a loop round the axle. This 
system can be unstable to the growth of magnetic perturbations. For 
suppose that a current I(t) flows in the loop; this generates a 
magnetic flux @ across the disc, and, provided the conductivity of 
the disc is not too high, this flux is given by @ = MoI where MO is the 
mutual inductance between the loop and the rim of the disc. (The 
proviso concerning the disc conductivity is necessary as is evident 
from the consideration that a superconducting disc would not allow 
any flux to cross its rim; a highly conducting disc in a time- 
dependent magnetic field tends to behave in the same way.) Rota- 
tion of the disc leads to an electromotive farce % = R@/27r which 
drives the current I, and the equation for I(t) is then 
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B B 

Fig. 1 . 1  The homopolar disc dynamo. Note that the twist in 
carries the current I ( t )  must be in the same sense as the sense 

the wire which 
of rotation a. 

where M= M0/27r and L and R are the self-inductance and 
resistance of the complete current circuit. The device is evidently 
unstable to the growth of I (and so of Q) from an infinitesimal level if 

In this circumstance the current grows exponentially, as does the 
retarding torque associated with the Lorentz force distribution in 
the disc. Ultimately the disc angular velocity slows down to the 
critical level R. = RIM at which the driving torque G just balances 
this retarding torque, and the current can remain steady. In this 
equilibrium, the power supplied lloG is equal to the rate of Joule 
dissipation R I ~  (assuming that frictional torques are negligible). 

This type of example is certainly suggestive, but it differs from 
the conducting fluid situation in that the current is constrained by 
the twisted geometry to follow a very special path that is particularly 
conducive to dynamo action (i.e. to the conversion of mechanical 
energy into magnetic energy). No such geometrical constraints are 
apparent in, say, a spherical body of fluid of uniform electrical 
conductivity, and the question arises whether fluid motion within 
such a sphere, or other simply-connected region, can drive a 
suitably contorted current flow to provide the same sort of homo- 
polar (i.e. self-excited) dynamo effect. 
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There are however two properties of the disc dynamo which 
reappear in some of the hydromagnetic situations to be considered 
later, and which deserve particular emphasis at this stage. Firstly, 
there is a discontinuity in angular velocity at the sliding contact S 
between the rotating disc and the stationary wire, i.e. the system 
exhibits differential rotation. The concentration of this differential 
rotation at the single point S is by no means essential for the working 
of the dynamo; we could in principle distribute the differential 
rotation arbitrarily by dividing the disc into a number of rings, each 
kept in electrical contact with its neighbours by means of lubricating 
films of, say, mercury, and by rotating the rings with different 
angular velocities. If the outermost ring is held fixed (so that there is 
no longer any sliding at the contact S), then the velocity field is 
entirely axisymmetric, the differential rotation being distributed 
across the plane of the disc. The system will still generally work as a 
dynamo provided the angular velocity of the inner rings is in the 
sense indicated in fig. 1.1 and sufficiently large. 

Secondly, the device lacks reflexional symmetry : in fig. 1.1 the 
disc must rotate in the same sense as the twist in the wire if dynamo 
action is to occur. Indeed it is clear from (1.1) that if R<O the 
rotation leads only to an accelerated decay of any current that may 
initially flow in the circuit. Recognition of this essential lack of 
reflexional symmetry provides the key to understanding the nature 
of dynamo action as it occurs in conducting fluids undergoing 
complex motions. 

It was natural however for early investigators to analyse systems 
having a maximum degree of symmetry in order to limit the 
analytical difficulties of the problem. The most natural 'primitive' 
system to consider in the context of rotating bodies such as the 
Earth or the Sun is one in which both the velocity field and magnetii: 
field are axisymmetric. Cowling (1934) considered this idealisation 
in an investigation of the origin of the much more local and intense 
magnetic fields of sunspots (see chapter 5), but concluded that a 
steady axisymmetric field could not be maintained by axisymmetric 
motions. This first 'anti-dynamo' theorem was reinforced by later 
investigations (Backus & Chandrasekhar, 1956; Cowling, 1957b) 
and it was finally shown by Backus (1957) that axisymmetric 
motions could at most extend the natural decay time of an axisym- 
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metric field in a spherical system by a factor of about 4. In the 
context of the Earth's magnetic field, whose natural decay time is of 
the order of 104-105 years (see chapter 4), this modest delaying 
action is totally inadequate to explain the continued existence of the 
main dipole field for a period of the same order (3 X 109 years) as the 
age of the Earth itself (the evidence being from studies of rock 
magnetism), and its relative stability over periods of order 106 years 
and greater (Bullard, 1968). It was clear that non-axisymmetric 
configurations had to be considered if any real progress in dynamo 
theory were to be made. It is in fact the essentially three- 
dimensional character of 'the dynamo problem' (as the problem of 
explaining the origin of the magnetic field of the Earth or of any 
other cosmic body has come to be called) that provides both its 
particular difficulty and its peculiar fascination. 

Recognition of the three-dimensional nature of the problem led 
Elsasser (1946) to initiate the study of the interaction of a pre- 
scribed non-axisymmetric velocity field with a general non- 
axisymmetric magnetic field in a conducting fluid contained within a 
rigid spherical boundary, the medium outside this boundary being 
assumed non-conducting. Elsasser advocated the technique of 
expansion of both fields in spherical harmonics, a technique that 
was greatly developed and extended in the pioneering study of 
Bullard & Gellman (1954). The discussion of § 7(e) of this remark- 
able paper shows clear recognition of the desirability of two 
ingredients in the velocity field for effective dynamo action: (i) a 
differential rotation which would draw out the lines of force of the 
poloidal magnetic field to generate a toroidal field (for the definition 
of these terms, see chapter 2), and (ii) a non-axisymmetric motion 
capable of distorting a toroidal line of force by an upwelling 
followed by a twist in such a way as to provide a feedback to the 
poloidal field. 

Interaction of the velocity field u(x) and magnetic field B(x) 
(through the U A B term in Ohm's law) leads to an infinite set of 
coupled ordinary differential equations for the determination of the 
various spherical harmonic ingredients of possible steady magnetic 
field patterns, and numerical solution of these equations naturally 
involves truncation of the system and discretisation of radial deriva- 
tives. These procedures are of course legitimate in a numerical 



6 MAGNETIC FIELD GENERATION IN FLUIDS 

search for a solution that is known to exist, but they can lead to 
erroneous conclusions when the existence of an exact steady solu- 
tion to the problem is in doubt. The dangers were recognised and 
accepted by Bullard & Gellman, but it has in fact since been 
demonstrated that the velocity field u(x) that they proposed most 
forcibly as a candidate for steady dynamo action in a sphere is a 
failure in this respect under the more searching scrutiny of modern 
high-speed computers (Gibson & Roberts, 1969). 

The inadequacy of purely computational approaches to the prob- 
lem intensified the need for theoretical approaches that do not, at 
the fundamental level, require recourse to the computer. In this 
respect a breakthrough in understanding was provided by Parker 
(19556) who argued that the effect of the non-axisymmetric up- 
wellings referred to above might be incorporated by an averaging 
procedure in equations for the components of the mean magnetic 
field (i.e. the field averaged over the azimuth angle p about the axis 
of rotation of the system). Parker's arguments were heuristic rather 
than deductive, and it was perhaps for this reason that some years 
elapsed before the power of the approach was generally 
appreciated. The theory is referred to briefly in Cowling's ( 1 9 5 7 ~ )  
monograph 'Magnetohydrodynamics' with the following conch- 
s i o n ~ : ~  'The argument is not altogether satisfactory; a more detailed 
analysis is really needed. Parker does not attempt such an analysis; 
his mathematical discussion is limited to elucidating the conse- 
quences if his picture of what occurs is accepted. But clearly his 
suggestion deserves a good deal of attention.' 

This attention was not provided for some years, however, and was 
finally stimulated by two rather different approaches to the prob- 
lem, one by Braginskii (1964a,b) and the other by Steenbeck, 
Krause & Radler (1966). The essential idea behind Braginskii's 
approach was that, while steady axisymmetric solutions to the 
dynamo problem are ruled out by Cowling's theorem, nevertheless 
weak departures from axisymmetry might provide a means of 
regeneration of the mean magnetic field. This approach can succeed 
only if the fluid conductivity o is very high (or equivalently if the 
magnetic diffusivity A = (poo)-l is very small), and the theory was 

It is only fair to note that this somewhat guarded assessment is eliminated in the 
more recent edition of the book (Cowling, 1975a). 
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developed in terms of power series in a small parameter propor- 
tional to h ' j 2 .  By this means, Braginskii demonstrated that, as 
Parker had argued, non-axisymmetric motions could indeed pro- 
vide an effective mean toroidal electromotive force (emf) in the 
presence of a predominantly toroidal magnetic field. This emf. 
drives a toroidal current thus generating a poloidal field, and the 
dynamo cycle anticipated by Bullard & Gellman can be completed. 

The approach advocated by Steenbeck, Krause & Radler (1966) 
is potentially more general, and is applicable when the velocity field 
consists of a mean and a turbulent (or random) ingredient having 
widely different length-scales L and l, say (L >> l). Attention is then 
focussed on the evolution of the mean magnetic field on scales large 
compared with l. The mean-field approach is of course highly 
developed in the theory of shear flow turbulence in non-conducting 
fluids (see, for example, Townsend, 1975) and it had previously 
been advocated in the hydromagnetic context by, for example, 
Kovasznay (1960). The power of the approach of Steenbeck et al. 
(1966) however lay in recognition of the fact that the turbulence can 
give rise to a mean electromotive force having a component parallel 
to the prevailing local mean magnetic field (as in Braginskii's 
model); and these authors succeeded in showing that this effect 
would certainly occur whenever the statistical properties of the 
background turbulence lack reflexional symmetry ; this is the ran- 
dom counterpart (whose meaning will be made clear in chapter 7) of 
the purely geometrical property of the simple disc dynamo discus- 
sed above. 

Since 1966, there has been a growing flood of papers developing 
different aspects of these theories and their applications to the 
Earth and Sun and other systems. It is the aim of this book to 
provide a coherent account of the most significant of these develop- 
ments, and reference to specific papers published since 1966 will for 
the most part be delayed till the appropriate point in the text. 

Several other earlier papers are, however, historical landmarks 
and deserve mention at this stage. The fact that turbulence could be 
of crucial importance for dynamo action was recognised indepen- 
dently by Batchelor (1950) and Schliiter & Biermann (1950), who 
considered the effect of a random velocity field on a random 
magnetic field, both having zero mean. Batchelor perceived that 
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random stretching of magnetic lines of force would lead to exponen- 
tial increase of magnetic energy in a fluid of infinite conductivity; 
and, on the basis of the analogy with vorticity (see 5 3 3 ,  he 
obtained a criterion for just how large the conductivity must be for 
this conclusion to remain valid, and an estimate for the ultimate 
equilibrium level of magnetic energy density that might be expected 
when Lorentz forces react back upon the velocity field. Schliiter & 
Biermann, by arguments based on the concept of equipartition of 
energy, obtained a different criterion for growth and a much greater 
estimate for the ultimate level of magnetic energy density. Yet a 
third possibi'lity was advanced by Saffman (1963), who came to the 
conclusion that, although the magnetic energy might increase for a 
while from a very weak initial level, ultimately it would always 
decay to zero due to accelerated ohmic decay associated with 
persistent decrease in the characteristic length-scale of the magnetic 
field. It is now known from consideration of the effect of turbulence 
which lacks reflexional symmetry (see chapter 7) that none of the 
conclusions of the above papers can have any general validity, 
although the question of what happens when the turbulence is 
reflexionally symmetric remains to some extent open (see. $0 7.12 
and 11.4). 

The problem as posed by Batchelor (1950) has to some extent 
been bypassed through recognition of the fact that it is the 
ensemble-average magnetic field that is of real interest and that if 
this average vanishes, as in the model conceived by Batchelor, the 
model can have little direct relevance for the Earth and Sun, both of 
which certainly exhibit a non-zero dipole moment. It is fortunate 
that the problem has been bypassed, because in a rather pessimistic 
diagnosis of the various conflicting theories, Kraichnan & Nagara- 
jan (1967) concluded that 'Equipartition arguments, the vorticity 
analogy, and the known turbulence approximations are all found 
inadequate for predicting whether the magnetic energy eventually 
dies away or grows exponentially. Lack of bounds on errors makes it 
impossible to predict reliably the sign of the eventual net growth 
rate of magnetic energy.' Kraichnan & Nagarajan have not yet been 
proved wrong as regards the basic problem with homogeneous 
isotropic reflexionally symmetric turbulence. Parker (1970) com- 
ments on the situation in the following terms: 'Cyclonic turbul- 
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e n ~ e , ~  together with large-scale shear, generates magnetic field at a 
very high rate. Therefore we ask whether the possible growth of 
fields in random turbulence without cyclonic ordering. . . is really of 
paramount physical interest. We suggest that, even if random 
turbulence could be shown to enhance magnetic field densities, the 
effect in most astrophysical objects would be obscured by the more 
rapid generation of fields by the cyclonic turbulence and non- 
uniform rotation.' 

The crucial importance of a lack of reflexional symmetry in fluid 
motions conducive to dynamo action is apparent also in the papers 
of Herzenberg (1958) and Backus (1958) who provided the first 
examples of laminar velocity fields inside a sphere which could be 
shown by rigorous procedures to be capable of sustained dynamo 
action. Herzenberg's model involved two spherical rotors rotating 
with angular velocities col and co2 and separated by vector distance 
R inside the conducting sphere. The configuration can be described 
as right-handed or left-handed according as the triple scalar 
product [ml, m2, R] is positive or negative. A necessary condition 
for dynamo action (see 5 6.9) was that this triple scalar product 
should be non-zero, and the configuration then certainly lacks 
reflexional symmetry. 

The Backus (1958) dynamo followed the pattern of the Bullard & 
Gellman dynamo, but decomposed temporally into mathematically 
tractable units. The velocity field considered consisted of three 
active phases separated by long periods of rest (or 'stasis') to allow 
unwanted high harmonics of the magnetic field to decay to a 
negligibly low level. The three phases were: (i) a vigorous differen- 
tial rotation which generated strong toroidal field from pre-existing 
poloidal field; (ii) a non-axisymmetric poloidal convection which 
regenerated poloidal field from toroidal; (iii) a rigid rotation 
through an angle of 7r/2 to bring the newly generated dipole 
moment into alignment with the direction of the original dipole 
moment. The lack of reflexional symmetry lies here in the mutual 
relationship between the phase (i) and phase (ii) velocity fields (see 
5 6.12). 

The viewpoint adopted in this book is that random fluctuations in 

This is Parker's terminology for turbulence whose statistical properties lack 
reflexional symmetry. 
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the velocity field and the magnetic field are almost certainly present 
both in the Earth's core and in the Sun's convection zone, and that a 
realistic theory of dynamo action should incorporate effects of such 
fluctuations at the outset. Laminar theories are of course not 
without value, particularly for the mathematical insight that they 
provide; but anyone who has conscientiously worked through such 
papers as those of Bullard & Gellman (1954), Herzenberg (1958) 
and Backus (1958) will readily admit the enormous complexity of 
the laminar problem. It is a remarkable fact that acceptance of 
turbulence (or possibly random wave motions) and appropriate 
averaging procedures actually leads to a dramatic simplification of 
the problem. The reason is that the mean fields satisfy equations to 
which Cowling's anti-dynamo theorem does not apply, and which 
are therefore amenable to an axisymmetric analysis with distinctly 
positive and encouraging results. The equations admit both steady 
solutions modelling the Earth's quasi-steady dipole field, and, in 
other circumstances, time-periodic solutions which behave in many 
respects like the magnetic field of the Sun with its 22-year periodic 
cycle. 

A further crucial advantage of an approach involving random 
fluctuations is that dynamic, as opposed to purely kinematic, con- 
siderations become to some extent amenable to analysis. A kinema- 
tic theory is one in which a kinematically possible velocity field 
u(x, t) is assumed known, either in detail or at least statistically 
when random fluctuations are involved, and its effect on magnetic 
field evolution is studied. A dynamic theory is one in which u(x, t) is 
constrained to satisfy the relevant equations of motion (generally 
the Navier-Stokes equations with buoyancy forces, Coriolis forces 
and Lorentz forces included according to the context); and again the 
effect of this velocity field on magnetic field evolution is studied. It is 
only since the advent of the 'mean-field electrodynamics' of 
Braginskii and of Steenbeck, Krause & Radler that progress on the 
dynamic aspects of dynamo theory has become possible. As com- 
pared with the advanced state of kinematic theory, the dynamic 
theory is still relatively undeveloped; this situation has been chang- 
ing however over the last few years and it is reasonable to anticipate 
that, over the next decade or so, dynamic theory will mature to the 
same level as kinematic theory. 
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The general pattern of the book will be as follows. Chapter 2 will 
be devoted to simple preliminaries concerning magnetic field struc- 
ture and diffusion in a stationary conductor. Chapter 3 will be 
concerned with the interplay of convection and diffusion effects 
insofar as these influence magnetic field evolution in a moving fluid. 
In chapters 4 and 5 we shall digress from the purely mathematical 
development to provide a necessarily brief survey of the observed 
properties of the Earth's magnetic field (and other planetary fields) 
and of the Sun's magnetic field (and other astrophysical fields) and 
of the relevant physical properties of these bodies. This is designed 
to provide more detailed motivation for the material of subsequent 
chapters. Some readers may find this motivation superfluous; but it 
is necessary, particularly when it comes to the study of specific 
dynamic models, to consider limiting processes in which the various 
dimensionless numbers characterising the system are either very 
small or very large; and it is clearly desirable that such limiting 
processes should at the least be not in contradiction with observa- 
tion in the particular sphere of relevance claimed for the theory. 

In chapter 6, the kinematic dynamo problem will be defined, and 
various exact results in the laminar context (including the various 
anti-dynamo theorems) will be obtained, and the Bullard & Gell- 
man approach will be briefly described. In chapter 7 the effects of a 
random velocity field having zero mean (conceived either as turbul- 
ence as traditionally understood, or as a field of random waves) on 
magnetic field evolution will be analysed; and we shall follow this in 
chapter 8 with a discussion of Braginskii's theory (as reformulated 
by Soward, 1972) within the general framework of mean-field 
electrodynamics. In chapter 9, properties of the 'dynamo equations' 
that emerge from the mean-field theory will be studied, and various 
attacks (analytical and numerical) on the solution of these equations 
will be described. 

Chapters 10-12 will be devoted to the dynamic theory as at 
present understood. When a magnetic field grows as a result of the 
action of a random velocity field, the Lorentz force ultimately reacts 
back on the motion in two ways: firstly, the growing field tends to 
suppress the turbulent fluctuations that are partly or wholly respon- 
sible for its growth; secondly, the mean Lorentz force modifies any 
pre-existing mean velocity field (or generates a mean velocity field if 
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none exists initially). These effects will be separately analysed in 
chapters 10, 11 and 12. Chapter 12 also includes consideration of 
the coupled disc dynamo model of Rikitake (1958); although this 
model has only three degrees of freedom (as compared with the 
doubly infinite freedom of the fluid conductor) it exhibits the right 
sort of couplings between magnetic and dynamic modes, and the 
behaviour of solutions of the governing equations (which are by no 
means trivial) is extraordinarily suggestive in the context of the 
problem of explaining the random reversals of the Earth's magnetic 
field (see chapter 4). 

Given the present state of knowledge, it is inevitable that the 
kinematic theory will occupy a rather greater proportion of the 
book than it would ideally deserve. It must be remembered however 
that any results that can be obtained in kinematic theory on the 
minimal assumption that u(x, t )  is a kinematically possible but 
otherwise arbitrary velocity field will have a generality that trans- 
cends any dynamical model that is subsequently adopted for the 
determination of U. It is important to seek this generality because, 
although there is little uncertainty regarding the equations govern- 
ing magnetic field evolution (i.e. Maxwell's equations and Ohm's 
law), there are wide areas of grave uncertainty concerning the 
relevance of different dynamic models in both terrestrial and solar 
contexts; for example, it is not yet known what the ultimate source 
of energy is for core motions that drive the Earth's dynamo. In this 
situation, any results that do not depend on the details of the 
governing dynamical equations (whatever these may be) are of 
particular value. For this reason, the postponement of dynamical 
considerations to the last three chapters should perhaps be wel- 
comed rather than lamented. 
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CHAPTER 2 

M A G N E T O K I N E M A T I C  P R E L I M I N A R I E S  

2.1. Structural properties of the B-field 

In $8 2.1-2.4 we shall be concerned with basic instantaneous prop- 
erties of magnetic field distributions B(x); the time dependence of B 
is for the moment irrelevant. The first, and perhaps the most basic, 
of these properties is that if S is any closed surface with unit outward 
normal n, then 

i.e. magnetic poles do not exist in isolation. This global statement 
implies the existence of a single-valued vector potential A(x) satis- 
fying 

A is not uniquely defined by these equations since we may add to it 
the gradient of any harmonic function without affecting B; but, in 
problems involving an infinite domain, A is made unique by impos- 
ing the boundary condition 

At points where B is differentiable, (2.1) implies that 

and across any surface of discontinuity Sd of physical properties of 
the medium (or of other relevant fields such as the velocity field), 
(2.1) implies that 

[n .  B]=(n .  B)+-(n. B)-=0, (2.5) 

where the + and - refer to the two sides of Sd, and n is now the unit 
normal on Sd directed from the - to the + side. We shall always use 
the square bracket notation to denote such surface quantities. 



The lines of force of the B-field (or 'B-lines') are determined as 
the integral curves of the differential equations 

A B-line may, exceptionally, close on itself. More generally it may 
cover a closed surface S in the sense that, if followed far enough, it 
passes arbitrarily near every point of S. It is also conceivable that a 
B-line may be space-filling in the sense that, if followed far enough, 
it passes arbitrarily near every point of a three-dimensional region 
V; there are no known examples of solenoidal B-fields, finite and 
differentiable everywhere, with this property, but it is nevertheless a 
possibility that no topological arguments have yet been able to 
eliminate, and indeed it seems quite likely that B-fields of any 
degree of complexity will in general be space-filling. 

Now let C be any (unknotted) closed curve spanned by an open 
orientable surface S with normal n. The flux @ of B across S is 
defined by 

where the line integral is described in a right-handed sense relative 
to the normal on S. A fiux-tube is the aggregate of B-lines passing 
through a closed curve (usually of small or infinitesimal extent). By 
virtue of (2. l), @ is constant along a flux-tube. 

A measure of the degree of structural complexity of a B-field is 
provided by a set of integrals of the form 

where V, is any volume with surface S,,, on which n .  B =  0. 
Suppose, for example, that B is identically zero except in two 
flux-tubes occupying volumes V1 and V2 of infinitesimal cross- 
section following the closed curves Cl and C2 (fig. 2.l(a)) and let @, 
and <P2 be the respective fluxes. Note that if the tubes are linked as in 
the figure and the field directions in the tubes are as indicated by the 
arrows, then each tube has a right-handed orientation relative to the 
other; if one arrow is reversed the relative orientation becomes 
left-handed; if both are reversed it remains right-handed. For the 
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Fig. 2.1 (a) The-two flux-tubes are linked in such a way as to give positive 
magnetic helicity. (b )  A flux-tube in the form of a right-handed trefoil knot; 
insertion of equal and opposite flux-tube elements between the points A 
and B as indicated gives two tubes linked as in (a). 

configuration as drawn, evidently B d3x may be replaced by 0, dx 
on Cl and <P2 dx on C2 with the result that 

and similarly 

More generally, if the tubes wind round each other N times (i.e. N is 
the 'winding number' of Cl relative to C2) then 

the + or - being chosen according as the relative orientation is 
right- or left-handed. The integrals Il  and I2 are therefore inti- 
mately related to the fundamental topological invariant N of the 
pair of curves Cl and C2. 

If the B-field has limited spatial extent (i.e. B = 0 outside some 
sufficiently large sphere), then one possible choice of the volume of 
integration is the whole three-dimensional space V,, the corres- 
ponding integral being denoted Za. For the case of the two linked 
flux-tubes, evidently 
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More generally, if the Vm can be chosen so that V, = U",=l V,, 
then 

If a single flux-tube (with flux a )  winds round itself before closing 
(i.e. if it is knotted) then the integral I, for the associated magnetic 
field will in general be non-zero. Fig. 2.l(b) shows the simplest 
non-trivial possibility: the curve C is a right-handed trefoil knot; 
insertion of the two self cancelling elements between the points A 
and B indicates that this is equivalent to the configuration of fig. 
2.l(a) with = a2 = so that I = 2a2. Knotted tubes may 
always be decomposed in this way into two or more linked tubes. 

It may of course happen that A . B 0; it is well known that this is 
the necessary and sufficient condition for the existence of scalar 
functions cp (X) and +(X) such that 

In this situation, the B-lines are the intersections of the surfaces 
cp = cst., J, = cst., and the A-lines are everywhere orthogonal to the 
surfaces cp = cst. It is clear from the above discussion that B-fields 
having linked or knotted B-lines cannot admit such a representa- 
tion. 

The same limitation applies to the use of Clebsch variables 
9, +, X, defined (if they exist) by the equations 

For example, if B is a field admitting such a representation, with cp, + 
and X single-valued differentiable functions of X, then 

and 
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since n . B = 0 on S,. Conversely, if I, f 0 (as will happen if the 
B-lines are knotted or linked), then (2.15) is not a possible global 
representation for A and B (although it may be useful in a purely 
local analysis). 

The characteristic local structure of a field for which A .  B is 
non-zero may be illustrated with reference to the example (in 
Cartesian coordinates) 

B = (Bo, 0, 0), A = (A,, - ~BOZ, $Boy), (2.17) 

where A. and B. are constants; note that possible Clebsch variables 
are 

there is here no closed surface on which n . B = 0, and the problem 
noted above does not arise. Clearly A .  B = AoBo, and the A-lines 
are the helices with parametric representation 

x = (2Ao/Bo)t, y = COS t, z = sin t. (2.19) 

These helices are right-handed or left-handed according as AoBo is 
positive or negative. 

The quantity A . (V A A) for any vector field A(x) is called the 
helicity density of the field A; its integral I, over V, is then the 
helicity of A; the integrals I,,, over V, can be described as 'partial' 
helicities. The helicity density is a pseudo-scalar quantity, being the 
scalar product of a polar vector and an axial vector; its sign 
therefore changes under change from a right-handed to a left- 
handed frame of reference. A field A that is 'reflexionally symmet- 
ric' (i.e. invariant under the change from a right-handed to a 
left-handed reference system represented by the reflexion X' = -X) 

must therefore have zero helicity density. The converse is 
not true, since of course other pseudo-scalar quantities such as 
@ A A).  V A @ A  A) may be non-zero even if A .  @ A A)=O. 

2.2. Magnetic field representations 

In a spherical geometry, the most natural coordinates to use are 
spherical polar coordinates (r ,  8, rp) related to Cartesian coordinates 
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(X, Y, 2 )  by 

x = r sin B cos cp, y = r sin 6 sin cp, z  = r cos B. (2.20) 

Let us first recall some basic results concerning the use of this 
coordinate system. 

Let +(r, 8, cp) be any scalar function of position. Then 

where 
1 a a 1 a' 

= (- -sin 8-+T 7)+. 
s i n e a e  a0 sin 6 a ~  (2.22) 

The vector identity 

leads to the identification 

L,  is the angular momentum operator of quantum mechanics. Its 
eigenvalues are-n (n + l )  (n = 0,1,2,  . . .), and the corresponding 
eigenfunctions are the surface harmonics 

n 

S, (B, p) = 2 A ?,"(cos 8) eimq, (2.25) 
m = O  

where P:(cos B) are associated Legendre polynomials and the A," 
are arbitrary complex constants; i.e. 

Now let f(r, 6, cp) be any smooth function having zero average 
over spheres r = cst., i.e. 

We may expand f in surface harmonics 

the term with n = 0 being excluded by virtue of (2.27). The func- 
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tions S, satisfy the orthogonality relation 

and so the coefficients fn (r) are given by 

If now 

then clearly the operator L2 may be inverted to give 

the result also satisfying ($) = 0. 
Note that any function of the form f = X. V A A, where A is an 

arbitrary smooth vector field, satisfies the condition (2.27); for 

where S(r) is the surface of the sphere of radius r and V(r) its 
interior. 

A toroidal magnetic field BT is any field of the form 

where T(x) is any scalar function of position. Note that addition of 
an arbitrary function of r to T has no effect on B ,  so that without 
loss of generality we may suppose that (T) = 0. Note further that 
X .  BT = 0, SO that the lines of force of BT ('BT-lines') lie on the 
spherical surfaces r = cst. 

A poloidal magnetic field Bp is any field of the form 

where P(x) is any scalar function of position which again may be 
assumed to satisfy (P) = 0. Bp does in general have a non-zero radial 
component. 

It is clear from these definitions that the curl of a toroidal field is a 
poloidal field. Moreover the converse is also true; for 
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The latter identity can be trivially verified in Cartesian coordinates. 
Now suppose that 

B = B P + B T = V ~ V ~ ( x P ) + V ~ ( x T ) .  (2.37) 

Then 

X.B=--(XAV)~P, X . ( V A B ) = - ( ~ A V ) ~ T ,  (2.38) 

so that P and T may be obtained in the form 

P = - L - 2 ( ~ . ~ ) ,  T = - L - 2 ~ . ( ~ ~ ~ ) .  (2.39) 

Conversely, given any solenoidal field B, if we define P and T by 
(2.39), then (2.37) is satisfied, i.e. the decomposition of B into 
poloidal and toroidal ingredients is always possible. 

If we 'uncurl' (2.37), we obtain the vector potential of B in the 
form 

where U is a scalar 'funetion of integration'. Since V . A = 0, U and 
T are related by 

By virtue of this condition, xT+VU may itself be expressed as a 
poloidal field: 

xT+VU = V A V A (xS), S = - L - ~ ( ~ ~ T + X .  VU). 
(2.42) 

The toroidal part of A is simply 

Axisy mmetric fields 

A B-field is axisymmetric about a line Oz (the axis of symmetry) if it 
is invariant under rotations about Oz. In this situation, the defining 
scalars P and T of (2.37) are clearly independent of the azimuth 
angle p, i.e. T = T(r, 0), P = P(r, 0). The0toroidal field BT = -X A VT 
then takes the form 
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and so the BT-lines are oircles r = cst., 8 = cst. about Oz. Similarly, 

AT = (0,O, A,), A, = -"P/"$, (2.45) 

and, correspondingly, in spherical polars, 

where 

X = r sin 8, A, = - r sin 8 dP/dO. (2.47) 

The scalar X is the analogue of the Stokes stream function $(r, 8) for 
incompressible axisymmetric velocity fields. The Bp-lines are 
given by X = cst., and the differential 

27r dx = (B, dr - BJ d8)27rr sin 8 (2.48) 

represents the flux across the infinitesimal annulus obtained by 
rotating about Oz the line element joining (r, 6 )  and (r + dr, 8 +do). 
It is therefore appropriate to describe X as the flux-function of the 
field Bp. 

When the context allows no room for ambiguity, we shall drop the 
suffix p from B, and A,, and express B in the simple form 

B = Bi, + V  A (Ai,), (2.49) 

where i, is a unit vector in the p-direction1. 

The two-dimensional analogue 

Geometrical complications inherent in the spherical geometry fre- 
quently make it desirable to seek simpler representations. In par- 
ticular, if we are concerned with processes in a spherical annulus 
rl r < r2 with rz - rl << rl, a local Cartesian representation Oxyz is 
appropriate (fig. 2.2). Here Oz is now in the radial direction (i.e. the 
vertical direction in terrestrial and solar contexts), Ox is south and 
Oy is east; hence (r, 8, p )  are replaced by (z, X, y ) .  

The field decomposition analogous to (2.37) is then 

4 will generally denote a unit vector in the direction of increasing q where q is any 
generalised coordinate. 
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Fig. 2.2 Local Cartesian coordinate system in a spherical annulus geometry; 
Ox is directed south, Oy east, and Oz vertically upwards. 

and P and T are given by 

where V: is the two-dimensional Laplacian 

V: = (i, A v)2 = a2/ax + a2/ay2. (2.52) 

If the field B is independent of the coordinate y (the analogue of 
axisymmetry), then P = P(x, t), T = T(x, z). The 'toroidal' field 
becomes 

B, = Bi,, B = -aT/ax, (2.53) 

and the 'poloidal' field becomes 

The Bp-lines are now given by A(x, z )  = cst., and A is the flux- 
function of the Bp-field. 

Quite apart from the spherical annulus context, two-dimensional 
fields are of independent interest, and consideration of idealised 
two-dimensional situations can often provide valuable insights. It is 
then in general perhaps more natural to regard Oz as the direction 
of invariance of B and to express B in the form 
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2.3. Relations between electric current and magnetic field 

In a steady situation, the magnetic field B(x) is related to the electric 
current distribution J(x) by Ampere's law; in integral form this is 

where S is any open orientable surface spanning the closed curve C, 
and p0 is a constant associated with the system of units used2. If B is 
measured in Wb m-' (1 Wb m-' = lo4 gauss) and J in A m-2, then 

p. = 4r X I O - ~  Wb A-' m-'. (2.57) 

It follows from (2.56) that in any region where B and J are 
differentiable, 

and the corresponding jump conditions across surfaces of discon- 
tinuity are 

where Js (A m-') represents surface current distribution. Surface 
currents (like concentrated vortex sheets) can survive only if dis- 
sipative processes do not lead to diffusive spreading, i.e. only in a -  ,' 
perfect electrical conductor. In fluids or solids of finite conductivity, : 
we may generally assume that Js = 0, and then (2.59) together with 
(2.5) implies that all components of B are continuous: 

[B] = 0. (2.60) 

In an unsteady situation, (2.56) is generally modified by the 
inclusion of Maxwell's displacement current; it is well known 
however that this effect is negligible in treatment of phenomena 
whose time-scale is long compared with the time for electromagne- 
tic waves to cross the region of interest. This condition is certainly 
satisfied in the terrestrial and solar contexts, and we shall therefore 
neglect displacement current throughout; this has the effect of 
filtering electromagnetic waves from the system of governing equa- , 

Permeability effects are totally unimportant in the topics to be considered and may 
be ignored from the outset. 
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tions. The resulting equations are entirely classical (i.e. non- 
relativistic) and are sometimes described as the 'pre-Maxwell equa- 
tions'. 

In terms of the vector potential A defined by (2.2), (2.58) 
becomes the (vector) Poisson's equation 

Across discontinuity surfaces, A is in general -continuous (since 
B = V  A A is in general finite) and (2.60) implies further that the 
normal gradient of A must also be continuous; i.e. in general 

Multipole expansion of the magnetic field 

Suppose now that S is a closed surface, with interior V and exterior 
Q, and suppose that J(x) is a current distribution entirely confined to 
V, i.e. J = 0 in p; excluding the possibility of surface current on S, 
we must then also have n . J = 0 on S. From (2.58), B is irrotational 
in p, and so there exists a scalar potential 8(x)  such that, in 

, Note that in general !P is not single-valued; it is, however, single- 
' valued if 9 is simply-connected, and we shall assume this to be the 

I j case. We may further suppose that !P+ 0 as 1x1 +W. i 
j 1 Relative to an origin 0 in V, the general solution of (2.63) 
I 

vanishing at infinity may be expressed in the form 

here pi:,, is the multipole moment tensor of rank n, r = (X(, and a 
suffix i after the comma indicates differentiation with respect to xi. 
The term with n = 0 is omitted by virtue of (2.1). The terms with 
n = 1,2  are the dipole and quadrupole terms respectively; in vector 
notation 

and similarly for higher terms. 
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The field B in G clearly has the expansion 

and, since v2(r-l) = 0 in c the expression for B'"' may be expressed 
in the form B'"' = V A A'"' where 

The first two terms of the expansion for the vector potential, 
corresponding to (2.65), thus have the form 

The tensors p'"' may be determined as linear functionals of J(x) as 
follows. The solution of (2.6 1) vanishing at infinity is 

(and it may be readily verified using V . J = 0, n . J = 0 on S, that this 
iatisfies V . A = 0). The function lx - x'l-' has the Taylor expansion 

Substitution in (2.69) leads immediately to A = 1 ~'"'(x)  where 

Comparison with (2.67) then gives the equivalent relations 

In particular, for the terms n = 1 , 2  we have 



26 MAGNETIC FIELD GENERATION IN FLUIDS 

Axisy mmetric fields 

If J(x) is axisymmetric about the direction of the unit vector i, = e, 
then these results can be simplified. Choosing spherical polar 
coordinates (r, 8 ,q)  based on the polar axis Oz, we have evidently 

a''' = d 1 ) e 7  P'1i = iPo 11 J,(c B)r3 sin2 B dr dB. 
(2.74) 

Likewise, must be axisymmetric about Oz ; and since P$) = 0 
from (2.733), it must therefore take the form 

(2) = '2) P , P (ernei - $amj). (2.75) 

Putting m = 3 ,  j = 3 in (2.73) and (2.75) then gives in the form 

16 
J, (r, B)r4 sin2 B cos B dr dB. 

In this axisymmetric situation, the expansion (2.64) clearly has the 
form 

2.4. Force-free fields 

We shall have frequent occasion to refer to magnetic fields for which 
B is everywhere parallel to J = PO'V A B and it will therefore be 
useful at this stage to gather together some properties of such 
fields3, which are described as 'force-free' (Lust & Schluter, 1954) 
since the associated Lorentz force J A B is of course identically zero. 
For any force-free field, there exists a scalar function of position 
K(x) such that 

the latter following from V .  B =  0. K is therefore constant on 
B-lines, and if B-lines cover surfaces then K must be constant on 
each such surface. A particularly simple situation is that in which K 
is constant everywhere; in this case, taking the curl of (2.78) 

In general, a vector field B(x), with the property that V A B is everywhere parallel to 
B, is known as a Beltrami field. 
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immediately leads to the Helmholtz equation 

Note however that this process cannot in general be reversed: a field 
B that satisfies (2.79) does not necessarily satisfy either of the 
equations V A B = * KB. 

The simplest example of a force-free field, with K = cst., is, in 
Cartesian coordinates, 

B = Bo(sin KZ, cos KZ, 0). (2.80) 

The property V A B = KB is trivially verified. The B-lines, as indi- 
cated in fig. 2.3(a), lie in the X - y  plane and their direction rotates 

Fig. 2.3 (a) Lines of force of the field (2.80) (with K > 0). O indicates a line 
in the positive y-direction (i.e. into the paper), and @ indicates a line in the 
negative y-direction; the lines of force rotate in a left-handed sense with 
increasing z .  Closing the lines of force by means of the dashed segments 
leads to linkages consistent with the positive helicity of the field. (b) Typical 
helical lines of force of the field (2.82); the linkages as illustrated are 
negative, and therefore correspond to a negative value of K in (2.82). 

with increasing z in a sense that is left-handed or right-handed 
according as K is positive or negative. The vector potential of B is 
simply A = K-'B, so that its helicity density is uniform: 
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If we imagine the lines of force closed by the dashed lines as 
indicated in the figure, then the resulting linkages are consistent 
with the discussion of 2.1. 

A second example (fig. 2.3(b)) of a force-free field, with K again 
constant, is, in cylindrical polars (S, cp, z) ,  

where J, is the Bessel function of order n. Here the B-lines are 
helices on the cylinders S = cst. Again A = K-'B, and 

and again any simple closing of lines of force would lead to linkages 
(which are negative, corresponding to a negative value of K, in Fig. 
2.3 (6). 

In both these examples, the J-field extends to infinity. There are 
in fact no force-free fields, other than B= 0, for which J is confined 
(as in 8 2.3) to a finite volume V and B is everywhere differentiable 
and O(r-" at infinity4. To prove this, let K, be the Maxwell stress 
tensor, given by 

with the properties 

and suppose that J A B = 0. Then 

the volume integrals being over all space. Now since B = 0(rV3) as 
r +m, T, = ~ ( r - ~ )  and so the integral over S, vanishes. Hence the 
integral of vanishes, and so B - 0. The proof fails if surfaces of 
discontinuity of B (and so of G )  are allowed, since then further 
surface integrals which do not in general vanish must be included in 
(2.86). 

This condition means of course that the only source for B is the current distribution 
J, and there are no further 'sources at infinity'. The leading term of the expansion 
(2.66) is clearly ~ ( r - ~ ) .  It is perhaps worth noting that the proof still goes through 
under the weaker condition ~ = o ( r - ~ ' ~ )  corresponding to finiteness of the 
magnetic energy I Ki d3x. 
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Force -free fields in sphetkal geometry 

We can however construct solutions of (2.78) which are force-free 
in a finite region V and current-free in the exterior region c and 
which do not vanish at infinity. This can be done explicitly (Chan- 
drasekhar, 1956) as follows, in the important case when V is the 
sphere r < R. First let 

where KO is constant. We have seen in 8 2.2 that, under the poloidal 
and toroidal decomposition 

we have 

VAB=-VA(XV~P)+VAVA(XT) ,  (2.89) 

and so (2.78) is satisfied provided 

T = K P  and ( V ~ + K ~ ) P = O .  (2.90) 

Here K is discontinuous across r = R ;  but continuity of B ((2.60)) 
requires that T, P and dP/dr be continuous across r = R, or equival- 
ently 

P=O,  [dP/dr]=O on r = R. (2.91) 

The simplest solution of (2.90), (2.9 1) is given in spherical polars 
(r, 87 cp) by 

A ~ - ' / ~ J ~ / ~ ( K , ~ )  cos 0 (r < R )  
( r > R ) '  

(2.92) 

where 

J3,,/,(K0R) = 0, and 3Bo - -A ( d / d ~ ) ( ~  - ' / 2 ~ 3 1 2 ( ~ o ~ ) ) ,  
(2.93) 

the conditions (2.93) following from (2.91). The corresponding 
flux-function ~ ( r ,  8) is then given by (2.47); the B,-lines, given by 
X = cst., are sketched in fig. 2.4(a) for the case where KO< 0 and 
l K o l ~  is the smallest zero of J3/2(x). For r > R, the B-lines are 
identical with the streamlines in irrotational flow past a sphere, and 
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Fig. 2.4 ( a )  The B,-lines 0( = cst.) of the force-free field given by (2.92), 
with KoR the smallest zero of J 3 / 2 ( ~ ) .  ( b )  A typical B-line (a helix on a 
toroidal surface); the axis of symmetry is here perpendicular to the paper. 

B -Bo = Boi, as r + a. For r < R, the B-lines lie on a family of 
nested toroidal surfaces (fig. 2.4(b)). The poloidal field has a neutral 
point on B = ?r/2 at r = rc where (d/dr)(r1'2~312(~or)) = 0, and the 
circle r = rc, B = ?r/2 is the degenerate torus of the family (described 
as the 'magnetic axis' of the field). Each B-line is a helix and the 
pitch of the helices decreases continuously from infinity on the 
magnetic axis to zero on the sphere r = R as we move outwards 
across the family of toroidal surf aces. 

Note once again that A = K-'B for r <R, and that (if KO 0) 

consistent with the fact that there is an indisputable degree of 
linkage in the lines of force within the sphere; e.g. each line of force 
winds round the magnetic axis which is a particular B-line of the 
field. The B-lines in r < R in general cover the toroidal surf aces; but 
if the pitch p, defined as the increase Bp in ihe azimuth angle as the 
torus is circumscribed once by the B-line, is 2?rm/n where m and n 
are integers (which may be assumed to have no common factor) 
then the B-line is closed; moreover, if m 3 2 and n 3 3, the curve is 
knotted! The corresponding knot is known as the torus knot K,,,; 
K2,3 is just the trefoil knot of fig. 2,1(b). It is an intriguing property 
of this B-field that if we take a subset of the B-lines consisting of one 
B-line on each toroidal surface, then every torus knot is represented 
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once and only once in this subset, since p / 2 ~  passes through every 
rational number mln once as it decreases continuously from infinity 
to zero; and yet the closed B-lines are exceptional in that they 
constitute a subset of measure zero of the set of all B-lines inside the 
sphere! 

More complicated force-free fields can be constructed either by 
choosing higher zeros of J3,,(KoR) (in which case there is more than 
one magnetic axis) or by replacing (2.92) by more general solutions 
of (2.90). The above example is however quite sufficient as a sort of 
prototype for spatial structures with which we shall later be con- 
cerned. 

2.5. Lagrangian variables and magnetic field evolution 

We must now consider magnetic field evolution in a moving fluid 
conductor. Let us specify the motion in terms of the displacement 
field x(a, t), which represents the position at time t of the fluid 
particle that passes through the point a at a reference instant t = 0; 
in particular 

Each particle is labelled by its initial position a. The mapping 
X = x(a, t) is clearly one-to-one for a real motion of a continuous 
fluid, and we can equally consider the inverse mapping a = a(x, t). 

The velocity of the particle a is 

uL (a, t) = (dxldt), = U(X, t) ; (2.96) 

uL (a, t) is the Lagrangian representation, and u(x, t) the more usual 
Eulerian representation. We shall use the superfix L in this way 
whenever fields are expressed as functions of (a, t), e.g. 

~ ~ ( a ,  t) = B(x(a, t), t) (2.97) 

represents the magnetic field referred to Lagrangian variables. 
Defining the usual Lagrangian (or material) derivative by 
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it is clear that in particular 

A material curve CL is one consisting entirely of fluid particles, 
and which is therefore convected and distorted with the fluid 
motion. If p is a parameter on the curve at time t = 0, so that 
a = a(p), then the parametric representation at time t is given by 

the curve CL is closed if a(p) is a periodic function of p. A material 
surface SL may be defined similarly and described in terms of two 
parameters. 

An infinitesimal material line element may be described by the 
differential 

dxi = Eij (a, t) da,, Eij (a, t) = dxi/aai. (2.101) 

The symmetric and antisymmetric parts of Eij describe respectively 
the distortion and rotation of the fluid element initially at a. The 
material derivative of Eij is 

and so it follows that 

D dx/Dt = dui duL/aaj = (dx . V)u, (2.103) 

a result that is equally clear from elementary geometrical considera- 
tions. 

Change of flux throigh a moving circuit 

Suppose now that 

where CL is a material curve spanned by S=. In order to calculate 
d@/dt we should use Lagrangian variables: 

@(t) = ) A'(., t)(dxi/daj)(daj/dp) dp. (2.105) 
CL 
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We can then differentiate under the integral keeping a(p) constant. 
This gives, using (2.103) and standard manipulation, 

d@ ,=L (E. d x + ~  (dx. V)U) 

The term involving V(A . U) makes zero contribution to the integral 
since A .  U is single-valued; and we have therefore 

Faraday's law of induction 

In its most fundamental form, Faraday's law states that if @(t) is 
defined as above for any moving closed curve CL, then 

where E(x, t) ( ~ m - l )  is the electric field relative to some fixed frame 
of reference. Comparison of (2.107) and (2.108) then shows that 
-E differs from dA/dt by at most the gradient of a single-valued 
scalar 4 (X, t) : 

E + dA/dt = -V4. (2.109) 

The curl of this gives the familiar Maxwell equation 

dB/dt = -V A E. (2.1 10) 

The corresponding jump condition across discontinuity surfaces is, 
from (2. log), 

Galilean invariance of the pre -Maxwell equations 

The following simple property of the three equations 

V.B=O, V A B = ~ J ,  dB/dt=-VAE (2.112) 

is worth noting explicitly. Under the Galilean transformation 

xf=x-Vt, t f= t ,  (2.1 13) 
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the equations transform to 

V'.Bt=O, V 'AB '=~ , J ' ,  a ~ ' / a t ' = - ~ ' r \ ~ '  
(2.114) 

where 
Br=B,  J r = J ,  E t = E + V r \ B .  (2.115) 

(These are the non-relativistic limiting forms of the more general 
Lorentz field transformations of the full Maxwell equations.) It is 
important to note that B and J are invariant under Galilean trans- 
formation, but that E is not. For a fluid moving with velocity u(x, t ) ,  
the field 

is the electric field as measured by an observer moving with the 
fluid, and the right-hand side of (2.108) can therefore be regarded 
as (minus) the effective electromotive force in the moving circuit. 

Ohm's law in a moving conductor 

We shall employ throughout the simplest form of Ohm's law which 
provides the relation between electric current and electric field. In 
an element of fluid moving with velocity U, the relation between the 
fields J' and E' in a frame of reference moving with the element is the 
same as if the element were at rest (on the assumption that accelera- 
tion of the element is insufficient to affect molecular transport 
processes), and we shall take this relation to be J' = (TE' where a is 
the electric conductivity of the fluid (measured in A V-' m-'). 
Relative to the fixed reference frame, this relation becomes 

It must be emphasised that, unlike the relations (2.112) which are 
fundamental, (2.117) is a phenomenological relationship with a 
limited range of validity. Its justification, and determination of the 
value of a in terms of the molecular structure of the fluid, are topics 
requiring statistical mechanics methods, and are outside the scope 
of this book. 

If we now combine (2.61), (2.109) and (2.117), we obtain 
immediately 
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where A = ( p O ~ ) - l  is the magnetic diffusivity of the fluid. Clearly, 
like any other diffusivity, A has dimensions length2 time-'; unless 
explicitly stated otherwise, we shall always assume that A is uniform 
and constant. The divergence of (2.118), using V . A = 0, gives 

The curl of (2.118) gives the very well-known induction equation of 
magnetohydrodynamics 

It is clear that if U is prescribed, then this equation determines 
(subject to appropriate boundary conditions) the evolution of 
B(x, t) if B(x, 0) is known. We shall consider in detail some of the 
properties of (2.120) in the following chapter. 

2.6. Kinematically possible velocity fields 

The velocity field u(x, t) is related to the density field in a moving 
fluid by the equation of conservation of mass 

We have also the associated boundary condition 

u . n = O  on S, j .  (2.122) 

where S, is any stationary rigid boundary that may be present. 
These are both kinematic (as opposed to dynamic) constraints, and 
we describe the joint field (u(x, t), p (X, t ) )  as kinematically possible 
if (2.12 1) and (2.122) are satisfied. It is of course only a small subset 
of such fields which are also dynamically possible under, say, the 
Navier-Stokes equations with prescribed body forces; but many 
useful results aan be obtained without reference to the dynamical 
equations, and these results are generally valid for any kinemati- 
cally possible flows. 

Equation (2.121) may be written in the equivalent Lagrangian 
form 

We shall frequently be concerned with contexts where the fluid may 
be regarded as incompressible, i.e. for which DplDt = 0. In this 
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case, a kinematically possible flow u(x, t) is simply one which 
satisfies 

V.u=O, u . n = O  onSr. (2.124) 

Conservation of mass may equivalently be represented by the 
Lagrangian equation for mass differentials, 

Now 

3 a ~ .  ax. ax, 
&lmn d X = &ijk2 L - 

dal dam da, d a, 

so that (2.125) becomes 

For incompressible flow, this of course becomes simply 

2.7. Free decay modes 

In the absence of fluid motion, a current field J(x, t), confined to a 
finite region V, and its associated magnetic field B(x, t ) ,  decays 
under the action of magnetic ('ohmic') diffusion. Consideration of 
this straightforward effect is a useful preliminary to the topics that 
will be considered in later chapters. Suppose then that U = 0 in V, so 
that, from (2.120), B satisfies the diffusion equation 

Suppose further that the external region Q is non-conducting so 
that 

This is equivalent to the statement 

d3x = J d3a, J = d(xl, X,, x3)/d(al, a2, a,). 

J is the Jacobian of the transformation x = x(a, t ) .  
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We have also the boundary conditions 

where S is the surface of V. 
The natural decay modes for this problem are defined by 

B(x, t) = ~'"'(x) exp pat, (2.132) 

where B '"'(X) satisfies 

Equations (2.133) constitute an eigenvalue problem, the eigen- 
values beingp, and the corresponding eigenfunctions ~'"'(x). These 
eigenfunctions form a complete set, from the general theory of 
elliptic partial differential equations, and an initial field B(x, 0) 
corresponding to an arbitrary initial current distribution J(x, 0) in V 
may be expanded as a sum of eigenfunctions: 

For t > 0, the field is then given by 

B(x, t) = 1 a, ~'" '(x) exp pat. (2.135) 
a 

Standard manipulation of (2.133) shows that 

where V, = V U Q. Hence all the p, are real and negative, and they - 
may be ordered so that ,/ '- O w l  

>-') Y J J  / * d ~ k "  :- ;, / f r  

O>p, ,~p , ,~p , ,> .  . .  (2.137) 

When V is the sphere r < R, as in the consideration of the 
force-free modes of § 2.4, the poloidal and toroidal decomposition 
is appropriate. Suppose then that 

B = V A V A (xP(x, t))+V A (xT(x, t)), (2.138) 
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with associated current distribution 

ky J =  - V A  ( X V ~ P ) + V A V A  (xT). (2.139) 

The equations (2.129)-(2.13 1) are then satisfied provided 

V2p=0, T=O, i n r > R ,  (2.140) 

[P] = [dP/dr] = [T] = 0 on r = R. 

Toroidal decay modes 

The field T may always be expanded in surface harmonics, 

T(r, 6, P, t) = Z: T'"'(r, t)Sn(e, P), 

where, from (2.140), ~ '" ' (r ,  t) satisfies 

for r <R,  
at 

Putting T'"'(r, t) = f'"'(r) exp pat, we obtain a modified form of 
Bessel's equation for f'"'(r), with solution (regular at r = 0) 

The boundary condition f ' " ' ( ~ )  = 0 is then satisfied provided 

Let X, (q = 1,2,  . . .) denote the zeros of Jn+r(x) (see table 2.1); 
then the decay rates -p, of toroidal modes are given by 

where a is now a symbol for the pair (n, q). The general solution for 
T has the form (in r < R )  
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Table 2.1. Zeros X, of J,+! (X), correct to 3 decimal places. 

4 

Poloidal decay modes 

We may similarly expand P in the form 

p(r, e ,q,  t) =Z ~'" ' ( r ,  t)Sn (6, 'P). (2.147) 

Now, however, since V ~ P  = 0 for r >R,  we have 

~'" ' (r ,  t) = c, (t)r-("+'), (r > R). (2.148) 

Hence continuity of P'") and d~'"'/dr on r = R  require that 

or, eliminating c, (t), 

dP'"'/dr + (n + ~)R-'P'"' = 0 on r = R. (2.150) 

Putting ~'" ' (r ,  t) = g, (r) exp pat for r i R, we now obtain 

gn  (r) ~ r - l ' ~ J n +  4 (kar), k: = -pa/A, (2.15 1) 

as for the toroidal modes, but now the condition (2.150) reduces to6 

This reduction requires use of the recurrence relation 

xJ:(x) + vJY(x)  = x J ~ - ~ ( x ) .  
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which is to be contrasted with (2.144). The decay rates for the 
poloidal modes are therefore 

and the general solution for P, analogous to (2.146), is 

where, by (2.149), 

Behaviour of the dipole moment 

The slowest decaying mode is the poloidal mode with n = 1, q = 1 
for which (2.153) gives p, = -AR -2x&. This is a mode with dipole 
structure for r > R  ; if we choose the axis 8 = 0 to be in the direction 
of the dipole moment vector p'l ' ( t) ,  then clearly the angular 
dependence in the associated contribution to the defining scalar P 
involves only the particular axisymmetric surface harmonic 
sl(e, C~)KCOS e. 

It is interesting to enquire what happens in the case of a magnetic 
field which is initially totally confined to the conducting region r < R 
(i.e. B(x, 0) 0 for r > R). The dipole moment of this field (as well as 
all the multipole moment tensors) are then evidently zero since the 
magnetic potential !P given by (2.64) must be zero to all orders for 
r >R. It is sufficient to consider the case in which the angular 
dependence of B(x, 0) is the same as that of a dipole; i.e. suppose 
that only the term with n = 1 is present in the above analysis for the 
poloidal field. The dipole moment is clearly related to the coefficient 
c,(t). In fact, for r > R, using v2P = 0, we have 
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where 

and with P = ~ , ( t ) r - ~ c o s 6  (from (2.148)), this gives 'P= 
c,(t)r-' COS 6 also. Hence in fact the dipole moment is 

and its variation with time is given by (2.155) with n = 1. Under the 
assumed conditions we must have 

For t > 0, Icl(t)( will depart from zero, rising to a maximum value in 
a time of order R 'A -l,  and will then again decay to zero in a time of 
this same order of magnitude, the term corresponding to q = l 
ultimately dominating. 

It is important to note from this example that diffusion can 
result in a temporary increase in the dipole moment as well as 
leading to its ultimate decay if no regenerative agent is present. It is 
tempting to think that a linear superposition of exponentially 
decaying functions must inevitably decrease with time; considera- 
tion of the simple function e-' - e-2t will remove this temptation; 
the function cl(t) in the above example exhibits similar behaviour. 

This possibility of diffusive increase of the dipole moment is so 
important that it is desirable to give it an alternative, and perhaps 
more transparent, formulation. To this end, we must first obtain an 
alternative expression for p"', which from (2.73a) is given by 

First we decompose B into its poloidal dipole ingredient7 B, and the 
rest, B' say, i.e. B = B1 +B', where B, = ~ ( r - ~ ) ,  B' = 0(r-') as 
r + W. Since V A B' = 0 for r >R,  we can rewrite (2.160) in the form 

By 'dipole ingredient' we shall mean the ingredient having the same angular 
dependence as a dipole field. 
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where as usual V, is the whole space. The second integral can be 
manipulated by the divergence theorem giving 

X A ( V A B ' ) ~ V =  ( x ~ ( n ~ B ' ) + 2 ( n . B ' ) x ) d S ,  h.. 
and since B' = ~ ( r - ~ )  at infinity this integral vanishes as expected. 
Similarly the first integral may be transformed using the divergence 
theorem and we obtain 

where S is the surface r = R. Now n A B1 is continuous across r = R, 
and on r = R + , B1 = ~ ( p " '  . ~ ) r - ' ;  the surface integral in (2 .163)  
may then be readily calculated and it is in fact equal to (8?r/3)p"'; 
hence (2 .163)  becomes 

The rate of change of p"' is therefore given by 

Hence change in p(') can be attributed directly to diffusion of B1 
across S due to the normal gradient (n . V)B1 on S. 



CHAPTER 3 

C O N V E C T I O N ,  D I S T O R T I O N  A N D  

D I F F U S I O N  O F  M A G N E T I C  F I E L D  

3.1. Alfven's theorem and related results 

In this section we shall consider certain basic properties of the 
equations derived in the previous chapter in the idealised limit of 
perfect conductivity, a + m, or equivalently A + 0. First, from 
(2.108) and (2.1 17), we have that 

d@/dt = -f rr- ' l .  dx, 
CL 

so that in the limit U + W, provided J remains finite on C,, @ = cst. 
This applies to every closed material curve CL. In particular, 
consider a flux-tube consisting of the aggregate of lines of force 
through a small closed curve. Since any and every curve embracing 
the flux-tube conserves its flux as it moves with the fluid, it is a 
linguistic convenience to say that the flux-tube itself moves with the 
fluid (or is frozen in the fluid) and that its flux is conserved. This is 
Alfvkn's theorem (Alfvkn, 1942), which is closely analogous to 
Kelvin's circulation theorem in inviscid fluid dynamics. 

A more formal derivation of the 'frozen-field' property can of 
course be devised. When A = 0, the right-hand side of (2.120) can be 
expanded, giving the equivalent equation 

If we combine this with (2.123), we obtain 

1 DB B Dp B - - - vu. 
:t(:)-p Dt DI p 

Hence B/p satisfies the same equation as that satisfied by the line 
element dx(a, t) (2.103) and the solution (c.f. (2.101)) is therefore 
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a result essentially due to cauchyl. Suppose now that the line 
element da at time t = 0 is directed along a line of force of the field 
B(a, 0), so that B(a, 0) A da = 0. Then at time t > 0 we have 

dxj dxk 
= cijk- ~ ( ~ ~ ~ ) ~ ~ ( a , O ) - d a . - -  from (2.101) and (3.4) 

P(% 0) dam dun 

aa1 
- clmn-B, (a, 0) da, from (2.127). 

dxi 
Hence 

(B(x, t) A dx(a, t))i = (B(a, 0) A da)l dal/dxi = 0, (3.5) 

so that the line element dx is directed along a line of force of B(x, t ) .  
It follows that if a material curve C' coincides with a B-line at time 
t = 0, then when A = 0 it coincides with a B-line also for all t > 0, and 
each B-line may therefore be identified in this way with a material 
curve. 

It is likewise clear from the above discussion that, when A = 0, any 
motion which stretches a line element dx on a line of force will 
increase B/p proportionately. In an incompressible flow (Dp/Dt = 

0) this means that stretching of B-lines implies proportionate field 
intensification. This need not be the case in compressible flow; for 
example, in a uniform spherically symmetric expansion, with veloc- 
ity field u = (cur, 0,O) (cu > 0) in spherical polars (r, 8, v), any mater- 
ial line element increases in magnitude linearly with r while the 
density of a fluid element at position r(t) decreases as f 3 ;  hence the 
field B following a fluid element decreases as r-2. Conversely in a 
spherically symmetric contraction (a C O), the field following a fluid 
element increases as r-2 .  

Conservation of magnetic helicity 

The fact that B-lines are frozen in the fluid implies that the 
topological structure of the field cannot change with time. One 
would therefore expect the integrals I, defined by (2.8) to remain 

Cauchy obtained the equivalent result in the context of the vorticity equation for 
inviscid flow - see § 3.2 below. 
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constant under any kinematically possible fluid motion, when A = 0. 
The following is a generalisation (Moffatt, 1969) of a result proved 
by Woltjer (1958). 

We first obtain an expression for D ( ~ - ' A .  B)/Dt. From (2.118) 
with A = 0 we have 

Combining this with (3.3), we have 

Now let the S, (interior V,) of (2.8) be a material surface on which 
(permanently) n . B = 0; then, since D(p d 3 x ) / ~ t  = 0, 

so that I, is, as expected, constant. 
If A # 0, this result is of course no longer true; retention of the 

diffusion terms leads to the equation 

so that I, in general changes with time under the action of diffusion. 
This means that the topological structure of the field changes with 
time and there is no way in which a particular line of force can be 
'followed' unambigously from one instant to the next. Attempts 
have sometimes been made to define an effective 'velocity of slip' 
w(x, t) of field lines relative to fluid due to the action of diffusion; if 
such a concept were valid then field evolution when A # 0 would be 
equivalent to field evolution in a non-diffusive fluid with velocity 
field U + W; this would imply conservation of all knots and linkages 
in field lines which is inconsistent in general with (3.9); it must be 
concluded that the concept of a 'velocity of slip', although physically 
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appealing, is also dangerously misleading when complicated field 
structures are considered. 

3.2. The analogy with vorticity 

The induction equation (2.120), 

bears a close formal resemblance to the equation for the vorticity 
o = V A U in the barotropic (pressure p = p(p)) flow of a fluid with 
uniform properties under conservative body forces, viz. 

v being kinematic viscosity. The analogy, first pointed out by 
Elsasser (1946) and exploited by Batchelor (1950) in the considera- 
tion of the action of turbulence on a weak random magnetic field, is 
a curious one, in that a is related to U through o = V A U, so that 
(3.11) is a non-linear equation for the evolution of o ,  whereas 
(3.10) is undoubtedly linear in B when u(x, t) is regarded as given. 
The fact that W is restricted (through its additional relationship to U) 
while B is not means that the analogy has a sort of one-way 
character: general results obtained on the basis of (3.10) relating to 
the B-field usually have a counterpart in the more particular context 
of (3.1 1). By constrast, results obtained on the basis of (3.11) may 
not have a counterpart in the more general context of (3.10). 

We have already noted the parallel between Alfven's theorem 
when A = 0 and Kelvin's circulation theorem when v = 0. We have 
also, when v = 0, results analogous to the further theorems of 3.1, 
viz. 

(i) In the notation of S 3.1, 

This result, due to Cauchy, is sometimes described as the 'solution' 
of the vorticity equation: this is perhaps a little misleading, since in 
the vorticity context axi/aaj is not known until ~ ( a ,  t) is known, and 
this can be determined only after wi(x, t) is determined. Equation 
(3.12), far from providing a solution of (3.1 1) (with v = 0), is rather a 



CONVECTION, DISTORTION A N D  DIFFUSION 47 

reformulation of the equation. Contrast the situation in the magne- 
tic context where axi/daj and B, (X, t )  are truly independent (in so far 
as Lorentz forces are negligible) and where (3.4) provides a genuine 
solution of (3.2) or (3.3). 

(ii) The integral 

is constant if v = 0 and ~ n ,  . n = 0 on the material surface S, of V, 
(Moffatt, 1969). This integral admits interpretation in terms of 
linkages of vortex tubes (exactly as in 8 2.1), and conservation of 
I,{m} is of course attributable to the fact that, when v = 0 and 
p = p(p), vortex lines are frozen in the fluid. I,{m) is the helicity of 
the velocity field within V, ; we shall use the term 'kinetic helicity' 
to distinguish it from the magnetic helicity I,{B} already intro- 
duced. Kinetic helicity is of profound importance in dynamo theory, 
as will become apparent in later chapters. 

The relative importance of the two terms on the right of (3.11) is 
given by the well-known Reynolds number R, of conventional fluid 
mechanics: if uo is a typical scale for the velocity field U and l. is a 
typical length-scale over which it varies, then 

[V A (U A w)I/Ivv~uI = O(R.), where R, = uolo/v. (3.14) 

Similarly, if l. is the scale of variation of B as well as of U, then the 
ratio of the two terms on the right of (3.10) is 

IV A (U AB)I/IAV~B~ = O(R,), where R, = uolo/A = pocuolo. 
(3.15) 

R, is known as the magnetic Reynolds number, and it can be 
regarded as a dimerisionless measure of the fluid conductivity in a 
given flow situation. If R, >> 1, then the diffusion term is relatively 
unimportant, and the frozen-field picture of 5 3.1 should be approx- 
imately valid. If R, << 1, then diffusion dominates, and the ability of 
the flow to distort the field from whatever distribution it would have 
under the action of diffusion alone is severely limited. 

These conclusions are of course of an extremely preliminary 
nature and will require modification in particular contexts. Two 
situations where the estimate (3.15) will be misleading may perhaps 
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be anticipated. First, if the scale L of B is much greater than 
the scale l0 of U, then 

Hence, even if R, << 1, the induction term V A (U A B) may neverthe- 
less be of dominant importance if L/lo is sufficiently large. Secondly, 
in any region of rapid variation of B (e.g. across a thin diffusing 
current sheet) the relevant scale 6 of B may be small compared with 
lo; in this case we can have 

depending on the precise geometry of the situation. In such layers of 
rapid change, diffusion can be important even when R, >> 1. Inany 
event, care is generally needed in the use that is made of estimates of 
the type (3.15), which should always be subject to retrospective 
verification. 

3.3. The analogy with scalar transport 

A further analogy that is sometimes illuminating (Batchelor, 1952) 
is that between equation (3.10) for the 'transport' of the 'vector 
contaminant' B(x, t) and the equation 

which describes the transport of a scalar contaminant @(X, t) (which 
.may be, for example, temperature or dye concentration) subject to 
molecular diffusivity K .  The vector G = V@ satisfies the equation 

which is the counterpart of (3.10) for an irrotational (rather than a 
solenoidal) vector field. 

When K = 0, the Lagrangian solution of (3.18) is simply 

and surfaces of constant O are frozen in the fluid. The counterpart of 
the magnetic Reynolds number is the Pkclet number 
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and diffusion is dominant or 'negligible' according as P,<< or >> 1. 

3.4. Maintenance of a flux rope by uniform rate of strain 

A simple illustration of the combined effects of convection and 
diffusion is provided by the action on a magnetic field of the 
irrotational incompressible velocity field 

u=(ax,py,  yz), a + p + y = O .  (3.22) 

The rate of strain tensor aui/axj is uniform and its principal values 
are a ,  p, y. We suppose further that a is positive and P and y 
negative, so that all fluid line elements tend to become aligned 
parallel to the x-axis. Likewise B-lines tend to become aligned in 
the same way, so let us suppose that 

Equation (3.10) then has only an X-component which becomes 

an equation studied in various special cases by Clarke (1964,1965). 
It may be easily verified that (3.24) admits the steady solution 

representing a flux rope of elliptical structure aligned along the 
x-axis (fig. 3.1). The total flux in the rope is 

Convection of the field towards the axis is exactly balanced by 
diffusion outwards. It is in fact not difficult to show by Fourier 
transform methods that (3.25) is the asymptotic steady solution of 
(3.24) for arbitrary initial conditions; the constant B. is related, as 
in (3.26), to the total initial flux of B across any plane x = cst., a 
quantity that is conserved during the subsequent stretching and 
diffusion process. 
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Fig. 3.1 Flux rope maintained by the action of the uniform straining motion 
(3.22). 

If the velocity field is axisymmetric about the x -axis, then @ = y = 
1 - ~ a ,  and in this case (3.25) becomes 

The flux rope has Gaussian structure, with characteristic radius 
S = 0(h/a) l l2 .  

3.5. An example of accelerated ohmic diffusion 

Suppose now that the uniform strain of 8 3.4 is two-dimensional, i.e. 
that 

u=(ax,  -ay,O) (COO), (3.28) 

and that at time t = 0 

B = (0,O, B. sin koy ). (3.29) 

For t > 0, the B-lines (which are parallel to the z-axis) are swept in 
towards the plane y = 0. It is evident that both the wave-number 
and the amplitude of the field must change with time. We may seek a 
solution of (3.10) of the form 

B = (0, 0, B (t) sin k (t)y ), (3.30) 
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where k(0) = ko, B(0) =Bo. Substitution in (3.10) leads to 

(dB/dt) sin ky + (dk/dt)yB cos ky = ayBk cos ky - A k 2 ~  sin ky, 

and since this must hold for all y, 

dk/dt = Gk, and dB/dt = - h k 2 ~ .  (3.3 1) 

It follows that 

k (t) = ko eat, B (t) = B. exp {-~k;(e~"' - 1)/2a). 
(3.32) 

The wavelength of the non-uniformity of the B-field evidently 
decreases as e-"' due to the convection of all variation towards the 
plane y = 0; in consequence the natural decay of the field is greatly 
accelerated. Note that in this case, with B oriented along the axis of 
zero strain rate, there is no tendency to stretch the B-lines (B . Vu = 

O),  but merely a tendency to convect them (U . VB # 0). 

3.6. Equation for vector potential and flux-function under particu- 
lar symmetries 

Suppose now that U is a solenoidal velocity field, and let 

be the poloidal and toroidal decompositions of U and B. Suppose 
further that both U and B are either two-dimensional (i.e. indepen- 
dent of the Cartesian coordinate z )  or axisymmetric (i.e. invariant 
under rotations about the axis of symmetry Oz). Then it is clear that 
UT ABT=O and SO 

the first bracketed term on the right being poloidal and the second 
toroidal. The poloidal ingredient of (3.10) is then 

Writing Bp = V A AT, we may 'uncurl' this equation obtaining what 
is in effect the toroidal ingredient of (2.118), 
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there being no toroidal contribution from the term -V4 of (2.118)~. 
Similarly, the toroidal ingredient of (3.10) is 

Equations (3.36) and (3.37) are quite convenient since both AT and 
BT have only one component each in both two-dimensional and 
axisymmetric situations. These situations however now require 
slightly different treatments. 

Two-dimensional case 

In this case AT = A (X, y)i, and V A AT = -iz A VA ; hence (3.36) 
becomes 

dA/at +up. VA = A V ~ A ,  (3.38) 

so that A behaves like a scalar quantity (c.f. (3.18)). Similarly, with 
B, = B(x, y)i, and UT = U, (X, y)i,, (3.37) becomes 

Here B also behaves like a scalar, but with a 'source' term (Bp. V)U, 
on the right-hand side. The interpretation of this term is simply that 
if U, varies along a B,-line, then it will tend to shear the Bp-line in 
the z-direction, i.e. to generate a toroidal field component. 

Axisymmetric case 

The differences here are purely associated with the curved 
geometry, and are in this sense trivial. First, with AT = A (S, z)iq in 
cylindrical polar coordinates (2, S, v )  (with s = r sin O ) ,  we have 

so that (3.36) becomes 

This is because C$ is independent of the azimuth angle cp in an axisymmetric 
situation. In the two-dimensional case, a uniform electric field E, in the z-direction 
could be present, but this requires sources of field 'at infinity', and we disregard this 
possibility. 
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Similarly, with BT = B (S, z)iQ, UT = uQ (S, z)iQ, we have 

V A (up A BT) = -iQs(up. V)(S-'B), 
(3.42) 

V A (uT A BP) = iQs(Bp . v)(s-'U,), 

so that (3.37) becomes 

Again there is a source term in the equation for B, but now it is 
variation of the angular velocity "(S, z )  = S-'u,(s, z )  along a Bp- 
line which gives rise, by field distortion, to the generation of toroidal 
field. This phenomenon will be studied in detail in 5 3.11 below. 

Sometimes it is convenient to use the flux-function ~ ( s ,  z )  = 

sA(s, z )  (see (2.47)). From (3.41), the equation for X is 

where 

D ~ ~ = S ( V ~ - S - ~ ) ( S - ~ ~ ) = ( ~ ~ - ~ S - ' ~ / ~ S ) ~ .  (3.45) 

The operator 0 2 ,  known as the Stokes operator, occurs frequently 
in problems with axial symmetry. In spherical polars (r, 0, p) it takes 
the form 

d2 sin 0 d 1 d 

Note, from (3.43, that 

= V . f where f = VX - 2s-lXi,. 

3.7. Field distortion by differential rotation 

By differential rotation, we shall mean an incompressible velocity 
field axisymmetric about, say, Oz, and with circular streamlines 
about this axis. Such a motion has the form (in cylindrical polars) 

If V o  = 0, then we have rigid body rotation which clearly rotates a 
magnetic field without distortion. If Vo # 0, lines of force are in 
general distorted in a way that depends both on the appropriate 
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value of R, ( 5  3.3) and on the orientation of the field relative to the 
vector i,. The two main possibilities are illustrated in fig. 3.2. In (a), 

Fig. 3.2 Qualitative action of differential rotation on an initially uniform 
magnetic field; (a) rotation vector wk perpendicular to field; (b) rotation 
vector wk parallel to field. 

w is a function of S alone, and the B-field lies in the x - y plane 
perpendicular to i, ; the effect of the motion, neglecting diffusion, is 
to wind the field into a tight double spiral in the x - y plane. In (b) ,  
o = o(r), where r2 = s 2  + z 2, and B is initially axisymmetric and 
poloidal; the effect of the rotation, neglecting diffusion, is to gener- 
ate a toroidal field, the typical B-line becoming helical in the region 
of differential rotation. 

Both types of distortion are important in the solar context, and 
possibly also in the geomagnetic context, and have been widely 
studied. We discuss first in the following two sections the type (a) 
distortion (first studied in detail by Parker, 1963), and the important 
related phenomenon of flux expulsion from regions of closed 
streamlines. 

3.8. Effect of plane differential rotation on an initially uniform field 

Suppose then that o = o (S), so that the velocity field given by (3.48) 
is independent of z,  and suppose that at time t = 0 the field B(x, 0) is 
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uniform and equal to Bo. We take the axis Ox in the direction of Bo. 
For t > 0 ,  B = -i, A V A ,  where, from (3.38), A satisfies 

It is natural to use plane polar coordinates defined here by 

x = S cos p, y = s sin p, (3.50) 

in terms of which (3.49) becomes 

The initial condition B(x, 0 )  = B. is equivalent to 

A (S ,  cp, 0 )  = Bos sin p, (3.52) 

and the relevant solution of (3.5 1) clearly has the form 

A (S ,  cp, t )  = Im B. f (S ,  t )  e", (3.53) 
where 

and 
f (S, 0 )  = S. 

The initial phase 

When t = 0, the field B is uniform and there is no diffusion; it is 
therefore reasonable to anticipate that diffusion will be negligible 
during the earliest stages of distortion. With A = 0 the solution of 
(3.54) satisfying the initial condition (3.55) is f(s, t )  = s&'""'~, so 
that from (3.53) 

A (S ,  cp, t )  = B0s sin ( c p  - o (s)t) .  (3.56) 

This solution is of course just the Lagrangian solution A ( x ,  t )  = 

A (a, 0) ,  since for the motion considered, the particle whose coordi- 
nates are (S, c p )  at time t originated from position (S, p -w(s)t)  at 
time zero. The components of B = -i, A V A  are now given by 

B, =S-' d A / d c p  = B o  cos ( c p  - o ( s ) t ) ,  

B,  = -dA/ds = -Bo sin ( p  - w (s) t )  

+ B0so1(s)t cos ( p  - o (s)t) .  
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If of(s)  = 0, i.e. if the motion is a rigid body rotation, then as 
expected the field is merely rotated with the fluid. If of (s)  Z 0, the 
9-component of B increases linearly with time as a result of the 
stretching process. 

We may estimate from (3.56) just for how long the effects of 
diffusion are negligible; for from (3.56) 

A v2A = - A ~ ~ s - ~ ( s ~ o ~ ) ~ t  cos (9 - w (s)t) 

- A B ~ S W ' ~ ~ ~  sin (9 - w (s)t), (3.58) 

while 

o dA/ap = Boos cos (9  - o (s)t). (3.59) 

For the purpose of making estimates, suppose that o (S) is a reason- 
ably smooth function, and let 

It is clear that A v2A is negligible compared with o dA/drp provided 
l 

the coefficients of both the cosine and the sine terms on the right of 
(3.58) are small compared with the coefficient Bows = O(Boooso) of 
the cosine term in (3.59); this leads to the conditions 

w0t R, and oot  << R r ,  (3.61) 

where R, = oos;/A is the appropriate magnetic Reynolds number. 
If R, << 1, then the more stringent condition is oot  << R,, so that 
diffusion is negligible during only a small fraction of the first 
rotation period. If R, >. 1 however, the condition oot  c< R z2 is the 
more stringent, but, even so, diffusion is negligible during a large 
number of rotations. Note that in this case the field is greatly 
intensified before diffusion intervenes; from (3.57), when R, >> 1 
and oot = o ( R ~ ~ ) ,  Bq is dominated by the part linear in t which 
gives 

IBI,., = O(R k'2)~o- (3.62) 

This gives an estimate of the maximum value attained by (B( before 
the process is influenced by diffusion. 
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The estimates (3.61b) and (3.62) differ from estimates obtained 
by E. N. parker3 (1963) who observed that when R, >> 1 ,  the radial 
distance between zeros of the field B, is (from (3.57)) As = 

O(so/oot) ,  so that the time characteristic of field diffusion is 

Parker argued that diffusion should be negligible for all t  c< td, a 
condition that becomes 

in contrast to (3.61b); the corresponding maximum value of [B( 
becomes 

in contrast to (3.62). One can equally argue however that diffusion 
should be negligible for so long as td << tin where tin is a time 
characteristic of the induction process; defining this by 

tin = IBI/IV A (U A B)I 

explicit evaluation from (3.57) gives 

tin = 0 (U,'). 

The condition td << tin restores the estimates (3.61b) and (3.62). The 
difference between o ( R : ~ )  and o ( R : ~ )  is not very important for 
modest values of R,, but becomes significant if R ,  > 106, say. 

The ultimate steady state 
It is to be expected that when t  + CO the solution of (3.54) will settle 
down to a steady form f l(s)  satisfying 

Weiss (1966) also obtained estimates similar to those obtained by Parker, but for a 
velocity field consisting of a periodic array of eddies; the estimates (3.61) and 
(3.62) should in fact apply to this type of situation also. The numerical results 
presented by Weiss for values of R, up to lo3 are consistent with (3.65) rather 
than (3.62); but it is difficult to be sure that the asymptotic regime (for R, + m) has 
been attained. The matter perhaps merits further study. 
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and that, provided o (S) + 0 as s + a, the outer boundary condition 
should be that the field at infinity is undisturbed, i.e. 

The situation is adequately illustrated by the particular choice4 

where ko is constant. The solution of the problem (3.68t(3.70) is 
then straightforward: 

where p = ( l  -i)ko/J2. The constants C and D are determined 
from the conditions that B, and B,(and hence f l  and f:) should be 
continuous across S = so; these conditions yield 

and this completes the formal determination of fl(s) from which A 
and hence B, and B, may be determined. The B-lines are drawn in 
fig. 3.3 for R, = 1, 10 and 25; note the increasing degree of 
distortion as R, increases. 

The nature of the solution is of particular interest when R, >> 1; 
in this situation lpsol >> l ,  and the asymptotic formulae 

~ ~ ( 1 )  (2 /7r~) l '~  sin (z + 4 4 ) ,  J~(Z)  -- -(2/7~z)"~ cos (z + 4 4 )  
(3.73) 

Note that for this discontinuous choice, there can be no initial phase of the type 
discussed above; diffusion must operate as soon as the motion commences to 
eliminate the incipient singularity in the magnetic field on S = so. Note also that it is 
only the variation with S of the ratio o / A  that affects the ultimate field distribution; 
in particular if o = 0 for S > s o ,  then A may be an arbitrary (strictly positive) 
function of S for S > s o  without affecting the situation. 
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(a) R, = 1 (b)  R, = 10 (C) R,,, = 25 

Fig. 3.3 Ultimate steady state field distributions for three values of R,; 
when R, is small the field distortion is small, while when R, is large the 
field tends to be excluded from the rotating region. The sense of the 
rotation is anticlockwise. [Curves computed by R. H. Harding.] 

may be used both in (3.72) with z =pso, and in ( 3 . 7 1 ) ~  with z =PS.  
After some simplification the resulting formula for A from (3.53) 
takes the form 

sin(p+:) ( s > s o ) ,  
(3.74) (%) exP (-v) sin (cp + ~ 2 + 4  

In the limit R, = m(ko = W ) ,  this solution degenerates to 

The lines of force A = cst. are then identical with the streamlines of 
an irrotational flow past a cylinder. In this limit of effectively infinite 
conductivity the field is totally excluded from the rotating region 
s  <so;  the tangential component of field suffers a discontinuity 
across the surface s  = s o  which consequently supports a current 
sheet. 

This form of field exclusion is related to the skin effect in 
conventional electromagnetism. Relative to axes rotating with 

There is a small neighbourhood of s = 0 where, strictly, the asymptotic formulae 
(3.73) may not be used, but it is evident from the nature of the result (3.74) that this 
is of no consequence. 
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angular velocity oo, the problem is that of a field rotating with 
angular velocity -a0 outside a cylindrical conductor. (As observed 
in the footnote on p. 58, the conductivity is irrelevant for s >so in 
the steady state so that we may treat the medium as insulating in this 
region.) A rotating field may be decomposed into two perpendicular 
components oscillating out of phase, and at high frequencies these 
oscillating fields are excluded from the conductor. The same argu- 
ment of course applies to the rotation of a conductor of any shape in 
a magnetic field, when the medium outside the conductor is insula- 
ting; at high rotation rate, the field is always excluded from the 
conductor when it has no component parallel to the rotation vector. 

The additional terms in (3.74) describe the small perturbation of 
the limiting form (3.75) that results when the effects of finite 
conductivity in the rotating region are included. The field does 
evidently penetrate a small distance S into this region, where 

The current distribution (confined to the region s <so) is now 
distributed through a layer of thickness O(S) in which the field falls 
to an effectively zero value. The behaviour is already evident in the 
field line pattern for R, = 25 in fig. 3.3(c). 

The intermediate phase 

The full time-dependent problem described by (3.54) and (3.55) has 
been solved by R. L. Parker (1966) for the case of a rigid body 
rotation o = oo in s <so and zero conductivity (A = W) in s >so. In 
this case, there are no currents for s >so so that V ~ A  = 0 in this 
region (for all t), and hence (cf. 3 . 7 1 ~ )  

This function satisfies 

and so continuity off  and df/ds across s = so provides the boundary 
condition 

for the solution of (3.54). Setting f = f ,(S) + g(s, t), the transient 
function g(s, t )  may be found as a sum of solutions separable in s 
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and t. The result (obtained by Parker by use of the Laplace 
transform) is 

m 4so exp (-ioot - (ootcril~,)) J ~ ( ~ ~ S / S O ) ,  
g(& t) = C (3.80) 

n = l  &(l + (&Rrn ))Jl(un) 

where crn is the nth zero of J0(o). 
The lines of force A = cst. as computed by Parker for R, = 100 

and for various values of oo t  during the first revolution of the 
cylinder are reproduced in fig. 3.4. Note the appearance of closed 

(a) oat = 1 

(e) oot=5 (f> oot = 6 

Fig. 3.4 Development of lines of force A = cst. due to rotation of cylinder 
with angular velocity oo; the sense of rotation is clockwise. The sequence 
(a)-(f) shows one almost complete rotation of the cylinder, with magnetic 
Reynolds number R, = o o a 2 / h  = 100. (From Parker, 1966.) 

loops6 when o,t = 2 and the subsequent disappearance when oot  
5; this process is clearly responsible for the destruction of flux within 
the rotating region. The process is repeated in subsequent revolu- 

This manifestation of diffusion effects at a time rather earlier than the discussion 
preceding (3.61) would suggest is presumably attributable (at least in part) to the 
assumed discontinuity of o at s  = so. 
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tions, flux being repeatedly expelled until the ultimate steady state 
is reached. Parker has in fact shown that, when R, = 100, closed 
loops appear and disappear during each of the first fifteen revolu- 
tions of the cylinder but not subsequently. He has also shown that 
the number of revolutions during which the closed loop cycle occurs 
increases as R z2 for large R, ; in other words it takes a surprisingly 
long time for the field to settle down in detail to its ultimate form. 

3.9. Flux expulsion for general flows with closed streamlines 

A variety of solutions of (3.38) have been computed by Weiss 
(1966) for steady velocity fields representing either a single eddy or 
a regular array of eddies. The computed lines of force develop in 
much the same way as described for the particular flow of the 
previous section, closed loops forming and decaying in such a way as 
to gradually expel all magnetic flux from any region in which the 
streamlines are closed. The following argument (Proctor, 1975), 
analogous to that given by Batchelor (1956) for vorticity, shows why 
the field must be zero in the final steady state in any region of closed 
streamlines in the limit of large R, (i.e. A + 0). 

We consider a steady incompressible velocity field derivable from 
a stream function $(X, y): 

In the limit A + 0 and under steady conditions, (3.38) becomes 
U . VA = 0, and so A is constant on streamlines, or equivalently 

A = A (Q). (3 3 2 )  

If A were exactly zero, then any function A (X, y) of the form (3.82) 
would remain steady. However, the effect of non-zero A is to 
eliminate any variation in A across streamlines. To see this, we 
integrate the exact steady equation 

over the area inside any closed streamline C. Since n . U = 0 on C, 
where n is normal to C, the left-hand side integrates to zero, while 
the right-hand side becomes (with S representing arc length) 

I- A n . VA d~ = AA '(Q) f (aQ/an) ds = AKcA '(Q), (3 3 4 )  
C 
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where KC is the circulation round C. It follows that A'(@)  = 0; hence 
A = cst., and so B = 0 throughout the region of closed streamlines. 

We have seen in B 3.8 that the flux does in fact penetrate a 
distance 6 = O ( Z ~ R , ~ ' ~ )  into the region of closed streamlines, where 
l. is the scale of this region. Within this thin layer, the diffusion term 
in (3.83) is O ( A A / S ~ )  and this is of the same order of magnitude as 
the convective term u . V A  = O(uoA/ lo) .  

The phenomenon of flux expulsion has interesting consequences 
when a horizontal band of eddies acts on a vertical magnetic field. 
Fig. 3.5, reproduced from Weiss (1966), shows the steady state field 

Fig. 3.5 Concentration of flux into ropes by a convective layer (R, = 103); 
(a) streamlines $ = cst. where $ is given by (3.85); (b) lines of force of the 
resulting steady magnetic field. (From Weiss, 1966.) 

structure when 
2 2 4  

@ ( X ,  y )  = -(uo/4.rrlo)(l - (4y / lo ) )  sin (4.rrx/lo), (3.85) 

and when R ,  = uolo/A = 103. The field is concentrated into sheets 
of flux along the vertical planes between neighbouring eddies. 
These sheets have thickness O(R and the field at the centre of 
a sheet is of order of magnitude R ~ ~ B ,  where B ,  is the uniform 
vertical field far from the eddies; this result follows since the total 
vertical magnetic flux must be independent of height. This 
behaviour is comparable with that described by the flux rope 
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solution (3.25), particularly if P = 0 in that solution, when the 'rope' 
becomes a 'sheet'. 

3.10. Expulsion of poloidal fields by meridional circulation 

We consider now the axisymmetric analogue of the result obtained 
in the preceding section. Let U be a steady poloidal axisymmetric 
velocity field with Stokes stream function $(S, z)  and let B be a 
poloidal axisymmetric field with flux-function ~ ( s ,  z, t). Then from 
(3.44), we have 

with the immediate consequence that when A = 0, in Lagrangian 
notation, ~ ( x ,  t) =x(a, 0). In a region of closed streamlines in 
meridian planes, steady conditions are therefore possible in the 
limit R, = CO only if 

Again, as in the plane case, the effect of weak diffusion is to 
eliminate any variation of X as a function of $. This may be seen as 
follows. 

Using V . U = 0 and the representation (3.47) for the exact 
steady equation for X may be written 

Let C be any closed streamline in the S - z (meridian) plane, and let 
S and F be the surface and interior of the torus described by 
rotation of C about Oz. Then U. n = 0 on S, and integration of 
(3.88) throughout F leads to 

With X =X($), and noting that is. n = iz . t on S, where t is a unit 
vector tangent to C, (3.89) gives 
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so that X'(+) = 0 and hence B = 0 in the region of closed streamlines. 
Poloidal magnetic flux is therefore expelled by persistent merid- 

ional circulation from regions of closed meridional streamlines in 
much the same manner as for the plane two-dimensional configura- 
tion of $3.9. 

3.11. Generation of toroidal field by differential rotation 

Consider now an axisymmetric situation in which the velocity field is 
purely toroidal, i.e. 

and a steady poloidal field Bp(s, Z) is maintained by some 
unspecified mechanism. From (3.37), the toroidal field BT then 
evolves according to the equation 

or equivalently, with BT = Biq, from (3.43), 

Note first that if w is constant on Bp-lines so that Bp. Vo = 0 and if 
B = 0 at time t = 0, then B = 0 for t > 0 also. This is the law of 
isorotation, one of the earliest results of magnetohydrodynamics 
(Ferraro, 1937). In the light of Alfvkn's theorem, the result is of 
course self-evident: if o is constant on Bp-lines, then each Bp-line is 
rotated without distortion about the axis Oz, and there is no 
tendency to generate toroidal field. 

If s(Bp . V)@ # 0, then undoubtedly a field B(s, z, t) does develop 
from a zero initial condition according to (3.93). It is not 
immediately clear whether a net flux of BT across the whole 
meridian plane can develop by this mechanism. Let S,  denote the 
meridian plane (0 S < W, -W < z <W) and let C, denote its 
boundary consisting of the z-axis and a semi-circle at infinity. Then 
integration of (3.92) over S, gives 
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We shall assume that o(s, z )  is finite on the axis s = 0 and, for the 
sake of simplicity, identically zero outside some sphere of finite 
radius R; then UT = 0 on C, ; moreover, as will become apparent 
from the detailed solutions that follow, V A BT = ~ ( r - ~ )  as r = 

(S + z 2, 'l2 + a, SO that (3.94) becomes 

00 

- 
- - j-m POA (JP i*)s=o dz- (3.95) 

Hence a net toroidal flux can develop, but only as a result of 
diffusion, and only if the term s(Bp. V)@ in (3.93) is not antisym- 
metric about any plane z = cst. (in which case B would be similarly 
antisymmetric, and its total flux would vanish trivially). 

Again, as in the discussion at the end of chapter 2, the crucially 
important role of diffusion is evident. If A = 0, then, although 
toroidal field develops, the integrated toroidal flux across meridian 
planes remains equal to zero. Only if A # 0 is it possible for net 
toroidal flux to develop. Note incidentally that (3.92) and (3.95) are 
equally valid if A is an arbitrary function of s and z. 

Let us now examine in detail the behaviour of solutions of (3.93), 
with initial condition B = 0 at t = 0. As in the discussion of 3.8, 
there is an initial phase when diffusion effects may be neglected and 
an ultimate steady state in which diffusion effects are all-important. 

(i) The initial phase 

Putting A = 0, the solution of (3.93) is simply 

B (S, Z, t) = S (Bp . V)wt. (3.96) 

Physically, it is as if the Bp-lines are gripped by the fluid and 
'cranked' round the z-axis in regions where o is greatest. In the 
important special case when Bp = BOiz, BO being constant, (3.96) 
becomes 

and it is evident that if is symmetric about the plane z = 0 then B 
is antisymmetric, and vice versa. In general if the Bp-lines are 
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symmetrical about the plane z = 0, then B exhibits the opposite 
symmetry from the product B,&. 

The neglected diffusion term of (3.93) has order of magnitude 
A B / Z ~ ,  where l, is the length-scale of the region over which o varies 
appreciably. This becomes comparable with the retained term 
s(BP. V)o when t = O(A/I@; if o = O(wo) and IVol= O(oo/lo), 
then at this stage (contrast (3.62)) 

B = O(Rm)Bo where R, = oo1yA. (3.98) 

(ii) The ultimate steady state 

When t >> All;, B may be expected to reach a steady state given by 

(v2 - s - ~ ) B  = -A - ~ S ( B ~ .  V)@. (3.99) 

To solve this, note first that if B, = V A (xT) then (equation (2.44)) 
B = -dT/d8, and it follows easily that 

Suppose that T has the expansion 

Then 

If the right-hand side of (3.99) has the expansion 

then (3.101) gives the appropriate form of T(r, 8), and the corres- 
ponding B(r, 8) is given by 

ca 

B (r, 8) = - 2 fn (r) dPn (cos 8)/d8. (3.104) 
1 

If (Bp. V)o is regular at r = 0, then clearly from (3.103) g, (0) = 0 
for each n. We shall moreover suppose that, for each n, 
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gn (r) = ~ ( r - ~ )  at most as r + W'. The solution fn (r) of (3.1026) for 
which fn (0) is finite and fn (W) is then 

A case of particular interest is that in which V A Bp = 0, so that 
Bp = -VP, v24 = 0. Then P ,  being axisymmetric and finite at r = 0, 
has the expansion 

Let us suppose further, to simplify matters, that w is a function of 
r = (S + z 2, 'l2 only. Then 

av 
s(Bp . V)O = -r sin 8-~'(r)  

dr 

CO 

= 2 mAmrmw '(r) sin 8 P,(COS 8) 
m = l 

Hence comparing with (3.103), we have for n = 1,2, . . . , 

wherein we may take A. = 0. From (3.105), the corresponding 

This assumption is of course much less restrictive than the assumption g, ( r )  = 0 for 
r > R ,  but it includes this possibility; the effect of the differential rotation is 
localized provided the g,(r) fall off sufficiently rapidly with r. 

* Here we use the recurrence relation 
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expression for fn (r) (after integrating by parts and simplifying) is 

CO 

+ xo(x) dx. 

In the particular case when Bp = Boi,, we have only the term 
V = V,, with A l  = Bo. Then from (3.104) and (3.109), 

Note that the condition o = ~ ( x - ~ )  as x + m is sufficient in this case 
to ensure that B = ~ ( r - ~ )  at infinity. 

Similarly, if V = - A ~ ~ ~ P ~ ( c o s  B), then B is given by 

The most important thing to notice about this rather complicated 
expression is its asymptotic behaviour as r + m: if o(x)  = ~ ( x - ~ )  as 
x +m,  then 

2A2 sin 0 
B(r, B)-- 3Ar2 x4w(x)dx as r-m. (3.112) 

This is to be contrasted with the behaviour (3.110) (which implies 
B r-3 as r + m) in the former case. The expression (3.11 1) exhibits 
an infinite toroidal flux over the meridian plane S,. As is clear from 
the introductory discussion in this section, this flux arises through 
the action of diffusion, which of course has an infinite time to 
operate before the steady field (3. l l l )  can be established through- 
out all space. 

The slower decrease of B with r given by (3.112) as compared 
with that given by (3.110) is attributable to the symmetry of the 
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B-field about the plane z = 0 (6 = 4 2 ) ;  the simple sin 6 depen- 
dence of (3.1 12) makes the associated B less vulnerable to the 
influence of diffusion than the more complicated sin 6 cos 6 struc- 
ture of (3.1 10) and the field therefore diffuses further from the 
region of differential rotation. This has the important consequence 
that, in general, if Bp is non-uniform, it is the gradient of Bp in the 
neighbourhood of the centre of rotation (rather than its local 
average value) that determines the toroidal field generated at a very 
great distance. 

Finally note that in all cases, in the steady state, 

max I B J  = O(R,)JBp(. 

This means that, unlike the situation considered in § 3.8, the 
toroidal field here increases to values of order R, and then levels off 
through the diffusion process without further change in order of 
magnitude, the whole process taking a time of order Z;/A. There is 
no suggestion of any flux expulsion mechanism here; flux expulsion 
does not occur if the 'applied field' Bp is symmetric about the axis of 
rotation. 

The analysis given above can be modified to cope with the 
situation when the poloidal field Bp has non-axisymmetric as well as 
axisymmetric ingredients (see Herzenberg & Lowes, 1957, for the 
case of a rigid spherical rotator imbedded in a solid conductor). The 
analysis is complicated by the appearance of spherical Bessel func- 
tions in the inversion of the operator V2 - sW2, but the result is not 
unexpected: the non-axisymmetric ingredients are expelled from 
the rotating region when R, >> 1, and the axisymmetric ingredient is 
distorted, without expulsion, in the manner described above. 

3.12. Topological pumping of magnetic flux 

A fundamental variant of the flux expulsion mechanism discussed in 
$8 3.8-3.10 has been discovered by Drobyshevski & Yuferev 
(1974). This study was motivated by the observation that in steady 
thermal convection between horizontal planes, the lower plane 
being heated uniformly, the convection cell pattern generally 
exhibits what may be described as a topological asymmetry about 
the centre-plane: fluid generally rises at the centre of the convection 
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cells and falls on the periphery, so that regions of rising fluid are 
separated from each other whereas regions of falling fluid are all 
connected. The reason for this type of behaviour must be sought in 
the non-linear dynamical stability characteristics of the problem: it 
certainly cannot be explained in terms of linear stability analysis 
since if u(x, t) is any velocity field satisfying linearised stability 
equations about a state of rest, then -u(x, t) is another solution. 
However, it would be inappropriate to digress in this manner here; 
in the spirit of the present kinematic approach, let us simply assume 
that a steady velocity field u(x) exhibiting the above kind of topolog- 
ical asymmetry is given, and we consider the consequences for an 
initial horizontal magnetic field B which is subject to diffusion and 
to convection by u(x). 

Suppose that the fluid is contained between the two planes 
z = 0, zo. Near the upper plane z = zo the rising fluid must diverge, 
so that the flow is everywhere directed towards the periphery of the 
convection cells. A horizontal B-line near z = zo will then tend to be 
distorted by this motion so as to lie everywhere near cell 
peripheries, where it can then be convected downwards. A horizon- 
tal B-line near z = 0, by contrast, cannot be so distorted as to lie 
everywhere in a region of rising fluid, since these regions are 
disconnected. Hence a B-line cannot be convected upwards 
(although loops of field can be lifted by each rising blob of fluid). It 
follows that, as far as the horizontal average Bo(z, t) = (B(x, y, z, t)) 
is concerned, there is a valve effect which permits downward 
transport but prohibits upward transport. This effect will be 
opposed by diffusion; but one would expect on the basis of this 
physical argument that an equilibrium distribution B&) will 
develop, asymmetric about z = izo, and with greater flux in the 
lower half, the degree of asymmetry being related to the relevant 
magnetic Reynolds number. 

A regular cell pattern over the horizontal plane can be character- 
ised by cell boundaries that are either triangular, square or hex- 
agonal. In normal Binard convection, the hexagonal pattern is 
preferred (again for reasons associated with the non-linear 
dynamics of the system). A velocity field with square cell boundaries 
however allows simpler analysis, and the qualitative behaviour is 
undoubtedly the same whether hexagons or squares are chosen. 
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Drobyshevski & Yuferev chose as their velocity field 

U = U,[-sin xt( l  +f cos y') cos z', - ( l  +f cos X ' )  sin y' cos z', 

(COS X' +COS y' +COS X'  cos y') sin z'], (3.1 14) 

where X' = vx/zo. This velocity field satisfies V . U = 0, n . U = 0 on 
Z'  = 0, T, has square cell boundaries at X' = (2n + l ) ~ ,  y' = 

(2m + l ) ~  (n, m = 0, *l ,  *2, . . .), and has the basic topological 
asymmetry referred to above. The discrete regions of rising fluid are 
the interiors of the closed curves cos X' + cos y ' + cos X ' cos y ' = 0; 
these closed curves are centred at the cell centres, and are contained 
in the annular regions defined by 

i.e. they approximate to circles of radii 0 . 6 8 ~ ~ .  
Under steady conditions, the magnetic field B(x) must satisfy 

(3.10) with aB/at = 0. Putting U' = u/uo, and dropping the dashes on 
U' and X', this becomes, 

In order to solve this equation, we need boundary conditions on B; 
following Drobyshevski & Yuferev, we assume that the solid reg- 
ions z < 0 and z > T are perfect electrical conductors in which E and 
B vanish; then from (2.5), 

also, from (2.1 11) and (2.117), we have that n A J = 0 on the 
boundaries, or equivalently, since poJ = V A B, 

(There will be a surface current on the boundaries under these 
conditions.) Finally we suppose that in the absence of fluid motion 
(or equivalently if R, = 0) the field B is uniform and in the x- 
direction, (Bo, 0,O); the flux = z a o  is then trapped between the 
perfectly conducting planes, and the problem is to determine the 
distribution of mean flux according to (3.1 16) when R, # 0. 
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If R, 1, the problem can be solved in power series 

where B"' = (B,, 0,O) and, from (3.116), 

Since the right-hand side is always a space-periodic function, inver- 
sion of the operator v2 simply requires repeated use of the identity 

cos (lx +p) cos (my +q) cos (nz + r) 

= (12+m2+n2)-' cos (lx +p) cos (my +q) cos (nz +r). 
(3.121) 

The horizontal averages B ~ ' ( Z )  = (~(" ' (x,  y, 2)) can then be con- 
structed. The procedure is somewhat tedious, and it is necessary to 
go as far as the term B~ ' (z )  before the pumping effect appears. The 
result at that level of approximation is Bo(z) = Bo(z)i,, where 

Here, the term of order R; is symmetric about the centre plane 
z = i; at this level there is therefore symmetrical flux expulsion of 
the type obtained for two-dimensional flows by Weiss (1966) (but 
here of course the effect is weak when R, << 1). The term of order 
R: is however antisymmetric about z = f, and shows as expected 
that there is a net downward transport of flux; in fact the difference 
in flux between the lower half and the upper half is, returning to 
dimensional variables, 

It may be noted that if the expansion (3.122) is continued, only 
terms involving odd powers of R, can contribute to the asymmetric 
flux pumping effect since the even power terms are invariant under 
the sign change uo -, -uo. 
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The function Bo(z) was computed directly from (3.1 16) (by a 
computational method involving truncation of Fourier series) by 
Drobyshevski & Yuferev for 5 values of R,, the maximum value 
being 16/n  == 5.09. The computed curves are shown in fig. 3.6, and 

0 1 2 3 
B ,  (z )  

Fig. 3.6 Mean field distribution for different values of R, as computed from 
(3.1 16) (from Drobyshevski & Yuferev, 1974). Note (i) the almost symmet- 
ric, but weak, field expulsion effect when TR, = 2; (ii) the strong concen- 
tration of field near the lower boundary when TR, = 16. 

the concentration of flux in the lower half of the gap is clearly 
evident; the increase in this concentration as R, increases is 
particularly striking. 

For R, >> 1, one would expect the mean flux to be concentrated in 
a thin layer of thickness S = o(R,''~)z~ on the lower boundary. A 
boundary layer analysis should then be valid. The three- 
dimensionality of the velocity field however makes this a difficult 
problem which hks not yet been solved. Nor have numerical compu- 
tations yet been carried beyond the value R, = 5.09 mentioned 
above. 

Further aspects of the flux pumping phenomenon have however 
been investigated by Proctor (1975), who has pointed out that 
asymmetric pumping can occur even when the topological distinc- 
tion between upward and downward moving fluid is absent. Proctor 
has analysed the effect of two-dimensional motions in detail, and 
has shown that lack of geometrical symmetry about the midplane is 
sufficient to lead to a net transport of flux either up or down; e.g. if 
(W 3, # 0, where W is the vertical velocity at the midplane, then there 
will be a net transport, which Proctor describes as geometrical (as 
opposed to topological) pumping. When R, >> 1 however, he shows 
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that this type of two-dimensional geometrical pumping is so weak as 
to be negligible, whereas it is precisely in this limit that the 
Drobyshevski & Yuferev mechanism may be expected to be most 
effective. 



www.moffatt.tc 
C H A P T E R  4 

T H E  M A G N E T I C  F I E L D  OF T H E  E A R T H  

4.1. Planetary magnetic fields in general 

The dramatic achievements of launched satellite programmes over 
the last few years now make it possible to see the Earth and its 
magnetic field in the proper context of planetary magnetic fields in 
general. Certain obviously relevant properties of the five planets 
nearest to the Sun (the only ones for which magnetic field measure- 
ments are at present available)' are summarised in table 4.1. Of 
these five, Jupiter has the strongest mean surface field.(as measured 
by the quantity p / ~ 3 )  followed by the Earth, Mercury and Mars in 
that order. The field of Venus, if  it exists at all, is extremely weak 
and below the threshold of present detectors. 

Table 4.1. Properties of the planets Mercury, Venus, Earth, Mars and 
Jupiter. The magnetic data for Mercury are derived from Ness et @l. 
(1975), for Mars from Dolginov et al. (1973), and for Jupiter from 
Warwick (1963) and Smith et al. (1 974). The rotation of Venus is 
retrograde relative to its sense of rotation round the Sun. The rotation 
of the other four planets are all prograde. The quantity p / R  in the 
final column may be regarded as a measure of mean surface field 
strength. 

Planet Radius Mean Rotation Angular Dipole P / R  
R density period velocity il moment p 
km kgmP3 days S-' gauss km3 gauss 

Mercury 2440 5400 59 1.23 X 1oP6 4.8 X lo7  3.3 X 10-~ 
Venus 6050 5200 243 2 . 9 9 ~  1 0 - ~  <4x 107 < 1 - 8 ~  1 0 - ~  
Earth 6380 5500 1.0 7.27 X IO-~  8.05 X 10" 3.1 1 X 10-I 
Mars 3390 3900 1.026 7.09 X I O - ~  2.47 X l o 7  6.36 x I O - ~  
Jupiter 71400 1300 0.41 1.77 X 1oP4 1.31 X 1015 3.61 

It is now widely agreed that the mechanism of generation and 
maintenance of the Earth's field is to be sought in the inductive 

Brown (1975) has interpreted hectometric radio emission from Saturn in terms of a 
magnetic field about 12% that of Jupiter. 
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motion, strongly influenced by Coriolis forces, in a liquid core. 
Seismological studies, coupled with knowledge of the density dis- 
tribution within the Earth and the relative abundances of chemical 
compounds of which it is composed, lead to the conclusion that the 
gross structure of the Earth is as indicated in fig. 4.l(a) (see, for 

P (4 
(megabars) 

Fig.4.1 Interior structures of Earth and Jupiter. (a) Earth, RE = 6380 km: 
1. solid inner core; iron/nickel alloy; 2. liquid outer core, iron and some 
lighter elements; 3. solid mantle, ferrolmagnesium silicates (Jacobs, 
1975). (b) Jupiter, R j  = 7 1460 km: 1. liquid core, helium/hydrogen 
alloy; 2. solid hydrogen; there may be a solid inner core for r /RJ6  0.1, 
consisting of helium and heavier elements. (After the model of 
Smoluchowski, 197 1 .) 
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example, Jacobs, 1975). If we take RE = 6380 km as the mean 
radius of the Earth (there are of course slight departures from exact 
sphericity), then there are distinct phase transitions at r = R c  (the 
Lehmann-Gutenberg discontinuity) and at r = RI, where 

The radius r = RC marks the core boundary; the outer core, RI  < r < 
RC, consists of molten metal, probably iron with a weak admixture 
of lighter elements, sulphur, carbon or silicon. The argument for 
sulphur (Murthy& Hall, 1970) is based on the relative depletion of 
sulphur in the outer layers of the Earth and the presumption that 
processes of chemical and gravitational differentiation in the early 
stages of the Earth's history could have led to relatively high sulphur 
concentration in the central regions. 

The inner core r <R1 is solid, most probably an alloy of iron and 
nickel, presumably formed by slow crystallisation from the outer 
core. The mantle r >Rc is also solid (although subject to visco- 
plastic deformation on time-scales of the order of millions of years); . 
ferro-magnesium silicates of composition (MgO FeO)Si02, where 
Fe and Mg are freely interchangeable, are the most likely con- 
stituents (Hide, 1956). 

From the standpoint of dynamo theory in the terrestrial context, 
we are therefore faced with the problem of fluid flow in a rotating 
spherical shell RI  < r < RC, and the electric currents and magnetic 
fields that such flow may generate. The fluid may reasonably be 
regarded as incompressible in the dynamo context and, in a purely 
kinematic approach, any kinematically possible velocity fields, 
satisfying merely V . U = 0, and n . u = 0 on r = RI, RC, may be 
considered. At a subsequent stage it is of course essential to 
consider the nature of the forces (or of the sources of energy) that 
may be available to drive the motions. We defer to § 4.4 further 
consideration of the physical state of the Earth's interior. 

The inference that planetary dynamo action requires both a 
conducting fluid core and a 'sufficient' degree of rotation (i.e. a 
sufficient influence of Coriolis forces) is to some extent supported 
(in a most preliminary way) by the information contained in table 
4.1. Venus, with approximately the same radius and mean density 
as the Earth, has presumably a comparable structure; it rotates very 
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slowly, however, as compared with the Earth, and it is reasonable to 
suppose that this is why it exhibits no magnetic field. Mars on the 
other hand rotates at approximately the same angular velocity as 
the Earth; however its substantially lower mean density indicates a 
much smaller abundance of iron-rich compounds, and so a much 
smaller molten metal core (if it has one at all). Mercury rotates 
slowly, and its quite significant dipole moment (relative to its size) is 
therefore something of a surprise; intermediate between the Earth 
and Venus in both rotation rate and mean surface fields strength, 
Mercury may well provide a key test case for dynamo models. 

Finally, Jupiter is of unique interest in the dynamo context. Its 
low mean density indicates an internal constitution totally different 
from that of the four inner planets. Its hypothetical structure, again 
based on total mass and general arguments concerning relative 
abundance of elements in the proto-planetary medium, is indicated 
in fig. 4.1(6). The vast bulk of the planet consists of liquid hydrogen 
with possibly a small admixture of helium; in the core region 
r S 46000 km (excluding a very small central region where heavier 
elements may be concentrated), high pressure (of the order of 
3 X 106 atmospheres and greater) causes dissociation of the hydro- 
gen molecules into atoms, i.e. hydrogen is then in its liquid metallic 
phase with an electrical conductivity comparable with that of other 
liquid metals. The planet rotates at more than twice the angular 
velocity of the Earth, and Coriolis forces are undoubtedly impor- 
tant in its internal dynamics. It is reasonable to anticipate that 
Jupiter's magnetic field, like the Earth's, is attributable to dynamo 
action in its liquid conducting core region. 

4.2. Spherical harmonic analysis of the Earth's field 

The magnetic field at the surface of the Earth is due in part to 
currents in the interior and in part to currents in the outer conduct- 
ing layers of the Earth's atmosphere. Measurements of all three 
field components on the surface provide a means of separating out 
these contributions, and it has been demonstrated by this process 
that by far the dominant contribution is of internal origin. For 
detailed numbers, the reader is referred to the classical treatise on 
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geomagnetism by Chapman & Bartels (1940); see also Hide & 
Roberts (1 96 1). 

The magnetic potential due to the internal currents has the 
spherical polar expansion (cf. (2.64)) 

where 
n 

S. (B, q )  = 1 (g,"(t) cos mq + hr(t) sin mq)Pr(cos B), 
m =O 

(4.3) 
and where Pr(cos B) is the associated Legendre polynomial with 
the normalisation 

The coefficients gr(t), hr(t) are the 'geomagnetic elements' in 
conventional notation. The axis of reference B = 0 is taken to be the 
geographical axis (i.e. the axis of rotation) of the Earth; the origin of 
longitude (q = 0) is at Greenwich. 

The potential W is conveniently split into dipole and non-dipole 
ingredients: 

The dipole ingredient corresponds to a fictitious dipole p at the 
Earth's centre where, with Cartesian coordinates (X, y, z )  related to 
(r, 6, q )  by (2.20), 

This dipole makes an angle +(t) with the axis Oz where 
1 2  1/2 

tan * = ((g:)2 + (h l) /g:. (4.7) 

Using the figures in the first two rows of table 4.2, which shows the 
values of g:, h: and their time derivatives for n, m S 8 as given by 
Barraclough et al. (1 979 ,  (4.7) gives + = 1 1". 

The series (4.2) converges quite rapidly for r = RE. If the source 
currents were strictly confined to the core region r <RC, then the 
series would converge for r >Rc. In fact, the mantle is by no means 
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Table 4.2. Geomagnetic elements g,"(t), h,"(t) and their rates of 
change at epoch 1975.0 for n, m S 8 .  The unit of field measurement is 
l y = 1 0 - ~  gauss = IO-' Wb m-2. (From Barraclough et al., 1975.) 
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Table 4.2.-contd. 

Fig. 4.2  Contributions (a) to mean-square field and ( b )  to mean-square rate 
of change of field on the surfaces r = RE and r = R C .  B, = -V*'"' and (. . .) 
indicates an average over a spherical surface. The unit of field strength is 
l y = 10-S gauss. The squared points in (b) indicate values of (B:) corrected 
for random errors in the secular variation coefficients g:, h C. (From Lowes, 
1974; data from International Geomagnetic Reference Field 1965-70.) 
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a perfect insulator, although its conductivity is certainly much less 
than that of the core, and some current may leak out from the core 
to the mantle. It is not therefore safe to use the expansion (4.2) in 
the neighbourhood of r = RC. Nevertheless it is interesting to plot 
the mean square contributions (B$, where B, = -v\Y'"' and the 
angular brackets represent averaging over a sphere r = cst., for 
n = 1,2,  . . . , 8  (Lowes, 1974) - see fig. 4.2. On r = RE, the con- 
vergence is convincing, while on r = RC, as expected, convergence is 
certainly not obvious; indeed it is evident that the harmonics up to 
n = 8 make roughly equal contributions to the mean square field on 
r = RC. Thus although the field at the Earth's surface is certainly 
predominantly dipole in structure, the evidence is that this situation 
does not persist down to the neighbourhood of the core boundary. 
This difference between the field structure on r = R E  and r = RC is 
even more marked in terms of the mean square of the time 
derivatives B:; in this case, on r =Rc,  the contributions actually 
show a distinct increase with increasing n (fig. 4.2(b)); the values for 
n = 7 , 8  in this figure are however uncertain due to random errors in 
the secular variation coefficients. 

The non-dipole field is generally depicted by magnetic maps, i.e. 
by a set of contours of, say, constant vertical magnetic field (usually 
obtained on the basis of annual averages). Comparison of such maps 
at say 10-year intervals provides qualitative evidence of the evolu- 
tion of the non-dipole field with time. Since (B;~)''~ = 0.02 gauss 
and ( ~ 2 ) " ~  = 0.0005 gauss/year, the time-scale for this secular 
variation at any fixed location is of order 40 years. The magnetic 
contours evolve on this time-scale, with centres of activity growing 
and decaying like isobars on a weather chart. A distinct ingredient 
of this evolution is a westward drift of the non-dipole field at a rate 
that has been estimated by Bullard et al. (1950) as 0.18&0-015 
degrees of longitude per year (i.e. about 7" in 40 years). 

4.3. Variation of the dipole field over long time-scales 

Measurements of the coefficients g,"(t), h,"(t) have been available 
only since Gauss. During the period 1835-1945, the dipole field 
decreased in rms intensity from 0.464 gauss to 0.437 gauss, indicat- 
ing a time-scale of variation of order 2000 years; (this is probably an 
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underestimate - see below). For evidence of field evolution in eras 
prior to Gauss, we have two important sources of information. First 
and most important, the science of rock magnetism (palaeomagnet- 
ism) provides estimates of B at geological epochs when rocks cooled 
below the Cufie point; since some rocks are known on the basis 
of radiometric dating to be as old as 3-5 X 10' years, this provides 
information about the Earth's field from the earliest stages in its 
history, the estimated age of the Earth being of order 5 X 10' years. 
Studies of the magnetisation of sea-floor sediments provides 
similar information. Secondly, archaeomagnetism (i.e. the study of 
the remanent magnetism acquired by clay pots, kilns and other 
objects baked by man) gives information about the field intensity 
and orientation over the last 4000 years or so. The information from 
both sources is reliable only if the samples analysed can 
be accurately dated. Dating of ancient rocks is accurate only to 
within about 3%, so that, roughly speaking, the further back we go 
in geological time, the more uncertain the picture becomes. 

Nevertheless, certain broad conclusions are now widely accepted 
from such studies (see, for example, Bullard, 1968; Jacobs, 1976). 
First, from the archaeomagnetic studies, it has been shown that the 
intensity fluctuates on a time-scale of order lo4 years, and that it has 
been decreasing over the last few thousand years from a level about 
50% greater than the present level. The direction of the dipole 
moment also changes (dipole wobble), though at a rate small 
compared with the westward drift of the non-dipole field; the 
indications are that the time average of the dipole moment p(t) 
over periods of order 1 0 ~ - 1 0 ~  years is accurately in the north-south 
direction. The smallness of the angle rC/ = 11° between the present 
magnetic axis and the geographic axis is an indication of the 
relevance of rotational constraints on the inductive fluid motions in 
the core; the fact that the long-time average of + is apparently zero, 
or near zero, provides more emphatic evidence that these rotational 
constraints have a strong bearing on the magnetic field generation 
problem. 

More dramatically, the palaeomagnetic studies provide clear 
evidence of reversals in the polarity of the Earth's field that have 
occurred repeatedly during the Earth's history. Fig. 4.3 (derived 
from Cox, 1969) shows the record of variations in polarity of the 
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Earth's field over the recent geological past, i.e. the last 4 million 
years. The reversals apparently occur randomly in time, the typical 
period between reversals being of order 2 X lo5 years. This period is 
however highly variable; going back further in geological time, 
there was a conspicuous long interval of 5 X 107 years throughout 
the Permian era (between 280 and 230 million years ago) when no 
reversals occurred (Irving, 1964). There was also a distinct change 
in the statistics of the occurrence of reversals about 45 million years 
ago (Jacobs, 1976). 

The details of individual reversals, which take place on time- 
scales of order lo4 years, have been described by Cox (1972). 
During this process, the field intensity first decreases to about one 
quarter its usual value over a period of several thousand years; the 
field direction then undergoes several swings up to 30' in direction 
before following an irregular route to its reversed direction; finally 
the intensity recovers in the reversed direction to its original level. 

- 4 - 3 - 2 - 1 0 t (106 years) 

Normal 

Reversed - 

Fig.4.3 Record of reversals of the Earth's dipole polarity over the last 
4 x  106 years (derived from Cox, 1969). The figure indicates only the 
direction of the dipole vector, not its intensity. 

4.4. Parameters and physical state of the lower mantle and core 

, 

Apart from chemical constitution, the fundamental thermodynamic 
variables in the interior of the Earth are density and temperature 
from which, in principle, other properties such as electrical conduc- 
tivity may be deduced (although this requires bold extrapolation of 
curves based on available laboratory data). The density p ( r )  as 
inferred from seismic data increases with depth monotonically from 
about 3*4 g cm-3 in the upper mantle to about 5-5 g cm-3 in the 
lower mantle at the core-mantle interface (see fig. 4.l(a)). It then 
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jumps to about l 0  g ~ m - ~  across the core-mantle interface and 
increases to approximately 12 g cmv3 at the interface between inner 
and outer core. There may be a further jump in density at this 
interface, but an upper bound of 1.9 g cm-3 can be put on this jump 
(Bolt & Qamar, 1970). The central density in the inner core is 
believed to be of order 13 or 14 g cm-3. 

The temperature T(r) likewise rises monotonically with increas- 
ing depth to a value of the order of 4200-4300 K in the inner core; 
this estimate is based on knowledge of the melting-point tempera- 
ture of iron under high pressure and the reasonable assumption that 
the temperature at the surface of the inner core is precisely the 
melting-point temperature corresponding to the local hydrostatic 
pressure (Higgins & Kennedy, 1971). Since the outer core is liquid, 
clearly the temperature there must everwhere be above the local 
melting-point temperature. If the inner and outer cores are in 
chemical and thermal equilibrium at the interface this implies a 
severe restriction on possible temperature distributions in the outer 
core. In particular Higgins & Kennedy (1971) have argued, on the 
basis of extrapolation of melting-point curves for iron to high 
pressures, that the melting-point gradient is considerably less than 
the adiabatic temperature gradient corresponding to neutral con- 
vective stability conditions; they further argue that in these cir- 
cumstances the actual temperature will be very nearly equal to the 
melting-point temperature T,(r), the resulting temperature gra- 
dient being then insufficient to generate convection currents. In a 
further examination of the problem (Kennedy & Higgins, 1973), 
the same authors confirmed their earlier conclusion as regards the 
outer two-thirds of the outer core, but conceded that uncertainties 
in the various parameters involved could possibly allow a 
superadiabatic temperature gradient in the inner one-third; turbul- 
ent convection would then tend to restore an adiabatic mean 
temperature distribution in this regime. 

The Higgins & Kennedy argument does however rest on the 
assumption of chemical and thermal equilibrium at the interface 
between the inner solid and outer liquid core, and it is not quite 
clear that this assumption is justified. The presence of sulphur in the 
outer core would imply a lower melting point on the liquid side of 
the interface than on the solid side, to some extent relaxing the 
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constraint on temperature mentioned above. Against this must be 
set the argument that the concentration of sulphur (the lighter 
element) presumably increases with r, providing a further stabilising 
contribution to the density variation. 

The fact that the outer core might be thermally stably stratified 
was recognised by Braginskii (1964c), who argued that convection 
might nevertheless be driven by the upward flotation of lighter 
elements (Braginskii argued in terms of silicon) during the process 
of crystallisation of iron from the outer core onto the inner core. A 
similar process of density differentiation had been earlier suggested 
by Urey (1952): precipitation of iron from the mantle into the outer 
core and subsequent sedimentation of the iron towards the inner 
core (through the lighter core fluid mixture) could also lead to the 
generation of convection currents. In both processes, gravitational 
energy is released and a proportion of this is potentially available 
for conversion to magnetic energy by the dynamo mechanism. At 
the same time, both processes lead to a decrease in the moment of 
inertia C of the Earth about its axis of spin, and so to an increase in 
its angular velocity (in so far as the influence of external torques can 
be neglected) which should in principle be detectable from study of 
minute changes in the 'length of day'. Unfortunately many compet- 
ing mechanisms can cause small variations in the Earth's angular 
velocity (Munk & MacDonald, 1960)' and the effect of gravita- 
tional sedimentation in the outer core has not yet been unambig- 
ously separated from other effects; indeed it seems likely that it will 
be swamped by the more important retarding effect associated with 
tidal friction. 

Even if the outer core were stably stratified, this does not of 
course mean that all radial motions are impossible; internal gravity 
waves (modified by Coriolis forces and possibly also by Lorentz 
forces) can propagate in a stably stratified medium, and such waves 
will in general be generated by perturbation forces either in the fluid 
interior or on its boundary. There is some evidence that the 
core-mantle boundary is not smooth, but is bumpy on a tangential 
scale of the order of hundreds of kilometres and on a radial scale of 
one or two kilometres (see 9 4.6 below); if this is the case, then it is 
easy to visualise that disturbances to an otherwise smooth core flow 
could well originate at the core-mantle interface. 
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The electrical conductivity a of the outer core was estimated by 
Bullard & Gellman (1954) to be 3x 105R-' m-', an estimate 
acknowledged to be uncertain by a factor 3 either way; with 
p. = 47r X  10-~ H m-', this givesva value for the magnetic diffusivity 
A = (poa)-l = 2.6 m S-'. The value of the conductivity in the lower 
mantle is estimated (e.g. Braginskii & Nikolaychik, 1973) to be 
am"2 X  103 R-' mm', so that A m  = (poa,)-' "2 X  103 m2 S-', and 

Other estimates (e.g. Roberts, 19726) place this ratio nearer to 
10'. In any event, the ratio is large enough for it to be reasonable 
in a first approximation to treatthe mantle as an insulator (amxO). 
Some phenomena however (e.g. the electromagnetic coupling 
between core and mantle - see e.g. Loper, 1975) depend crucially 
on the leakage of electric current from core to mantle, a process that 
is controlled by the weak mantle conductivity, which must naturally 
in such contexts be retained in the analysis. 

The kinematic viscosity v of the outer core has been described 
(Roberts & Soward, 1972) as the worst determined quantity in the 
whole of geophysics: it was placed in the range I O - ~  < v c< 
lo5 m2 S-' by Hide (1956), the upper limit being determined by the 
fact that seismic P-waves are known to traverse the core without 
appreciable damping. A figure near to the lower limit has been 
frequently adopted as being the most reasonable estimate; e.g. 
Loper (1975) takes v = 4 X  1oF6 m ' S-', quoting again uncertainty 
by a factor of 3 either way. With this estimate, and the above 
estimate for A, we have for the dimensionless ratio v/A (the mag- 
netic Prandtl number) the estimate 

which may be compared with the value 1.5 X I O - ~  for mercury 
under normal laboratory conditions. The small value of VIA sug- 
gests that the dominant contribution to energy dissipation in the 
outer core will be ohmic rather than viscous, and that (except 
possibly in thin shear layers at the solid boundaries of the outer core 
or in itsinterior) viscous effects will be negligible in the governing 
dynamical equations. 
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4.5. The need for a dynamo theory for the Earth 

If induction effects in the core were non-existent or negligible, the 
free decay time for any current distribution predominantly confined 
to the core would (8 2.7) be of order td = R;/A?~:; which, with 
Rc=3500km, A =2*6m2s- '  gives tdz4'7x 10 s ~ 1 . 5 ~  104 
years. As mentioned in § 4.3, studies of rock magnetism indicate 
that the field of the Earth has existed at roughly its present intensity 
(except possibly during rapid reversals) on a geological time-scale of 
order lo9 years. It therefore clearly cannot be regarded as a relic of 
a field trapped during accretion of the Earth from interplanetary 
matter; such a field could not have survived throughout the long 
history of the Earth in the absence of any regenerative mechanism. 

On the other hand, the fact that the field exhibits time variation 
on scales extremely short compared with geological time-scales of 
order 106 years and greater (e.g. the secular variation of the 
non-dipole field with characteristic time of order 40 years) indicates 
rather strongly that such variations are not attributable to general 
evolutionary properties of the Earth on these geological time- 
scales, but rather to relatively rapid processes most probably 
associated directly with core fluid motions. 

The rate of westward drift (0*18" per year) suggests velocities 
of order uC54 X I O - ~  m S-' near the core-mantle interface, of the 
core relative to the mantle (on the simplistic picture that magnetic 
perturbations are convected by the core fluid). A characteristic 
length-scale for magnetic perturbations associated with the secular 
variation is l,= lo3 km. A magnetic Reynolds number can be 
constructed on the basis of these figures: 

This is by no means ififinite, but is perhaps large enough to justify 
the frozen-field assumption for magnetic perturbations, at least in a 
first approximation. 

4.6. The core-mantle interface 

A remarkable discovery was published by Hide & Malin (1970) to 
the effect that the pattern of the non-dipole magnetic potential !Pnd 
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over the surface of the Earth exhibits a strong correlation with the 
pattern of the potential B, of gravitational fluctuations. Defining 
this correlation by 

where the angular brackets indicate averaging over the sphere 
r = RE, Hide & Malin found, by analysis of data in which only 
surface harmonics up to n = 4 were considered significant, that for 
the year 1965, R (42,) was maximal for p, = 160" = Go say, and that 
then R(@,) = 0.84; here Go represents the shift to the east in the 
geomagnetic potential *nd required to maximise the correlation. 
Analysis of data for earlier decades indicated that Go is not constant 
in time, but rather increases at  a rate of about 0.27" per 
presumably a manifestation of the westward drift of the magnetic 
potential relative to the (fixed) gravitational potential. A degree of 
correlation as high as 0.84 is statistically unlikely unless the fluctua- 
tions in the two fields can be traced to some common influence; and 
it was suggested by Hide & Malin that this common influence might 
be attributed to undulations and irregularities ('bumps') on the 
core-mantle interface. Such bumps could well be a consequence of 
low-speed thermal convection in the lower mantle2. The density 
jump across this interface certainly implies that bumps will lead to 
gravity perturbations vertically above them; moreover any core 
flow over the bumps in the presence of a magnetic field will generate 
magnetic perturbations which may well be shifted in phase relative 
to the bumps by convective or wave propagation effects. The 
statistical significance of the Hide-Malin correlation has been ques- 
tioned by Khan (197 1) and Lowes (197 1) and reasserted by Hide & 
Malin (1971); ultimate certainty in the matter will perhaps have to 
await independent evidence on the structure of the core-mantle 
interface. At this stage, we can merely say that it is at least highly 
plausible that bumps of the order of one or two kilometres in height 
(below the level of resolution of seismic waves) may be present on 
the interface, and that if so these will undoubtedly influence both 
fields in the manner described above; we shall consider a detailed 
model in 8 10.8. 

Whether the associated gravitational stresses could b,e supported by the material of 
the lower mantle is debatable. 
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The possible presence of bumps on the interface is of crucial 
importance in the problem of calculating the torque exerted by the 
core on the mantle (Hide, 1969). It seems intuitively likely that 
bumps may greatly increase the torque over the value calculated on 
the basis of a smooth interface (Loper, 1975); however, a recent 
calculation by Anufriyev & Braginskii (1975) provides some indica- 
tion that the interaction is in fact severely limited by the presence of 
any ambient horizontal magnetic field, at any rate when this is 
strong. 

4.7. Precession of the Earth's angular velocity vector 

The angular velocity of the Earth's mantle a ( t )  is not quite steady, 
but is subject to slow changes and weak perturbations in both 
direction and magnitude (Munk & Macdonald, 1960). Chief among 
these in its relevance to core dynamics is the slow precession of 42 
about the normal to the plane of the Earth's rotation about the Sun 
caused by the net torque exerted by the Sun and the Moon on the 
Earth's equatorial bulge. The period of precession is known from 
astronomical observations to be 25 800 years, the vector describ- 
ing a cone of semi-angle 23.5" over this period. The precessional 
angular velocity Q, has magnitude 7-71 X 10-l2 S-'. Precession has 
been advocated by Malkus (1963, 1968) as providing the most 
plausible source of energy for core motions, a view that has however 
been contested by Rochester et al. (1975). 

It is easy to see why precession must cause some departures from 
rigid body rotation in the liquid core region. Firstly, since the mean 
density of the core is substantially greater than the mean density of 
the mantle, the dynamic ellipticity E ,  = (C, - Ac)/Cc of the core 
(where A, and C, are its equatorial and polar moments of inertia 
respectively) is less than the corresponding quantity E, for the 
mantle; in fact E,=;E,. If the core and the mantle were dynamically 
uncoupled, they would then precess at different angular velocities 
proportional to E, and E, respectively, i.e. the precessional angular 
velocity of the core would be in,, so that after about 105 years the 
angular velocities of core and mantle, though equal in magnitude, 
would be quite different in direction. This would imply large relative 
velocities between core and mantle of order flRc=200 m S-', for 
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which there is no evidence whatsoever. The inference is that core 
and mantle are not dynamically uncoupled - indeed there is no good 
reason to expect that they should be -but are quite strongly coupled 
through both viscous and electromagnetic transfer of angular 
momentum across the interface. This coupling must act in such a 
way as to equalise the precessional angular velocity of core and 
mantle, although in the absence of perfect coupling the mean 
angular velocity of the core may be expected to lag behind the 
angular velocity of the mantle in its precessional orbit. A difference 
in angular velocity requires a boundary layer at the core-mantle 
interface, a phenomenon studied in the purely viscous context by 
Stewartson & Roberts (1963), Toomre (1966) and Busse (1968) 
and in the hydromagnetic context by Rochester (1962), Roberts 
(1972b), and Loper (1975). 

It would be inappropriate to enter at this stage into any of the 
detailed calculations undertaken by the above authors - this would 
require a disproportionate digression from the main theme of this 
monograph. The influence of precession is merely mentioned here 
as one element of the complicated dynamical background that will 
have to be fully understood before the dynamo problem in the 
terrestrial context can be regarded as solved. There is still wide 
disagreement about what the dominant source of energy for core 
motions may be, although convection due to buoyancy forces (of 
thermal or sedimentary origin as discussed in 8 4.4) and preces- 
sional torques appear to be the principal candidates for serious 
consideration. The most recent detailed analysis of the problem of 
coupling between mantle and core (Loper, 1975) indicates that the 
rate of supply of energy through the mechanism of precessional 
coupling is a factor of order 10-~ smaller than the estimated rate of 
ohmic dissipation in the core; Loper also makes the point that a 
fraction of this energy supplied (necessarily 100% in a steady state 
model!) is dissipated in the boundary layers through which angular 
momentum is transferred from mantle to core. The concept of a 
precessionally driven dynamo rests however on the existence of a 
turbulent flow in the core arising from instabilities of these bound- 
ary layers and the secondary flows to which they give rise (Malkus, 
1968), and it is by no means clear that Loper's arguments can be 
applied to this situation. There are as yet no detailed dynamo 
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models that rely on precession as the main source of energy, and the 
question of whether such a dynamo is possible even in principle 
(setting aside the question of the energy budget in the terrestrial 
context) must await further deve1,opments in numerical and experi- 
mental modelling. 
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CHAPTER 5 

THE S O L A R  M A G N E T I C  F I E L D  

5.1. Introduction 

As for the case of the Earth, it is now generally accepted among 
astrophysicists that the origin of the Sun's magnetic field, which is 
highly variable both in space and in time, must be sought in 
inductive motions; these are localised in its outer convective zone, 
which extends from the visible surface of the Sun (r = R. = 6.96 X 

lo5 km) down to about r = 0.8 Ro. The natural decay time for the 
fundamental dipole mode is of order 4 X 109 years (Wrubel, 1952), 
which is of the same order as the age of the solar system. If the solar 
magnetic field were steady on historic time-scales there would be no 
need to seek for a renewal mechanism; the field could simply be a 
'fossil7 relic of a field frozen into the solar gas during the initial 
process of condensation from the galactic medium. Even local 
time-dependent phenomena, such as the evolution of sunspots (see 
8 5.2 below), could be regarded as transient and localised events 
occurring in the presence of such a fossil field, and this was in fact 
the widely accepted view until the mid-1950s. The development of 
the solar magnetograph (Babcock & Babcock, 1955) permitting 
direct measurement of the weak general poloidal field of the Sun, 
and the discovery of reversals of this field (see 8 5.4 below), first in 
the period 1957-8 and again in 1969-71 (in both cases either at or 
just after periods of maximum sunspot activity), have now led to the 
view that the 22-year sunspot cycle is in fact a particular manifesta- 
tion of a roughly periodic evolution of the Sun's general field. Such a 
periodic behaviour cannot possibly be interpreted in terms of a 
fossil theory. Curiously, whereas dynamo theory was originally 
conceived to explain the persistence of cosmic magnetic fields over 
very long time-scales, in the case of the solar field it is now invoked 
to explain the extremely rapid variations (on the cosmic time-scale) 
that at present attract no other equally plausible explanation. 

In this chapter we shall review some of the observed features of 
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solar activity, in order to provide some background for the theoreti- 
cal studies to be described, particularly those of chapters 7, 9 and 
11. This review is necessarily highly selective; a comprehensive 
(though now somewhat dated) treatment of solar physics and of 
related observational problems and techniques may be found in 
Kuiper (1953); recent developments may be found in the Proceed- 
ings of the IAU Symposium 'Basic Mechanisms of Solar Activity' 
held at Prague in 1975 (Bumba & Kleczek, 1976). 

5.2. Observed velocity fields 

The Sun rotates about an axis inclined at an angle 7" 15' to the 
normal of the Earth's orbital plane, with a period of approximately 
27 days. The rotation rate is however non-uniform, being greater 
(by about 4 days) at the equatorial plane than at the poles. The 
angular velocity w (8) on the surface r = R. as a function of helio- 
graphic latitude 8 may be represented by the formula 

0 (8) = (2.78 + 0-35 cos2 6 - 0-44 cos4 8) X 10-~  rad S-', (5.1) 

(Howard & Harvey, 1970). This result is based on measurements of 
the Doppler shift in spectral lines observed near the solar limbs at 
different latitudes. Small fluctuations ~ ' ( 8 ,  t )  superposed on (5.1) 
have also been detected. 

The visible surface of the Sun is not uniformly bright, but exhibits 
a regular pattern of granulation, the scale of this pattern (i.e. the 
mean radius of the granules) being approximately 1000 km. The 
details of the pattern change on a time-scale of the order of a few 
minutes. Velocity fluctuations (again detected by means of Doppler 
shift measurements) of the order of 1 km S-' are associated with the 
granulation, and are the surface manifestation of convective turbul- 
ence which penetrates to a depth of the order of 1.5 X lo5 km 
(Weiss, 1976; Gough & Weiss, 1976) below the solar surface. 
Velocity fluctuations exist on larger scales (e.g. velocities of order 
0.1 km S-' are associated with 'supergranular' and 'giant cell' struc- 
tures on scales of order 104-105 km) and likewise velocity fluctua- 
tions may be detected on all scales down to the limit of resolution (of 
order 102 km). If we adopt the scales 

1, - lo3 km, U, - l km S-' (5 2)  
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as being characteristic of the most energetic ingredients of the 
turbulent convection in the outermost layers of the Sun, then, with 
estimates of the kinematic viscosity and magnetic diffusivity given 

by 

v - 10-~  km2 S-', A - 10-' km2 S-', (5.3) 

we may construct a Reynolds number Re and magnetic Reynolds 
number R,: 

If magnetic effects were dynamically negligible, then the traditional 
Kolmogorov picture of turbulence (see chapter 11) would imply the 
existence of a continuous spectrum of velocity fluctuations on all 
scales down to the inner Kolmogorov scale [ ,  - - R ; ~ ' ~ [ ,  - 1 cm, a 
factor lo7 below the limit of resolution! Lack of an adequate theory 
for the effects of small-scale turbulence has generally led to a simple 
crude representation of the mean effects of the turbulence in terms 
of a turbulent (or 'eddy') viscosity v, and magnetic diffusivity A, ; if 
these are supposed to incorporate all the effects of turbulence on 
scales smaller than the granular scale I,, then they are given in order 
of magnitude by 

The precise mechanism by which turbulence can lead to a 'cascade' 
of both kinetic and magnetic energies towards smaller and smaller 
length-scales and ultimately to the very small scales on which 
viscous and ohmic dissipation take place presents a difficult prob- 
lem, some aspects of which will be considered in chapter 11. 

5.3. Sunspots and the solar cycle 

Sunspots are dark spots (typically of order 104 km in diameter) that 
appear and disappear on the surface of the Sun mainly within *35" 
of the equatorial plane 8 = 90". The number of spots visible at any 
time varies from day to day and from year to year, the most striking 
feature being the current periodicity (with approximate period 11 
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years) in the annual mean sunspot number (see fig. 5.1)'. This 
figure also shows signs of a weak longer term periodicity with period 
of order 80 years. 

Sunspots commonly occur in pairs roughly aligned along a line of 
latitude 8 = cst., and they rotate with an angular velocity a little 
greater than that given by (5.1) (see e.g. Durney, 1976), the leading 
spot of a pair being slightly nearer the equatorial plane (in general) 
than the following spot. The typical distance between spots in a pair 
(or more complicated spot group) is of order lo5 km. 

Formation of sunspot pairs is essentially a purely magneto- 
hydrodynamic phenomenon, which may be understood in physical 
terms (Parker, 1955a) as follows. Suppose that a weak poloidai 
magnetic field of, say, dipole symmetry is present, and is maintained 
by some mechanism as yet unspecified. Any differential rotation 
that is present in the convective zone of the Sun (due to redistribu- 
tion of angular momentum by thermal turbulence) will then tend to 
generate a toroidal field which is greater by a large factor (O(R,) if 
the mechanism of 5 3.11 is of dominant importance) than the 
poloidal field. Consider then a tube of strong toroidal flux (B, - 
1 o4 gauss) immersed at some depth in ,the convective zone. If this 
tube is in dynamic equilibrium with its surroundings then the total 
pressure p + (2po)-1~2, inside the tube must equal the fluid pressure 
p. outside; hence the fluid pressure is less inside the tube than 
outside, and so, if there is a simple monotonic relationship between 
pressure and density, the density inside must also be less than the 
density outside. The tube is then buoyant relative to its surround- 
ings (like a toroidal bubble) and may be subject to instabilities if the 
decrease of density with height outside the flux tube is not too great. 
This phenomenon (described as 'magnetic buoyancy' by Parker, 
1955a) will be considered in some detail in 5 10.7. For the moment 
it is enough to say that instability can manifest itself in the form of 
large kinks in the toroidal tube of force, which may rise and break 

The current periodicity may not be a permanent feature of solar behaviour; early 
astronomical records, discussed in detail by Eddy (1976), indicate in particular that 
the 70-year period 1645-1715 was anomalous in that very few sunspots were 
recorded and no periodicity was apparent. There is also evidence (Eddy, Gilman & 
Trotter, 1976) that the angular velocity gradient U' (@)  in low latitudes was 
greater during this period than at present by a factor about 3! 
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Fig. 5.1 Annual mean sunspot number, 1610-1975. During the last 250 
years there has been a characteristic periodicity, with period approximately 
11 years. The latter half of the seventeenth century was anomalous in that 
very few sunspots were recorded. Observations prior to 1650 were unsys- 
tematic and there are large gaps in the data. (Courtesy of John A. Eddy.) 

through the solar surface (fig. 5.2). Such a rise is associated with a 
vertical stretching of the lines of force in the tube, as exemplified in 
the idealised solution of the induction equation discussed in 5 3.4. 
Also, since fluid in the neighbourhood of the rising kink may be 
expected to expand on rising (the total vertical extent of the 
phenomenon being large compared with the scale-height) conser- 
vation of angular momentum will make this fluid rotate in a 
left-handed sense (in the northern hemisphere) as it rises, thus 



THE SOLAR MAGNETIC FIELD 

Fig. 5.2 Schematic representation of the formation of a sunspot pair by 
eruption of a subsurface toroidal tube of force. The vertical field is 
intensified at L and F where the leading and following spats are formed. 
Expansion of the erupting gas leads to a deficit of the local vertical 
component of angular momentum relative to the rotating Sun,,and so to a 
twist of the sunspot pair LF relative to the surface line of latitude 8 = cst. 
(After Parker, 1955a.) 

providing a natural explanation for the preferred tilt of a spot pair 
relative to the line of latitude as mentioned above. 

The strong localised vertical fields thus created may be expected 
to suppress thermal turbulence and therefore to decrease dramati- 
cally the transport of heat to the solar surface - hence the darkening 
of a sunspot relative to its surroundings. 

Magnetic fields were first detected in sunspots by Hale (1908); 
fields measured are typically of the order of lo3 gauss in a sunspot, 
and may be as large as 4000 gauss. The polarity of the sunspot fields 
(i.e. whether the field direction is radially outwards or inwards) is 
almost invariably consistent with the physical picture described 
above, i.e. in any sunspot pair, the field polarity is positive in one 
sunspot and negative in the other sunspot of the pair; moreover all 
pairs in one hemisphere (with few exceptions) have the same 
polarity sense, indicating eruption from a subsurface toroidal field 
that is coherent over the hemisphere, and pairs of sunspots in 
opposite hemispheres generally have opposite senses, indicating 
that the toroidal field is generally antisymmetric about the equator- 
ial plane. 
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Fig. 5.3 The butterfly diagram showing the incidence of sunspots as a function of colatitude 
e t=  90'-8 and time t for the years 1874-1913; a vertical segment is included for each degree 
interval and for each 27-day solar rotation period if and only if one or more sunspots is observed in 
the interval during the rotation. The 1 l-year cycle and the migration of the 'active regions' towards 
the equatorial plane are clearly revealed. (Maunder, 19 13 .) 
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As mentioned earlier, shnspots appear only within about* 35" of 
the equatorial plane 8 = 90". In fact the distribution of spots in 
latitude varies periodically in time with the same period (- 11 
years) as that of the sunspot cycle. This behaviour is generally 
represented by means of the celebrated 'butterfly diagram' intro- 
duced by Maunder (1 904,19 13). Maunder's (1 9 13) diagram for the 
years 1874-1913 is reproduced in fig. 5.3; this diagram is con- 
structed by inserting, for each rotation of the Sun, a set of vertical 
line segments corresponding to the bands of latitude in which 
sunspots are observed during the period of rotation. The 11-year 
periodicity is again clearly apparent on such a diagram; also a 
migration of the sunspot pattern towards the equatorial plane is 
evident, reflecting a migration of the underlying toroidal field, if the 
above qualitative description of sunspot formation is correct. 

The sense of polarity of sunspot pairs in either hemisphere is 
observed to change from one l l-year cycle to the next. It may be 
inferred that the underlying toroidal magnetic field is periodic in 
time with period approximately 2 X 11 = 22 years. If this toroidal 
field is generated from a poloidal field by steady differential rota- 
tion, then the poloidal field must also be time-periodic with the 
same period. The observational evidence for this behaviour is 
discussed in the following section. 

5.4. The general poloidal magnetic field of the sun 

The solar magnetograph (Babcock & Babcock, 1953) has been used 
since 1953 to provide daily charts of the general magnetic field of 
the Sun. Since 1966, the magnetograph signals of the Mt. Wilson 
Observatory have been recorded on magnetic tape for subsequent 
analysis (Howard, 1974). Fig. 5.4 shows records of the line-of-sight 
component of magnetic field averaged over different bands of 
latitude, and smoothed over the 27-day solar rotation period. 
Although averaged to this extent, the mean field still exhibits 
variations in time that apparently have a random ingredient, with 
excursions however being limited to the range *2 gauss. If the 
signal is further averaged over a period of one year, certain definite 
trends become apparent. It is clear for example that the field within 
30" of the South Pole, when thus averaged, was positive in 1968, but 
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Fig. 5 .4  Records (from Mt. Wilson Observatory) of line-of-sight compo- 
nent of the Sun's surface magnetic field, averaged over bands of latitude, 
and smoothed over the 27-day rotation period. (a) Northern hemisphere. 
(b) Southern hemisphere. (From Howard, 1974.) 

negative in each of the years 1969-73. Similarly the north-polar 
field was negative in the mean from January 1970 to July 1971, but 
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positive in the mean from August 1971 till the end of 1973. In this 
sense, it may be said that the south-polar field reversed direction 
around the beginning of 1969 and the north-polar field reversed 
direction around July 1971 ; this type of reversal activity occurred 
shortly after a period of maximum sunspot activity. 

Similar reversals were recorded (Babcock, 1959) during the 
previous period of maximum sunspot activity 1957-9: the south- 
polar field reversed (from negative to positive) early in 1957, and 
the north-polar field reversed (from positive to negative) around 
November 1958. 

These observations suggest that, although there are clearly strong 
random effects at work in the evolution of the solar magnetic field, 
there is nevertheless a significant coupling between the poloidal and 
toroidal ingredients of the field, and that these both exhibit (in a 
suitably averaged sense) time-periodic behaviour with period of 
order 22 years. At any rate, from the observations there is certainly 
sufficient motivation in studying closely any dynamo models which 
involve coupling between toroidal and poloidal field ingredients 
and which are capable of predicting such time-periodic behaviour. 

The coupling between mean poloidal field evolution and sunspot 
activity is rather strikingly revealed in fig. 5.5 (from Stix, 1976) 
which shows curves of constant radial field B,((?, t) = cst. superposed 
on the butterfly diagram for the period 1954-75. The radial field 
was obtained from spherical harmonic coefficients determined by 
Altschuler et al. (1974) from the magnetograph recordings of the 
Mt. Wilson Observatory. During the half-cycle 1964-75, the polar- 
ity of the leading spots in the northern hemisphere was negative 
indicating that B, was positive in the northern hemisphere (and 
similarly negative in the southern hemisphere). During this same 
period, B, was negative in the northern hemisphere (in the sunspot 
zone) and positive in the southern hemisphere. The fact that B, and 
B, are apparently out of phase has important implications for 
possible dynamo mechanisms, as pointed out by Stix (1976). These 
implications will be discussed later in the context of particular 
dynamo models (see § 9.12). 

Let us now consider briefly the detailed spatial structure of the 
radial component of magnetic field as observed over the solar disc. 
Increasing refinement in spectroscopic detection techniques can 
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Fig. 5 .5  Butterfly diagram for 1954 to 1975 (Mt. Wilson Observatory) and 
contours of constant radial field component. The levels of the curves are 
approximately k0.17, &O-50, k0 -83  and k1.16 gauss, positive for the solid 
and negative for the dashed curves. (From Stix, 1976.) 

now reveal the fine structure of this field down to scales of the order 
of 1000 km and less. The remarkable fact is that, although the 
spatially averaged radial field is of the order of 1 or 2 gauss (see fig. 
5.4), it is by no means uniformly spread over the solar surface, but 
appears to be concentrated in 'flux elements' with diameters of 
order 200 km and less, in which field strengths are typically of the 
order of 1000-2000 gauss (Stenflo, 1976). Such flux elements 
naturally occupy a very small fraction (-0.1%) of the solar surface; 
the number of elements required to give the total observed flux is of 
order 10'. The process of flux concentration can be understood in 
terms of the 'flux expulsion' mechanism discussed in 5 3.9; there are 
however difficulties in accepting this picture, in that flux expulsion 
as described in § 3.9 occurs effectively when the flow pattern is 
steady over a time-scale large compared with the turn-over time of 
the constituent eddies, whereas observation of the granulation 
pattern suggests unsteadiness on a time-scale t, somewhat less than 
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the turn-over time given by y u g  -- lo3 S. The problem of the 
fine-scale structure of the solar field presents a challenging problem 
that is by no means as yet fully resolved. 

Our main concern however in subsequent chapters will be with 
the evolution of the mean magnetic field (the mean being defined 
either spatially over scales large compared with I, or temporally 
over scales large compared with t,). The difficulties associated with 
the fine-scale structure are to some extent concealed in this type of 
treatment; nevertheless the treatment is justified in that the first 
requirement in the solar (as in the terrestrial) context is to provide a 
theoretical framework for the treatment of the gross properties of 
the observed field; the treatment of the fine-structure must at this 
stage be regarded to some extent as a secondary problem, although 
in fact the two aspects are inextricably linked, and understanding of 
the dynamo mechanism will be complete only when the detailed 
fine-structure processes and their cumulative effects are fully 
understood. 

5.5. Magnetic stars 

The magnetic field of the Sun is detectable only by virtue of its 
exceptional proximity to the Earth as compared with other stars. 
Magnetic fields of distant stars are detectable only if strong enough 
to provide significant Zeeman splitting of their spectral lines; and 
this phenomena can be observed only for stars whose spectral lines 
are sharply defined and not smeared out by other effects such as 
rapid rotation. The dramatic discovery (Babcock, 1947) of a 
magnetic field of the order of 500 gauss in the star 78 Virginis 
heralded a new era in the subject of cosmical electrodynamics. This 
star is one of the class of peculiar A-type (Ap) stars, which exhibit, 
via their spectroscopic properties, unusual chemical composition 
relative to the Sun. It is now known (see e.g. Preston, 1967) that 78 
Virginis is typical of Ap stars whose spectral lines are not too 
broadened by rotation to make Zeeman splitting detection imprac- 
ticable: virtually all such stars exhibit magnetic fields in the range 
100-30000gauss; these fields are variable in time, and a 
proportion of these 'magnetic stars' show periodic behaviour with 
period typically of the order of several days. 
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The fields of these stars have an order of magnitude that is 
consistent with the simple and appealing conjecture that the stellar 
field is formed by compression of the general galactic field (which is 
of order l0-~-10-~ gauss) during the process of gravitational con- 
densation of the star from the interstellar medium. For a sphere of 
gas of radius R, with mass M and trapped flux F, this gives simple 
relations for the mean density p and mean surface field strength B : 

and hence 

where the suffixes S and g reftr to the stellar and galactic fields 
respectively. A compression ratio of order 1015 would thus be 
sufficient to explain the order of magnitude of the observed fields 
(Bs/Bg - 10"). In fact ps/pg is considerably greater than 1015, and 
the problem is rather to explain the inferred loss of magnetic flux 
during the process of gravitational condensation and subsequent 
early stage of stellar evolution (see e.g. Mestel, 1967). 

As in the case of the Sun, the natural (ohmic) decay time for the 
field of a magnetic star is of the same order as (or even greater than) 
the life-time of the star, and a possible view is that the field is simply 
a 'fossil' relic of the field created during the initial condensation of 
the star. If the dipole moment of the star is inclined to the rotation 
axis, the observed periodicities can be explained in a natural way in 
terms of a rotating dipole (the 'oblique rotator' model). Some of the 
observations (e.g. the irregular field variations observed in at 
least some Ap stars) cannot however be explained in terms of the 
oblique rotator model, and it seems likely that dynamo processes, 
similar to those occurring in the Sun, may play an important part in 
determining field evolution in most cases. As pointed out by Preston 
(1967), a dynamo theory and an oblique rotator theory are not 
necessarily mutually exclusive possibilities; it is more likely that 
both types of process occur and interact in controlling the evolution 
of the observed fields. 

The simple relationship (5.7) suggests that, as massive stars 
evolve into yet more compressed states, in so far as magnetic flux 
remains trapped during the later stages of evolution, so the 
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associated surface fields should be intensified. Very strong magnetic 
fields (of order l0'-10~ gauss) have in fact been detected in white 
dwarfs (see e.g. Landstreet & Angel, 1974; Angel, 1975). Fields of 
the order of 1012 gauss and greater are to be expected under the 
extreme condensation conditions of neutron stars (see e.g. Woltjer, 
1975). In these situations however it seems unlikely that hy- 
dromagnetic effects remain of any importance; the fields observed 
can most reasonably be interpreted as fossil relics of fields com- 
pressed from earlier eras of stellar evolution. 
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CHAPTER 6 

L A M I N A R  D Y N A M O  T H E O R Y  

6.1. Formal statement of the kinematic dynamo problem 

As in previous chapters, V will denote a bounded region in R ~ ,  S its 
surface, and Q the exterior region extending to infinity. Conducting 
fluid of uniform magnetic diffusivity A (0 < A  < m) is confined to V, 
and the medium in will be supposed insulating, so that the electric 
current distribution J(x, t) is also confined to V. Let u(x, t) be the 
fluid velocity, satisfying 

Steady velocity fields u(x) are of particular interest; we shall also be 
concerned in subsequent chapters with turbulent velocity fields 
having statistical properties that are time independent. For the most 
part we shall limit attention to incompressible flows for which 
V . U = 0; we shall also assume, unless explicitly stated otherwise, 
that u is differentiable in V, and that the total kinetic energy E(t)  of 
the motion is permanently bounded: 

Concerning the magnetic field B(x, t), we assume that this is 
produced entirely by the current distribution J, which is without 
artificial singularities; then B is also without singularities, and it 
satisfies the outer condition 

The condition V . B = 0 is of course always satisfied. 
The field B then evolves according to the equations 

[B] = 0 across S, 



L A M I N A R  D Y N A M O  T H E O R Y  109 

and subject to an initial condition, compatible with (6.4), of the 
form 

The total magnetic energy M(t) is given by 

where V, as usual represents the whole space. Under the assumed 
conditions, M(t) is certainly finite, and we suppose that M(0) = 

MO > 0. We know that if U 0, then M(t) + 0 as t -+ a, the time-scale 
for this natural process of ohmic decay ( 5  2.7) being t, = L ~ / A  
where L is a scale characterising V. A natural definition of dynamo 
action is then the following: for given V and A, the velocity field 
u(x, t )  acts as  a dynamo if M(t) % 0 as t -+ W, i.e. if it successfully 
counteracts the erosive action of ohmic dissipation. Under these 
circumstances, M(t) may tend to a constant (non-zero) value, or 
may fluctuate about such a value either regularly or irregularly, or it 
may increase without limit'. 

A given velocity field u(x, t) may act as a dynamo for some, but 
not all, initial field structures Bo(x) and for some, but not all, values 
of the parameter A. The field u(x, t) may be described as capable of 
dynamo action if there exists an initial field structure Bo(x) and a 
finite value of A for which, under the evolution defined by (6.3)- 
(6.5), M(t)%O as t + W .  Under this definition, a velocity field is 
either capable of dynamo action or it is not, and a primary aim of 
dynamo theory must be to develop criteria by which a given velocity 
field may be 'tested' in this respect. 

6.2. Rate of strain criterion 

Since magnetic field intensification is associated with stretching of 
magnetic lines of force, it is physically clear that a necessary 
condition for successful dynamo action must be that in some sense 
(for given A) the rate of strain associated with u(x, t )  must be 
sufficiently intense. The precise condition ((6.14) below) was 

Such 'unphysical' behaviour would imply a growing importance of the Lorentz 
force J A B whose effect on u(x, t) would ultimately have to be taken into account. 
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obtained by Backus (1958). Suppose for simplicity that V is the 
. sphere r <R,  and that U is steady and solenoidal and zero on r = R. 

The rate of change of magnetic energy is given by 

since there is zero flux of the Poynting vector E A B out of the sphere 
at infinity. Hence since V A B = 0 for r >R,  

where 

and 

Here, 9 represents the rate of production of magnetic energy by the 
velocity field U, and 9 represents the rate of ohmic dissipation. 

Bounds may be put on both these integrals as follows. First, let 
ei, = f(ui,, + u ~ , ~ )  be the rate of strain tensor2 with eii = V . U = 0. Then 
from (6.9), 

where em = max,, v ((ell(, (e22(, (eJ3(). Secondly, by standard 
methods of the calculus of variations, it may easily be seen that the 
quotient $/M is minimised when B has the the simplest free decay 
mode structure discussed in 5 2.7, and consequently (from (2.136), 
and using X,, = v )  that 

Hence from (6.8), (6.11) and (6.12), 

* A suffix after a comma will denote space differentiation, e.g. ui,. = dui/dxj. 
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and so M certainly decays to zero (and the motion fails as a dynamo) 
if em < A I T ~ / R ~ .  Conversely a necessary (though by no means 
sufficient) condition for dynamo action is that 

Equality is possible in (6.14) only if eij is everywhere uniform, B is 
everywhere aligned with the direction of maximum rate of strain 
and the structure of B is that of a free decay mode. In general these 
conditions cannot be simultaneously satisfied, and it is likely that 
the condition (6.14) grossly underestimates the order of magnitude 
of the rate-of-strain intensity needed for successful dynamo action. 

An alternative, though weaker, form of the criterion (6.14) 
results from the fact that if U, = maxx,xl,v lu(x) -u(xt)1, then em 
um/R, so that (6.14) implies 

The magnetic Reynolds number based on maximum relative veloc- 
ity must therefore be sufficiently large if dynamo action is to be 
possible. 

6.3. Rate of change of dipole moment 

We have seen in 5 2.7 that the dipole moment of the current 
distribution in V may be expressed in the form 

Its rate of change is therefore given by 

WithE=-UAB+AVAB, a n d u . n = O o n S ,  thisbecomes 

In the perfectly conducting limit (A = O) ,  the dipole moment lP(')I 
can therefore be increased by any motion U having the property that 
(U. P'")(n. B) P 0 at all points of S; i.e. the motion on S must be 
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such as to sweep the flux lines towards the polar regions defined by 
the direction of p(') (fig. 6.1). AS pointed out by Bondi & Gold 

Fig. 6.1 The motion illustrated tends to increase the dipole moment due to 
the sweeping of surface field towards the North and South poles (Bondi & 
Gold, 1950). 

(1950), possible increase of (p(')I by this mechanism is limited, and 
Ip(')l in fact reaches a maximum finite value when the flux lines 
crossing S are entirely concentrated at the poles3. 

A small but non-zero diffusivity h may totally transform the 
situation since, as shown in 9 2.7, diffusion even on its own may 
temporarily increase l p(')l, if (n . V)B is appropriately distributed 
over S. A sustained increase in 1 p("l may be envisaged if the role of 
the velocity u is to maintain a distribution of (n . V)B over S that 
implies diffusive increase of 1 p ("1. Thus, paradoxically, diffusion 
must play the primary role in increasing (p(')( (if this increase is to be 
sustained), and induction, though impotent in this respect in isola- 

Bondi & Gold argued that this type of limitation in the growth of ( p ( 1 ) (  when A = 0 
need not apply if V has toroidal (rather than spherical) topology, and they quoted 
the homopolar disc dynamo as an example of a dynamo of toroidal topology which 
will function when A = 0. As pointed out in § 1.1, however, even this simple system 
requires U <cm (i.e. A > 0) in the disc if the flux @(t) across it is to change with time; 
and the same flux limitation will certainly apply for general toroidal systems. 
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tion, plays a crucial subsidiary role in making (sustained) diffusive 
increase of 1 @(')I a possibility. 

6.4. The impossibility of axisymmetric dynamo action 

When both u and B (and the associated vectors A, E, J) have a 
common axis of symmetry Oz, we have seen (9 3.6) that the toroidal 
component of Ohm's law becomes 

the corresponding equation for the flux function being 

The absence of any 'source' term in this scalar equation is an 
indication that a steady state is not possible, a result established by 
Cowling (1934). 

The following proof is a slight modification of that given by 
Braginskii (1964~) .  We shall allow A to be an axisymmetric func- 
tion of position satisfying 

i.e. A is constant on streamlines of the U,-field. (Note that (6.19) and 
(6.20) remain valid when A is non-uniform.) It is natural to impose 
the condition (6.21), since variations in conductivity (and so in A) 
tend to be convected with the fluid, so that A (X) can be steady only if 
(6.21) is satisfied. The condition (6.21) covers the situation when h 
is constant in V and is an arbitrary axisymmetric function of 
position in and in particular includes the limiting case when the 
medium in P is insulating. 

We now multiply (6.20) by A-'X and integrate throughout all 
space; since A -lXu,. VX = fV . (U& -lX2), using (6.21) and V . U, = 

0, we obtain 

For a field that is at most dipole at infinity, X = O(r-l) as r + a, and 
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the surface integral vanishes provided A -'lup( + 0 as r + m, a condi- 
tion that is of course trivially satisfied when U, 0 outside a finite 
volume V. Moreover, using (3.47) we have 

where we have used X = O(r-l), If( = O(r-2) to discard integrals 
over the surface at infinity; the final step also requires use of the 
identity X 2 ~  . (is/s) = 0. Hence (6.22) becomes 

It is clear from this equation that a steady state with x f  0 is not 
possible and that ultimately 

Excluding the unphysical possibility that singularities in Bp develop 
as t + m, we are driven to the conclusion that Bp -+ 0 everywhere. 

Meridional circulation up cannot therefore prevent the decay of 
an axisymmetric poloidal field4. As is clear from the structure of 
(6.20), the role of up is to redistribute the poloidal flux but it cannot 
regenerate it. If the meridional circulation is strong, it seems likely 
that the process of redistribution will in general lead to greatly 
accelerated decay for the following reason. We have seen in 5 3.10 
that when R, >> 1 (R, being based on the scale a and intensity U, of 
the meridional circulation), poloidal flux tends to be excluded from 
regions of closed streamlines of the up-field. In a time of order 
RL'~~,, where to = a/uo is the 'turnover time' of meridional eddies, 
the scale of the field Bp is reduced by distortion from O(a)  to O(S) 
where S =R,'I2a; the subsequent characteristic decay time is of 
order a2/h = 0(Ri1)a2/h = O(to). The total time-scale for the 

It must be emphasised that the result as proved here relates to a situation in which 
both B and U are axisymmetric with the same axis of symmetry. Steady mainte- 
nance of a non-axisymmetric B-field by an axisymmetric U-field is not excluded; 
indeed an example of such a dynamo will be considered in Q 6.10. 
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process of winding and decay is then of order R :2to = R ;'I2a '/A, 
and this is much less than the natural decay time a2/A (when 
R, >> 1). 

A modest amount of meridional circulation (R, = O(1) or less) 
may on the other hand lead to a modest delaying action in the decay 
process (Backus, 1957). 

Ultimate decay of the toroidal field 

Under axisymmetric conditions, the toroidal component of the 
induction equation is 

V)o -V A A (V A Bi,), (6.26) 

the notation being as in 8 3.6. We have seen that while Bp # 0, the 
source term s(Bp. V)o on the right of (6.26) can lead to the 
generation of a strong toroidal component Bi,. Ultimately how- 
ever, Bp tends uniformly to zero, and from (6.26) we then deduce 
that 

d - I$B '~v= d t - I A ( V A B ~ ~ ) ' ~ V ,  (6.27) 

and, by arguments similar to those used above, that 

BT = Bi, + 0 everywhere. (6.28) 

6.5. Cowling's neutral point argument 

The proof of the impossibility of axisymmetric dynamo action given 
in the previous section rests on the use of global properties of the 
field, as determined by the integrals appearing in (6.22). It is 
illuminating to supplement this type of proof with a purely local 
argument, as devised by Cowling (1934). The flux-function X is zero 
at infinity and is zero (by symmetry) on the axis Oz. If Bp (and so X) 
is not identically zero, there must exist at least one point, N say, in 
the (S, z)  plane where X is maximal or minimal; at N, Bp vanishes 
and the Bp-lines are closed in the neighbourhood of N, i.e. N is an 
0-type neutral point of the field B,. 

Let C, be a closed Bp-line near N of small length E ,  and let S, be 
the surface in the (S, z)  plane spanning C, (fig. 6.2). Suppose that the 
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Fig.6.2 In the neighbourhood of the neutral point N of the Bp-field, 
induction must fail to maintain the field against ohmic decay. 

field Bp is steady. Then from (6.19), with aA,/at = 0, 

Let B, be the average value of lBpl on C,; the right-hand side of 
(6.29) is then AN EB, to leading order, where AN is the value of A at 
N. Moreover, since B, + 0 as E -, 0, the mean value of /B,[ over S, is 
evidently less than B, when E is sufficiently small; hence 

where U is the maximum value of lul in V. Hence 

But, as E + 0, SE = 0 (E *) and this is clearly incompatible with (6.3 1) 
for any finite values of U/A,. The implication is that the induction 
effect, represented by up A Bp in (6.19), cannot compensate for the 
diffusive action of the term - A V  A B, in the neighbourhood of the 
neutral point. Of course if there is more than one such 0-type 
neutral point, then the same behaviour occurs in the neighbourhood 
of each. 
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The circle C, obtained by rotating the point N about the axis of 
symmetry is a closed B-line (on which Bp = 0, B, # 0) and the 
failure of dynamo action in the neighbourhood of N may equally be 
interpreted in terms of the inability of the induced electromotive 
force U A B to drive current along such a closed B-line. In general, if 
we integrate Ohm's law (2.117) along a closed B-line on the 
assumption that E is a steady electrostatic field (therefore making 
no contribution to the integral) we obtain trivially 

Hence if B . (V A B) is non-zero over any portion of a closed B-line, 
then positive values must be compensated by negative values so that 
(6.32) can be satisfied. 

More generally, let S, (interior V,) be any closed 'magnetic 
surface' on which n . B = 0. Then, from A V A B = -V& +U A B, we 
have 

This result reduces to (6.32) in the particular case when a toroidal 
surface S, shrinks onto a closed curve C ;  for then B d V + @  dx 
where Q, is the total flux of B round the torus. 

Similarly if S, (interior V,) is a closed surface on which n . U = 0, 
and if V .  U = 0 in V,, then by the same reasoning, under steady 
conditions, 

The results (6.33) and (6.34) hold even if A is non-uniform. 

6.6. Some comments on the situation B.  (V A B) = 0 

If B is an axisymmetric poloidal field, then clearly it satisfies 

Similarly an axisymmetric toroidal field satisfies (6.35). We know 
from 5 6.4 that in either case dynamo action is impossible. It seems 
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likely that dynamo action is impossible for any field satisfying 
(6.35), but this has not been proved. 

The condition (6.35) is well known as the necessary and sufficient 
condition for the existence of a family of surfaces everywhere 
orthogonal to B, or equivalently for the existence of functions a! (X) 
and p (X) such that 

the orthogonal surfaces then being a = cst. In the external region 9 
where V A B = 0, we may clearly take P = 1. 

It is easy to show that there is no field of the form (6.36) satisfying 
the conditions B = ~ ( r - ~ )  at infinity and > 0 for all finite X. For, 
in this case, p > 0 for all finite X, and so p-'B2 > 0 everywhere. But 

and we have a contradiction. 
It follows that any field of the form (6.36) and at most dipole at 

infinity must vanish for at least one finite value of X. The simplest 
topology (an arbitrary distortion of the axisymmetric poloidal case) 
is that in which every point of a closed curve C in V is an 0-type 
neutral point of B. If there is just one such curve, then all the 
surfaces a = cst. intersect on C. In this situation, p = 0 on C and a is 
not single-valued, and the simple statement (6.37) is certainly not 
applicable. 

Pichackchi (1966) has claimed to prove that dynamo action is 
impossible if E = 0, i.e. if A V A B = u A B in V ((6.35) being an 
immediate consequence). His argument however rests on the unjus- 
tified (and generally incorrect) assertion that the surfaces a! = cst. do 
not intersect. The result claimed nevertheless seems plausible, and a 
correct proof would be of considerable interest. 

6.7 The impossibility of dynamo action with purely toroidal 
motion 

It is physically plausible that poloidal velocities are necessary to 
regenerate poloidal magnetic fields, and that a velocity field that is 
purely toroidal will therefore be incapable of sustained dynamo 
action. This result was discovered by Bullard & Gellman (1954) as a 
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by-product of their treatment of the induction equation by spherical 
harmonic decomposition. A simpler direct proof was given by 
Backus (1958), whose method we follow here. We revert to the 
standard situation in which A is assumed uniform in V, and we 
restrict attention to incompressible velocity fields for which V . U = 

0. From the induction equation in the form 

we may then immediately deduce an equation for the scalar X .  B, 
viz. 

Hence if the motion is purely toroidal, so that x . U = 0, the quantity 
Q = X .  B satisfies the diffusion equation 

Moreover V2Q = 0 in p, and Q and aQ/an are continuous across 
the surface S of V. Standard manipulation then gives the result 

so that Q + 0 everywhere. 
Now, in the standard poloidal-toroidal decomposition of B, we 

have L2p  = -X. B ( 2 . 3 8 ~ ) ;  and the equation L2P = 0 with outer 
boundary condition P = O(r-2) at infinity has only the trivial solu- 
tion P = 0. It follows that a steady state is possible only if B, = 0. 

The equation for the toroidal field BT then becomes 

With BT = -X A VT, and X .  U, = 0, we have 

so that (6.42) becomes 
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using the commutativity of X A V and V2. Hence 

for some function f (r). When we multiply by T and integrate (6.45) 
throughout V, the term involving f (r) makes no contribution since T 
integrates to zero over each surface r = cst. Moreover T = 0 on the 
surface S of V, and so we obtain 

Hence T (and so B, also) ultimately decays to zero. 
By further manipulations of (6.39), Busse (1975a) has succeeded 

in obtaining an estimate for the magnitude of the radial velocity 
field that would be required to prevent the diffusive decay of the 
radial magnetic field. Comparison of the two terms on the right of 
(6.39) gives the preliminary estimate 

If the term involving X. u in (6.39) is retained, then Busse shows 
that (6.41) may be replaced by the inequality 

where M represents the total magnetic energy, and MP the energy 
of the poloidal part of the magnetic field. Hence a necessary 
condition for amplification of I, Q2 dV, is 

max (U . X) > A ( ~ W ~ / M ) ' / ~ ,  (6.49) 

which may be compared with (6.47). For a given magnetic field 
distribution (and therefore a given value of the ratio Mp/M), (6.49) 
clearly provides a necessary (although again by no means sufficient) . 

condition that a velocity field must satisfy if it is to maintain the 
magnetic field steadily against ohmic decay. 

The condition (6.49) is of particular interest and relevance in the 
terrestrial context in view of the arguments in favour of a stably 
stratified core (8 4.4). Stable stratification implies inhibition of 
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radial (convective) velocity fields, but may nevertheless permit 
wave motions (e.g. internal gravity waves modified by Coriolis 
forces) if perturbing force fields are present. The condition (6.49) 
indicates a minimum level for radial fluctuation velocities to main- 
tain a given level of poloidal field energy. 

It is instructive to re-express (6.49) in terms of magnetic 
Reynolds numbers RmT and Rmp characterising the toroidal and 
poloidal motions. We have seen that when RmT >> 1 the toroidal 
magnetic energy builds up to O(R;,) times the poloidal magnetic 
energy, so that (M~/M)''~ = O(R i',); hence (6.49) becomes simply 
(with Rmp = max (U . $/A) 

It is interesting to note that the result that a purely toroidal flow is 
incapable of dynamo action has no analogue in a cylindrical 
geometry, i.e. when the velocity is confined to cylindrical (rather 
than spherical) surfaces. The reason is that diffusion in a cylindrical 
geometry with coordinates (S, v, z) introduces a coupling between 
the radial component B, and the azimuthal component B,. There 
is however an analogous result in a Cartesian configuration; this is 
obtained in the following section. 

6.8 The impossibility of dynamo action with plane two- 
dimensional motion 

The analogue of purely toroidal motion in a Cartesian configuration 
is a motion U such that k . u = 0 where k is a unit vector, say (0,0, 1). 
Under this condition the field component B . k satisfies 

n 6 fY  9.y =O 
U 

-(B. k) = A V ~ ( B .  k), (6.51) 
Dt 

and so B .  k tends everywhere to zero in the absence of external 
sources. 

Suppose then that B = V A A with A = A (X, y, z)k; note that this 
choice of A does not satisfy V . A = 0 (unless dA/az = 0). Since 
u A B = -U A (k A VA) = -(U . VA)k, the equation for A (2.118) 
becomes 
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Suppose that the fluid extends to infinityS and that A =  O(S-~), 
4 = O(s-l) as S = (x2+y2)'I2+ m; then (6.52) gives (with S ,  the 
'cylinder at infinity') 

Under the assumed conditions there is no contribution from the 
surface integral, and it follows immediately that V A A + 0 
everywhere. 

Note that this result holds whether B is z-dependent or not, 
provided solely that k . U = 0. The result was proved in a weaker 
form (assuming dB/& = 0) by Lortz (1968). An analogous result 
was first discussed in the context of two-dimensional turbulence by 
Zel'dovich (1 957). 

6.9. Rotor dynamos 

We now turn to some examples of kinematically possible motions in 
a homogeneous conductor which do give rise to steady dynamo 
action. In order to avoid the consequences of the foregoing anti- 
dynamo theorems, such motions must necessarily be quite compli- 
cated, and the associated analysis is correspondingly complex. 
Nevertheless it is important to find at least one explicit example of 
successful dynamo action if only to be confident that there can be no 
all-embracing anti-dynamo theorem. The first such example, pro- 
vided by Herzenberg (1958), was significant in that it provided 
unequivocal proof that steady motions u(x) do exist in a sphere of 
conducting fluid which can maintain a steady magnetic field B(x) 
against ohmic decay, and which give a non-zero dipole moment 
outside the sphere. 

Herzenberg's velocity field consisted of two spherical rotors 
imbedded in a conducting sphere of fluid otherwise at rest; within 
each rotor the angular velocity was constant and the radius of the 

The proof may be easily adapted to the case when the fluid is confined to a finite 
domain in two or three dimensions. 
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rotors was small compared with the distance between their centres 
which in turn was small compared with the radius of the conducting 
sphere. Herzenberg's analysis has been greatly clarified by the 
discussion of Gibson (1968a, b) ,  Gibson & Roberts (1967) and 
Roberts (1971); the following discussion is based largely on these 
papers. 

Let S,(a = 1 , 2 , .  . . , n) denote the n spheres [X-x,l=a, and 
suppose that for each pair (a, P ) ,  /X, - X, ( > -  a, i.e. the spheres are all 
far apart relative to their radii. We define a velocity field 

u(x)=~,A(x-X,)  whenlx-x,)<a ( a = 1 , 2  , . . . ,  n) 
(6.54) 

0 otherwise 

where the a, (a = 1,2,  . . . , n)  are constants; i.e. the fluid inside S, 
rotates with uniform angular velocity a,, and the fluid outside all n 
spheres is at rest. We enquire under what circumstances such a 
velocity field in a fluid of infinite extent and uniform conductivity 
can maintain a steady magnetic field B(x), at most O(rW3) at infinity. 

If such a field B(x) exists, then in the neighbourhood of the sphere 
S, it may be decomposed into its poloidal and toroidal parts 

where r, = x -X,. Let PS (r,) and T" (r,) be the average of P(r,) and 
T(r,) over the azimuth angle about the rotation vector m,, and let 
Pa(r,), Ta(r,) be defined by 

(the superfixes s and a indicating symmetry and asymmetry about 
the axis of rotation). Let the corresponding decomposition of B; 
and B",e 

B; = BFs + Bpa, B", BB + BB",". (6.57) 

We know from 6.4 that the toroidal motion of the sphere S, has 
no direct regenerative effect on B;, which is maintained entirely by 
the inductive effects of the other n - 1 spheres. Hence B; can be 
regarded as an 'applied' field in the neighbourhood of S,, and the 
rotation of S, in the presence of this applied field determines the 
structure of the toroidal field B", The antisymmetric part of the total 
field B" is merely excluded from the rotating region essentially by 
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the process of 5 3.8. The symmetric part of B: on the other hand 
interacts with the differential rotation (U '(r) is here concentrated on 
the spherical surface r = Ix - X, l = a )  to provide B"; which, by the 
arguments of 5 3.11, is O(R,)IBTI, where R,, = w,a2/h. If 
R,, >> 1, as we shall suppose, then By is the dominant part of the 
total field B" in a large neighbourhood of S,. 

Now B p  may be expanded about the point x =X, in Taylor series: 

= Bg(x,) +&raj (B~,,(x,) + Bg;,i(x,)) + 0 (r:), (6.58) 

since V A B: is the toroidal current which vanishes at X, ; this may be 
expressed in the equivalent form 

where 

@ = A yrPl(cos 8 )  + a-'A ;r2~,(cos 8 ) ,  (6.60) 

and (with the convention that repeated Greek suffices are not 
summed) 

Hence from the results of 5 3.11, for r, >>a, 

The field in the neighbourhood of Sp is the sum of fields of the 
form (6.62) resulting from the presence of all the other spheres 
S, (Q! # p),  i.e. 

For self-consistency, we must have, for p = 1,2, . . . , n, 
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and, similarly, 

If the terms 0 ( r i4 )  in (6.62) are neglected, these provide 2n linear 
equations for A: and A;(a = 1, . . . , n), and the determinant of the 
coefficients must vanish for a non-trivial solution. 

3 -sphere dynamo 

The procedure is most simply followed for the case of three spheres 
(Gibson, 19686) in the configuration of fig. 6.3. Let 

and let 

Fig. 6.3 The 3-rotor dynamo of Gibson (1968b) for the particular config- 
uration that is invariant under rotations of 27~13 and 4n/3 about the 
direction (1, 1, 1). 
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where w > 0. The reason for this choice of sign will emerge below. 
This configuration has a three-fold symmetry, in that it is invariant 
under rotations of 2 ~ / 3  and 4 ~ / 3  about the direction (1, 1, 1). Let 
us therefore look only for magnetic fields B(x) which exhibit this 
same degree of symmetry. In particular, in the above notation, we 
have 

There are then only two conditions deriving from (6.64) and (6.55) 
relating A, and A,. 

In the neighbourhood of the sphere S, 

rl = x3 -xl = (-d, 0, d), and r, = ~ 3 - x ~ ~  (0, -d, d), (6.69) 

and so, after some vector manipulation, (6.64) and (6.65), with 
p = 3, become 

and 

where R, = w a  2 / ~ ,  and R = d J 2  is the distance between the sphere 
centres. Hence (6.7 1) gives a critical magnetic Reynolds number 

and (6.70) then becomes 

The configuration of the B?-lines in the neighbourhood of each 
sphere are as indicated in fig. 6.3. (It would be difficult to portray the 
full three-dimensional field pattern.) 

Certain points in the above calculation deserve particular com- 
ment. First note that since a << R, A, is an order of magnitude 
smaller than A,. This means that the field Bp is approximately 
uniform in the neighbourhood of S,. It would be quite wrong 
however to treat it as exactly uniform; this would correspond to 
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putting A, = 0 in (6.70) and (6.7 1) with the erroneous conclusion 
that hynamo action will occur if R, = - 1 0 ( R / ~ ) ~  (requiring o < 0 
in (6.67)). The small field gradient in the neighbourhood of each 
sphere is important because of the phenomenon noted in 9 3.1 1 and 
evident in the expression (6.62) that terms in B-rising from the 
gradient of B? fall off more slowly with distance than do terms 
arising from the magnitude of B; itself in the sphere neighbour- 
hood. This effect compensates for the smaller value of the coeffi- 
cient A,. 

Secondly, note that the directions of m,, w, and w, in fig. 6.3 
were chosen for maximum simplicity, but the same method would 
work if ml were taken in any direction and m, and m, were obtained 
from m, by rotations of 2n/3 and 4 ~ 1 3  about (1, 1 , l ) .  If one such 
triad (m,, a , ,  m,) gives dynamo action, however, then the triad 
(-m,, -m,, -m,) cannot support a field B(x) having the same 
three-fold symmetry. 

Thirdly, there is no real need for w to be uniform throughout 
each sphere. The results of § 3.1 1 indicate that if W = o (r)k, then, 
as far as the induced field far from the sphere is concerned, the only 
quantity that matters is 6 where 

l -  C "  ga o = r 4 0  (r) dr. 

If o varies with radius within each sphere, but cS is the same for each 
sphere, then the above results apply with R, = 6 a  ,/A. 

2 -sphere dynamo 

If there are only two spherical rotors, then taking origin at the 
mid-point of the line joining their centres we may take 

Suppose (fig. 6.4) that 

m, = o(0, COS q/2, -sin 9/2), m, = o(0, cos 4712, sin q/2). 
(6.76) 

The configuration is then invariant under a rotation of T about 
the axis Oy, and we may therefore look for a magnetic field ex- 
hibiting this same two-fold symmetry. Putting A : = A : = A , and 
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Fig. 6 .4  Two-sphere dynamo configuration defined by (6.75) and (6.76). 

A : = A : = A2, the conditions (6.64) and (6.65) reduce to6 

and 

a 4  
A,=- 

1OR 
,AIR, sin cp cos cp. (6.78) 

Hence 

($R, (a/R)3 sin cp)2(-cos cp) = 3, (6.79) 

so that dynamo action is possible if 4 2  < p  < 3?r/2 (excluding 
cp = T),  and then from (6.77) 

A2 = iA, (a /~) ( -3  cos cp)'l2. (6.80) 

The dynamo action is most efficient (i.e. the resulting value of R, is 
least) when tan cp = +2-'l2, i.e. cp = 145" or 21S0, and then 

The antisymmetric possibility A = -A and A = -A: leads to the same value of 
R, (6.79) and a field structure which is transformed into its inverse (B(x) -, -B(x)) 
under rotation through about Oy. 
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The result (6.79) is a particular case of the result obtained by 
Herzenberg (1958) who studied the more general configuration for 
which 

o, = w (cos 8,, sin 8,  cos q/2, -.sin 8, sin q/2), 
(6.82) 

o2 = w (cos 02, sin 8, cos q/2, sin 8, sin q/2). 

Unless 8, = *8,, this configuration does not exhibit two-fold sym- 
metry about any axis, and there is therefore no a priori justification 
for putting A : = A : and A = A in general. There are therefore 
four equations linear in these quantities obtained from (6.64) and 
(6.65); vanishing of the determinant of the coefficients yields the 
condition 

A - {[$R, ( u / R ) ~  sin 8, sin 8, sin rp]2(~os 8, COS 82 
-sin 8, sin 8, cos q )  - 3j2 = 0. (6.83) 

The condition A = 0 reduces to (6.79) when 8, = 8, = v/2. However 
Herzenberg observed that terms neglected in the expansion scheme 
(those denoted 0 ( r i4 )  in (6.62)) could conceivably, if included, 
give a negative contribution, -c2 say, on the right of (6.83). We 
would then have A =*is, and the resulting magnetic Reynolds 
number would be complex indicating that steady dynamo action is 
not in fact possible for the given velocity field. 

Herzenberg resolved this difficulty by taking account of fields 
reflected from the distant spherical boundary of the conductor. He 
found that these modified the relationship (6.83) to the form 

where A ,  and A, are small numbers determined by these distant 
boundary effects. In general A ,  # A,, and the possibilities A = A,  and 
A = A, give two distinct values of R, at which steady dynamo action 
is possible, with two corresponding (but different) field structures. 

When the conductor extends to infinity in all directions, the 
double root of (6.83) for R, suggests that, even when the configura- 
tion has no two-fold symmetry about any axis, there is nevertheless 
a degeneracy of the eigenvalue problem, i.e. corresponding to the 
critical value R, there are two linearly independent eigenfunctions 
B,(x) and B,@); when the configuration has the two-fold symmetry 
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of fig. 6.4, it seems altogether plausible that one of these should be 
symmetric and one anti-symmetric in the sense that Bl(x) + Bl(x), 
B2(x) + -B2(x) under a rotation of 7~ about Oy. Gibson (1968a) has 
in fact shown that the degeneracy implicit in (6.83) is not removed 
by the retention of the term of order r i 4  in (6.62); it seems likely 
that the degeneracy persists to all orders, at any rate for the 
symmetric case (6.76). 

The rotor dynamo of Lowes & Wilkinson 

Lowes & Wilkinson (1963, 1968) have constructed a laboratory 
dynamo consisting of two solid cylindrical rotors imbedded in a 
solid block of the same material, electrical contact between the 
rotors and the block being provided by a thin lubricating film of 
mercury. Fig. 6.5 shows a typical orientation of the cylinders. The 

Fig. 6 .5  Rotating cylinder configuration of Lowes & Wilkinson (1963, 
1968). 

principle on which the dynamo operates is essentially that of the 
Herzenberg model: the 'applied' poloidal field of rotor A is the 
induced toroidal field of rotor B, and vice versa. The use of cylinders 
rather than spheres was dictated by experimental expediency; but 
the interaction between two cylinder ends is in fact stronger than 
that between two spheres since, roughly speaking, the tcroidal field 
lines generated by the rotation of a cylinder in a nearly uniform axial 
field all have the same sense in the neighbourhood of the cylinder 
ends (Herzenberg & Lowes, 1957) (contrast the case of the rotating 
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sphere, where the toroidal field changes sign across the equatorial 
plane). A reasonably small value of the magnetic diffusivity A = 

was achieved through the use of ferromagnetic material for 
the rotors and block (the iron alloy 'Perminvar' in the earlier model, 
annealed mild steel in the later model). For the most favourable 
orientation of the cylinders, dynamo action was found to occur at a 
critical angular velocity of the rotors of about 400 rpm. correspond- 
ing to a critical magnetic Reynolds number R, ~ 2 0 0 .  As the 
angular velocities are increased to the critical value, dynamo action 
manifests itself as a sudden increase of the magnetic field measured 
outside the block. The currents in the block (and the corresponding 
field) increase until the retarding torque on the rotors associated 
with the Lorentz force distribution is just sufficient to prevent the 
angular velocities from increasing above the critical value. In the 
steady state (Lowes & Wilkinson, 1963), the power supplied to the 
rotors equals the sum of the rate of ohmic dissipation and the rate of 
viscous dissipation in the lubricating films of mercury. In the later 
improved model (Lowes & Wilkinson, 1968), the rate of viscous 
dissipation was much reduced, and the system exhibited interesting 
oscillatory behaviour about the possible steady states. This type of 
behaviour, which may have a bearing on the question of reversals of 
the Earth's dipole field ( 5  4.3), involves dynamical effects which will 
be considered in later chapters -see particularly § 12.4. 

6.10. Dynamo action associated with a pair of ring vortices 

A further ingenious example of dynamo action associated with a 
pair of rotors has been analysed by Gailitis (1970). The velocity 
field, as sketched in fig. 6.6, is axisymmetric, has circular stream- 
lines, and is confined to the interior of two toroidal rings Tl and T2. 
We know from Cowling's theorem that such a velocity field cannot 
support a steady axisymmetric magnetic field vanishing at infinity; it 
can however, under certain circumstances, support a non-axi- 
symmetric field proportional to eimq, where Q is the azimuth angle 
about the common axis of the toroids and m is an integer. The figure 
shows the field lines in the. neighbourhood of each torus when 
m = 1 and indicates in a qualitative way how the rotation within 
each torus can generate a magnetic field which acts as the inducing 
field for the other torus. 
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Fig. 6.6 Field maintenance by a pair of ring vortices (after Gailitis, 1970): 
(a) dipole configuration; ( b )  quadrupole configuration. In each case, 
rotation within each torus induces a field in the neighbourhood of the other 
torus which has the radial divergence indicated. 

The analysis of Gailitis (1970) (with slight changes of notation) 
proceeds as follows. Let (2 ,  S, cp) be the usual cylindrical polar 
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coordinates, and let (7, X, (P) be displaced polar coordinates 
(Roberts, 1971) defined by 

Let F, be the torus r = a where a << c, and let 9, be the torus 
obtained by reflecting F, in the plane z = $zo where a z, also. 
Terms of order a/c and a/zo are neglected throughout. Let the 
velocity field be 

where 

inside F , ,  
u1(x) = 

outside F l ,  

and u2(x) is similarly defined relative to F,. The total velocity field is 
zero except in the two toroids. Note that the assumption a << c 
allows us to neglect the small variation of v,(r) with X that would 
otherwise arise from the incompressibility condition V . U, = 0. 

The steady induction equation is 

and this is formally satisfied by B = B, +B,, where 

and 
A V2Bl +V A (U, A B,) = -V A (U, A B,), 

(6.89) 
A V2B2 + V A (U, A B,) = -V A ( U ~ A  B,). 

We regard B1 as the field induced by the motion ul and as the 
inducing field for the motion U,; sirl~ilarly for B,. 

The essential idea behind the Gailitis analysis is very similar to 
that applying in the Herzenberg model. Let B",e the vector 
obtained by averaging the (7, X ,  q) components of B, over the angle 
X, and let 

the components of B; average to zero over X. The corresponding 
solution of (6.89a) may be denoted by B;"+ B;. We know from the 
analysis of 5 3.10 that the effect of the closed streamline motion ul is 
simply to expel the asymmetric field from the rotating region when 
the magnetic Reynolds number R,, based on a and an appropriate 
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average of V ( T )  (see (6.1051) below), is large, i.e. 

B;+B;=O in 9,. (6.91) 

On the other hand, the motion u1 generates from B",y the 
differential rotation mechanism of 3.7 a field B",atisfying 

Clearly for R, >> 1, this is the dominant contribution to B,, and so in 
calculating B, from (6.89a) we may regard B, as symmetric with 
respect to X in the neighbourhood of Yl. 

Suppose then that in Tl 

The condition V . B, = 0 then implies that in Yl 

B,, = -(irm/2c)Bo eimq, (6.94) 

and so, from (6.87), 

u1 A B, = BOvl eimv(i, + ( i m ~ / 2 c ) )  in 9,, (6.95) 
and so 

imB0eimq d v 
g=V A (ul A B,)= - T ~ - ( - )  i n .  (6.96) 

2c d7 r 

As expected, the motion u1 generates a field in the X-direction as a 
result of differential rotation within 3 1 .  It follows that ul A B1 = 0, 
and so the solution of (6.89a) (Poisson's equation) is 

We now wish to evaluate the p-component of this integral on the 
curved axis of Y2 to see whether B1 can act as the inducing field for 
9 2 .  Let xo be a point on the axis of Tl with cylindrical polar 
coordinates (0, c, p), xb a point on the axis of 9, with coordinates 
(zo, C, Q'), and let t,b = p'- Q. Then 

and, for X E Y1, 



LAMINAR DYNAMO THEORY 135 

Moreover 

i, l . i, = -sin X sin $. (6.100) 

When (6.99) and (6.100) are substituted in the equation 

only a term proportional to sin2x gives a non-zero contribution 
when integrated over X. Using (6.96) the result simplifies to 

B, (X;) . i,. = B b eim,', 

where 

(6.102) 

and 

2" sin $ sin m$ d$ 
(>0 for q > 0). (6.103) 

(q2+2-2 cos $)3 

Similarly, by analysing the inductive effect of the motion in F2,  
we obtain 

where V, is defined like V, but in relation to the motion in T2. The 
results (6.102a) and (6.104) are compatible only if V, and V, have 
opposite signs, so that the net circulations (weighted according to 
(6.1026)) must be opposite in the two toroids. Defining 

we then have the condition for steady dynamo action in the form 

where T, = F;'. When m = 1 the possibility V, = - V2 < 0 corres- 
ponds to the field configuration of fig. 6.6(a) for which the field has a 
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steady dipole moment perpendicular to Oz and in the plane cp = 0, 
and the possibility V, = - V,  > 0 corresponds to the field configura- 
tion of fig 6.6(b) for which the dipole moment is evidently zero and 
the far field is that of a quadrupole. 

The functions Tm(q)  as computed by Gailitis for m = 

1,2, . . . , 10, are reproduced in fig. 6.7. For zo/c  > 1 16, Tm (zo /c )  

Fig. 6.7 The functions T, (q) = (F, (q))-l as computed from (6.103). The 
numbers by the curves indicate the value of m. The portion surrounded by a 
dashed line is shown in four-fold magnification. (From Gailitis, 1970.) 
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is least (corresponding to the most easily excited magnetic mode) 
for m = 1. As zolc is decreased, the value of m corresponding to the 
most easily excited mode increases; this is physically plausible in 
that as the rings approach each other, each becomes more sensitive 
to the detailed field structure within the other. The analysis of 
course breaks down if zo  is decreased to values of order a.  

The above analysis is only approximate in that terms of order alc 
and a l z ,  are neglected throughout. Strictly a formal perturbation 
procedure in terms of these small parameters is required, and a 
rigorous proof of dynamo action would require strict upper bounds 
to be put on the neglected terms of the Gailitis analysis. There 
seems little doubt however that such a procedure (paralleling the 
procedure followed by Herzenberg, 1958) would confirm the valid- 
ity of the 'zero-order' analysis presented above. 

It might be thought that the Gailitis dynamo is nearer to physical 
reality than the Herzenberg dynamo, in that vortex rings are a 
well-known dynamically realisable phenomenon in nearly inviscid 
fluids, whereas spherical rotors are not. There is perhaps some truth 
in this; however it must be recognised that the velocity field U, (X) 

given by (6.87) is unlike that of a real ring vortex in that the net flux 
of vorticity around Yl (including a possible surface contribution) is 
zero; if it were non-zero (as in a real vortex ring) then the vortex 
would necessarily be accompanied by an irrotational flow outside 
Tl. Two real vortices oriented as in fig. 6.6 would as a result of this 
irrotational flow either separate and contract (case (a)) or approach 
each other and expand (case (b) ) .  There can be no question of 
maintenance of a steady magnetic field by an unsteady motion of 
either kind. 

6.11. The Bullard-Gellman formalism 

Suppose now that V is the sphere r < R, and that u(x) is a given 
steady solenoidal velocity field, satisfying U. n = 0 on r = R .  It is 
convenient to use R as the unit of length, U, = max (ul as the unit of 
velocity7, and R 2 / ~  as the unit of time, and to define R, = u,R/h. 

' Different authors adopt different conventions here and care is needed in making 
detailed comparisons. 
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The problem (6.4) then takes the dimensionless form 

~ B / ~ ~ = R , V A ( ~ A B ) + V ~ B  f o r r < l ,  

V n B = O  for r > l ,  (6.107) 

[B] = 0 across r = l .  

As in 5 2.7, the problem admits solutions of the form 

B(x, t) = B(x) ept, 

where 

( p - V 2 ) ~ = ~ , V ~ ( ~ ~ B )  f o r r < l ,  

V A B = O  for r >  l ,  (6.109) 

[B] = 0 across r = l .  

This may be regarded as an eigenvalue problem for the parameter p, 
the eigenvalues p, ,p2, .  . . , being functions of R,(as well as 
depending of course on the structural properties of the U-field). 
When R, = 0, the eigenvalues p, are given by the free decay mode 
theory of 5 2.7, and they are all real and negative. As R, increases 
from zero (for a given structure u(x)), each may be expected to vary 
continuously and may become complex. If Re p, becomes positive 
for some finite value of R,, then the corresponding field structure 
B(")(x) is associated with an exponential growth factor in (6.108), 
and dynamo action occurs. If all the Re p, remain negative (as 
would happen if for example u were purely toroidal) then dynamo 
action does not occur for any value of R,. 

The natural procedure for solving (6.109) is a direct extension of 
that adopted in 5 2.7 (when R, = 0). Let P and T be the defining 
scalars of Bp and B ,  and let 

P(r, 8, tp) = 1 (Py(r)  cos mtp + P,m"(r) sin mtp)Pr(cos 8), (6.1 10) 
n,m 

and similarly for T. Then, as in 5 2.7, the conditions in r 3 1 may be 
replaced by boundary conditions 

where T:(r) denotes either TF(r)  or Tr ( r ) ,  and similarly for 
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P:(r). The equations for T,"(r), P,"(r) in r < l take the form 

where I r ( r ) ,  J r ( r )  are terms that arise through the interaction of u 
and B. The determination of these interaction terms requires 
detailed prescription of U, and is in general an intricate matter. It is 
clear however that, in view of the linearity of the induction equation 
(in B), the terms I:, J," can each (for given U) be expressed as a sum 
of terms linear in T;', P;', over a range of values of m', n' depen- 
dent on the particular choice of U. In general we thus obtain an 
infinite set of coupled linear second-order ordinary differential 
equations for the functions TE, P:. 

From a purely analytical point of view, there is little more that can 
be done, and recourse must be had to numerical methods to make 
further progress. From a numerical point of view also, the problem 
is quite formidable. The method usually adopted is to truncate the 
system (6.112) by ignoring all harmonics having n > N, where N is 
some fixed integer (m is of course limited by 0 S m S n). The radial 
derivatives are then replaced by finite differences8, the range 
0 < r < 1, being divided into say M segments. Determination of p is 
then reduced to a numerical search for the roots of the discriminant 
of the resulting set of linear algebraic equations. Interest centres on 
the value p ,  having largest real part. This value depends on N and 
M, and the method can be deemed successful only when N and M 
are sufficiently large that further increase in N and/or M induces 
negligible change in p, .  Actually, as demonstrated by Gubbins 
(1973), the eigenfunction B(')($ is much more sensitive than the 
eigenvalue p ,  to changes in N and M, and a more convincing 
criterion for convergence of the procedure is provided by requiring 
that this eigenfunction show negligible variation with increasing N 
and M. 

The velocity field u(x) can, like B, be expresssed as the sum of 
poloidal and toroidal parts, each of which may be expanded in 
surface harmonics. The motion selected for detailed study by 

There are other possibilities here, e.g. functions of r may be expanded as a series of 
spherical Bessel functions (the free decay modes) with truncation after m terms, as 
suggested by Elsasser (1946). This procedure has been followed by Pekeris et al. 
(1973). 
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Bullard & Gellman (1954) was of the form 

where Q, and Q, had simple forms, e.g. 

We may use the notation U = {ET, +P$'} as a convenient abbrevia- 
tion for (6.113). Interaction of U and B for this choice of motion is 
depicted diagrammatically in fig. 6.8, in which the small circles 

Fig. 6.8 Diagrammatic representation of the interaction of harmonics of 
velocity and magnetic fields when the velocity field consists of a T, 
ingredient and a P;' ingredient. Each circle indicates an excited magnetic 
mode; coupling along the rows is provided by the T,-motion and coupling 
between the rows by the P;'-motion. (From Bullard & Gellman, 1954.) 

represent excited magnetic modes. The T1-motion introduces the 
coupling along the rows: for example interaction of a T1-motion 
with a P,-field generates a T2-field (this is just the process of 
generation of toroidal field by differential rotation analysed ifi 
5 3.1 1). Similarly the P;'-motion introduces the coupling between 
the rows: for example, interaction of a Pp-motion with a P,-field 
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generates a {T? + P:? field. The figure is 'truncated' for n 3 5; even 
at this low level of truncation, the complexity of the interactions is 
impressive! The particular shape of the interaction diagram is 
entirely determined by the choice of U: to each possible choice of U 
there corresponds one and only one such diagram. 

It was shown by Gibson & Roberts (1969) that the Bullard & 
Gellman velocity field (6.113) could not in fact sustain a dynamo: 
the procedure outlined above failed to converge as M was 
increased. A similar convergence failure has been demonstrated by 
Gubbins (1973) in respect of the more complex motion {T, +P?+ 
P:'} proposed as a dynamo model by Lilley (1970). Positive results 
have however been obtained by Gubbins (1973) who considered 
axisymmetric velocity fields of the form &Pn +Tn with n = 6 ,4 ,2  
and E = h ,  h ,  respectively. Such a motion cannot maintain a field 
axisymmetric about the same axis (by Cowling's theorem), but may 
conceivably maintain a non-axisymmetric field (cf. the Gailitis 
dynamo discussed in 0 6.9). The dependence of p, on R, as 
obtained numerically by Gubbins for the three cases is shown in fig. 
6.9; in each case p, remains real as R, increases and changes sign at 

Fig.6.9 Dependence of growth rate p, on R, for a motion of the form 
T,+&P,;(a)n = 2 , &  =&;(b)n =4,& =&;(c)n = 6 , ~  =&(replottedfrom 
Gubbins, 1973). It may be shown (Gubbins, private communication) that 
dpl/dRm = 0 at R, = 0. 
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a critical value R,, of R,(R,, = 27,41,53 in the three cases). It is 
noteworthy that p, first decreases slightly in all three cases as R, 
increases from zero (indicating accelerated decay) before increasing 
to zero; the reason for this behaviour is by no means clear. 

Positive results have also been obtained by Pekeris et al. (1973), 
who studied kinematic dynamo action associated with velocity fields 
satisfying the 'maximal helicity' condition V A U = k u  in the sphere 
r < l. Such motions are interesting in that they can be made to 
satisfy the equations of inviscid incompressible fluid mechanics (the 
Euler equations) and the condition U .  n= 0 on r = l (Moffatt, 
1969; Pekeris, 1972). The defining scalars for both poloidal and 
toroidal ingredients of the velocity field are then both proportional 
to (kr)sn (B, rp) where k satisfies Jn+r (k) = 0 (see table 
2.1 on p. 39). Pekeris et al. studied particularly the case n = 2, with 
S.(@, rp)=sin2 B cos 2rp and found steady dynamo action for each 
k = X,, (q = l ,  2, . . . ,20) in the notation of table 2.1. The corres- 
ponding critical magnetic Reynolds number R, decreased with 
increasing q (i.e. with increasing radial structure in the velocity 
field) from 99.2 (when q = 1) to 26.9 when q = 6, and 26.4 when 
q = 20. The values of N and M used in the numerical calculations 
were N = 10, M = 100. 

The results of Pekeris et al. have been independently confirmed 
by Kumar & Roberts (1975), who also studied the numerical 
convergence of eigenvalues and eigenfunctions for a range of 
motions of the form {T1 + c1P2 + E~P:'+ E B P : ~  The helicity density 
U . V A U of such motions is antisymmetric about the equatorial plane 
(unlike the motions studied by Pekeris et al.) and in this respect are 
more relevant in the geophysical contextg - see the later discussion 
in 9 9.5. 

6.12. The stasis dynamo of Backus (1958) 

As noted above, it is difficult in general to justify truncation of the 
spherical harmonic expansion of B, and erroneous conclusions can 

In this context, see also Bullard & Gubbins (1976) who have computed eigen- 
values and eigenfunctions for further velocity fields having an axisymmetric 
structure similar to that driven by thermal convection in a rotating sphere (Weir 
1976); the fields maintained by such motions are of course non-axisymmetric. 
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result from such truncation. There are two situations however in 
which truncation (of one form or another) can be rigorously jus- 
tified. The first of these is the rotor dynamo situation of Herzenberg 
(1958) considered above in 8 6.9, in which the radius of each rotor is 
small compared with the distance between rotors: in this situation 
the spatial attenuation of higher harmonics of the field induced by 
each rotor permits the imposition of a rigorous upper bound on the 
influence of these higher harmonics and hence permits rigorous 
justification of the process described (without due respect for 
rigour!) in 8 6.9. 

The second situation in which 'unwanted' higher harmonics may 
be dropped without violation of mathematical rigour was conceived 
by Backus (1958), and invokes temporal rather than spatial attenu- 
ation. We know from the theory of free decay modes that higher 
harmonics (i.e. those corresponding to higher values of n and q in 
the notation of 5 2.7) decay faster than lower harmonics when 
U = 0, and that the fundamental harmonic (i.e. that corresponding to 
the lowest available values of n and q) will survive the longest and 
will ultimately dominate during a period of free decay (when U = 0). 
Suppose then that at some initial instant we start with a poloidal 
field Bpll where the suffix 11 indicates that only the fundamental 
('dipole') harmonic n = q = 1 is present. Suppose that we subject 
this field to the influence of the following time-dependent velocity 
field (devised and justifiable in terms of mathematical expediency 
rather than physical plausibility): (i) a short period of intense 
differential rotation UT, thus generating a strong toroidal field BT by 
the mechanism analysed in 5 3.1 1 ; (ii) a period of 'stasis' (U 0) so 
that all but the fundamental harmonic BTll of BT decay to a 
negligible level; (iii) a short period of intense non-axisymmetric 
poloidal motion up generating a poloidal field B$ from BT through 
the mechanism described (at least in part) by (6.39); (iv) a second 
period of stasis to allow all but the fundamental harmonic B$ll of 
B$ to decay to a negligible level; (v) a rapid rigid body rotation w A x 
to bring ~ $ 1 ~  (plus whatever remains of Bpl1) into alignment with 
the original direction of Bpll. If the fields UT, up and w A X, and the 
durations tl, t2, . . . , t5 of the phases (i), . . . , (v) are suitably chosen, 
then a net field amplification (with arbitrarily little change of 
structure) can be guaranteed. The interaction diagram correspond- 



144 MAGNETIC FIELD GENERATION IN FLUIDS 

ing to the particular velocity fields u ~ ,  up and cl, A X chosen by 
Backus to give substance to this skeleton procedure is indicated in 
fig. 6.10, in which the evanescent (and impotent) higher harmonics 
suppressed (relatively) by the periods of stasis are indicated by 
dotted lines. 

Fig. 6.10 Interaction diagram for the stasis dynamo of Backus (1958). The 
motion considered was of the form u = {T, + Pic+ Ttc) in the notation of 
6 6.1 1, with periods of stasis between separate phases of application of the 
three ingredients. The dotted lines and circles indicate excitations which are 
evanescent due to their relatively rapid decay during the periods of stasis. 
The field ingredients represented by PI, T1 and P:" then provide me 
dominant contributions in the closed dynamo cycle. 

The Backus dynamo, like the Herzenberg dynamo, makes no 
claims to dynamic (as opposed to merely kinematic) plausibility. 
Although artificial (from a purely dynamical viewpoint), the endur- 
ing interest of dynamo models incorporating spatial or temporal 
decay (of which Herzenberg and Backus almost simultaneously 
devised the respective prototypes) resides in the fact that by either 
technique the existence of velocity fields capable of dynamo action 
(as defined in § 6.1) can be rigorously demonstrated. In this respect, 
the Herzenberg and Backus dynamos provide corner-stones (i.e. 
reliable positive results) that can act both as a test and a basis for 
subsequent developments in which mathematical rigour must 
necessarily give way to the more pressing demands of physical 
plausibility. . 



CHAPTER 7 

T H E  M E A N  E L E C T R O M O T I V E  F O R C E  

G E N E R A T E D  B Y  R A N D O M  MOTIONS 

7.1. Turbulence and random waves 

We have so far treated the velocity field U(x, t) as a known function 
of position and time1. In this chapter we consider the situation of 
greater relevance in both solar and terrestrial contexts when U(x, t) 
includes a random ingredient whose statistical (i.e. average) proper- 
ties are assumed known, but whose detailed (unaveraged) proper- 
ties are too complicated for either analytical description or observa- 
tional determination. Such a velocity field generates random per- 
turbation~ of electric current and magnetic field, and our aim is to 
determine the evolution of the statistical properties of the magnetic 
field (and in particular of its local mean value) in terms of the 
('given') statistical properties of the U-field. 

The random velocity field may be a turbulent velocity field as 
normally understood, or it may consist of a random superposition of 
interacting wave motions. The distinction can be most easily 
appreciated for the case of a thermally stratified fluid. If the 
stratification is unstable (i.e. if the fluid is strongly heated from 
below) then thermal turbulence will ensue, the net upward trans- 
port of heat being then predominantly due to turbulent convection. 
If the stratification is stable (i.e. if the temperature either increases 
with height, or decreases at a rate less than the adiabatic rate) then 
turbulence will not occur, but the medium may support internal 
gravity waves which will be present to a greater or lesser extent, in 
proportion to any random influences that may be present, distri- 
buted either throughout the fluid or on its boundaries. For example, 
if the outer core of the Earth is stably stratified (as maintained by 
Higgins & Kennedy, 1971 - see § 4.4), random inertial waves may 
be excited either by sedimentation of iron-rich material released 
from the mantle across the core-mantle interface or by flotation of 

From now on, we shall use U to represent the total velocity field, reserving U for its 
random ingredient. 
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light compounds (rich in silicon or sulphur) released by chemical 
separation at the interface between inner core and outer core, or 
possibly by shear-induced instability in the boundary layers and 
shear layers forrhed as a result of the slow precession of the Earth's 
angular velocity vector. Such effects may generate radial perturba- 
tion velocities whose amplitude is limited by the stabilising 
buoyancy forces; the flow fields will then have the character of a 
field of forced weakly interacting internal waves, rather than of 
strongly non-linear turbulence of the 'conventional' type. 

We shall throughout this chapter suppose that the random ingre- 
dient of the motion is characterised by a length-scale 10 which is 
small compared with the 'global' scale L of variation of mean 
quantities (fig. 7.1). L will in general be of the same order of 

Fig. 7 .1  Schematic picture of the random velocity field u(x, t )  varying on the 
small length-scale l ,  and the mean magnetic field varying on the large scale 
L. The mean is defined as an average over the sphere S, of radius a where 
locc a<< L. 

magnitude as the linear dimension of the region occupied by the 
conducting fluid, i.e. L = O(R) when the fluid is confined to a 
sphere of radius R. In the case of turbulence, l. may be loosely 
defined as the scale of the energy-containing eddies (see e.g. 
Batchelor, 1953). Likewise, in the case of random waves, la may be 
identified in order of magnitude with the wavelength of the con- 
stituent waves of maximum energy. On any intermediate scale a 
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satisfying the double inequality 

the global variables (e.g. mean velocity and mean magnetic field) 
may be supposed nearly uniform; here the 'mean', which we shall 
denote by angular brackets, may reasonably be defined as an 
average over a sphere of intermediate radius a : i.e. for any +(X, t), 
we define 

with the expectation that this average is insensitive to the precise 
value of a provided merely that (7.1) is satisfied. The statistical (i.e. 
mean) properties of the U-field are weakly varying on the scale a ; 
the methods of the theory of homogeneous turbulence (Batchelor, 
1953) may therefore be employed in calculating effects on these 
intermediate scales. 

We could equally use time-scales rather than spatial scales in 
defining mean quantities. If T is the time-scale of variation of global 
fields and to is the time-scale characteristic of the fluctuating part of 
the U-field, then we shall require as a matter of consistency that T 
be large compared with to. If analysis reveals that in any situation T 
and to are comparable, then the general approach (as applied to that 
situation) must be regarded as suspect. When T >> to, then for any 
intermediate time-scale T satisfying 

we can define 

with again a reasonable expectation that this is insensitive to the 
value of T provided (7.3) is satisfied. We shall use the notation 
(+(X, t)) without suffix a or r to denote either average (7.2) or (7.4), 
which from a purely mathematical point of view may both be 
identified with an 'ensemble' average (in the asymptotic limits 
lo/L + 0, to/ T + 0, respectively). 



148 MAGNETIC FIELD GENERATION IN FLUIDS 

Having thus defined a mean, the velocity and magnetic fields may 
be separated into mean and fluctuating parts: 

U(x, t) = Uo(x, t) + u(x, t ) ,  (U) = 0, (7.5) 

B(x, t )  = Bo(x, t)+ b(x, t ) ,  (b) = 0. (7.6) 

Likewise the induction equation (4.10) may be separated into its 
mean and fluctuating parts: 

aBo/at = V A (u0  A B ~ ) + v  A Q + A  v ~ B ~ ,  (7.7) 

~ ~ / ~ ~ = v A ( u ~ A ~ ) + v A ( u A B ~ ) + v A G + A v ~ ~ ,  (7.8) 

where 

Q=(unb) ,  G = u ~ b - ( u ~ b ) .  (7.9) 

Note that in (7.7) there now appears a term associated with a 
product of random fluctuations. The mean electromotive force 8 is 
a quantity of central importance in the theory: the aim must clearly 
be to find a way to express 8 in terms of the mean fields U. and B0 so 
that, for given Uo, (7.7) may be integrated. 

The idea of averaging equations involving random fluctuations is 
of course well-known in the context of conventional turbulence 
theory: averaging of the Navier-Stokes equations likewise leads to 
the appearance of the important quadratic mean -(uiuj) (the 
Reynolds stress tensor) which is the counterpart of the (U A b) of the 
present context. There is no satisfactory theory of turbulence that 
succeeds in expressing ( u ~ u ~ )  in terms of the mean field Uo. By 
contrast, there is now a satisfactory body of theory for the determi- 
nation of Q. The reason for this (comparative) degree of success can 
be attributed to the linearity (in B) of the induction equation. There 
is no counterpart of this linearity in the dynamics of turbulence. 

The two-scale approach in the context of the induction equation 
was first introduced by Steenbeck, Krause & Radler (1966), and 
many ideas of the present chapter can be traced either to this 
pioneering paper, or to the series of papers by the same authors that 
followed; these papers, originally published in German, are avail- 
able in English translation - Roberts & Stix (1971). 
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7.2. The linear relation be een 8 and B. 9 
The term V A (U A Bo) in (7.8) acts as a s k r c e  term generating the 

I 

fluctuating field b. If we suppose that b = 0 at some initial instant ,,- 
t = 0, then the linearity of (7.8) guarantees that the fields b and B. c 

are linearly related. It follows that the fields 8 = (U A b) and B. are - 
likewise linearly related, and since the spatial scale of B0 is by 
assumption large (compared with scales involved in the detailed 
solution of (7.8)) we may reasonably anticipate that this relationship 
may be developed as a rapidly convergent series of the form2 

where the coefficients aij, Piik, . . . , are pseudo-tensors ('pseudo7 
because 8 is a polar vector whereas B. is an axial vector). It is clear 
that, since the solution b(x, t) of (7.8) depends on Uo, U and A ,  the 
pseudo-tensors aij, Piik,. . . , may be expected to depend on, and 
indeed are totally determined by, (i) the mean field Uo, (ii) the 
statistical properties of the random field u(x, t), and (iii) the value of 
the parameter h.  These pseudo-tensors will in general vary on the 
'macroscale' L, but in the conceptual limit L / l o + ~ ,  when U0 
becomes uniform and U becomes statistically strictly homogeneous, 
the pseudo-tensors aij, Piik, . . . , which may themselves be regarded 
as 'statistical properties of the U-field7, also become strictly uniform. 

If U. is uniform, then it is natural to take axes moving with 
velocity Uo, and to redefine u(x, t) as the random velocity in this 
frame of reference. With this convention, (7.7) becomes 

It is immediately evident that if B. is also uniform (and if U is 
statistically homogeneous so that akl, Pkrm, . . . are uniform) then 
dBo/at = 0, i.e. infinite length-scale for B. implies infinite time- 
scale. We may therefore in general anticipate that as L/lo+m, 

Terms involving time derivatives d B O j / d t ,  d 2 ~ o j / d t 2 ,  . . . , may also appear in the 
expression for 8. Such terms may however always be replaced by terms involving 
only space derivatives by means of (7.7). 
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T/to + 00 also, in the notation of O 7.1, and the notions of spatial and 
temporal means are compatible. 

When B. is weakly non-uniform it is evident from (7. l l )  that the 
first term on the right (incorporating ak1) is likely to be of dominant 
importance when a k l #  0, since it involves the lowest derivative of 
Bo; the second term (incorporating Pklm) is also of potential impor- 
tance, and cannot in general be discarded, since like the natural 
diffusion term A V ~ B O ,  it involves second spatial derivatives of Bo. 
Subsequent terms indicated by . . . in (7.11) should however be 
negligible provided the scale of B0 is sufficiently large for the series 
(7.10) to be rapidly convergent. We shall in the following two 
sections consider some general properties of the a - and P -terms of 
(7.1 l), and we shall go on in subsequent sections of this chapter to 
evaluate aij and Pijk explicitly in certain limiting situations. 

7.3. The &-effect 

Let us now focus attention on the leading term of the series (7.10), 
viz. 

The pseudo-tensor aij (which is uniform insofar as the U-field is 
statistically homogeneous) may be decomposed into symmetric and 
antisymmetric parts: 

aij = a - Eijkak where a, = -i&iikaij, (7.13) 

and correspondingly, from (7.12), 

It is clear that the effect of the antisymmetric part is merely to 
provide an additional ingredient a (evidently a polar vector) to the 
'effective' mean velocity which acts upon the mean magnetic field: if 
U0 is the actual mean velocity, then Uo+a is the effective mean 
velocity (as far as the field B0 is concerned). 

The nature of the symmetric part a $' is most simply understood 
in the important special situation when the U-field is (statistically) 
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isotropic3 as well as homogeneous. In this situation, by definition, 
all statistical properties of the U-field are invariant under rotations 
(as well as translations) of the frame of reference, and in particular 
aii must be isotropic, i.e. 

and of course in this situation a = 0. 
The parameter a is a pseudo -scalar (cf. the mean helicity (U. W ) )  

and it must therefore change sign under any transformation from a 
right-handed to a left-handed frame of reference ('parity transfor- 
mations'). Since a! is a statistical property of the U-field, it can be 
non-zero only if the U-field itself is not statistically invariant under 
such a transformation. The simplest such transformation is reflexion 
in the origin X' = -X, and we shall say that the U-field is reflexionally 
symmetric if all its statistical properties are invariant under this 
transformation4. Otherwise the U-field lacks reflexional symmetry. 
Only in this latter case can a! be non-zero. 

Combination of (7.12) and (7.15) gives the very simple result 

and, from Ohm's law (2.117), we have a corresponding contribution 
to the mean current density 

This possible appearance of a current parallel to the local mean field 
B. is in striking contrast to the conventional situation in which the 
induced current ~ U A  B is perpendicular to the field B. It may 
appear paradoxical that two fields (B and U A B )  that are 
everywhere perpendicular may nevertheless have mean parts that 

We shall use the word 'isotropic' in the weak sense to indicate 'invariant under 
rotations but not necessarily under reflexions' of the frame of reference. 
Alternatively, parity transformations of the kind X' = -X, y ' = y, z' = z representing 
mirror reflexion in the plane x = 0 could be adopted as the basis of a definition of 
'mirror symmetry' (a term in frequent use in many published papers). Care is 
however needed: the mirror transformation can be regarded as a superposition of 
reflexion in the origin followed by a rotation; a U-field that is reflexionally 
symmetric but anisotropic will then not in general be mirror symmetric since its 
statistical properties will be invariant under the reflexion in the origin but not under 
the subsequent rotation. 
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are not perpendicular (and that may even be parallel); and to 
demonstrate beyond doubt that this is in fact a real possibility it is 
necessary to obtain an explicit expression for the parameter a and 
to show that it can indeed be non-zero (see § 7.8). The appearance 
of an electromotive force of the form (7.16) was described by 
Steenbeck & Krause (1966) as the 'a-effect', a terminology that, 
although arbitrary5, is now well-established. It is this effect that is at 
the heart of all modern dynamo theory. The reason essentially is 
that it provides an obvious means whereby the 'dynamo cycle' 
BpC'BT may be completed. We have seen that toroidal field BT 
may very easily be generated from poloidal field Bp by the process 
of differential rotation. If we think now in terms of mean fields, then 
(7.17) indicates that the a -effect will generate toroidal current (and 
hence poloidal field) from the toroidal field. It is this latter step 
BT+BP that is so hard to describe in laminar dynamo theory; in 
the turbulent (or random wave) context it is brought to the same 
simple level as the much more elementary process Bp +BT. Cowl- 
ing's anti-dynamo theorem no longer applies to mean fields, and 
axisymmetric analysis of mean-field evolution is then both possible 
and promising (see chapter 9). 

As noted above, a c m  be non-zero only if the u-field lacks 
reflexional symmetry, and in this situation the mean helicity (U . W) 

will in general be non-zero also. To understand the physical nature 
of the a -effect, consider the situation depicted in fig. 7.2 (as 
conceived essentially by Parker, 19553). Following Parker, we 
define a 'cyclonic event' as a velocity field u(x, t )  that is localised in 
space and time and for which the helicity I = l  (U. V A U) dV is 
non-zero. For definiteness suppose that (in a right-handed frame of 
reference) I > 0. Such an event tends to distort a line of force of an 
initial field B. in the manner indicated in fig. 7.2, the process of 
distortion being resisted more or less by diffusion. The normal n to 
the field loop generated has a component parallel to Bo, with n . B0 
less than or greater than zero depending on the net angle of twist of 
the loop, the former being certainly more likely if diffusion is strong 
or if the events/are very short-lived. 

The effect was in fact first isolated by Parker (1955b) who introduced, on the basis 
of physical arguments, a parameter I'which may be identified (almost) with the a of 
Steenbeck & Krause (1966). 
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Fig. 7.2 Field distortion by a localised helical disturbance (a 'cyclonic event' 
in the terminology of Parker, 1970). In ( a )  the loop is twisted through an 
angle 7r/2 and the associated current is anti-parallel to B; in ( b )  the twist is 
371-12, and the associated current is parallel to B. 

Suppose now that cyclonic events all with 1 > 0  are randomly 
distributed in space and time (a possible idealisation of a turbulent 
velocity field with positive mean helicity). Each field loop generated 
can be associated with an elemental perturbation current in the 
direction n, and the spatial mean of these elemental currents will 
have the form J"' = ua Bo, where (if the case n . B. < 0 dominates) 
the coefficient a will be negative. We shall in fact find below that, in 
the diffusion dominated situation, a (U . W) <, 0 consistent with this 
picture. 

If the U-field is not isotropic, then the simple relationship (7.15) of 
course does not hold. The symmetric pseudo-tensor a I:' may how- 
ever be referred to its principal axes: 

and the corresponding contribution to Q'O' is, from (7.14), 

Again under the reflexion X' = -X, a"', a'2' and n "' must change 
sign; and so in general a$' vanishes unless the U-field lacks reflex- 
ional symmetry. 
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7.4. Effects associated with the coefficient Pilk 

Consider now the second term of the series (7.10), viz. 

In the simplest situation, in which the U-field is isotropic, Piik is also 
isotropic, and so 

where p is a pure scalar. Equation (7.20) then becomes 

where Jo is the mean current. Hence also (if p is uniform) 

and it is evident from (7.7) that the net effect of the emf B'" iskimply 
to alter the value of the effective magnetic diffusivity, which 
becomes A +p rather than simply A. We shall find that in nearly all 
circumstances in which P can be calculated explicitly, it is positive, 
consistent with the simple physical notion of an 'eddy diffusivity': 
one would expect random mixing (due to the U-field) to enhance 
(rather than detract from) the process of molecular diffusion that 
gives rise to a positive value of A. However there is no general proof 
that p must inevitably and in all circumstances be positive, and 
there are some indications (see 8 7.11) that it may in fact in some 
extreme circumstances be negative; if p < -A, there would of course 
be dramatic consequences as far as solutions of (7.7) are concerned. 

If the U-field is not isotropic, then departures from the simple 
relationship (7.21) are to be expected. Suppose for example that the 
U-field is (statistically) invariant under rotations about an axis 
defined by the unit (polar) vector e, but not under general rotations, 
i.e. e defines a 'preferred direction'. Turbulence with this property is 
described as axisymmetric about the direction of e. (The situation is 
of course of potential importance in the context of turbulence that is 
strongly influenced by Coriolis forces in a system rotating with 
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angular velocity 0 :  in this situation e = f 0 / a . )  The pseudo-tensor 
Pijk, which is then also axisymmetric about the direction of e, may be 
expressed in the form 

where PO, .  . . , P3 are pure scalars and PO,. . . , 63 are pseudo- 
scalars, which can be non-zero only if the u-field lacks reflexional 
symmetry. The corresponding expression for 8"' from (7.20) is 

The complexity of this type of expression as compared with the 
simple isotropic relationship (7.22) is noteworthy (and it is not hard 
to see that if the assumption of axisymmetry is relaxed and two 
preferred directions e"' and e'2' are introduced, the relevant expres- 
sion for 8"' becomes still more complex with a dramatic increase in 
the number of scalar and pseudo-scalar coefficients). 

It seems likely that the terms of (7.25) involving PI,  P2 and P3 
admit interpretation in terms of contributions to a non-isotropic 
(eddy) diffusivity for the mean magnetic field. These terms do not 
however appear to have been given detailed study, and it may be 
that more interesting effects may be concealed in their structure. 

As for the terms involving the pseudo-scalars 60, B 2  and 83, that 
involving 63 has been singled out for detailed examination by 
Radler (1969a,b). This term indicates the possible generation of a 
mean emf perpendicular to the mean current l. = ;'V A Bo, and is 
of particular significance again in the context of the closure of the 
dynamo cycle: through this effect (the 'Radler-effect') a toroidal 
emf (and so a toroidal current) may be directly generated from a 
poloidal current, or equivalently a poloidal field may be generated 
from a toroidal field. In conjunction with the complementary effect 
of differential rotation, a closed dynamo cycle may be envisaged, 
and has indeed been demonstrated by Radler (1969b). 
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It must be emphasised however that k 3 ,  being a pseudo-scalar, 
can be non-zero only if the U-field lacks reflexional symmetry6, and 
in this situation the pseudo-tensor aij will in general also be 
non-zero. Since the dominant term of the series (7.10) involves aij, it 
seems almost inevitable that whenever the Radler-effect is opera- 
tive, it will be dominated by the a-effect. 

We now turn to the detailed solution of (7.8) and the subsequent 
derivation of b = (U A b). We suppose for the remainder of this 
chapter that U. = 0, and that the U-field is statistically homogene- 
ous. Effects associated with non-zero U. (in particular with strong 
differential rotation in a spherical geometry) will be deferred to 
chapter 8. The difficulty in solving (7.8) in general arises from the 
term V A G involving the interaction of the fluctuating fields U and b, 
and it is natural first to consider circumstances in which this awk- 
ward term may be neglected. There are two distinct circumstances 
when this neglect (the first -order smoothing approximation ) would 
appear to be justified. The order of magnitude of the terms in (7.8) 
(with U. = 0) is indicated in (7.26): 

Here, as usual, 10 and to are length- and time-scales characteristic of 
the U-field, and uo and bo are, say, the root mean square values of U 

and b: 

Here we must distinguish between two situations: 

conventional turbulence: uoto/lo = 0 (l), (7.28) 

random waves: uotollo 1. (7.29) 

6This conclusion is at variance with that of Radler (1969~)  who expressed the 
argument throughout in terms of an axial vector f l  rather than a polar vector e, a 
procedure that (from a purely kinematic point of view) is hard to justify. 
' The first-order smoothing approximation described in this section is analogous to 

the Born approximation in scattering theory; some authors use alternative terms, 
e.g. the 'quasi-linear approximation' (Kraichnan, 1 9 7 6 ~ ) .  
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If (7.29) is satisfied, then it is immediately clear from (7.26) that 
IV A G1 << lab/dtl, and that a good first approximation is given by 

an equation first studied (with B0 uniform and u random) by 
Liepmann (1 95 2). 

If on the other hand (7.28) is satisfied, then ldb/atl and IV A G1 are 
of the same order of magnitude, and both are negligible compared 
with (A v2bl provided 

Under this assumption of small (turbulent) magnetic Reynolds 
number, a legitimate first approximation to (7.26) is 

Although the physical situations described by (7.30) and (7.32) 
are rather different, both equations say essentially the same thing: 
fluctuations b(x, t) are generated by the interaction of u with the 
local mean field Bo. In (7.32) this process is instantaneous because 
of the dominant influence of diffusion, whereas in (7.30) b(x, t )  can 
evidently depend on the previous history of u(x, t) (i.e. on u(x, t') for 
all t' t). It may be anticipated that solutions of (7.30) will approxi- 
mate to solutions of (7.32) when (7.3 1) is satisfied. We may there- 
fore focus attention on the more general equation (7.30), bearing in 
mind that, in application to the turbulent (as opposed to random 
wave) situation, the study is relevant only if the additional condition 
(7.31) is satisfied. 

7.6. Spectrum tensor of a stationary random vector field 

Before considering the consequences of (7.30), we must digress 
briefly to recall certain basic properties of a random velocity field 
u(x, t) that is statistically homogeneous in X and stationary in t. We 
may define (in the sense of generalised functions - see for example 
Lighthill, 1959) the Fourier transform (with dx d3x) 

1 
ii(k, ) = I J'u(x, t ) e-i*.x-YI1 dx dt, (7.33) 

( 2 ~  ) 
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which satisfies the inverse relation 

u(x, t) = J' J'ii(k, o ) eiR.x-Yt) dk do. (7.34) 

Since U is real, we have for all k, o ,  

G(-k, -W) = 3*(k, w ), (7.35) 

where the star denotes a complex conjugate. Moreover, if U satisfies 
V .u=O, then 

k . 3(k, o )  = 0 for all k. (7.36) 

Now consider the mean quantity 

(Cl&, o)C?(kt, U')) 

If X' = x + r  and t1 = t +T, then, under the assumption of 
homogeneity and stationarity, 

the correlation tensor of the field U. Using the basic property of 
the S-function 

(7.37) then takes the form 

(C i&,~ )C~(k l ,~~ ) )=@i j (k ,o )S (k -k ' )S (o -o ' ) ,  (7.41) 

where 

IRii (r, ) e-i@*r-Yr) @ii(k, U)=- dr d ~ .  (7.42) 
( 2 ~  )4 

The relation inverse to (7.42) is 

Rij(r, T) = I U )  ei(".r-~) dk do. (7.43) 
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The tensor @ii(k, o )  is the spectrum tensor of the field u(x, t), and it 
plays a fundamental role in the subsequent theory. From (7.39, it 
satisfies the condition of Hermitian symmetry 

while, from (7.36), if V . U = 0 then, for all k, 

The energy spectrum function E(k, o )  is defined by 

where the integration is over the surface of the sphere S k  of radius k 
in k-space. Note that 

where the integral over k = Ikl naturally runs from 0 to W. Hence 
pE(k, o )  dk d o  is the contribution to the kinetic energy density 
from the wave-number range (k, k +dk)  and frequency range 
(o, o +do) .  Note that the scalar quantity cPii(k, o )  is non-negative 
for all k, U. (If it could be negative, integration of (7.41) over an 
infinitesimal neighbourhood of (k, o ) would give a contradiction.) 
Hence also 

The vorticity field o = V A U evidently has Fourier transform 
= ik A ii, and spectrum tensor 

In particular, using (7.45), 

nii(k, U ) =  k2@ii(k, U), (7.50) 

and as an immediate consequence 
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By analogy with the definition of E(k, U), we define the helicity 
spectrum function F(k, U )  by 

so that, with o = V A U, 

( U .  w)=kilrl  kk@il(k, U)  dk dw = F(k, U)  dk do. (7.53) J J J J 
The function F(k, U )  is real (by virtue of (7.44)) and is a pseudo- 
scalar, and so vanishes if the U-field is reflexionally symmetric. We 
have seen however in the previous sections that lack of reflexional 
symmetry is likely to be of crucial importance in the dynamo 
context, and it is important therefore to consider situations in which 
F(k, w )  may be non-zero. The mean helicity (U . m) is the simplest 
(although by no means the only) measure of the lack of reflexional 
symmetry of a random U-field. 

Unlike E(k, U), F(k, U)  can be positive or negative. It is however 
limited in magnitude; in fact from the Schwarz inequality in the 
form 

together with (7.47), (7.50) and (7.53), we may deduce that8 

 IF(^, u)I s 2kE(k, U), for all k, U. (7.55) 

If the U-field is statistically isotropic9, as well as homogeneous, 
then the functions E (k, U )  and F(k, U )  are sufficient to completely 
specify @ii(k, U). In fact the most general isotropic form for 
@ii(k, U )  consistent with (7.45), (7.46) and (7.52) is 

The results (7.48) and (7.55) are particular consequences of the fact that 
XiXTQii(k, W ) >  0 for arbitrary complex vectors X (Cramer's theorem); in the 
isotropic case, when Qii(k, o )  is given by (7.56), choosing X real gives (7.48), and 
choosing X = p + iq, where p and q are unit orthogonal vectors both orthogonal to 
k, gives (7.55). 

See footnote 3 on p. 151. 
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The assumption of isotropy can lead to dramatic simplifications in 
the mathematical analysis. Since however turbulence (or a random 
wave field) that lacks reflexional symmetry can arise in a natural 
way only in a rotating system in which there is necessarily a 
preferred direction (the direction of the rotation vector a), it is 
perhaps unrealistic to place too much emphasis on the isotropic 
situation. There are however 'unnatural' ways of generating iso- 
tropic non-reflexionally symmetric turbulence, and it may be useful 
to describe one such 'thought experiment' if only to fix ideas. 
Suppose that the fluid is contained in a large sphere whose surface S 
is perforated by a large number of small holes placed randomly. 
Suppose that a small right-handed screw propeller is freely 
mounted at the centre of each hole, and suppose that fluid is 
injected at high velocity through a random subset of the holes, an 
equal mass flux then emerging from the complement of this subset. 
In a neighbourhood of the centre of the sphere the turbulent 
velocity field that results from the interaction of the incoming 
swirling jets will be approximately homogeneous and isotropic 
(there is clearly no preferred direction at the centre.) The turbul- 
ence nevertheless certainly lacks reflexional symmetry since each 
fluid particle entering the sphere follows a right-handed helical path 
at the start of its trajectory, so that (presumably) ( U .  m) will be 
positive throughout the sphere. Note that the net angular momen- 
tum generated will be zero since the torques exerted on the fluid by 
propellers at opposite ends of a diameter will tend to cancel, and the 
cancellation will be complete when the injection statistics are 
uniform over the surface of the sphere. 

If the U-field is not isotropic, but is nevertheless statistically 
axisymmetric about the direction of a unit vector e, then the most 
general form for aii(k, U )  compatible with (7.44) and (7.45) is (with 
k .  e =  k p )  
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where 

Here, as usual, the star denotes a complex conjugate and the tilde 
denotes a pseudo-scalar. The functions cpl, . . . , 6 6  are functions of 
k, p and w ; ql ,  q2, $3 and $4 are real, while and $6 are complex. 
The energy and helicity spectrum functions defined by (7.46) and 
(7.52) are related to these functions by 

It may of course happen that the U-field exhibits in its statistical 
properties more than one preferred direction. For example if both 
Coriolis forces and buoyancy forces act on the fluid, the rotation 
vector a and the gravity vector g provide independent preferred 
directions which will influence the statistics of any turbulence 
present. The general formulae for Qii, E and F corresponding to 
(7.57)-(7.60) can be readily obtained, and again (as is to be 
expected) only that part of @ii involving pure scalar functions 
contributes to E,  while only the part involving pseudo-scalar func- 
tions contributes to F. We shall meet such situations in later 
chapters (see particularly § 10.3). 

7.7. Determination of ail for a helical wave motion 

Since the expansion (7.10) is valid for any field distribution B. of 
sufficiently large length-scale, we may in calculating aij suppose that 
B. is uniform (and therefore time-independent). Restricting atten- 
tion to incompressible motions for which V . U = 0, (7.30) then 
becomes 

Before treating the general random field u(x, t ) ,  it is illuminating to 
consider first the effect of a single 'helical wave' given by 
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u(x, t) = uo(sin (kz -of), cos (kz - wt), 0) = Re uo ein."-"", 
(7.62) 

where 

uo = UO(-i, 1, 0), k = (0, 0, k), (7.63) 

and where for definiteness we suppose k > 0, w > 0. Note that for 
this motion 

and (7.64) 

iuo A U: = 2u :(o, 0 , l ) .  

The helicity density is evidently uniform and positive. With this 
choice of U, the corresponding periodic solution of (7.61) has the 
form 

where 

Hence 

where 

v = uo(cos (kz -of), -sin (kz -of), 0) = Re iuo ei"."-"", 
(7.68) 

and we can immediately obtain 

Hence in this case ifi = aiiBoi, where 
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The a-effect is clearly non-isotropic because the velocity field 
(7.62) exhibits the preferred direction (0, 0, 1). More significantly, 
note that aij + 0 as A + 0, i.e. some diffusion is essential to generate an 
a-effect. The role of diffusion is evidently (from (7.67)) to shift the 
phase of b relative to that of U, a process that is crucial in producing a 
non-zero value of I. 

Note further that U A b is in fact uniform in the aPove situation, so 
that G = u A b -(U A b) = 0. This means that the first-order smooth- 
ing approximation (in which the G-term in (7.26) is ignored) is exact 
when the wave field contains only one Fourier component like 
(7.62). If more than one Fourier component is present, then G is no 
longer zero. We can however give slightly more precision to the 
condition for the validity of first-order smoothing. Suppose that the / 
wave spectrum (discrete or continuous) is sharply peaked around a 
wave-number ko and a frequency WO, and that uo = ( u ~ ) " ~ .  Then 
from (7.29) and (7.31), the effects of the G-term in (7.26) should be 
negligible provided either 

uo/Ako <c 1 or uoko/oo <c l. (7.7 1 )  

Conversely, if A <c uo/ko, then first-order smoothing must be 
regarded as a dubious approximation for all pairs (k, a )  strongly 
represented in the wave spectrum for which la l 5 uok. 

Note finally that the solution (7.65) does not of course satisfy an 
initial condition b(x, 0) = 0. If we insist on this condition, we must 
simply add to (7.65) the transient term 

-Re bo eik." e - ~ k 2 t  bl = (7.72) 

This makes an additional contribution to I which however decays 
to zero in a time of order (Ak2)-l. The limit A + O  again poses 
problems: the influence of initial conditions is 'forgotten' only for 
t 2 0(Ak2)-l, and the result obtained for dP will depend on the 
ordering of the limiting processes A + 0 and t + (cf. the problem 
discussed in 9 3.8). If we first let t +CO (with A > 0) so that the 
transient effect disappears, then we obtain the result (7.69). Alter- 
natively, if we first let A -, 0,  then we obtain (with b(x, 0) = 0) 

b(x, t) = -a -'uok (sin (kz - a t )  - sin kz, cos (kz -at)-  cos kz, 0), 
(7.73) 
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and so 

8 = (U A b) = -a -lu;k sin ot(0, 0, l), (7.74) 

and 8 does not settle down to any steady value as t + W. 

7.8. Determination of c u ~  for a random U-field under first-order 
smoothing 

Suppose now that U is a stationary random function of X and t with 
Fourier transform (7.33). The Fourier transform of (7.61) is 

and we may immediately calculate 

Using (7.41) and noting that i&ikl@kl(k, o )  is real by virtue of (7.44), 
and that the 'imaginary part of (7.76) must vanish (since 8 is real), 
we obtain 8 i  = aijBOj where 

essentially a superposition of contributions like (7.70). Note that if 
we define a = &ii (consistent with aij = asij in the isotropic situa- 
tion) then fromf7.52) and (7.77) we have 

a result that holds irrespective of whether the U-field is isotropic or 
not. It is here that the relation between a! and helicity is at its most 
transparent: a! is simply a weighted integral of the helicity spectrum 
function. As remarked earlier, F(k, o )  can take positive or negative 
values; if however F(k, o )  is non-negative for all k, o (and not 
identically zero,) 90 that (U . a) > 0) then evidently, from (7.78), 
a! < 0; likewise if F(k, o ) ~  0 for all k, o (but not identically zero) 
then a! > 0. 

In the case of turbulence, first-order smoothing is valid only if 
hk2 >> lo 1 for all B, o )  for which a significant contribution is made to 
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the integral (7.77). Hence in this situation the factor (02+A 2k4)-1 
may be replaced by A -2k-4, giving 

aij L\ -'&ikr J k-2kj@kl (L) dk, 

where 
1 ak1 (k) = [@a (k, o ) d o  = - I R ~ ~  (r, 0) e-ik'r dr. (7 -80) 

(2fl )3 

Correspondingly (7.78) becomes 

a!x-- I [ k - 2 ~ ( k )  dk, ~ ( k )  =  IF(^, U )  do. (7.81) 
3A 

Qkl(k) is the conventional zero-time-delay spectrum tensor of 
homogeneous turbulence (see e.g. Batchelor 1953). The results 
(7.79) and (7.81) may be most simply obtained directly from (7.32) 
(Moffatt, 1970a). 

In the random wave situation, the full expression (7.77) must be 
retained. Note again the property that if there are no 'zero fre- 
quency' waves in the wave spectrum, or more precisely if 

then 

aij = O(A) ash + 0. (7.83) 

If on the other hand @kl(k, 0)  # 0 then, since 

we obtain formally from (7.77) 

CYij 2fli&ikl kj@kl(k, 0) dk as A + 0. I (7.85) 

Here however we must bear in mind the limitations of the first- 
order smoothing approximation. As indicated in the remark follow- 
ing (7.71), this approximation is suspect when h is small and 
lo l c uok ; since the asymptotic expression (7.85) is determined 
entirely by the spectral density at o = 0, the limiting procedure that 
yields (7.85) is in fact incompatible with the first-order smoothing 
approximation. The limiting result (7.85) is therefore of dubious 
validity. 
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If the U-field is isotropic, then from (7.56) 

and so (7.77) becomes simply aii = asij where a is given by (7.78). 
Under the weaker symmetry condition that the U-field is statisti- 

cally axisymmetric, (7.57) gives 

i&ikr@kr (k, U )  = -2[ki63 + ei64 + (k2ei - kpki) Im 

and (7.77) then reduces to the axisymmetric form 

where a = iaii is still given by (7.78), and 

It is relevant to note here that the a -effect has been detected in 
the laboratory in an ingenious experiment carried out by Steenbeck 
et al. (1967). A velocity field having a deliberately contrived nega- 
tive mean helicity was generated in liquid sodium by driving the 
liquid through two linked copper ducts (fig. 7.3(a)). The effective 
magnetic Reynolds number was low, and the result (7.81) is there- 
fore relevant. The streamline linkage was left-handed, and, assum- 
ing maximum helicity, (U . o) = -ui/lo; from (7.81) (or (7.70) with 
U = 0, k = l;'), an order of magnitude estimate for a is given by 

where uo is the mean velocity through either duct. The total 
potential drop between electrodes at the points X and Y is then 

where n is the number of duct sections between X and Y (n = 28 in 
the experiment) and B0 is the field applied (by external windings) 
parallel to the 'axis' XY. The measured values of A 4  ranged from 
zero up to 60 millivolts as uo and B. were varied. Fig. 7.3(b) and (c) 
shows the measured variation of A 4  with u i and with Bo. The linear 
relation between A 4  and u i is strikingly verified by these measure- 
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25 50 75 100 0 0.1 0.2 0.3 
u ;  ( m 2 / s 2 )  B(Wb m - 2 )  

( b )  ( c) 

Fig. 7 . 3  Experimental verification of the a, -effect. (a) Duct configuration; 
( b )  potential difference A 4  measured between the electrodes X and Y as a 
function of U: for various values of the applied field B; (c) A 4  as a function 
of B for various values of U,. (Steenbeck et al., 1967.) 

ments. On the other hand the linear relation between A 4  and B0 is 
evidently valid only when B. is weak ( 5 0  1 Wb m-2); reasons for 
the non-linear dependence of A 4  on B. when B. is strong must 
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no doubt be sought in dynamical modifications of the (turbulent) 
velocity distribution in the ducts due to non-negligible Lorentz 
forces. 

7.9. Determination of Pilk under first-order smoothing 

To determine Pijk, we suppose now that the field B&) in the 
expansion (7.10) is of the form 

where the field gradient aBoj/axk is uniform. Equation (7.30) then 
becomes 

with Fourier transform 

Construction of (U A b)i now leads to an expression of the form 
PiikaBoi/a~k, where (after some manipulation) 

Note the appearance in this expression of the gradient in k-space of 
the spectrum tensor. Again in the turbulence situation (7.95) must 
be replaced by 

Now &iml@lm(k) is pure imaginary (by virtue of the Hermitian 
symmetry of @lm), and so (7.96) reduces to 

Piik 5 - Re E j,k A -' k-2@jm (k) dk. I (7.97) 

In the case of an isotropic U-field, with Qii(k, o ) given by (7.56), it 
is again only the second term under the integral (7.95) that makes a 
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non-zero contribution, and we find Piik = where 

P = at5 iik@iik = 3A I dk do, 
0 2 + h  k 

the corresponding expression in the turbulence limit being 

00 

p - 9 '  jo kP%(k) dk. 

Similarly, for the case of rotational invariance about a direction e, 
substitution of (7.57) in (7.96) leads to explicit expressions for the 
coefficients in the axisymmetric form (7.24) of Pijk. It is tedious to 
calculate these coefficients and the expressions will not be given 
here; it is enough to note that the scalar coefficients PO, .  . . , P3 
emerge as linear functionals of cpl(k, p, o) and cp2(k, p, U )  while the 
pseudo-scalar coefficients 60, . . . , B3 emerge (like a and a l in 
(7.78) and (7.89)) as linear functionals of G3, . . . , G6; and that, as 
commented earlier, in any circumstance in which BO,. . . , are 
non-zero, a and a l are generally non-zero also. 

7.10. Lagrangian approach to the weak diffusion limit 

For a turbulent velocity field u(x, t) with uoto/lo = 0(1), and in the 
weak diffusion limit R, = uolo/h >> 1, the first-order smoothing 
approach described in the previous sections is certainly not appli- 
cable. Even in the random wave situation (uoto/lo<< l),  we have 
seen that first-order smoothing may break down in the limit A + 0 if 
the wave spectral density at o = 0 is non-zero. An alternative 
approach that retains the influence of the interaction term V A G in 
(7.8) is therefore desirable. The following approach (Parker, 
197 l a  ; Moff att, 1974) is analogous to the traditional treatment of 
turbulent diffusion of a passive scalar field in the limit of vanishing 
molecular diffusivity (Taylor, 192 1). 

The starting point is the Lagrangian solution of the induction 
equation, which is exact in the limit A = 0, viz. 

Bi (X, t) = Bi (a, 0) dxi/dai, (7.100) 
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in the Lagrangian notation of P 2.5. Hence we have immediately 

Evaluation of aij 

As in 5 7.8, we may most simply obtain an expression for aij on 
the assumption that B. is uniform (and therefore constant). If 
b(x, 0) = 0, then B(a, 0) = Bo, and (7.101) then has the expected 
form gi = ailBol, where however ail is a function of t: 

aa(t) = cak(uf (a, t )  dxk (a, t)/dar). (7.102) 

Now the displacement of a fluid particle is simply the time integral 
of its Lagrangian velocity, i.e. 

.(a, t )  - a = jot uL (a, T)  dr. 

Hence, since (uL(a, I ) )  = 0, (7.102) becomes 

ail(t) = Eijk (U; (a, t )  du:(a, r)/aal) d ~ .  (7.104) 

The time-dependence here is of course associated with the imposi- 
tion of the initial condition b(x, 0) = 0 which trivially implies that 
ail = 0 when t = 0. When t >>tl, where tl is a typical turbulence 
correlation time, one would expect the influence of initial condi- 
tions to be 'forgotten'; equivalently one would expect ail(t) to settle 
down asymptotically to a constant value given by 

There is however some doubt concerning the convergence of the 
integral (7.104) as t + W  for a general stationary random field of 
turbulence, and the delicate question of whether the influence of 
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initial conditions is ever forgotten (when A = 0) is still t6 some 
extent unanswered.'' 

Some light may be thrown on this question through comparison 
of (7.104) with the expression for the diffusion tensor of a passive 
scalar field, viz. (Taylor, 1921) 

Dij (t) = 1 ' (U :(a, t)uf(a, T)) d ~ .  (7.106) 

For a statistically stationary field of turbulence, the integrand here 
(the Lagrangian correlation tensor) is a function of the time differ- 
ence t - T only: 

(uC(a, t)uf (a, I)) = R ff)(t - T), (7.107) 

and for t >> tl, provided simply that 

(7.104) gives 

The condition (7.108) is a very mild requirement on the statistics of 
the turbulence. 

There is however a crucial difference between (7.106) and 
(7.104) in that the latter contains the novel type of derivative 

Although duk/dxm is statistically stationary in time, ax,/aal in 
general is not, since any two particles (a, a+Sa) initially adjacent 
tend to wander further and further apart - in fact I~xl/lSaI- t'I2 as 
t + oo; it follows that au:/aal is not statistically stationary in time in 
general, and so the integrand in (7.104) depends on t and T 

independently and not merely on the difference t - T. 

l0  Computer simulations have recently been carried out by Kraichnan (19763) with 
the aim of evaluating the integrals (7.115) and (7.116) below for the case of a 
statistically isotropic field with Gaussian statistics. The results show that the 
integrals for a ( t )  and P( t )  do in general converge as t -* CO to values of order uo 
and uolo respectively; whether this is true for non-Gaussian statistics is not yet 
clear. 
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As in the discussion following (7.85), it is apparently the 'zero 
frequency' ingredients of the velocity field which are responsible for 
the posvble divergence of (7.104). In any time-periodic motion 
(with zero mean) any two particles that are initially adjacent do not 
drift apart but remain permanently adjacent; it is spectral contribu- 
tions in the neighbourhood of o = 0 which are responsible for the 
relative dispersion of particles in turbulent flow, and it is these same 
contributions that make it hard to justify the step between (7.104) 
and (7.105). 

Evaluation of Piik 

Suppose now that the mean field gradient aBoi/axi is uniform at 
time t = 0. From (7.1 l), we have 

so that (with akl, Pklm uniform in space), aBoi/axp then remains 
constant in time. We may therefore integrate (7.11) to give 

~ ~ " ' o t a k ~ ( r ) d r  (7.112) Boi (X, t) = Boi (X, 0) + &iikp 

From (7.101), we now obtain 

EP, (X, t) = &iik(uf (a, t) axk/aar (Bo, (X, 0) - (X -a)m aBoJaxm )), 
(7.113) 

and, using (7.1 12), this is of the form 

where tuil(t) is as given by (7.104), and 

where Dim(t) is given by (7.106). This expression now involves the 
double integral of a triple Lagrangian correlation (whose con- 
vergence as t -, is open to the same doubts as expressed for the 
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integral (7.104)). Moreover in the case of turbulence that lacks 
reflexional symmetry for which aii(t) # 0, if aii(t) tends to a non- 
zero constant value as t +W,  then the final term of (7.114) is 
certainly unbounded as t +W.'' This result is of course due to the 
total neglect of molecular diffusivity effects; it is possible that 
inclusion of weak diffusion effects (i.e. small but non-zero A )  will 
guarantee the convergence of aii(t) and Piik(t) to constant values as 
t + W, but this is something that has yet to be proved. I 

The isotropic situation 

From (7.104) 
r l  

and if u(x, t)  is isotropic then aij = &Sij. The operator V, indicates 
differentiation with respect to a. The integrand here contains a type 
of Lagrangian helicity correlation; note again the appearance of the 
minus sign in (7.1 15). 

Similarly in the isotropic case, Piik = P (t)&ijk where, from (7.114), 

- (uL (t) .' vauL (71)) . uL (~2))  d r l  d ~ 2  

where the dependence of uL on a is understood throughout. The 
first term here is the effective turbulent diffusivity for a scalar field, 
1 1  The fact that the computer simulations of Kraichnan (19766) give a finite value 

for p (t) = ;sijkpijk (t) as t + oo (see footnote on p. 172) implies that this divergence 
must be compensated by simultaneous divergence of the second term of (7.114) 
involving the double integral. This fortuitous occurrence can hardly be of 
general validity, given the very different structure of the two terms, and may well 
be associated with the particular form of Gaussian statistics adopted by Kraichnan 
in the numerical specification of the velocity field. It may be noted that if the 
second and third terms on the right of (7.116) exactly compensate each other, 
then P(?)= $Dii(t), i.e. the magnetic turbulent diffusivity is equal to the scalar 
turbulent diffusivity. This was claimed as an exact result by Parker (l97 l b), but by 
an argument which has been questioned by Moffatt (1974). The results of 
Kraichnan (1976a,b) indicate that although P(?) and D(?) = $Dii(?) may be of the 
same order of magnitude as t + m, they are not in general identically equal. 
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and the second and third terms describe effects that are exclusively 
associated with the vector character of B. The structure of the 
second term, involving the product of values of a! at different 
instants of time, suggests that fluctuations in helicity may have an 
important effect on the effective magnetic diffusivity. This sugges- 
tion, advanced by ~ra ichnan (1976a), will be examined further in 
the following section. 

7.11. Effect of helicity fluctuations on effective turbulent diffusivity 

When a!kl=  a s k 1  and Pk lm = P&klm, (7.11) takes the form 

where A l = A +p ,  and p is assumed uniform. Let us now (following 
Kraichnan, 1976a) consider the effect of spatial and temporal 
fluctuations in cu on scales I,, t, satisfying 

In order to handle such a situation, we need to define a double 
averaging process over scales a1 and a2 satisfying 

Preliminary averaging over the scale a l yields (7.1 17) as described 
in the foregoing sections. Now we treat a! (X, t) as a random function 
and examine the effect of averaging (7.1 17) over the scale a2. (The 
process may also be interpreted in terms of an 'ensemble of ensem- 
bles': in each sub-ensemble a is constant, but it varies randomly 
from one sub-ensemble to another.) We shall use the notation ((. . .)) 
to denote averaging over the scale a2 of quantities already averaged 
over the scale a l .  We shall suppose further that the U-field is 
globally reflexionally symmetric so that in particular ((a!)) = 0. 

Spatial fluctuations in a! will presumably occur in the presence of 
corresponding fluctuations in background helicity (U . W). It is easy 
to conceive of a kinematically possible random velocity field 
exhibiting such fluctuations. A pair of vortex rings linked as in fig. 
2.l(a) has an associated positive helicity; reversing the sign of one 
of the arrows gives a similar 'flow element' with negative helicity. 
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We can imagine such elements distributed at random in space in 
such a way as to give a velocity field that is homogeneous and 
isotropic, and reflexionally symmetric if elements of opposite parity 
occur with equal probability. Clustering of right-handed and left- 
handed elements will however give spatial fluctuations in helicity on 
the scale of the clusters. 

/ 

From a dynamic point of view, there may seem little justification 
for consideration of somewhat arbitrary models of this kind. The 
reason for doing so is the following. When a is constant, (7.117) has 
solutions that grow exponentially when the length-scale is suffi- 
ciently large (see 5 9.2 for details). In turbulence that is reflexion- 
ally symmetric, a is zero, and there then seems no possibility of 
growth of B. according to (7.1 17). We have however encountered 
grave diffculties in calculating P (and so A1)  in any circumstances 
which are not covered by the simple first-order smoothing 
approximation, and it is difficult to exclude the possibility that the 
effective diffusivity may even be negative in some circumstances. 
Kraichnan's (1976a) investigation was motivated by a desire to shed 
light on this question. 

Let us then (following the same procedure as applied to the 
induction equation in § 7. l )  split (7.117) into mean and fluctuating 
parts. Defining 

we obtain 

and 

where 

Let us now apply the first-order smoothing method to (7.122). The 
term V A G1 is negligible provided either 
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where a = ((a ')), the mean square of the fluctuation field a (X, t). 
The Fourier transforms of (7.122) (treating ((B)) and V A ((B)) as 
uniform) is then 

from which we may readily obtain ((abl)) in the form 

where 

where @, (k, w ) is the spectrum function of the field a (X, t). Sub- 
stitution of (7.127) in (7.12 1) now gives 

The term involving Y here is not of great interest: it implies a 
uniform effective convection velocity Y of the field ((B)) relative to 
the fluid. If the a-field is statistically isotropic, then of course 
Y = 012, since there is then no preferred direction. 

The term involving X is of greater potential interest. It is evident 
from (7 .127~)  that X > 0, so that the helicity fluctuations do in fact 
make a negative contribution to the new effective diffusivity A 2  = 

A l -X. Let us estimate X when l, is large enough for the following 
inequalities to be satisfied: 

The first justifies the use of first-order smoothing. The second 
allows asymptotic evaluation of (7.127a) (cf. the process leading to 
(7.85)) in the form 

l2 Kraichnan (1976a) obtains only the X-term in (7.126) by (in effect) restricting 
attention to a-fields which, though possibly anisotropic, do have a particular 
statistical property that makes the integral (7.127b) vanish. 
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Hence 

and so apparently Xcan  become of the same order as A l or greater 
provided E :=E~ ,  or equivalently provided t, (as well as l,) is 
sufficiently large. 

The above argument, resting as it does on order of magnitude 
estimates, cannot be regarded as conclusive, but it is certainly 
suggestive, and the double ensemble technique merits further close 
study. A negative diffusivity A 2 = A l -X in (7.128) implies on the 
one hand that all Fourier components of the field ((B)) grow expo- 
nentially in intensity, and on the other hand that the length-scale L 
of characteristic field structures will tend to decrease with time (the 
converse of the usual positive diffusion process). This type of result 
has to be seen in the context of the original assumption (7 .118~)  
concerning scale separations: if L is reduced by negative diffusion to 
O(I,) then the picture based on spatial averages is no longer 
meaningful. 

Finally, it may be observed that (7.128) has the same general 
structure as the original induction equation (3.10). This means that 
if we push the Kraichnan ( 1 9 7 6 ~ )  argument one stage further and 
consider random variations of Y(x, t)  on a length-scale ly satisfying 
L >> ly >> l, >> l0 (or via an 'ensemble of ensembles of ensembles'!) 
we are just back with the original problem but on a much larger 
length-scale, and no further new physical phenomenon can emerge 
from such a treatment. 
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CHAPTER 8 

B R A G I N S K I I ' S  T H E O R Y  F O R  W E A K L Y  

A S Y M M E T R I C  SYSTEMS 

8.1. Introduction 

The general arguments of $9 7.1 and 7.2 indicate that when a 
velocity field consists of a steady mean part Uo(x) together with a 
fluctuating part u(x, t), the mean magnetic field evolves according to 
the equation 

where 

In $0 7.5-7.10, we obtained explicit expressions for aij and Piik as 
quadratic functionals of the U-field, on the assumption that U. = 0 
(or cst.) and that the statistical properties of the U-field are uniform 
in space and time. The approach was a two-scale approach, involv- 
ing the definition of a mean as an average over the smaller length (or 
time) scale. 

A very similar approach was developed by Braginskii (1964a, b )  
in an investigation of the effects of weak departures from axisym- 
metry in a spherical dynamo system. The idea motivating the study 
was that, although Cowling's theorem eliminates the possibility of 
axisymmetric dynamo action, if diffusive effects are weak (i.e. A 
small) then weak departures from axisymmetry in the velocity field 
(and consequently in the magnetic field) may provide a regenerative 
electromotive force of the kind required to compensate ohmic 
decay. 

In this situation it is natural to define the mean fields in terms of 
averages over the azimuth angle cp. For any scalar $(S, cp, z ) ,  we 
therefore define its azimuthal mean by 
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and for any vector f(s, cp, z )  we define similarly 

We shall also use the notation 

for the meridional projection of f. Of course if f is axisymmetric, 
then fo = f ;  if in addition f is solenoidal, then fM = fp, the poloidal 
ingredient of f .  

Let us now consider a velocity field expressible in the form 

where E << 1 and (U'),, = 0. Any magnetic field convected and 
distorted by this velocity field must exhibit at least the same degree 
of asymmetry about the axis Oz, and it is consistent to restrict 
attention to magnetic fields expressible in the form 

(It is implicit in the notation of (8.6) and (8.7) that U' and b' are O(1) 
as E + 0.) The azimuthal average of the induction equation is then 
(8.1) with 

If we separate (8.1) into its toroidal and poloidal parts, with the 
notation 

we have for the toroidal part (cf. (3.43)) 

Also, as in 8 3.6, writing Bp = V A (A (S, z)i,), the poloidal part may 
be 'uncurled' to give 



WEAKLY ASYMMETRIC SYSTEMS 181 

We have seen in § 3.1 1 that the term s (Bp . V)(U/s) in (8.10) can act 
as an adequate source term for the production of toroidal field by 
the process of differential rotation. We now envisage a situation in 
which the term g, in (8.11) acts as the complementary source term 
for the production of poloidal field Bp via its vector potential A i,. If 
the rate of production of toroidal field is to be adequate to compen- 
sate ohmic dissipation, then a simple comparison of the terms on the 
right of (8. l l )  suggests that A must be no greater than O(E 2), and we 
shall assume this to be the case in the following sections; i.e. we put 

and assume that A. = O(1) in the limit E + 0. Equivalently if U. is a 
typical order of magnitude of the toroidal velocity U(s, z )  and L an 
overall length-scale, then 

or equivalently, E = 0 (R ,'l2). 
The Braginskii approach is further based on the assumption that 

the dominant ingredient of the mean velocity U is the toroidal 
ingredient Ui,, and more specifically that 

This means that a magnetic Reynolds number based on say IUpI,,, 
will be O(1); this poloidal velocity will then redistribute toroidal 
and poloidal field, but will not be sufficiently intense to expel 
poloidal field from regions of closed Up-lines. 

Since differential rotation tends to generate a toroidal field that is 
a factor O(R,) larger than the poloidal field, it is natural to 
introduce the further scaling (in parallel with (8.14)) 

2 Bp = E bp, bp = 0 (l), (8.15) 

the implication then being that lbpl and B are of the same order of 
magnitude, as E + 0. 

With the total velocity field now of the form 

it is clear that any fluid particle follows a nearly circular path about 
the axis Oz;  in these circumstances, there is good reason to antici- 
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pate that 8 = E '(U' A bt)ar will be determined by local values of 
B (S, z), U(s, z )  and azimuthal average properties of U'. The situa- 
tion is closely analogous to the two-scale approach of chapter 7, the 
smaller scale 10 now being the mean departure of a fluid particle 
from a circular path in its trajectory round the axis Oz. A local 
expansion of the form (8.2) is therefore to be expected, but now 
with &(S, z), B&, z )  axisymmetric by definition. The feature that 
most distinguishes the Braginskii approach from the previous two- 
scale approach is the presence of the dominant azimuthal flow 
U(s, z )i, ; and a possible influence of local shear, given by sV(U/s), 
on 8 cannot be ruled out. It turns out however, as described in the 
following sections, that effects cd the flow Ui, on 8 are very simply 
accommodated through replacement of the fields up and bp by 
'effective fields' u , ~  and bep, the structure of equations (8.10) and 
(8.11) remaining otherwise unchanged. When this effect has been 
accounted for, the residual mean electromotive force (which is 
wholly diffusive in origin) is, with very minor modification, identifi- 
able with that given by the first-order smoothing theory of § 7.8. 

The theory that follows (although initiated by Braginskii, 
1964a, b, before the mean-field electrodynamics of Steenbeck, 
Krause & Radler, 1966) can best be regarded as a branch of 
mean-field electrodynamics that takes account of spatial 
inhomogeneity of mean velocity and of mean properties of the 
fluctuating ingredient of the velocity field. The close relationship 
between the two approaches was emphasised by Soward (1972), 
whose line of argument we follow in subsequent sections. 

8.2. Lagrangian transformation of the induction equation when 
A = 0 

Soward's (1972) approach is based on a simple property of 
invariance of the induction equation in the limit of zero diffusion. 
For reasons that emerge, it is useful to modify the notation slightly: 
let B(%, t), e(S, t)  represent field and velocity at (S, t); when A = 0, 
we have 

aB/at = P A ( 0  A B). (8.17) 

From 5 2.5, we know that (when 9 .e  = 0) the Lagrangian solution 
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of this equation is 

8, (2, t) = Bj (a, 0) aZi/aa, (8.18) 

where %(a, t) is the position of a fluid particle satisfying %(a, 0) = a. 
Equivalently, the Lagrangian form of (8.17) is 

where D/Dt represents differentiation keeping a constant. 

Consider now an 'incompressible' change of variable 

X = X(%, t) = x(%(a, t), t) = X(a, t), say, (8.20) 

the determinant of the transformation Ilaxi/aZjJI being equal to unity, 
a condition that may be expressed in the form 

Equation (8.19) immediately transforms to 

where 

and, reversing the process that led from (8.17) to (8.19), we see that 
the Eulerian equivalent of (8.22) is 

where 

Equation (8.17) is therefore invariant under the transformation 
defined by (8.20), (8.23) and (8.25). B(x, t) is (physically) the field 
that would result from B(%, t) under an instantaneous frozen-field 
distortion of the medium defined by (8.20); U(x, t) is the incompres- 
sible velocity field associated with the (hypothetical) Lagrangian 
displacement X(a, t). 
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In view of the discussion of 5 8.1, it is of particular interest to 
consider the effect of a mapping X-5 which is nearly the identity. 
Such a mapping may be considered as the result of a steady Eulerian 
velocity field v(x) applied over some short time interval ETO say. 
Then the particle path %(X, T) is given by 

and, at time T = ETO, the net displacement % is given by 

where q (X) = T~v(x). If V(X) is incompressible, then V . q = 0, and, 
under this condition, the form of displacement given by (8.27) must 
automatically satisfy (8.21) to all orders in E. 

When X and H are related by (8.27), the instantaneous relation 
between B(x) and ~ ( x )  can be obtained as follows. Let B,(X) be 
defined by 

so that evidently ~ ( x )  = B,,(x). We may write (8.28) in the equival- 
ent integral form 

and solve iteratively to obtain 

Putting T = ETO and v = q/rO,  we obtain 

This is the Eulerian equivalent of the Lagrangian statement 

Since these relationships are instantaneous, they remain valid when 
q ,  B and B depend explicitly on t as well as on X. 
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By virtue of (8.25), the corresponding relationship between e(x) 
and U(x) is, in compact notation, 

Here, as in (8.25), &/at is to be evaluated 'keeping i constant'; 
hence, from (8.27), 

8.3. Effective variables in a Cartesian geometry 

To simplify the discussion, let us for the moment use Cartesian 
coordinates (X, y, z)(=(x~,  x2, ~ 3 ) )  instead of cylindrical polars 
(S, cp, z). Following the discussion of § 8.1 we consider velocity and 
magnetic fields of the form 

6(x, t) = ~ ( x ,  z )i, + EU'(X, t )+  E 'up(x, z), 
(8.35) 

~ ( x ,  t) =B (X, r )i, + E  b1(x, t) + E ,bp(x, z). 

Here the fields Ui,, Bi, are the dominant toroidal fields, up and bp 
are poloidal (so that i, . bp = i, . up = O), and (U') = (b') = 0, the 
brackets ( ) now indicating an average over the coordinate y. The 
essence of Soward's (1972) approach is now to 'accommodate' the 
O(E) terms in (8.35) through choice of q(x, t), in such a way that the 
transformed fields U, B take the form 

U(X, t )=  U(X, z)(1 + 0(E2))iy +E2uep(X, Z ) + E  2 ~ ' ' ( ~ ,  t), 
(8.36) 

B(x, t) = B (X, z ) ( l +  O(E '))iy + E  2bep(~,  Z )  + E 2b"(~,  t), 

where (U") = (b") = 0, and where the effective fields (or 'effective 
variables' as Braginskii, 1964a, called them) uep, beP are to be 
determined. Substitution of (8.353) and (8.363) in (8.31) and 
equating terms of order E gives immediately 
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Similarly 

U'(., f )  = ($+ U;) q - (q . v)u~,, (8.3 8) 

an equation which in principle serves to determine Q if U' and U are 
given. It is in fact simpler now to regard q(x, t) as given, and the 
fluctuating part of the velocity field as then given by (8.38). 

Similarly at the O ( E ~ )  level, the mean poloidal ingredient of 
(8.3 1) gives 

Alternatively, defining vector potentials ai, and aeiy by 

the relation between a and a, is evidently 

a, = a + mB where m = -;(Q A dqldy ),. (8.4 1) 

The quantity m is a pseudo-scalar (having the dimensions of a 
length). It is therefore non-zero only if the statistical (i.e. y- 
averaged) properties of the function q(x, t) lack reflexional 
symmetry. 

The relationship between uep and up is analogous to (8.39), but 
with the difference again that B d/dy is replaced by dldt + U d/dy, 
i.e. 

If the displacement function q depends only on X (as is appropriate 
if the perturbation field is steady) then the analogy between (8.39) 
and (8.42) becomes precise. 

The fact that the perturbation fields in (8.36) are relegated to 
O(E 2, means that when A = 0 the relevant equations for the evolu- 
tion of B(x, t) at leading order are precisely the two-dimensional 
equations derived in § 3.6, but now expressed in terms of the 
effective poloidal fields, viz. 

dB/dt + Uep . VB = Bep . VU, 1 
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2 where U.p = E Uep, A. =E2ae. This holds because of the basic 
invariance of the induction equation (8.17) under the frozen-field 
transformation (8.20). It is evident from (8.43) that the distinction 
between Bp and Bep will be significant only if V U # 0, i.e. only if the 
mean flow exhibits shear. Similarly it is evident from (8.42) that uep 
differs from up only either when VU Z 0 or when q is statistically 
inhomogeneous in the (x,z) plane. It is therefore spatial 
inhomogeneity in the y-averaged (or equivalently azimuthally aver- 
aged) flow properties that leads to the natural appearance of 
effective variables; this aspect of Braginskii's theory has no percep- 
tible counterpart in the mean-field electrodynamics described in 
chapter 7. 

8.4. Lagrangian transformation including weak diffusion effects 

Suppose now that we subject the full induction equation in the form 

to the transformation (8.20), (8.23) and (8.25). Multiplying by 
axklafi, the left-hand side transforms by the result of 8 8.2 to 

The right-hand side transforms to 

using (8.21). Now 

Hence, using the identities 

the expression (8.46) reduces to the form 
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where 

$;(X, t)=a;iBi +Piik aBi/axk, 

and where 

and (8.44) becomes 

The structure of (8.52) and the expression (8.50) for d1 are now 
strongly reminiscent of equations for mean fields encountered in 
chapter 7. Note however that in the present context the term V A 8' 
is wholly diffusive in origin. As in the case of the random wave 
situation of Q 7.8, a ii and Pi ik  are O(A ) as A + 0. We have noted 
previously that although diffusion is responsible for the natural 
tendency of the field to decay, it is also of crucial importance in 
making field regeneration a possibility. In Braginskii's theory it is 
diffusion that, as in Q 7.7, shifts the phase of field perturbations 
relative to velocity perturbations leading to the appearance of a 
mean toroidal electromotive force (proportional to A )  which is 
sufficient to provide closure of the dynamo cycle. 

8.5. Dynamo equations for nearly rectilinear flow 

As in Q 8.3, we again specialise the argument to the nearly two- 
dimensional situation. The y-average of 8' is then 

where, to leading order in E, 

and 
2 Piik = (P iik) = A& &iip(~p,rqk,r)- (8.55) 



WEAKLY ASYMMETRIC SYSTEMS 189 

With A = O(E 2), both of these pseudo-tensors are 0(e4). With B 
given by (8.36b), we have, at leading order, 

Note that the p-term in (8.53) makes no contribution at the 0 ( s 4 )  
level. The counterpart of (8.43 3) incorporating diffusion effects 
now therefore takes the form (with a 2 2  = a )  

Note that all three terms contributing to dA,/dt are 0(s4).  
Similarly (V A B), = O(E 4, in general, and this is negligible com- 

pared with the natural diffusive term A V ~ B  in the mean y- 
component of (8.52). The counterpart of (8.43a) is therefore simply 

In this equation, all three contributions to aB/at are O ( E ~ ) .  
Apart from the appearance of effective variables, equations 

(8.57) and (8.58) are just what would be obtained on the basis of the 
mean-field electrodynamics of chapter 7, provided that in the 
'toroidal' equation (8.58) the production of toroidal field by the 
term Bep . VU dominates over possible production by the a-effect. 
By contrast, the a-effect term a B  in (8.57) is the only source term 
for the field A, and hence for the poloidal field Bep, and it is 
therefore of central importance. 

The expression (8.54) for aij is closely related to the expression 
(7.77) obtained on the basis of first-order smoothing theory. To see 
this, let us suppose for the moment that all y-averaged properties of 
the velocity field are independent of x and z (or so weakly depen- 
dent that they may be treated as locally uniform). In this situation, 
from (8.38), 

and the corresponding Fourier transforms in the notation of § 7.8 
are related by 
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The Fourier transform of q k , m  is ikm<k and of qhmj is -k,kj<l, and 
so the expression (8.54) may be translated into spectral terms as 

where @kl(k, W )  is the spectrum tensor of the perturbation velocity 
field &U'. This expression agrees with (7.77) in the weak diffusion 
limit hk2 << o (for all relevant k, U )  and under the natural replace- 
ment of o2 by w + u2k: to take account of mean convection in the 
y-direction with velocity U. Note that in this important domain of 
overlap of Braginskii's theory and mean-field electrodynamics, the 
former theory undoubtedly gives the result aij + 0 as A + 0. We have 
already noted that this result holds (see 7.83) when the velocity 
spectrum contains no zero frequency ingredients (or, in the notation 
of the present section, ingredients with wave speed olk2 equal to 
the mean velocity component U). If the velocity spectrum does 
contain such ingredients, then the displacement q(x, t) will not 
remain bounded for all t, and the Braginskii approach, based 
implicitly on the assumption Iq l = 0(1), is no longer valid. 

In general, of course, if U does depend significantly on x and z (as 
it must do if the production term Bp.  VU is to be important) then 
mean quantities such as (qk,mql,mj) will also vary with x and z 
because of the dynamical interaction of mean and perturbation 
fields; hence in general Qij as given by (8.54) is also a function of x 
and z. 

8.6. Corresponding results for nearly axisymmetric flows 

Let us now return to the notation of § 8.1, with cylindrical polar 
coordinates (S, cp, z). The relation between b' and q is now (cf. 

03-37)) 

The meridional projection of this equation (see (8.5)) is 
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where the operator d l l a c p  is defined for any vector f by 

Similarly the relation between u h  and q ~ i s  

a relation which in principle determines q~ if uhand U are given. 
Effective variables are now given by formulae closely analogous 

to (8.39) and (8.42), viz. 

where now 

The evolution equations for B (S, z, t) and A, (S, z ,  t) analogous to 
(8.58) and (8.57) are 

and 

and the expression for a analogous to (8.54) (Soward, 1972) is given 
by 



192 M A G N E T I C  F I E L D  G E N E R A T I O N  I N  F L U I D S  

Here the first group of terms is precisely analogous to the group 
appearing in (8.54); the second group arises from the curvature of 
the metric in cylindrical polar coordinates, and can be derived only 
by first converting the expression aiiBi in (8.53) to this coordinate 
system. 

The equations (8.68) and (8.69) describe the evolution of the 
fields E - ~ A .  and B correctly to order c2. The equations were 
obkined in this form by Braginskii (1964a, 6 )  by a direct expansion 
procedure which made no appeal to the Lagrangian invariance 
property. The labour involved in this procedure is very consider- 
able, and the pseudo-Lagrangian approach of Soward (1972) can 
now be seen as providing an important and illuminating simplifica- 
tion. The Braginskii expansion was continued to the next level 
( o ( E ~ ) )  by Tough (1967) (see also Tough & Gibson, 1969) who 
showed that the structure of the equations is unaltered, but that P, 
arl and a as given by (8.67) and (8.70) need small corrections; the 
corrections to P and .m1 can be obtained by including the E terms in 
the expansions (8.31) and (8.33). Similarly the correction to 
a (=a22) can be obtained by retaining terms up to O(E 3,  in (8.51a); 
it is evident that this procedure leads to an expression of the form 

where ro is the right-hand side of (8.70) and T1 involves the mean of 
an expression cubic in q.l 

If terms of order c4  are retained (Soward, 1972) then the struc- 
ture of (8.68) and (8.69) is modified, firstly through the effects of 
components of aij other than 022 and secondly through the Piik 
terms of (8.53). 

8.7. A limitation of the pseudo-Lagrangian approach 

The arguments of Soward (1972) are expressed in general terms 
that do not for the most part invoke the limitation of small displace- 
ment functions. It is assumed that the magnetic Reynolds number 

An analogous correction to the first-order smoothing result (7.77) can be obtained 
by systematic expansion in powers of the amplitude of the velocity fluctuations; 
this correction likewise involves a cubic functional of the velocity field (a weighted 
integral in k-space of the Fourier transform of a triple velocity correlation). 
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R, is large, and velocity fields2 0(%) are considered having the 
property that there exists a continuous (1-1) mapping % + X  such 
that the related velocity field U(x) given by (8.25) has the form 

where (U"),, = 0. The wide choice of mappings implies a correspond- 
ingly wide family of velocity fields 0 ( i )  that can be subjected to this 
treatment. Even so, such velocity fields are rather special for the 
following reason. 

Under the instantaneous transformation 

Uk (X) = (5, (i) a~kldfi, (8.73) 

it may readily be ascertained (with the help of (8.21)) that 

and hence it follows that the streamlines of the 0-field map onto 
streamlines of the U-field. Let A and A be vector potentials of U 
and 0 ,  and let 

the integral being throughout a volume V on whose (fixed) surface S 
it is assumed that n . U = n .o = 0. Equality of the two integrals in 
(8.75) follows from the interpretation of X as a topological measure 
for the U or 0-field (cf. the discussion of P 2.1), a quantity that is 
evidently invariant under continuous mappings X +  % which con- 
serve the identity of streamlines. Now the vector potential of 
U(s, z)i, is evidently poloidal, and so, from (8.72), 

Hence 10. A d V =  o(R-,') also. Conversely, if we consider a 
velocity field 0(x) for which 1 0. A d V = O(1) as R, + W, then 
there exists no continuous transformation X = X(%) for which the 
related velocity U(x) is given by (8.72). 

For simplicity the discussion is here restricted to steady velocity fields, although 
Soward's general theory covers unsteady fields also. 
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In simpler terms, and rather loosely speaking, the velocity field 
(8.72) exhibits a vanishingly small degree of streamline linkage in 
the limit R, -, W, and only velocity fields exhibiting the same small 
degree of linkage are amenable to Soward's Lagrangian analysis. 

If 

where (U'), = 0 and E = 0 (R as effectively assumed in the 
foregoing sections, then 

and the existence of the transformation function X(%) is not there- 
fore excluded. 

8.8. Matching conditions and the external field 

In the context of the Earth's magnetic field, let us assume that the 
core-mantle boundary S is the sphere r =Rc, and that the medium 
in the external region ?(r >Rc) is insulating (effects of weak 
mantle conductivity can be incorporated in an improved theory). 
The field ~ ( x ,  t)  in ? is then a potential field, which matches 
continuously to all orders in E to the total field B(%, t )  in the interior 
V. At leading order, the interior field in Braginskii's theory is the 
purely toroidal field B(s, z)i,; since the external field is purely 
poloidal (cf. 6.1 l), B must satisfy 

The mean field in the exterior region, B~(s ,  r )  say, is given by 

BP(S, Z )  = VT(S, z), v2!V = 0, (8.80) 

and satisfies the boundary condition 

Now the displacement function r)  (X, t) satisfies n . = 0 on S (and 
n A r)  = 0 also if viscous effects are taken into consideration) and so 
the pseudo-scalar m defined by (8.67a) vanishes on S. Also 
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and it follows that 

a, = a and (n . V)a, = (n . V)a on S, (8.83) 

where a, = a + aB, and so (8.81) becomes 

Hence the external field matches continuously to the internal 
effective field, and is O(E 2, relative to the internal toroidal field. 

The fluctuating ingredient of the external field, B' say, is also of 
interest, since it is this ingredient that provides the observed secular 
variations and the slow drift of the dipole moment p'l'(t) relative to 
the rotation axis. The fact that the magnetic and rotation axes are 
nearly coincident (see 5 4.3) provides evidence that Coriolis forces 
arising from the rotation are of dominant importance in controlling 
the structure of core motions; the fact that they are not exactly 
coincident provides evidence that systematic deviations from exact 
axisymmetry may be an essential ingredient in the Earth's dynamo 
process. The internal fluctuating field is O(E) and this can penetrate 
to the external region only through the influence of diffusion; with 
A = o(E~),  this gives a contribution to B' of order E ~ .  There is a 
second contribution also O(E 3, due to distortion by EU' of the mean 
poloidal field E 2bp. Braginskii ( 1 9 6 4 ~ )  has shown that if the velocity 
field EU' is steady (or at any rate steady over the time-scale RC/ U. 
characterising the mean toroidal flow) then the relevant boundary 
condition for the determination of B' is, from the superposition of 
these two effects3, 

where 3, is the radial component of bp. If q(x, t) is unsteady 
admitting decomposition into 'azimuthal waves' proportional to 
exp m (v - wt), then (Braginskii, 19643) each such Fourier compo- 
nent makes a contribution to 6: of the form (8.85) with U replaced 
by U-ws, the toroidal mean velocity relative to the frame of 

If the fluid is viscous then U = 0 on r = RC and an apparent singularity appears in 
the first term on the right of (8.85). However aq,/ar = 0 on r = R c  also under the 
no-slip condition. The appropriate modification of (8.85) requires close examina- 
tion of the viscous boundary layer on r = RC. 
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reference which rotates at the angular phase velocity o of the 
component considered. 

The boundary condition (8.85) is sufficient to determine the 
exterior fluctuating field B' = VVt uniquely (of course under the 
additional condition !Pt = ~ ( r - ~ )  at infinity). The linearity of the 
relation between B' and 1) implies that each Fourier component 

imp -e in I) generates a corresponding Fourier component in B'. In 
particular, if m = 1, a contribution to !P' of the form 

A IE 3 r - 2 ~ : ( ~ ~ ~  B) cos (rp -of) (8.86) 

is generated, representing a dipole whose moment rotates in the 
equatorial plane with angular velocity o. In conjunction with the 
axisymmetric dipole whose potential is of the form 

A Oe 2 r - 2 ~ l  (cos B), (8.87) 

we have here the beginnings of a plausible explanation (in terms of 
core motions) for the tilt of the net vector dipole moment of the 
Earth, and the manner in which this drifts relative to the rotation 
axis. The observed angle of tilt (-l l") is of course not infinitesimal, 
and corresponds to a value of the ratio Ate 3 / ~ ~ e 2  = A1e/Ao of 
order 0*2 (see the figures of table 4.2), i.e. R, - E -2 - 25. This value 
is perhaps (as recognised by Braginskii) uncomfortably low for the 
applicability of 'large R,' expansions, although these perhaps 
provide a useful first step in the right direction. 



www.moffatt.tc 

CHAPTER 9 

S T R U C T U R E  AND S O L U T I O N S  O F  T H E  

D Y N A M O  E Q U A T I O N S  

9.1. Dynamo models of a'- and am-type 

In the previous two chapters it has been shown that in a wide variety 
of'\ircumstances the mean field, which will now be denoted 
by b(x, t) (the mean being over time or a Cartesian coordinate 
or the azimuth angle as appropriate), satisfies an equation of the 
form 

where 

and where aij and Pijk are determined by the mean velocity U(x, t), 
the statistical properties of the fluctuating field u(x, t), and the 
parameter A. In the mean-field approach of chapter 7, a useful 
idealisation is provided by the assumption of isotropy, under 
which 

It must be recognised however that these expressions are unlikely to 
be realistic if the background turbulence (or random wave field) is 
severely anisotropic, as will clearly be the case if Coriolis forces are 
of dominant importance in controlling the statistical properties of 
the U-field. 

In Braginskii's model as presented in chapter 8, strong anisotropy 
is 'built in' at the outset through the assumption that the dominant 
ingredient of the velocity field is a strong toroidal flow U(s, z)i,. In 
Braginskii's theory, a 'local' expression for & of the form (9.2) is 
obtained, not because the scale of the velocity fluctuations is small 
(for example, fluctuations proportional to e" have a scale of the 
same order as the global scale L), but rather because the departure 
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of a fluid particle from its paveraged position is small compared 
with L. A substantial part of the 6 that is generated is 'absorbed' 
through the use of effective variables; the part of 8 that cannot be 
thus absorbed is given by 

in cylindrical polars coordinates (S, cp, z). The effective expressions 
for aij and Piik in Braginskii's theory at leading order in the small 
parameter A ' l 2  are thus of the form 

relative to local Cartesian coordinates (X, y, z )  in the directions of 
increasing (S, v, z )  respectively. 

When U, B and 6 are axisymmetric, we have seen that (9.1) may 
be replaced by two scalar equations. Writing 

and with Bp = V A A (S, z)iQ, these equations are 

and 

When 6 is given by (9.3c), these equations become 

where A, = A  +p is an effective diffusivity acting on the mean field; 
in (9.9) and (9.10) it is assumed for simplicity that (and so A,) is 
uniform. 

There are two source terms involving Bp on the right of (9.9), and ' 

the type of dynamo depends crucially on which of these dominates. 
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The ratio of these terms is in order of magnitude 

where a0 is a typical value of a and ob a typical value of IVo l .  If 
laol>> IL20&l, then the differential rotation term in (9.9) is negligible 
and we have simply 

The a-effect here acts both as the source of poloidal field (via the 
term a B  in (9.10)) and as the source of toroidal field (via the term 
V A (aBp) in (9.12)). Dynamos that depend on this reciprocal 
process are described as 'a2-dynamos9. 

If on the other hand laol<< IL20bl, then the differential rotation 
term in (9.9) dominates, so that 

Now, toroidal field is generated by differential rotation, and poloi- 
dal field is generated by the a-effect; dynamos that function in this 
way are described as 'ao-dynamos'. It will be noticed that, if the 
distinction between actual and effective variables is ignored, then 
(9.10) and (9.13) are precisely the equations (8.68) and (8.69) 
obtained by Braginskii. The assumption laol<< 1L2obl is implicit in 
Braginskii's analysis; in fact from (8.61), - A U ~ / L U ~  -R L2Uo 
so that, with ~~lobl -  Uo, in Braginskii's model with R, >> 1, 

9.2. Free modes of the a'-dynamo 

To exhibit dynamo action in its simplest form, suppose that the fluid 
domain V is of infinite extent, that U = 0, and that 8 is given by 
( 9 . 3 ~ )  with a and P uniform and constant. Equation (9.1) then 
becomes 
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Now let ~ ( x )  be any field satisfying the 'force-free' condition 

where K is constant. Examples of such fields have been given in 
9 2.4. For such a field, 

and it is evident from (9.15) that if B(x, 0) = ~ ( x ) ,  then 

where 

p = a ~ - ~ ~ 2 .  

Hence the field grows exponentially in strength (its force-free 
structure being preserved) provided 

i.e. provided the initial scale of variation of the field L = Ilill-' is 
sufficiently large. 

To be specific, let us suppose that a >O, so that the growth 
condition is simply 

The maximum growth rate p,  occurs for K = $K,, and is 

For self-consistency of the two-scale approach of chapter 7, we 
require that KJ(=l/L) should be sm.al1. In the case of turbulence 
with R, << 1, this condition is certainly satisfied; for in this case, 
from (7.90) and (7.99), 

a - lu :/A, P - (ZUO)~/A (<C A), (9.23) 

and so 
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Similarly in the case of a random wave field with no zero-frequency 
ingredients, and with spectral peak at frequency wo(=ti1) and 
wave-number ko(= l-l) satisfying 

the expressions (7.78) and (7.98) lead to the estimates 
2 -3 2 a - At01 u 0, - A  ( u o t ~ l l ) ~  A, (9.26) 

and so in this case (under the condition (7.29)) 

However there is a potential inconsistency when there are zero 
frequency ingredients in the wave spectrum if (as is by no means 
certain) a! and p do tend to finite limits as A + 0. If this is the case, 
then on dimensional grounds, 

a-uo,  P-uol (>>A), (9.28) 

and so 

In this situation, the medium would in fact be most unstable to 
magnetic modes whose length-scale is of the same order as the scale 
of the background U-field; this conclusion is incompatible with the 
two-scale approach leading to equation (9.15), and indicates again 
that conclusions that lean heavily on the estimates (9.28) must be 
treated with caution. 

Of course the estimate a - uo is valid only if the U-field is strongly 
helical in the sense that 

In a weakly helical situation, with 

the estimate for a! must be modified, while that for P remains 
unchanged: 
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Now we have 

KC1 = O(E)<< 1, 

and the conclusions are once again compatible with the underlying 
assumptions. 

At this point, it may be useful to examine briefly the influence of 
subsequent terms in the expansion (7.10) of 8 in terms of deriva- 
tives of B. In the isotropic situation, this expansion can only take the 
form 

& ' = & B - ~ V A B + ~ V A @ A B ) - .  . .  , (9.34) 

where y (like a )  is a pseudo-scalar, and (9.15) is replaced by 

The eigenfunctions of this equation are still the force-free modes 
and (9.19) is replaced by 

If y > 0, the last term can be destabilising if 

however, since A, and y are both determined by the statistical 
properties of the U-field, it is to be expected that A,// y l is of order l 
(at least) on dimensional grounds. The condition (9.37) is then 
incompatible with the condition KZ << 1, and the conclusion is that 
dynamo instabilities associated with the third (and subsequent) 
terms of (9.34) are unlikely to arise within the framework of a 
double-length-scale theory. 

9.3. Free modes when curj is anisotropic 

Suppose now that aij is no longer isotropic, but still uniform and 
symmetric with principal values a (l', a "', a "l. We restrict attention 
here to the situation in which the piik contribution to 8 is negligible 
(cf. (9.236) or (9,266)). Then, with U = 0, (9.1) becomes 



SOLUTI.ONS OF THE DYNAMO EQUATIONS 203 

This equation admits plane wave solutions of the form 

B = f) e ~ t  eiK-x, K . B = O ,  (9.39) 

substitution in (9.38) giving 

( P  + AK2)Bi = isiikakm~j&m. (9.40) 

If we refer to the principal axes of akm, the first component of (9.40) 
becomes 

(p + A K ~ ) ~  1 = i(a ' ) ' ~ 2 & 3  -a "'~382), (9.4 1) 

and the two other components are given by cyclic permutation of 
suffixes. For a non-trivial solution (&l, 82,  &3), the determinant of 
the coefficients must vanish. This gives a cubic equation for p with 
roots 

where 

We are here only interested in the possibility of exponential 
growth of B, i.e. R e p  > O .  The condition for this to occur is 
evidently 

The surface Q2 = A 2 ~ 4  is sketched in fig. 9.1 in the axisymmetric 
situation a 'l' = a "' (in which case it is a surface of revolution about 
the K3-axis) and for the two essentially distinct possibilities 
a'l'a"'> or <O. Wave amplification now depends, as might be 
expected, on the direction as well as the magnitude of the wave- 
vector K. When a'l'a"' > 0, amplification occurs for all direc- 
tions provided /K/ is sufficiently small (as in the isotropic case). 
When a "'a '3' < 0, however, amplification can only occur for wave- 
vectors within the cone > 0  (and then only for sufficiently 
small (KI). 

The possibility a"'a'"< 0 is perhaps a little pathological in the 
context of turbulence as normally conceived; it would presumably 
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.Fi .9.1 Sketch of the surface Q2 = h 2 ~ 4  where Q2 is given by (9.43) and 8 a( ) = a'2'. Field amplification occurs if the vector K is inside this surface. 
( a )  a(1)a'3)>0; (6) a(1)a(3)<0. 

arise in a situation in which (ulol) and (u303) have opposite signs 
where u and o are as usual the random velocity and vorticity 
distributions. Although it is possible to conceive of artificial 
methods of generating such turbulence (cf. the discussion of § 7.6), 
it is difficult to see how such a situation could arise without artificial 
helicity injection. 

Anisotropic field amplification as discussed in this section has 
been encountered in the closely related context of dynamo action 
due to velocity fields that are steady and strictly space-periodic 
(Childress, 1970; G. 0. Roberts, 1970, 1972); the methods of 
mean-field electrodynamics of course apply equally to this rather 
special situation, with the difference that the velocity spectrum 
tensor (which may be defined via the operation of spatial averaging) 
is discrete rather than continuous. In general this spectrum tensor 
(and similarly aii) will be anisotropic due to preferred directions 
that may be apparent in the velocity field. For example if 

U = uo(sin kz, cos kz, 0), (9.45) 

then Oz is clearly a preferred direction; and we have seen in § 7.7 
that in this situation 

ai, = ab3Sj3 where a = - u i / ~ k .  (9.46) 

If however we choose a space-periodic velocity field that exhibits 
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cubic symmetry (invariance under the group of rotations of the 
cube), e.g. 

U = uo(sin kz +cos ky, sin kx +cos kz, sin ky +cos kx) 
(9.47) 

(Childress, 1970), then 

and, as may be easily shown by the method of 5 7.7, provided 
uo/kA << 1, 

2 
aij = asii where a = -U o/Ak. (9.49) 

Hence although the velocity field (9.47) exhibits three preferred 
directions, the pseudo-tensor aij is nevertheless isotropic1. More 
generally, the velocity field 

U = up(sin k3z +COS k 2 ~ ,  sin klx +cos k3z, sin k2y +cos klx), 
(9.50) 

for which 

yields the non-isotropic form 

( ~ i j  =a'1'6il~jl +a"'6i26j2+a")6i36j3, (9.5 2) 

where 

a (''k l = a(2)k2 = (I (3'k3 = -U :/A. (9.53) 

Here kl, k2 and kg may be positive or negative, and all possible sign 
combinations of a 'l', a '2' and a '" can therefore in principle occur. 

9.4. The a2-dynamo in a spherical geometry 

Suppose now that a is uniform and constant within the sphere r <R,  
the external region r > R  being insulating. With U = 0, equation 
(9.15) is still satisfied in the sphere and B must match to a potential 

The situation may be compared with other familiar situations - e.g. cubic sym- 
metry of a mass distribution is sufficient to ensure isotropy of its inertia tensor. 
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field across r =R.  This problem was first considered by Krause & 
Steenbeck (1967), who determined the possible steady field struc- 
tures. The treatment that follows is a little more general. 

Instead of B, let us consider the (mean) current distribution 
J(x, t )  = ;'V A B, which from (9.15) satisfies (for r < R )  

together with the boundary condition n . J =  0 on r =R.  As 
suggested by the result of 9.2, it is illuminating here to consider the 
evolution of current structures2 for which 

From (9.54), such a current distribution satisfies 

aJ/at = (QK -heK2)J for r <R, (9.56) 

the structure (9.55) being conserved. As in 6 9.2, we have exponen- 
tial growth of J (and so of B) for any possible values of K satisfying 

Moreover the mode of maximum growth rate is that for which 
(aK -AeK2) takes the largest positive value. 

Field structures satisfying (9.55) may be easily determined by the 
procedure of 6 2.4 (applied now to J rather than to B). Letting 

(9.55) is satisfied provided 

Solutions have the form 

S = ~.r-"~~.+$(lKlr)~,(e, p), (n  = l ,  2, . . . (9.60) 

where possible values of K are determined by 

Note that the corresponding fields are not force-free; we know from § 2.4 that 
force-free fields continuous everywhere and ~ ( r - ~ )  at infinity do not exist. The 
non-existence theorem does not however apply to J which has a tangential 
discontinuity across r = R .  
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If any of the roots of this equation satisfy (9.57), then the corres- 
ponding current structure given by (9.55) and (9.60) grows expo- 
nentially in time. Note that if a, is negative, then K must be chosen 
negative also in (9.58) to give a growing current mode. 

The field B corresponding to the current (9.58) may be easily 
determined. By uncurling (9.55) we obtain, for r <R,  

for some function $ satisfying 

The toroidal part of B (cf. 2.34) is simply 

and, from (9.62), the poloidal part is given by 

For r >R, Bp = -V$, say, where v24 = 0. The harmonic functions $ 
and 4 must be chosen so that Bp is continuous across r =R.  

When S is given by (9.60), we must have evidently 

the constants C, and D, being chosen so that n . Bp and n A Bp are 
continuous across r = R  ; these conditions give 

and this completes the determination of the field structures. Evi- 
dently if n = l we have a dipole field outside the sphere, if n = 2 we 
have a quadrupole, and so on. 

The roots of (9.61) are given by lKlR = X ,  where X,, are as 
tabulated on p. 39. Denoting the corresponding current structures 
by J'"', we have from (9.56) 
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where 

R, may be regarded as a magnetic Reynolds number based on the 
intensity of the a-eff ect. The smallest value of R, for which dynamo 
action is possible is evidently 

/ 

the corresponding mode being a dipole field for r > R  (fig. 9.2). If 
x l l<R,  <x21, then the mode I("' is the only mode that can be 
excited. If ~ 2 1  < R  <x31, then the quadrupole mode (n = 2, q = 1) 
will be excited also. Note also that if R, > x I I + x ~ ~ ,  then the 
quadrupole mode is excited more intensely than the dipole mode. 
Similarly in general if R, >X, + x,l,l and xnfql > X,, then it is the 
more structured mode (n', q') which has the higher growth rate. This 
means that if R, >> 1 (as would for example be the case if la I - uo, 
Ih.1- u,l, and I R )  then the most rapidly excited modes will be 

Fig.9.2 Lines of force of the poloidal field (solid) and lines of con'stant 
toroidal field (dotted), for the a2-dynamo with a = cst. in r < R and with 
n = q = l. (Krause & Steenbeck, 1967.) 
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highly structured modes corresponding to large values of n and/or 
q, having characteristic length-scale L small compared with R ; as in 
the discussion of 8 9.2, the results are meaningful only if this scale L 
remains large compared with the micro-scale l of the background 
random motions. 

9.5. The a2-dynamo with intisymmetric a 

If attention is focussed on the possibility of steady dynamo action in 
a sphere due to an a-eff ect and still with zero mean velocity, then we 
are faced with the eigenvalue problem 

V A B = O  (r>R),  

[B] = O across r = R, 

and the analysis of the preceding section in effect provides the 
solution of this problem in the particular situation when a is 
uniform. However, in a rotating body, in which the value of a is 
controlled in some way by Coriolis forces, a more realistic theory 
must allow for variation of a on scales large compared with the 
underlying scale l of the turbulence. In particular, it is to be 
expected that a(x) will have the same antisymmetry about the 
equatorial plane as the vertical component R cos 8 of the rotation 
vector C l  where 8 is the colatitude. A possible mechanism in the 
terrestrial context that makes the process physically explicit 
(Parker, 19556) is the following: suppose that a typical 'event' in the 
northern hemisphere consists of the rising of a blob of fluid (as a 
result of a density defect relative to its surroundings); fluid must be 
entrained from the sides and conservation of angular momentum (in 
the body of fluid which rotates as a whole) implies that the blob 
acquides positive helicity. Now suppose that these events occur at 
random throughout the body of fluid, the upward motion of the 
blobs being compensated by a downward flow between blobs (note 
the need for a topological asymmetry between upward and down- 
ward flow - cf. the discussion of 8 3.12); then a mean helicity 



210 MAGNETIC FIELD GENERATION IN FLUIDS I 

distribution is generated, positive in the northern hemisphere, and 
(by the same argument) negative in the southern hemisphere. In 
the strong diffusion (or weak random wave) limit (S 7.5) the corres- 
ponding value of a! would be generally negative in the northern 
hemisphere and positive in the southern hemisphere; a simple 
assumption incorporating this antisymmetry is / 

a! (X) = -a! O& (i) COS 6, (9.72) 

where i = r/R, and a' is dimensionless3. 
Unfortunately, under any assumption of the form (9.72), the 

eigenvalue problem (9.7 1) is no longer amenable to simple analysis 
and recourse must be had to numerical methods. The problem was 
studied by Steenbeck & Krause (1966,1969b) and Roberts (1972a) 
using series expansions for B and truncating after a few terms; 
Roberts found that six terms were sufficient to give eigenvalues to 
within 0.1 % accuracy. 

As in 8 9.4, the a-eff ect is here responsible for generating toroidal 
from poloidal field, and poloidal from toroidal field; the problem is 
essentially the determination of eigenvalues of the dimensionless 
parameter R, = la!olR/A,. The eigenvalues corresponding to fields 
of dipole and quadrupole symmetries about the equatorial plane 
as obtained by Roberts (1972a) for various choices of the function 
a' (i) are shown in table 9.1. The most striking feature here is that the 
eigenvalues for fields of dipole and quadrupole symmetry are 
almost indistinguishable. This has been interpreted by Steenbeck & 
Krause (1969b) with reference to the field structures that emerge 
from the computed eigenfunctions. Fig. 9.3 shows the poloidal field 
lines and the isotors (i.e. curves of constant toroidal fields) for the 
case & (i) = i (3i  - 2). The toroidal current (giving rise to poloidal 
field) is concentrated in high latitudes (16 1, - 6 1 G ~ / 1 0 ) ,  and the 
mutual inductance (or coupling) between these toroidal current 

It may be argued that whereas a rising blob will converge near the bottom of a 
convection layer (thus acquiring positive helicity in the northern hemisphere) it 
will diverge near the top of this layer, thus acquiring negative helicity (again in the 
northern hemisphere). There is therefore good reason to consider models in which 
&(F) in (9.72) changes sign for an intermediate value of f, as has been done by 
Yoshimura (1975). 
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loops is very small. Consequently the toroidal current in one 
hemisphere can be reversed without greatly affecting conditions in 
the other. This operation transforms a field of dipole symmetry into 
one of quadrupole symmetry and vice versa. 

Table 9.1. Eigenvalues of R, obtained by Roberts (1972a ), following 
the a 2-dynamo model of Steenbeck & Krause (1966, 19696). The 
numerical factors in G(?) are chosen so that G,,, = 1. The figures 
given correspond to truncation of the spherical harmonic expansion of 
B at  the level n = 5 for the first three cases, and n = 4 for the last case, 
and to radial discretisation of the governing differential equations into 
30 segments. 

& (i) 

R, R, 
(Dipole (Quadrupole 
symmetry) symmetry) 

Note that the only 0-type neutral points of the poloidal fields 
depicted in fig. 9.3 are situated in regions where a! # 0, and the field 
in the neighbourhood of these points can therefore be maintained 
by the a -effect. In each case (a) and (b), there is also a neutral point 
on the equatorial plane 8 = 7r/2 where a = 0; this is however an 
X-type neutral point (i.e. a saddle point of the flux-function ~ ( s ,  z ) ) ,  
and Cowling's neutral point argument ( 5  6.5) does not therefore 
apply (Weiss, 197 1). 

Steenbeck & Krause (1969b) also consider choices of G(?) van- 
ishing for values of i less than some value ?I between 0 and 1 in 
order to estimate the effect of the solid inner body of the Earth (for 
which iI == 0.19). The poloidal field lines and isotors were plotted for 
iI = 0-5 and are reproduced by Roberts & Stix (1971). The change 
in the/eigenvalues is no more than would be expected from the 
reduced volume of fluid in which the a-eff ect is operative. 
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Fig. 9.3 Fields excited by a2-dynamo action when a =a,,R-2r X 
Y 

(3r - 2R) cos 8 (Steenbeck & Krause, 19693): (a )  dipole mode; (b ) quad- 
rupole mode. The poloidal field lines, are shown on the right of each figure 
and the isotors on the left. Note that in case (a) the neutral point of B, on 
the equatorial plane is X-type (rather than 0-type), so that although a = 0 
st  this point, Cowling's antidynamo theorem does not apply (Weiss, 197 1). 

9.6. Free modes of the am-dynamo 

The am-dynamo, as discussed in 8 9.1, is described by equations 
(9.10) and (9.13). Let us first consider the Cartesian analogue of 
these equation$, viz. 

the mean velocity and mean magnetic field being Ui, +Up and 
Bi, +Bp respectively, and with Bp = V A (A iy ). These equations 
admit local solutions (Parker, 19553) of the form 

Here, and subsequently, A will be understood as including turbulent diffusivity 
effects when these are present. 
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over regions of limited extent in which Up, a and VU may all be 
treated as uniform. Substitution gives 

fiA = a d ,  fiB = -i(K A V u),A, (9.76) 

where 

fi = p  +AK2+iup.  K. 

Eliminating A,  d we obtain the dispersion relation 

fi2 = 2iy where y = -$a (K A V U),. (9.77) 

The character of the solutions is largely determined by the sign of y. 

(i) Case y > 0. In this case, fi = *(l + i)y 'l2, and so 

p = - A K ~  * y 'l2 + i(kY - UP. K). (9.78) 

The solutions (9.75) do not decay if Re p 0, and this is satisfied by 
(9.78) (with the upper choice of sign) when y 2 A  'K4, i.e. when 

The phase factor for this wave of growing (or at least non-decaying) 
amplitude is 

exp {iK . X + i(y - Up . K)t), (9.80) 

and it propagates in the direction *K according as 

When U = 0, the field necessarily has an oscillatory character 
'ly (contrast he steady free modes of the a2-dynamo discussed in 

59.2) and the wave propagates in the direction of the vector -K. 

(ii) Case y < 0. In this case, fi = *(l - i)lY 1 'l2, and so 

p = - ~ ~ ~ * l y l ' ' ~ + i ( ~ 1 ~ 1 ' ' ~ - ~ ~ .  K), (9.82) 

and the growing field, when Up = 0, propagates in the +K direction. 
As recognised by Parker (1955b), these results are s&ongly 

suggestive in the solar context in explaining the migration of 
sunspots towards the equatorial plane (as described in § 5.3). In the 

\ 
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outer convective layer of the Sun and in the northern hemisphere let 
Oxyz be locally Cartesian coordinates with Ox s;uth, Oy east and 

/ Oz vertically upwards (fig. 9.4) and suppose that vertical shear 
dominates in the toroidal flow so that 

If magnetic disturbances can be represented in terms of simple 
migratory waves of the above kind, then the migration is towards or 
away from the equatorial plane according as a! aU/az < or >O. (The 
signs are reversed in the southern hemisphere.) The sign of the 
product a! aU/az (or of a! solar when we return to the spherical 
geometry) is of crucial importance. If sunspots are formed by 
distortion due to buoyant upwelling (see B 10.7) of anaunderlying 
toroidal field, then equatorial migration of sunspots reflects 
equatorial migration of the toroidal field pattern. This picture of 
equatorial migration as a result of the 'ao-effect' - i.e. the joint 
action of an a-eff ect and differential rotation (of appropriate sign) - 
is confirmed by numerical solutions which take due account of the 

Fig. 9.4 Parker's (19553) dynamo wave, which propagates with increasing 
amplitude towards the equatorial plane when a aU/az 0. 

spherical geometry and of spatial variation of a! and V o  (see 5 9.12 
below). 

If Up # 0 in (9.78) or (9.82), the phase velocity of the 'dynamo- 
wave' modes (9.75) is modified. If l y  = Up. K, then the wave 
(9.78) (with upper sign) is stationary, while if l y  =-Up. K, the 
wave (9.82) (with upper sign) is stationary. The inference is that an 
appropriate poloidal mean velocity may transform a situation in 



SOLUTIONS OF THE DYNAMO EQUATIONS 215 

which an oscillating field %(X) ei"' is maintained by the ao-effect 
into one in which the field %(X) may be maintained as a steady 
dynamo. The importance of meridional circulation Up in determin- 
ing whether the preferred mode of magnetic excitation has a 
steady or an oscillating character was recognised by Braginskii 
(19643). 

As in the case of the free modes discussed in 9 9.2, it is desirable 
for consistency that the length-scale of the most unstable mode 
should be large compared with the scale l of the background 
random motions. Writing (K A VU), = KG, where G is a represen- 
tative measure of the mean shear rate, the critical wave-number 
given by (9.79) has magnitude KC = ( l a ~  1/2A 2)1'3, and the max- 
imum growth rate (i.e. maximum value of Re p as given by (9.78)) 
occurs for K = 2-4'3~c. The scale of the most unstable modes is 
therefore given (in order of magnitude) by 

and the consistency condition L >>l becomes 

If, in the weak diffusion limit, we adopt the estimates 

then (9.85) become simply 

so that the treatment is consistent if the 'random shear' (of order 
uo/l) is large compared with the mean shear, a condition that is 
likely to be satisfied in the normal turbulence context. Note how- 
ever that the m-model is appropriate only if la l << L 1GI (from the 
discussion of 9 9.1) so that, with the estimate Ial-uo, we also 
require 
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9.7. Concentrated generation and shear 
\ 

\ In order to shed some further light on the structure of equations 
(9.73) and (9.74), consider now the situation Up = 0, and a = a (z), 
U = U(z) where 

so that the a-effect and the shear effect are concentrated in two 
parallel layers distance zo apart (fig. 9.5). This is of course an 

Fig. 9.5 Oscillatory dynamo action with concentrated a-effect (z = 0) and 
shear (z = zo): (a) shearing of the field B, generates B, which gives rise to J, 
by the a-effect; (b) this current is the source of a poloidal field (B,, 0, B,). 
The complete field pattern propagates in the X-direction with phase velocity 
c = -A,Uo/4A, and the wave amplitude grows exponentially if (9.101) is 
satisfied. 

idealisation, with the sole merit that it permits simple mathematical 
analysis in a situation in which a and VU are non-uniform. More 
realistic distributions of a! and U in terrestrial and solar contexts 
generally require recourse to the computer. It is useful to have some 
firm analytical results if only to provide points of comparison with 
computational studies. In the same spirit of idealisation, let us for 
the moment ignore the influence of fluid boundaries (as in § 9.6), or 
equivalently assume that the fluid fills all space. 

Under the assumptions (9.89), equations (9.73) and (9.74) 
become 
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The singularities (9.89) evidently induce discontinuities in aA/az 
across z = 0 and in aB/az across z =zo, but A and B remain 
continuous across both layers. Integration of (9.73) and (9.74) 
across the layers gives the jump conditions 

We suppose further that 

We look for solutions of the form 

(A, B )  = (A (z ), 8 (2)) ept+iKx, (9.94) 

where K is real, but may be positive or negative. From (9.90), a and 
8 can depend on z only through the factors e""' where 

and where we may suppose that Re m > O .  The conditions of 
continuity and the conditions at infinity then imply that 

I A1 em' (2 < 01, 
A @ ) =  Ale-"' (0 < z < 201, 

A l e-"' (2 20). 

The conditions (9.9 1b) and (9.926) then give 

and elimination of A l : B1 gives 

iAoU& e-2m'0 = 4A 2m 2. (9.98) 
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In conjunction with (9.99, this determines the possible values of p 
for given K, 20, Ao, Uo. In dimensionless form, we have a relation of 
the form 

Note first that if zo = 0, i.e. if the two discontinuities coincide, 
then m2 is pure imaginary, and so from (9.95) Re p < 0, i.e. dynamo 
action cannot occur. Suppose now that (Kzol << 1; then provided p is 
such that Irnzol<< l also, we may approximate e-2mz0 in (9.98) by 
l-2mz0, and solve the resulting quadratic for m. Neglecting terms 
of order X"~(KZ~), this yields two values for p: 

The condition Irnzol>> 1 is satisfied provided ~ ( ~ 2 0 ) ~  << 1. Evidently 
we have dynamo action (Re p > 0) whenever 

X > 0 and 21/2~3'2 > IKzol-' >> 1. (9.101) 

The condition X >  0 means that the dynamo mechanism selects 
waves for which K has the same sign as AoUo. If AOUO > 0 then the 
lower sign in (9.100) gives the dynamo mode when the conditions 
(9.101) are satisfied. If AoUo<O, then the upper sign in (9.100) is 
relevant. The conditions (9.101) imply that dynamo action will 
always occur when zo # 0, AoUo # 0 and K is sufficiently small, i.e. 
when the disturbance wave-length in the X-direction is sufficiently 
large. 

As in 8 9.6, we have here solutions of the dynamo equations 
(9.73) and (9.74) that represents migrating dynamo waves, with 
phase speed 

The physical nature of the dynamo process is illustrated in fig. 9.5. 
Shear distortion of the field component B, at the layer z =zo 
generates the 'toroidal' field Bi, which diffuses (with a phase lag) to 
the neighbourhood of the layer z = 0; here the a-effect generates a 
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toroidal current Ji, whose associated poloidal field diffuses (again 
with phase lag) back to the layer z =zo, the net effect being 
maximally regenerative when the phase speed is given by (9.102). 
Of course a uniform superposed velocity AoUol4A in the x- 
direction makes the field pattern stationary. 

9.8. Symmetric U(z) and antisymmetric a(z) 

A case of greater interest in terrestrial and astrophysical contexts is 
that in which U(z) is symmetric and a (z) is antisymmetric about the 
equatorial plane z = 0. With Up = 0 and U = U(z), a = a (z), equa- 
tions (9.73) and (9.74) admit solutions of the form (9.94) where 

with G = dU/dz. If we suppose that 

then the equations (9.103) are satisfied by solutions of dipole 
symmetry 

or solutions of quadrupole symmetry 

The linearity of the equations (9.73) and (9.74) of course permits 
superposition of solutions of the different symmetries, each with its 
appropriate value of p and K. 

An example similar to that treated in 5 9.7 is provided by the 
choice 
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Solutions of dipole symmetry then have the form (for z > 0 )  

cosh m z  
cosh mzo (2 < zo), 

/' 

(2 >zo), 
(9.1083 

sinh m z  
sinh m z  I (2 -11, 

r i ( z )=  
(z  > z 1). 

The conditions (9.91) and (9.92), applied now across the discon- 
tinuities at z = zo and z = z l  respectively, give two linear relations 
between A1 and B1, from which we obtain the dispersion relation 
(valid for z l  >zo or z l  < Z O )  

This same dispersion relation may be derived for the quadrupole 
modes 

sinh mz 
sinhmzo ( z  <zo), 

(2 201, 

cosh m z  
cosh mz l (2 -l), 

(2 >z1), 

indicating that for each unstable dipole mode there is a correspond- 
ing unstable quadrupole mode with the same (complex) growth 
rate5. 

If zo+z  >> 121 -201, then (9.109) becomes 

and we revert essentially to the situation studied in § 9.7, except that 
we now have two double layers at (20 ,  z l )  and (-20, -21) which 
interact negligibly with each other. If zo  and z l  are of the same order 
of magnitude, however, the situation appears to be quite different. 

A discussion of more general circumstances which permit this type of correspon- 
dence between modes of dipole and quadrupole symmetries has been given 
recently by Proctor (19778). 
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For suppose that K is such that Im I (21- 201 << 1 and (m ( (20 +a(<< 1 ; 
then, expanding the left-hand side of (9.109) to order m ', we obtain 

where z, is the smaller of zo and z l  and X is given by (9.99b); note 
this satisfies Re m > 0 as required. From (9.1 12), Re ( m / ~ ) '  < 0 
and so Re p < 0 and dynamo action cannot occur. This argument of 
course does not exclude the possibility of dynamo action for modes 
for which Im 1 lzl - zol and Im 1 120 + zll are of order unity. 

If z + zo is decreased from large values, keeping Iz l - zol and K 
fixed, with Klz l - zO~X"' >> 1, the modes that are unstable when 
21 + zo >> 121 - zol must disappear when z l +  zo becomes of the same 
order as Izl -zol, due to destructive interference between the two 
double layers. 

9.9. A model of the galactic dynamo 

It has been suggested by Parker (1971a, e )  that the galactic magne- 
tic field may be maintained by a combination of toroidal shear (due 
to differential rotation in the galactic disc) and cyclonic turbulence. 
Although a model of this kind is by no means universally accepted 
(see for example Piddington, 1972a, b), the analysis nevertheless 
provides useful insight into the structure of the dynamo equations 
(9.73) and (9.74), and is particularly interesting in that it provides an 
example of dynamo action in which steady or oscillatory dynamo 
modes can be excited with almost equal ease. The model described 
below is more idealised than that of Parker, but permits a simpler 
analysis, while retaining the same essential physical features. 

The origin 0 of a local Cartesian coordinate system is taken (fig. 
9.6) at a point of the plane of symmetry of the galactic disc, with Oz 
normal to the disc, Ox radially outwards in the plane of the disc, and 
Oy in the azimuth direction. The toroidal velocity is taken to be a 
function of x only, with G = dU/dx locally uniform, and equations 
(9.73) and (9.74) with Up = 0 then become 
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Fig. 9.6 Idealised model for study of fhe galactic dynamo mechanism; C is 
the galactic centre, and 0 is a point on the plane of symmetry of the galactic 
disc. Ox is the radial extension of CO, and Oz is normal to the galactic disc. 
The disc boundary is represented by the planes z = f zo; the a-effect is 
supposed concentrated in neighbourhoods of the planes z = f[zo ([ < 1). 
Differential rotation of the galaxy provides a mean velocity field, which in 
the neighbourhood of 0 has the form (0, U(x), 0), with dU/dx = G(cst.). 

'3  Differential 
rotation 

For the same reasons as discussed in 8 9.5 in the solar and terrestrial 
contexts, it is appropriate to restrict attention to the situation in 
which a(z)  is a (prescribed) odd function of z. Parker chose a 
step-function, 

z  

z = z o  
/' 

and he matched the resulting solutions of (9.113) and (9.114) to 
vacuum fields in the 'extra-galactic' region (z 1 >zo, in order to 
obtain an equation for the (generally complex) growth rate p for 
field modes. Although the equations (9.1 13) and (9.114) appear 
simple enough, the dispersion relation turns out to be very compli- 
cated indeed and elaborate asymptotic procedures are required in 
the process of solution. 

In order to avoid these difficulties, we shall simplify the problem 
by supposing that, instead of (9.1 15), a (2) is given (as in 8 9.8) by 

where 2 = z/zo is a dimensionless coordinate, and 0 < l < 1, i.e. the 
a-effect is supposed concentrated in two layers z = *lzo, the 'mean 
value' of a (z) throughout either half of the galactic disc being *a0 



SOLUTIONS OF THE DYNAMO EQUATIONS 223 

(as for (9.1 15)). Of course the choice (9.1 16) is an idealisation (as is 
(9.115) also) but in retaining the essential antisymmetry of cw (z), it 
may be expected that the qualitative behaviour of the system 
(9.113), (9.114) should not be dramatically affected. We shall find 
that this expectation is in fact only partially fulfilled! 

As in the previous sections, we now investigate solutions of 
(9.113), (9.114) of the form 

the factor Gzo/A being introduced simply for convenience. For 
liI< 1, If(# 5, (9.113) and (9.114) become 

where 

and we have now (using (9.116)) the jump conditions 

where 

(and similarly across 2 = -5). The dimensionless number X 
(Parker's 'dynamo number') clearly provides a measure of the joint 
influence of the cr-effect and the shear G in the layer, and we are 
chiefly concerned to find p as a function of X (and the other 
parameters of the problem) and in particular to determine whether 
Re p can be positive for a prescribed value of X. 

There are of course further boundary conditions that must be 
satisfied. Firstly, in the vacuum region 2 > 1, the toroidal field B 
must vanish, and A must be a harmonic function, i.e. A ( i ) a  
e-'KzO"; continuity of A,  & and &/df across 2 = 1 then gives 
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When lKzOl l ,  these conditions become 

&( i )=0 ,  & / d i = 0  o n i = * l .  -@. 125) 

We shall adopt these conditions, and provide restrospective justifi- 
cation (see discussion following (9.133) below). 

It is clear that with a (z) = -a ( -z) ,  equations (9.113) and (9.114) 
admit solutions of either dipole symmetry or quadrupole symmetry 
(cf. (9.105) and (9.106)). These modes satisfy the symmetry condi- 
tions 

for 'dipole' modes, and 

for 'quadrupole' modes. If these conditions are used (and with the 
implication that the symmetry conditions (9.105) and (9.106) are 
satisfied) then it is sufficient to restrict attention to the region 2 > 0. 

Dipole modes 

The solution of (9.118) and (9.119) satisfying (9.125) and (9.126) 
can readily be obtained in the form 

A cosh q i  
A =A1- 

cosh qJ 
(2 < l ) ,  

sinh q i  sinh q i  8 = $ ~ A ( ~ ) - $ A ~ J -  +B1- 
sinh qJ sinh q J 

cosh q (2 - 1) A = A 1  
cosh q (J - 1) 

sinh q ( i  - 1) 
+B1sinh q(J- 1) 

where A 1 and B1 are constants, and where we may clearly suppose 
that Req 3 0 .  Application of the jump conditions (9.121) and 
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elimination of A 1 and B1 gives, after some simplification, 

4q sinh2 q 
X 

= 2 J sinh q cosh q  (2J - 1) - sinh 2qJ = f (q, J), say, 

from which q(X, J) (and hence p from (9.120)) is in principle 
determinate. If lq l > 0 and (arg q l < ~ / 4 ,  then when lKzol is suffi- 
ciently small, Re p as given by (9.120) will be positive and we have 
dynamo action. 

Consider first the possibility of non-oscillatory modes, for which q 
is real and positive. The function f (q, J) defined by (9.129) vanishes 
at J = 0, $, 1 and satisfies 

It is moreover easily shown from (9.129) that for J # 0 

Curves of X-' as functions of q (for J less than and greater than $) 
are sketched in fig. 9.7(a). It is clear that for the model considered, 
modes with dipole symmetry can be excited only if 

and that for each (X, J) satisfying this condition there is a unique 
real positive value of q determined by the graph of fig. 9.7(a). 

The growth rate p is given in general by the formula 

and the formula (9.129) in effect determines q(X, 5,O). It is clear 
however that q must be a continuous function of lKz01, and that if 
q(X, f;  0)> 0, then there exists a range of (small) values of lKzol for 
which pz ;/A > 0 also; hence if (9.132) is satisfied, modes of dipole 
symmetry are excited for sufficiently small values of IKzol, i.e. 
provided the scale K-' of the magnetic perturbation in the x- 
direction is sufficiently large. 

Consider now the possibility of oscillatory dynamo modes for 
which Re q > 0, Im q # 0 and larg q ( <  ~ 1 4 .  When Iql is small, 
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Fig. 9.7 (a) Sketch of the dependence of X-' on q for values of J less than 
and greater than 4. ( b )  Geometrical construction of solutions of Q eQ = Y 
with Q = t+ iq ;  solutions are indicated by the intersections marked ; 
those for which I Q ]  < m14 correspond to modes of the form (9.117) with 
exponentially increasing amplitude. 

(9.129) takes the form (9.131a), and it is clear that in this limit 
(equivalently X + 0), there is only the real solution 

q - ix5(25 - 1). (9.134) 

When lq l is large, however, (9.13 1 b) gives, with q = $ ~ / ( 1 -  l) ,  

Q eQ = - ix (1-  2[)(1- 5) = Y say, (9.135) 

and this equation does admit complex solutions Q(Y). To see this, 
let 

so that (9.135) gives 

where n is an integer. The curves given by (9.137a, b)  in the case 
Y 20 are sketched in fig. 9.7(b), and it is clear that when IYI is 
sufficiently large, complex roots Q with larg Q1 < ~ / 4  do indeed 
exist; in fact, for Y -, 00, these roots are given by 

Q-Q0+2nr i  ( n=1 ,2  ,..., no), (9.138) 
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where no is the integral part of Qo/8, and Qo is the unique real 
solution of Q. eQO = Y satisfying 

The growth rates of such oscillatory modes are all slightly less than 
the growth rate of the non-oscillatory mode (for which q = O) ,  the 
difference becoming less and less significant as Y increases. 

Quadrupole modes 

The solution of (9.118) and (9.119) satisfying (9.125) and (9.127) is 
similarly of the form 

A sinh qz" 
A =A1- 

sinh q5 

cosh qz" 8 = $ E A ( E ) - $ A ~ ~ -  
cosh q5 

cosh qE 
+B1- 

cosh q5 

cosh q ( E  - 1)  A = A ~  
cosh q (4' - 1)  

sinh q ( f  - 1)  
B =l@- l)A(i)-tA1(3- l)sinh q(l-  (5 <z^<l), 

sinh q(2  - 1 )  
+B1sinh q(l- 1 )  

and the relation between q, X and 5 corresponding to (9.129) takes 
the form 

4q cosh2 q 
X 

= 25 cosh q sinh q (25 - 1)- sinh 2q5= g(q, l), say. 

The function g(q, 5 )  vanishes for 5 = 0 , l  and satisfies 
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The asymptotic behaviour of X-', from (9.141), is given by 

~ - ' - - l ( l - l ) ( l - $ q ~ f ( ~  + ~ - J ~ ) + O ( ~ ~ ) )  asq +0,  
(9.143) 

X-' - -+lq-' e-24' ( 0 < f s f )  

l asq+oo. 

- - l)q -1 e - 2 q ( l - ~  (9.144) ( k r  1) 

Typical curves of X-' as functions of q are sketched in fig. 9.8. It is 
clear that a necessary and sufficient condition for dynamo excitation 
of modes of quadrupole symmetry is (in the limit (Kzol+ 0) 

1 and that such modes are most readily excited if f =2. 

Fig. 9 . 8  A typical curve of X-' vs. q as given by (9.141). 

The regions of the (X, f )  plane for which non-oscillatory dipole 
and quadrupole excitation are possible according to the criteria 
(9.132) and (9.145) are indicated in fig. 9.9(a), in which a small 
allowance is made for the effect of the small terms involving IKzol 
neglected in the above approximate analysis. 

The manner in which the behaviour of the system changes as l 
changes (i.e. as the distribution of a as a function of z changes) is 
particularly striking, and it may be expected that other choices for 
a ( z )  may give equally varied behaviour. With the choice (9.115), 
Parker ( 1 9 7 1 ~ )  found6 that the system exhibited excitation of 

The results (9.146) and (9.147) may be extracted from Parker's equations (55) and 
(7 1 ). 
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Fig. 9 .9  (a) Region of X-C plane in which non-oscillatory dynamo excita- 
tion occurs for modes of dipole symmetry ( / / l )  and quadrupole symmetry 
(\\\), as given by (9.132) and (9.145); (b )  excitation bands for Parker's 
( 1 9 7 1 ~ )  model, as given by (9.146) and (9.147). 

non-oscillatory quadrupole modes if X is positive and within any of 
the bands defined by 

and non-oscillatory dipole modes if X is negative and within any of 
the bands 

while outside these bands, all non-oscillatory modes necessarily 
decay. In (9.146) and (9.147), n is (strictly) a large positive integer 
(to justify the asymptotic methods used); however the results 
remain approximately correct even when n takes small integral 
values 1,2,3,  . . . . The contrast between this behaviour (fig. 9.9(b)) 
and that of fig. 9.9(a) is remarkable, and should perhaps serve as a 
warning that the behaviour of an am-system (i.e. one operating 
under the joint action of an a-effect and a mean shear) may depend 
qualititatively as well as quantitatively on the precise distribution of 
a and of the shear that is presupposed. 
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As regards the possibility of oscillatory modes (Re p > 0, Im p # 
0) with quadrupole symmetry, note that the change of variables 

reduces the asymptotic from (9.144) in either case to 

with complex solutions Q(Y)  as discussed below (9.135). When 
i < 5 < 1, replacement of X by -X clearly makes (9.13 16) and 
(9.144b) identical, so that if a dipole oscillatory mode exists for 
X=Xo say, then a quadrupole oscillatory mode with the same 
(complex) growth rate p exists for X = -Xo. A similar property was 
noted by Parker (197 1a ) for the case when a! (z ) is given by (9.1 15). 
It is noteworthy however that the property does not extend to the 
case 0 < 5 $ described (in the quadrupole case) by the asymptotic 
form (9.144~). Symmetry properties of this kind have been studied 
in a more general context by Proctor (1977~).  

Finally, we should note that an improved model of galactic 
dynamo action has been analysed by Stix (1975) who expressed the 
dynamo equations (9.9) and (9.10) in spheroidal coordinates and 
determined (numerically) the critical value of X (defined analog- 
ously to the definition (9.123)) for which R e p  = 0 for a galaxy 
whose 'boundary' is supposed to be a severely flattened spheroid7. 
In this treatment, Stix found that Imp = 0 when Rep  = 0, and he 
inferred that the non-oscillatory modes are more easily excited, 
consistent with the discussion above (which indicates that when 1x1 
is small, oscillatory modes certainly cannot be excited, whereas 
non-oscillatory modes can, provided IKzo( is sufficiently small). 

9.10. Generation of poloidal fields by the a-effect 

In a spherical geometry, and still restricting attention to the situa- 
tion Up = 0, the equations governing ao-dynamo models are (from 

The dynamo numbers computed by Stix are incorrect and should all be multiplied 
by alb where a and b are the major and minor axes of the spheroid (Stix, private 
communication). This correction does not affect the qualitative conclusions men- 
tioned in the text above. 
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(9.10) and (9.13)) 

(where any eddy diffusivity effect is still assumed incorporated in the 
value of the parameter A ). We have in 6 3.11 considered the process 
of generation of toroidal field Bi, when the poloidal field Bp is 
supposed given. It is natural now to consider the complementary 
process of generation of poloidal field Bp = V A (A i,) by the a-eff ect 
when the toroidal field Bi, is supposed given. The similar structure 
of (9.148) and (9.149) makes this a straightforward task, in the light 
of the results of § 3.11. 

Suppose that B(r, 8)i, is a given steady toroidal field such that 
B/s is everywhere bounded (a natural condition to impose if the 
poloidal current associated with Bi, is finite). Suppose further that 
a (r, 8 )  is given as a function of r and 8 and that A = 0 at time t = 0. 
Then for t <c L2/h, where L is the characteristic scale of the source 
term a B  in (9.148), we have simply 

A (r, 8, t) = a (r, 8)B (r, 8)t. (9.150) 

When t is of order L2/A and greater, diffusion of the poloidal field 
thus generated becomes important, and for t >> L2/h, a steady state 
is approached in which 

within the conducting region. Let us as usual suppose that this is the 
region r <R,  and that the region r > R  is insulating so that 

As in 9 3.3, it is apparent that if aB/A has the expansion 

CO 

aB/A = C F, (r) dP, (cos 8)/d8, (9.153) 
1 

then the solution of (9.15 l),  (9.152) is 

A (r, 8)  = C G, (r) dP, (cos 8)/d8, 
1 

(9.154) 
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where 
-2 2 r (r G;)' - r-2n (n + 1 ) ~ ~  =Fn (r), (9.155) 

and where we adopt the convention F, (r) = 0 for r >R. Continuity 
of Bp across r = R requires that 

The solution (cf. (3.105)) is given by 

Suppose for example that, for r <R, 

B (r, 8) = Bo(r/R) cos 8 sin 8, a (r, 8) = a. cos 8. 
(9.158) 

Then 

(9.159) 

Hence, for r <R, 

and F, (r) = 0 (n # 1 or 3). For r >R, (9.144) then gives 

and, from (9.154), we then have for r >R  

The associated poloidal field Bp = V  A (Ai,) has dipole symmetry 
about the equatorial plane 8 = 71.12, but contains both dipole and 
octupole ingredients. In particular, the radial component of Bp is 

l 



SOLUTIONS OF THE DYNAMO EQUATIONS 233 

given (for r > R )  by 

1 a 
B , = -  -(A sin 8 )  

r sin 8 at9 

9.11. The m-dynamo with periods of stasis 

In order to demonstrate that the a-effect in conjunction with 
differential rotation can act as a dynamo, it is useful to adopt the 
artifice of 'stasis' as described in 9 6.12. Suppose that we start with a 
purely poloidal field Bp, = V A (AOiQ), with 

A O  = ~or -"~~3 /2 (k r )  sin B (r <R) ,  (9.164) 

where kR is the first zero (=v)  of JII2(kR); i.e. we start with the 
fundamental dipole mode of lowest natural decay rate (9 2.7). The 
field for r > R  is of course harmonic and matches smoothly with the 
interior field. Let us now subject this field to a short period tl of 
intense differential rotation o(r). Diffusion is negligible if this 
process is sufficiently rapid, and from equation (3.96) a toroidal field 
is generated in r < R  and is given at t = tl by 

B= = Bi, = r sin BB,ot(r)tli, 

= 2~0r-"~~3/2(kr)o'(r)tl  sin B cos Bi,. 
(9.165) 

We now stop the differential rotation and 'switch on' an intense 
a-effect with a = a&) COS B, which is maintained for a second short 
interval t2 during which again diffusion is negligible. From (9.150), 
at time t = tl + t2, an additional poloidal field Bp = V A (Ai,) has 
been generated, where 

with 
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Finally we allow a period t3 of stasis (i.e. pure ohmic decay) so that 
only the slowest decaying ingredient of (9.166) will survive after a 
long time. The function f (r) may be expanded as an infinite sum of 
radial functions 

with n = 1 or 3 as appropriate (n and q being the same labels as used 
in 8 2.7). The slowest decaying mode is that for which n = q = 1, i.e. 
precisely the mode (9.164) with which we started. By waiting long 
enough, we can ensure that the contamination by higher modes is 
negligible; and by increasing lol(r)cuo(r)l (keeping other things 
constant), we can further ensure that at time t  = tl + tz + t3 the field 
that survives is more intense than the initial field given by (9.164). 
The process may then be repeated indefinitely to give sustained 
dynamo action. 

This type of dynamo may be oscillatory or non-oscillatory, 
according as C11ICo 5 0. This depends on the precise radial depen- 
dence of the product o1(r)ao(r). Reversing the sign of this product 
will clearly convert a non-oscillatory dynamo to an oscillatory 
dynamo, or vice versa. 

9.12. Numerical investigations of am-dynamos 

A number of numerical studies have been made of equations (9.10) 
and (9.13) in a spherical geometry and with a variety of prescribed 
axisymmetric forms for the functions a! (X), o (X) and Up(x). These 
studies are for the most part aimed at constructing plausible models 
for possible dynamo processes within either the liquid core of the 
Earth or the convective envelope of the Sun. A few general conclu- 
sions have emerged from these studies. In describing these, we may 
limit attention to the situation in which a(x) and U,(x) are odd 
functions of the coordinate z normal to the equatorial plane, and 
o (X) and U,(x) are even functions of z.  In this case equations (9.10) 
and (9.13) admit solutions of dipole symmetry (A even, B odd in z )  
or quadrupole symmetry (A odd, B even). In all cases of course the 
field must be matched to an irrotational field across the spherical 
boundary r =R. 
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The behaviour of the system is characterised (as in § 9.9) by a 
dimensionless dynamo number (cf. (9.99b ), (9.123)) 

where a. and oh are typical values of a and a ~ l a r .  To be specific, 
following the convention adopted by Roberts (1972a), let a. be the 
value of a at the point in the northern hemisphere where Icu I has its 
maximum value (so that a0 may be positive or negative) and let oh 
be the value of awlar where IawlarI is maximal. X may then likewise 
be positive or negative. 

Equation (9.10) and (9.13) admit solutions proportional to ept, 
and (as for the laminar dynamo theories discussed in 5 6.11) the 
problem that presents itself is essentially the determination of 
possible values of p as functions of X (and any other dimensionless 
parameter that may appear in the specification of the velocity field). 
Interest centres on that value of p for which R e p  first becomes 
positive as 1x1 increases continuously from zero. The corresponding 
field structure may have dipole or quadrupole symmetry - and we 
then say that the dipole (or quadrupole) mode is the preferred mode 
of excitation. Moreover if Imp  = 0 when Re p = 0, this preferred 
mode is non-oscillatory, while if Imp  # 0 when R e p  = 0 it is 
oscillatory. 

Roberts (1972b) studied a number of models, both with and 
without meridional circulation Up, for various smooth choices of 
a (X) and o (X) (satisfying the symmetry conditions specified above) 
with the following conclusions: 

(i) When X >0, and Up = 0, the mode that is preferred is quad- 
rupole and oscillatory; critical values of X ranging between 76 and 
212 were obtained depending on the particular distribution of a 
and w adopted. Introduction of a small amount of meridional 
circulation can however yield a preferred mode that is dipole and 
non-oscillatory, the critical value of X being reduced by a factor of 
order 5 or less in the process. This rather dramatic effect of merid- 
ional velocity was first recognized by Braginskii (1964b) and pre- 
sumably admits interpretation in terms of the convective effect of 
Up on dynamo waves in a sense contrary to their natural phase 
velocity (cf. the discussion at the end of 5 9.6). Unfortunately 
however it appears (Robert, 1972) that the sense of the meridional 
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circulation (i.e. whether from poles to equator or equator to poles 
on the surface r = R )  that will lead to a reduction in the critical value 
of X depends on the model (i.e. on the particular choice of a! (X) and 
~ ( x ) ) ,  and a simple physical interpretation of the effect of Up 
therefore seems unlikely. 

(ii) When X < 0, the conclusions are reversed; i.e. when Up = 0, 
the preferred mode is dipole and oscillatory, critical values of X 
ranging between -74 and -206 for the models studied; and intro- 
duction of suitable meridional velocity Up (the sense being again 
model dependent) substantially reduces the critical value of 1x1, the 
preferred mode becoming quadrupole and non-oscillatory. 

The oscillatory character of the modes when Up = 0 has been 
confirmed by Jepps (1975) who carried out a direct numerical 
integration of equations (9.10) and (9.13) again with specified 
simple forms for a! (X) and o (X) with 1x1 marginally greater than its 
critical value X, as determined by the eigenvalue approach. For 
initial condition at time t = 0, Jepps assumed the field to be purely 
poloidal and in the fundamental decay mode for a sphere (5  2.7); in 
the subsequent evolution, the field rapidly settled down to a time- 
periodic behaviour (modulated by the slow amplification expected 
as a result of the supercritical choice of X). 

In the case X < 0, and when Up = 0, it is a characteristic feature of 
the periodic solutions that both poloidal and toroidal field ingre- 
dients appear to originate in the polar regions and then to amplify 
during a process of propagation towards the equatorial plane; there, 
diffusion eliminates toroidal field of opposite signs from the two 
hemispheres. This type of behaviour can be seen clearly in fig. 9.10 
(from Roberts, 1972a) which shows a half-cycle of both poloidal 
and toroidal fields for a model in which 

where F = r/R, the coefficients being chosen so that the maximum 
values of la I and J a ~ / a r (  are respectively Jao l  and lw &l. This apparent 
propagation from poles to equator is of course consistent with the 
behaviour of the plane wave solutions discussed in 8 9.6: in that case 
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Fig. 9.10 Evolution of the marginal dipole oscillation of €he am-dynamo 
defined by (9.170), with X = -206.1, R = A-'R2 Imp  = 47.44. Meridian 
sections are shown, the symmetry axis being dotted. The B,-lines (X = cst.) 
are shown on the right of this axis, and the lines of constant toroidal field 
(B, = cst.) on the left, at equal intervals of X and B, respectively; B, is 
positive in regions marked 0, and negative in regions marked O. The 
progression of the pattern from poles to equator, as the half-cycle proceeds, 
is apparent. (From Roberts, 1972.) 
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also, the necessary condition for propagation towards the equator- 
ial plane was a, awlar < 0. 

On the assumption that sunspots form by a process of eruption 
when the subsurface toroidal field exceeds some critical value (see 
8 10.7), a number of authors have, on the basis of time-periodic 
solutions of the dynamo equations such as that depicted in fig. 9.10, 
constructed butterfly diagrams (8 5.3) defined in this context as the 
family of curves 

in the plane of the variables 8 and t, for a fixed representative value 
of r ;  here Bmax is simply the maximum value of B(r, 8, t) for 
0 S 8 S T, 0 6  t S 2 4 I m  p, and k is a constant between 0 and 1. 
With the expectation that sunspots may be expected to form in any 
region where IB I > k IBmaxl (for some k), these diagrams are directly 
comparable with Maunder's butterfly diagram (fig. 5.3) depicting 
observed occurrences of sunspots (again in the 8, t plane). Fig. 9.11 
shows a diagram obtained by Steenbeck & Krause (1969a), with8 

2 
' O W 9 )  cos 8, U a ,=-a ,o  l+erf- ( 0.075 

The qualitative resemblance with fig. 5.3 is impressive. Quantitative 
comparison of course requires that the period 27r/Imp of the 
theoretical solution be comparable with the period of the sunspot 
cycle, i.e. about 22 years. The various computed solutions (e.g. 
Roberts, 1972) give 

Cl = Imp = IOOA/R~,  2 ~ / C l ; = 2 ~ ~ ~ / 1 0 0 ~ ,  

and with R = 7 X 10' km, and a turbulent diffusivityg A -- uol ;= 

102 km2 S-', we get an estimated period 2?r/fl= 10 yr, which is of 
the right order of magnitude. 

These distributions of a and o were chosen to provide a model in which the two 
types of inductive activity are separated in space; the choice is clearly arbitrary. 
If instead we choose A = lo3 km2 S-' as suggested by the granulation scales (see 
chapter 5), then we get 21r/f l= 1 yr, an order of magnitude smaller than the 
observed period. 
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Fig. 9.11 Butterfly diagram corresponding to the ao-dynamo given by 
(9.172); the area IB, l > f B,, is hatched, and the area \B, I > B,,, is 
cross-hatched. The unbroken lines mark the phase at which the polarity at 
the poles changes; the dashed lines mark the phase at which the sign of the 
dipole moment changes. The phase (Im p)t = 0 corresponds to the max- 
imum value of the toroidal field. (From Steenbeck & Krause, 1969a.) 

The condition aoo& < 0 is necessary to give propagation of field 
patterns towards the equatorial plane (and hence butterfly diagrams 
with the right qualitative characteristics). This condition would 
appear to leave open the two possibilities 

(Recollect here that a. represents the extreme value of a! (X) in the 
northern hemisphere.) It has however been pointed out by Stix 
(1976) that the linear relation between the fields A and B (and 
hence between Bp and B) involves a! and dolar separately and not 
merely via their product a! solar (cf. equation (9.76)) and that the 
observed phase relation between the radial component of the Sun's 
general field and the toroidal component (as revealed by the 
sunspot pattern) is in fact incompatible with the second possibility in 
(9.173). Hence if the Sun does act as an am-dynamo, then the 
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indications are that a! is predominantly positive in the northern 
hemisphere (and negative in the southern) and that w (r, B) increases 
with increasing depth. 

There are independent arguments (Steenbeck, Krause & Radler, 
1966) for the conclusion that a! > 0 in the northern hemisphere, 
based on simple dynamical considerations. We have already com- 
mented (8 9.5) on one physical mechanism (viscous entrainment) 
that may generate positive helicity and so negative a! in the northern 
hemisphere when blobs of hot fluid rise due to buoyancy forces. In 
the convective envelope of the Sun, there is however a second 
mechanism which has the contrary effect: compressibility. A blob of 
fluid rising through several scale heights will expand and so will tend 
to rotate in a sense opposite to the mean solar rotation (to conserve 
its absolute angular momentum); this leads to generation of nega- 
tive helicity, and so positive a! in the northern hemisphere, and it 
seems at least plausible that this is the dominant effect in the solar 
context. The detailed dynamical calculations of 8 10.7 below, in 
which the value of cu associated with buoyancy instabilities is 
calculated, suggests that the true picture may be rather more 
complicated than suggested by these simple arguments. 

Likewise, increase of w with increasing depth is what one would 
naively expect as a result of conservation of angular momentum; in 
conjunction with meridional circulation, this might be expected to 
lead to a situation in which w CC r-2 in the convection zone. The same 
argument would suggest however that on the Sun's surface the 
rotation rate should be greater in the polar regions than in the 
equatorial zone, whereas the observed situation is quite the oppo- 
site. The dynamical theory of differential rotation of the Sun is a 
very large subject in its own right (see e.g. Durney, 1976), and lies 
outside the scope of this book. Clearly however dynamo models can 
serve to eliminate those distributions w (r, B) that are totally incom- 
patible with observed solar magnetic activity. For example, Stix 
(1976) has commented that models in which w =w(s) with S = 
r sin 8 are constrained by the observed distribution of w on the solar 
surface r = R, and therefore satisfy a ~ / a r  > 0; since, as mentioned 
above, this is incompatible with observed phase relation between A 
and B on r = R, one may reasonably conclude that w is not constant 
on cylindrical surfaces S = so through the convection zone. 
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The models discussed so far (particularly those of Roberts, 
1972a) have the property that, when Up = 0, the preferred modes 
are oscillatory. Examples are known however for which this is not 
the case. Deinzer et al. (1974) have studied the effect of concen- 
trated layers of inductive activity, i.e. 

where ? = r/R, and 0 < ?l, ?2 < 1. It appears that when ?l and ?2 are 
sufficiently separated, the preferred modes are non-oscillatory. Fig. 
9.12 indicates the character of the preferred mode for the possible 

0.0 0.2 0.4 0.6 0-8 1.0 0.0 0.2 0.4 , 0.6 0.8 1.0 
r l  l  

(a )  (b )  
Fig.9.12 Regions of the space for which oscillatory or non- 
oscillatory modes are preferred for the aw-dynamo given by (9.175); both 
(a) (dipole symmetry) and ( b )  (quadrupole symmetry) are symmetric about 
the line ?l = f2. Variation of the critical dynamo number X for different 
values of and ?* is indicated by the solid curves. (From Deinzer et al., 
1974.) 

values of P1 and t2. Here again (as in Herzenberg's two sphere 
dynamo discussed in § 6.9) spatial separation of the regions of 
inductive activity appears to encourage the possibility of non- 
oscillatory dynamos through the filtering out of 'unwanted' har- 
monics of the main field. This effect would be most easily analysed 
for the distribution (9.175) of a and o in the extreme case ?l << ?2 << 1 
in which only the leading field harmonics generated at either layer 
have any significant influence at the other layer. 
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A related situation has been studied by Levy (1972), viz. 

The a-effect is here supposed concentrated in two 'rings of cyclonic 
activity' at i=  t2, 9 = a ,  T -a. The same situation was further 
analysed by Stix (1973). The conclusion of these studies is that when 
X> 0, the preferred mode is non-oscillatory and dipole, while if 
X<O, the preferred mode is non-oscillatory and quadrupole if 
190" -a l S 54O, otherwise oscillatory and dipole. It is perhaps not 
surprising that, as in the case of the S-function model analysed in 
8 9.9, the preferred mode can depend in quite a sensitive manner on 
just where the a-effect is concentrated. The true distribution of a (X) 

(and the related distribution of helicity density) is largely controlled 
by the dynamics of the background random motions, a topic treated 
in the following chapters. 

Finally, it is worth noting that the transition between oscillatory 
aw-dynamo behaviour and non-oscillatory a 2-dynamo behaviour 
has been examined numerically by Roberts & Stix (1972). It is to be 
expected that if lao/wbR 21 is increased from small values, the 
aw-behaviour will give way to the a 2-behaviour when this parame- 
ter reaches a value of order unity. For the particular model consi- 
dered, Roberts & Stix found that this transition in behaviour in fact 
occurred when lao/w&R21 10.1.  This treatment was based on an 
isotropic a-effect; it is perhaps worth remembering that in the 
presence of strong differential rotation, the assumption of isotropy 
in the background turbulence (or random wave motion) is really 
untenable; a severely non-isotropic a-eff ect of the form 

seems more plausible, and is moreover indicated by the approach of 
Braginskii as elaborated in chapter 8. 

Although results of the models discussed above, and in particular 
their ability to reproduce butterfly diagrams with the right qualita- 
tive structure, are suggestive in the solar context, nevertheless they 
must as yet be viewed with caution. To get the right time-scale a 
turbulent diffusivity of order 100 km2 S-' is necessary; as noted in 
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chapter 5, turbulence of the required intensity corresponds to a 
magnetic Reynolds number of order lo4, and the turbulent magne- 
tic fluctuations may then be expected to be an order of magnitude 
stronger than the mean field itself. Although the surface field of the 
Sun does exhibit intermittency on observable scales down to 
-100 km, the associated observed fluctuations do not have the 
entirely random character that the theory strictly requires, and 
there is no direct evidence for field or velocity fluctuations on scales 
smaller than -100 km. The mean field is heavily disguised by its 
fine-structure, and the analysis of Altschuler et al. (1974) suggests 
that in fact equatorial dipole and quadrupole ingredients are at least 
as strong, if not stronger, than the axial ingredients which appear 
most naturally in the theory of the ao-dynamo in so far as it can 
explain the solar cycle. As emphasised recently by Cowling 
(19753), although mean-field electrodynamics is alluring in its 
relative simplicity, certain inconsistencies need to be resolved 
before it can be definitely accepted as providing'the correct basic 
description of solar field generation. 



CHAPTER 10 

WAVES O F  H E L I C A L  S T R U C T U R E  I N F L U E N C E D  

BY C O R I O L I S ,  L O R E N T Z  A N D  B U O Y A N C Y  

F O R C E S  

10.1. The momentum equation and some elementary 
consequences 

So far we have regarded the velocity field u(x, t )  as given. In this 
chapter, we turn to the study of dynamic effects in which the 
evolution of u is determined by the Navier-Stokes equation 

Here J A B  is the Lorentz force distribution, v is the kinematic 
viscosity of the fluid (assumed uniform) and F represents any further 
force distribution that may be present. We limit attention to incom- 
pressible flows for which 

Dp/Dt=O and V .  u = 0 ,  (10.2) 

so that bulk viscosity effects do not appear in (10.1). Although we 
shall be primarily concerned with motion in a rotating system of 
reference, for the moment we adopt an inertial frame in which 
acceleration is represented adequately by the left-hand side of 
(10. l). 

The integral equivalent of (10.1) is 

where S is a closed surface moving with the fluid, V its interior, uij 

the stress tensor given by the Newtonian relation 

and T,. the Maxwell stress tensor given by 

TV = /X 0' (B~B~ 2ij). (10.5) 

With (10.3) we must clearly associate a jump condition 
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across any surface of discontinuity of physical properties; this may 
be either a fixed fluid boundary on which n . U = 0, or an interior 
surface of discontinuity moving with the fluid. 

If p is uniform, it is convenient to introduce the new variable 

in terms of which 

J A B = ~ ; ~ ( V A B ) A B = ~ ( ~ . V ~ - $ V ~ ~ ) ,  (10.8) 

and (1 0.1) becomes 

where P = p/p + :h2. In terms of h, the induction equation becomes 

h eviaently hasthe dimensions of a velocity. There is a symmetry of 
structure in the non-linear terms of (10.9) and (10.10), which leads 
to some simple and important results when F = 0 and in the limiting 
situation A = U = 0. It is a trivial matter to verify that (10.9) and 
(10;lO) are then both satisfied by solutions of the form 

= g(u+ hot), h = h. + g(x + hot), (10.12) 

where f and g are arbitrary functions of their arguments and h0 is 
constant. When f and g are localised (e.g. square-integrable) func- 
tions, these solutions represent waves which propagate without 
change of shape in the directions *ho. These are known as AlfvCn 
waves (AlfvCn, 1942), and h0 = (pop)-1'2~o, where B. is a uniform 
field, is known as the Alfvkn velocity. In view of the non-linearity of 
(10.9) and (10.10), a linear superposition of (10.11) and (10.12) 
does not in general satisfy the equations. However, if lfl<< ho, 
Igl << ho, and if squares and products of f and g are neglected, then 

U = f(x - hot) + g(x + hot) 1 



246 MAGNETIC FIELD GENERATION IN FLUIDS 

provides a solution of the linearised equations. In general, however, 
solutions of the form (10.11) and (10.12) will interact in a non- 
linear manner when the functions f and g are overlapping (fig. 10.1). 

Fig. 10.1 Disturbances represented by the functions f(x - hot) and g(x + hot) 
interact only while they overlap in X-space. The time-scale characteristic of 
non-linear interaction of disturbances of length-scale L is evidently at most 
of order L/ho. 

Putting h = h. + hl (with hl = -f(x - hot) in (10.11) and +g(x + hot) 
in (10.12)) it is evident that the solutions (10.11) and (10.12) are 
characterised by the properties U + hl = 0 respectively. Let us define 
the integrals 

I*=T ( ~ + h l ) ~ d ~ ,  ' 5  
on the assumption that the disturbances are sufficiently localised for 
these integrals to exist; here we imagine the fluid to extend to 
infinity in all directions, and the integral is over all space. Then 
I+ = 0 for the solution (10.1 1) and I- = 0 for the solution (10.12). 

The integrals I, are in fact invariants of the pair of equations 
(10.9) and (10.10), when v = A  = 0. For 

where we have used V . U = 0, V . hl = 0. Using the divergence 
theorem and the vanishing of U + hl at infinity (U + h1 = o (rW2)  is 
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clearly sufficient here) it follows that dl+/dt = 0, and hence that 
I+ = cst. Similarly I- = cst. Note that 

is just the total energy of the disturbance (kinetic plus magnetic), 
and the invariance of this quantity is of course no surprise. We have 
also the related invariant (Woltjer, 1958) 

The invariance of this integral admits topological interpretation (cf. 
the magnetic helicity integral (2.8)). In fact Ic provides a measure of 
the degree of linkage of the vortex lines of the U-field with the lines 
of force of the hl-field. To see this, consider the particular situation 
in which hl=O except in a single flux-tube of vanishing cross- 
section in the neighbourhood of the closed curve C, ad let @l be the 
flux of hl in the tube. Then from (1 0.17), 

where K is the circulation round C, or equivalently the flux of 
vorticity across a surface S spanning C. Hence Ic is non-zero or zero 
according as the hl-lines do or do not enclose a net flux of vorticity; 
Ic is the cross-helicity of the fields U and b. 

The invariance of I+ and I- provides some indication of the 
nature of the interaction of two Alfvkn waves of the form (10.1 1) 
and (10.12). If f and g are both localised functions with spatial 
extent of order L, then the duration of the interaction (which may be 
thought of as a collision of two 'blobs' represented by the functions 
f and g) will be at most of order L/ho. Choosing the origin of time to 
be during the interaction, for t << -L/ho (i.e. before the interaction) 
the solution has the form (10.13) while for t >> L/ho (i.e. after the 
interaction) we must have 

where f l and g1 are related in some way to f and g. The invariance of 
I+ and I- then tells us that 
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i.e. there can be no transfer of energy between the disturbances 
during the interaction. The spatial structure of each disturbance will 
however presumably be modified by the interaction. The nature of 
this modification presents an intriguing problem that does not 
appear yet to have been studied. 

10.2. Waves influenced by Coriolis and Lorentz forces 

In a rotating mass of fluid, such as the liquid core of the Earth, or the 
Sun, it is appropriate to refer both velocity and magnetic field to a 
frame of reference rotating with the fluid. If fk is the angular 
velocity of this frame, then when p is constant the momentum 
equation becomes 

where P now includes the centrifugal potential -$(a A x12 as well as 
the magnetic pressure term $h2. The induction equation is however 
invariant, i.e. we still have 

where h(x, t ) ,  u(x, t )  are now measured relative to the rotating 
frame of reference. Physically, this is obvious: rigid body rotation 
simply rotates a magnetic field without distortion. Changes in h(x, t )  
in the rotating frame are therefore caused only by motion relative to 
the rotating frame, and by the usual process of ohmic diffusion.' 

Suppose now that 

where h. and uo are uniform, and h1 and ul represent small 
perturbations. Neglecting squares and products of ul and hl, and 
supposing F = 0, the linearised forms of (10.2 1) and (10.22)  are 

Note that this simple statement must break down at distances from the axis of 
rotation of order c/lR, where c is the speed of light. At such distances, displacement 
currents cannot be ignored and the field inevitably lags behind the rotating frame 
of reference. 
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and 

where P1 is the associated perturbation in P. These equations admit 
wave-type solutions (Lehnert, 1954) of the form 

(U,, hl, PI)  = Re (6, h, B )  exp i(k . x - (W + uo . k)t), 
(10.26) 

and the fact that ul and hl are solenoidal means that 

i.e. these are transverse waves. Substitution first in (10.25) gives the 
relation between b and 6 

that we have already encountered (equation (7.75)), and substitu- 
tion in (10.24) and rearrangement of the terms gives 

- i d  + 242 A 6 = - i ~ ,  (10.29) 
where I_ 

a = (W +ivk2)- (W +i\k2)-'(h~. k)2. (10.30) 

The effect of the magnetic field in (10.29) is entirely contained in the 
coefficient a. This leads to an important modification of the disper- 
sion relationship between W and k; but the spatial structure of the 
velocity field is unaffected by the presence of ho. 

To get the dispersion relationship, we first take the cross-product 
of (10.29) with k; since k . 6 = 0, this gives 

Taking the cross-product again with k gives 

Elimination of 6 and k A 6 from (10.3 1) and (10.32) gives 

and from either (10.3 1) or (10.32) we have the corresponding 
simple relation between 6 and k A 6, 
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Since cj = ik A 6 is the Fourier transform of the vorticity o = V A U 

associated with the waves, it is evident from (10.34) that each 
constituent wave is of maximal helicity, i.e. for each wave 

where o = o r +  ioi; the decay of the waves (oi f 0) is of course 
associated with the processes of viscous and ohmic diffusion. Such 
motions are particularly effective in generating an aTeffect; hence 
their particular interest in the dynamo context. 

The structure of a motion satisfying (10.34) may be easily under- 
stood by choosing axes OXYZ with O X  parallel to k, so that 
k = (k, 0,O); then 6 = (O,u^, I?) and (10.34) gives I? = *it?; in con- 
junction with the factor eik." = eikX in (10.26), the motion then has a 
spatial structure given by 

ul (0, cos (kX + fi ), *sin (kX + fi)), (10.36) 

where the phase fi is time-dependent. This is a circularly polarised 
wave-motion (fig. 10.2), the velocity vector ul being constant in 

Fig. 10.2 Sketch of the structure of the wave-motion given by (10.36). The 
case illustrated, in which the velocity vector rotates in a right-handed sense 
as X increases, corresponds to the lower choice of sign in (10.36), with 
k > 0; the helicity of this motion as given by (10.35) is then negative. 
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magnitude, but rotating in direction as X increases; the sense of 
rotation is left-handed or right-handed according as the associated 
helicity ul . o is positive or negative. 

When h. = 0, and when viscous effects are negligible, (10.30) and 
(10.33) give 

the dispersion relation for pure inertial waves in a rotating fluid (see 
e.g. Greenspan, 1968). The group velocity for such waves is given 

by 

Since c,. k = 0, this is perpendicular to the phase velocity wk/k2. 
Moreover, since 

where 8 is the angle between k and a ,  the value of c,. 42 is negative 
or positive according as the helicity of the group is positive or 
negative. Loosely speaking, we may say that negative helicity is 
associated with upward propagation (relative to a )  and positive 
helicity is associated with downward propagation. A random super- 
position of such waves in equal proportions would give zero net 
helicity; but if any mechanism is present which leads to preferential 
excitation of upward or downward propagating waves, then the net 
helicity will be negative or positive respectively. 

Suppose now that hof  0, but that the Coriolis effect is still 
dominant in the sense that 

(Of course if h. is not parallel to there will always be some 
wave-vectors perpendicular or nearly perpendicular to 0 for which 
(10.40) is not satisfied.) Then, provided the diffusion effects 
associated with v and A are weak, the two roots of (10.30) (regarded 
as a quadratic in o )  are given by 
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and 

where U is still given by (10.33). Clearly (10.41) still represents an 
inertial wave whose frequency is weakly modified by the presence of 
the magnetic field and which is weakly damped by both viscous and 
ohmic effects; in fact from (10.41) we have w =or+iu i  where 
(provided IA - v l k lu l), 

Equation (10.42) on the other hand represents a wave which has 
no counterpart when h. = 0. In this wave, the relation between 6 
and Ci from (10.28) is given by 

so that, from (10.40), 161 >> lil, i.e. the magnetic perturbation domi- 
nates the velocity perturbation. The dispersion relation (10.42) may 
be obtained by neglecting the contribution (d/dt - vv2)u1 to (10.24) 
(or equivalently the contribution w +ivk2 to (10.30)); setting aside 
the trivial effect of convection by the uniform velocity uo, the force 
balance in this wave is therefore given by 

i.e. a balance between Coriolis, pressure and Lorentz forces. Such a 
force balance is described as magnetostrophic (by analogy with the 
term geostrophic used in meteorological contexts to describe bal- 
ance between Coriolis and pressure forces alone). We shall describe 
waves of this second category with dispersion relation (10.42) as 
magnetostrophic waves. Other authors (e.g. Acheson & Hide, 1973) 
use the term 'hydromagnetic inertial waves'. 

10.3. Modification of cv-effect by the Lorentz force 

We now consider a rather idealised model which gives some insight 
into the nature of the back-reaction of the Lorentz force on the 
a -effect which is (at least in part) responsible for the generation of 
the magnetic field. Let us include a body force F(x, t) (random or 
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periodic) on the right-hand side of (10.24), and let us suppose that 
this force is prescribed (statistically or in detail) and independent of 
the magnetic field ho. The response (ul, hl, PI)  does depend on the 
field h0 as well as on SZ, A and V. We shall suppose that the 
dissipative effects represented by A and v are weak. The effect of uo 
is trivial, and for simplicity we take uo = 0. 

The force field F must of course be sufficiently weak for the 
linearised equations to be applicable. We may suppose2 that 
V . F = 0, and we suppose further that F is reflexionally symmetric, 
in particular that (F.  V A F) = 0. Any lack of reflexional symmetry 
in the ul-field then arises through the influence of rotation. 

Consider first the effect of a single Fourier component of F of the 
form Re 6 ei"."-"") where k and W are real. The result (10.28) still 
holds, from which we deduce a contribution to (ul A hl) of the form 

So far, this is just as in 9 7.7. Now, however, we can no longer regard 
1 as 'given', but must express this in terms of i by means of the 
equation 

where U is still given by (10.30). When diffusion effects are weak, 
this has the form U = U, + iui, where 

Taking the cross-product with k twice, and solving for fi, we obtain 

where 

Note that when v and A are small, there is a resonant response (i.e. 
ID I has a sharp minimum) when 

The general F may be represented as the sum of solenoidal and irrotational 
ingredients; the latter leads only to a trivial modification of the pressure distribu- 
tion (when V . U = 0). 



254 MAGNETIC FIELD GENERATION IN FLUIDS 

i.e. when the forcing wave excites at a natural frequency (or rather 
frequency-wave-vector combination) of the undamped system. 

From (10.49), the value of i6 A 6" can now be calculated. Using 
if A f* = 0 (from the reflexional symmetry of F), we obtain 

In conjunction with (10.46), we then have a contribution to the 
tensor aij of the form 

and in this expression, from (10.50), we have 

The behaviour of 8ij as Iho . kl increases from small values is of 
considerable interest. First when h0 . k =  0, we have U, = o and the 
expression for i6 A Ci* (related to the helicity of the forced wave) is 
non-zero only when 

This condition means simply that the forcing wave must either 
propagate 'upwards' or 'downwards' relative to the direction of SZ; 
as expected from the discussion of § 10.2, the velocity field will lack 
reflexional symmetry only if the forcing is such as to provide a net 
energy flux either upwards or downwards. 

As lho. kl increases from zero, the variation of 8ij is determined 
by the behaviour of the scalar coefficient in (10.53), IDI-~u,, U, 

being given by (10.48a). To fix ideas, suppose that o > O  and 
k . SZ>O.  The resonance condition (10.51) may be written in the 
form 

and the behaviour therefore depends on whether the excitation 
frequency o is greater or less than 2k . n / k .  (i) If o < 2k . SZlk, then 
resonance does not occur for any value of ho; U, changes sign when 
h. . k passes through the value o (ho being then the Alfvkn velocity 
for waves characterised by wave-vector k and frequency a ) ;  and for 
large values of lho. kl, u,IDI-~ is asymptotically proportional to 
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Iho . L I - ~ .  (ii) If w > 2k . n l k ,  then resonance occurs when (10.55) is 
satisfied; for this value of Iho . kI, 

indicating the nature of the resonance as A ,  v + 0. As lho. kI 
increases beyond the resonance value, the behaviour is again as in 
case (i). This behaviour is summarised in the qualitative sketches of 
& = $&ii against lho . kl in fig. 10.3. 

Fig. 10.3 Qualitative sketch of the behaviour of 4 = $bii as a function of 
Iho . kl, as given by (10.53), with o > 0, k . a> 0, for positive and negative 
values of the parameter o0 = o - 2k. a l k .  In the former case, a resonant 
effect occurs at Iho . kl = o, the nature of the resonance (for small A and v )  
being given by (10.56). 

A pseudo-tensor of the form (10.53) having only one non-zero 
principal value is not in itself adequate to provide a regenerative 
dynamo of a2-type (see 8 9.3); however it is easy to see that a 
superposition of forcing waves (at different values of k and w ) will 
give a pseudo-tensor aij which is just a sum (or integral) of contribu- 
tion of the form (10.53): 
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It is clear that this pseudo-tensor is in general non-zero if 
~g(kl, k2, k3, @)l2 # ~@(kl, k2, -k3, @)l2 where k3 = (k . n) /k ,  and this 
is just the condition that there should be a lack of symmetry in the 
average (or spectral) properties of the forcing field F(x, t) with 
respect to any plane perpendicular to 0 .  

Two broad conclusions can be drawn from the above analysis. 
First it is clear that if the condition 

is satisfied for every (m, k) in the spectrum of F(x, t), and if a locally 
uniform field h. grows from an initially weak level due to dynamo 
action, then the a-effect will in general intensify as the field grows 
towafds the 'resonance level' (g?ven by (10.55)) for any pair (W, k). 
This intensification of the a-effect is associated with large amp- 
litudes of the response a(k, U )  at resonance. Rotation by itself keeps 
this response at a low level, and thus acts as a constraint on the 
motion. The growing magnetic field can, at an appropriate level, 
release this constraint and can, as it were, trigger large velocity 
fluctuations which make a correspondingly large contribution to &ij.  

This may seem paradoxical. Analogous behaviour is however well- 
known in the context of the stability of hydrodynamic systems 
subject to the simultaneous action of Coriolis and Lorentz forces 
(see e.g. Chandrasekhar, 1961, chapter 5): whereas the effects of 
rotation and magnetic field are separately stabilising, the two effects 
can work against each other in such a way that a flow that is stable 
under the action of rotation alone becomes unstable when a magne- 
tic field is also introduced. This type of behaviour has also been 
noted in the dynamo context by Busse (1976). 

The second conclusion is perhaps less unexpected: no matter 
what the spectral properties of F(x, t) may be, all ingredients of aii 
ultimately decrease as lhol increases and would tend to zero if lhol 
were (through some external agency) increased without limit3. 
Defining a = $aii, it is evident that la I is certainly (asymptotically) a 
decreasing function of the local energy density M = $hi associated 
with the mean field. The precise functional dependence of la I on M 

Wave-vectors k for which h. . k=O contribute singular behaviour in expressions 
such as (10.56) as (ho( +m; such ingredients are however of little concern as they 
make a vanishingly small contribution to (ul A hl) (see (10.46)). 
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depends in a complicated way on the spectral properties of F(x, t ) :  
if l&k, o)I2 is non-zero only when w < 2k . nlk, then the resonance 
phenomenon mentioned above does not occur, and evidently (from 
fig. 10.3) 

I ~ ~ X M - ~  as M+w. (10.58) 

If on the other hand a resonant response is possible, and if the 
Fourier amplitudes i(k, o )  are isotropically distributed over the 
half-space k . a> 0, then in general a resonant response remains 
possible (for some (k, U)) even when h. becomes very strong 
(Moffatt, 1972); in this case lal decreases less rapidly with M as 
M + W; the detailed calculation in fact gives 

What is important in either case is that if a field h. grows on a large 
length-scale due to the a -effect then ultimately the intensity of the 
a -effect (as measured simply by la 1) must decrease, and clearly an 
equilibrium situation (as in the case of the simple disc dynamo 
discussed in chapter l )  will be attained. 

This same influence of a magnetic field in tending to reduce the 
a -effect has been discussed from different points of view by Vainsh- 
tein & Zel'dovich (1972) and by Pouquet, Frisch & LCorat (1976), 
in the turbulent (rather than the random wave) context. We shall 
defer consideration of this more complicated situation to the fol- 
lowing chapter. 

10.4. Dynamic equilibration due to reduction of a-eff ect 

The a-effect associated with the type of waves discussed in $0 10.2 
and 10.3 will in general be anisotropic due to the influence of the 
preferred directions of both a and ho. Nevertheless the qualitative 
nature of the process of equilibration (i.e. of limitation in the growth 
of magnetic energy) is most simply appreciated by supposing that 
aij = a (M)&, where M = $h: is the local energy density associated 
with the large-scale magnetic field. The arguments of the preceding 
paragraph guarantee that la (M)I + 0 as M + W; moreover a (0) is 
the value of a associated with pure inertial waves, unaffected by 
Lorentz forces. 
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Neglecting the influence of fluid boundaries, we know that the 
free modes of the a2-dynamo (§ 9.2) have typical structure 

h. = hoo(t)(sin KZ, cos KZ, 0). (10.60) 

Such magnetic modes have uniform magnetic energy M(t)= 
$h&(t), and if attention is focussed on just one such mode (the mode 
of maximum growth rate on the kinematic theory being the natural 
one to choose), then a remains uniform in space as the mode 
intensifies. The equation for the evolution of h. is then 

and so M(t) evidently satisfies the equation 

Dynamo action occurs (as in § 9.2) provided 

As M grows with time, l a ( ~ ) I  may increase initially if resonant 
responses of the type discussed in 10.3 play an important role; but 
ultimately la (M)I must decrease and the magnetic energy must level 
off at a value MC determined by 

In the particular model of Moffatt (1972) (which takes account of 
the non-isotropy of aii) the equilibrium level M, determined by the 
above type of argument is given by 

where l is a typical scale of the forcing field F(x, t), wo a typical 
frequency in its spectrum (assumed small compared with a), L is the 
scale of the large-scale field h. (so that L >> l), and a is a constant of 
order unity. The same model (with v >>A) gives an equilibrium 
kinetic energy density of the forced wave field 
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where b is a second constant of order unity. Viscosity appears in this 
expression essentially because resonant forcing of waves for which 
h0 . k = 0 generates waves whose amplitudes are controlled only by 
viscous dissipation - these waves make negligible contribution to 
the a-effect (see footnote on p. 256) but a large contribution to the 
kinetic energy density of the wave-field. The decrease of E, with 
increasing MC also deserves comment: this occurs essentially 
because of the general tendency of a strong magnetic field to inhibit 
response to forcing - in the conceptual limit IhOl-rm, the fluid 
acquires infinite rigidity and there is zero response to forcing of 
finite intensity. 

The non-linear character of the relations (10.65) and (10.66) is 
also noteworthy. In an entirely linear theory, E, would be propor- 
tional to (F2); eliminating MC from (10.65) and (10.66) gives, in 
contrast, E, cc ( F ~ ) ~ ' ~ .  

The ratio of MC to E, is given by 

where C = alb.  With oo<< and v << A, the factors (i2/00)"2 and 
("/A )li2 tend to compensate each other. In any case it is evident that 
if L/ /  is sufficiently large (i.e. if the space available for the growth of 
magnetic modes is sufficient) then the magnetic energy density may 
be expected to rise to a level large compared with the kinetic energy 
density of any random wave motion. This conclusion is not model- 
dependent; indeed it is evident from (10.64) that MC may generally 
be expected to be an increasing function of L(-K-'), whereas E, 
will generally be either independent of L or a decreasing function of 
L (due to the magnetic suppression effect as represented by a 
formula of type (10.66)). 

An alternative means of injecting energy into the fluid system has 
been considered by Soward (1975). In Soward's model the fluid 
(supposed inviscid and highly conducting) is contained between two 
parallel boundaries z = 0, zo, perpendicular to the rotation vector 
S Z ;  energy is injected by random mechanical excitation at z = 0, and 
is absorbed (without reflexion) at z =zo. In the absence of a 
magnetic field, the mean helicity (averages being defined over 
planes z = cst.) is independent of z, and there is an associated 
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non-isotropic a -effect, also independent of z. When zo is suffi- 
ciently large, this situation is unstable to the growth of magnetic 
field perturbations of the form (10.60). As soon as these reach a 
significant level, however, weak ohmic dissipation intervenes, lead- 
ing to spatial attenuation of wave groups propagating from z = 0 to 
z = zo, and hence the a -effect decreases in intensity with increasing 
z. The equilibrium level of the magnetic field at any level is 
determined by the local value of the pseudo-tensor aij, and so the 
equilibrium magnetic energy density M = $(hi) is also a decreasing 
function of z. The scale characteristic of this spatial attenuation is 
found to be 

where UO is the rms velocity on z = 0, l is a length-scale characteris- 
tic of the excitation on z = 0, and oo a frequency characteristic of 
the waves excited (assumed small compared with a ) .  The treatment 
is based on the assumption that the Rossby number R, is small, so 
that, as in other two-scale approaches, L >>l. Fig. 10.4 shows 
solutions obtained by Soward for the two horizontal mean field 
components in the equilibrium situation when zo/L = 16.6; a 
noteworthy feature of the solution is that the field rotates about the 
direction of fl with angular velocity approximately O . ~ ( R : / Q ) ~  
where Q = a 1  2 / ~  (>> 1). 

The situation in the limit zo/L -, co (when fluid fills the half-space 
z > 0) is rather curious. Soward argues that due to the decrease of 
the a -effect with height, the magnetic field must for z 2 L decay 
exponentially (the a -effect being inadequate to maintain it), and 
that a non-zero flux of wave energy must then propagate freely for 
z >>L, 'while the strength of the a -effect remains constant'. It is 
difficult to accept this picture, because a non-zero a -effect always 
gives rise to magnetic instability when sufficient space is available, 
and in the situation envisaged an infinite half-space is available for 
the development of such instabilities. The only alternative is that 
the a-effect vanishes for large z, or equivalently that all the wave 
energy is dissipated in the layer z = O(L) of field generation, and 
none survives to propagate to z = m. 

Soward draws attention to a further complication that must in 
general be taken into account when slow evolution of a large-scale 
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1.0 - 0.5 0 0.5 1.0 

Fig. 10.4 Field components parallel and perpendicular to the field at the 
boundary z = 0 associated with random excitation on z = 0, the boundary 
z = 2, being perfectly absorbing; the fluid rotates about the z-axis with 
angular velocity a, and the magnetic field rotates relative to the fluid with 
angular velocity 0.2(R;/Q)fl where R, and Q are as defined in the text. 
(From Soward, 1975.) 

mean magnetic field is considered. This is that, on the long time- 
scale associated with the evolution, non-linear interactions between 
the constituent background waves may also cause a systematic 
evolution of the wave spectra. This means that, no matter how small 
the perturbations ul and hl may be in equations (10.24) and (10.25), 
neglect of the non-linear terms may not be. justified on the long 
time-scales associated with dynamo action caused by the mean 
electromotive force (ul A hl), which is itself quadratic in small 
quantities. 

An a that decreases with increasing IBI has been incorporated in a 
number of numerical studies of ao -dynamos of the type discussed 
in 5 9.12 (e.g. Braginskii, 1970; Stix, 1972; Jepps, 1975). Stix 
adopted a simple 'cut-off' formula 
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and studied the effect on the oscillatory dipole mode excited in a 
slab geometry (cf. 59.9, but with U = U(z)) .  For the particular 
conditions adopted, the critical dynamo number for this mode was 
found to be X, = -89.0, and the period of its oscillation was 
0 - 9 9 3 ~ ~ / ~ ,  where R is the length-scale transverse to the slab (the 
same scale being used in the definition of X). When X = aXc with 
a > 1, linear kinematic theory gives an oscillatory mode of expo- 
nentially increasing amplitude. The cut-off effect (10.69) limits the 
amplitude to a value of order BC, and also tends to lengthen the 
period of the oscillation: Stix found for example that when a = 7, 
the maximum field amplitude is between 2Bc and 3Bc, and the 
period is about 1 . 7 ~ ~ l A .  Moreover the field variation with time, 
although periodic, is very far from sinusoidal: bursts of poloidal 
field are produced by the a-effect when I B I  <Bc, and these are 
followed by less pronounced bursts of toroidal field (of intensity 
greater than BC) due to the effect of shear. The resulting 'spikiness' 
of the field (as a function of time) was also noticed by Jepps (1975) 
who carried out similar computations (and for a range of cut-off 
functions) in a spherical geometry. 

10.5. Helicity generation due to interaction of buoyancy and 
Coriolis forces 

We have noted on several occasions that a lack of symmetry about 
planes perpendicular to the rotation vector fl is necessary to 
provide the essential lack of reflexional symmetry in random 
motions that can lead to an a-effect. As first pointed out by 
Steenbeck, Krause & Radler (1966), this lack of symmetry is 
present when buoyancy forces p'g (with g . a# 0) act on fluid 
elements with density perturbation p' relative to the local undis- 
turbed density po. 

A simple and illuminating discussion of the mutual role of 
buoyancy and Coriolis forces in generating helicity has been 
recently given by Hide (1976). Suppose that conditions are geo- 
strophic and that the Boussinesq approximation (in which account is 
taken of density fluctuations only in the buoyancy force term of the 
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equation of motion, and not in the inertia term) is valid. Then the 
equation of motion reduces to 

wherein for the moment we neglect any Lorentz forces. The curl of 
this equation (with g A Vpo = 0) gives 

2p0V A ( a  A U) = -g A Vp', (10.71) 

and hence 

Writing ul = U-(U . a ) a / n 2  for the projection of U on planes 
perpendicular to a ,  it may readily be verified that (10.72) may be 
written in the form 

or, taking the average over horizontal planes, 

In the particular case where g is parallel to a ,  and if conditions are 
statistically homogeneous over horizontal planes, then, using 

where W is the vertical component of U, we have from (10.74) 

a formula that provides a direct relationship between the pseudo- 
scalar a. g and at least one ingredient of the total mean helicity 
(U. (V A U)). The phase relationship between p' and dwlaz is evi- 
dently important in determining the magnitude and sign of this 
ingredient. 

With U = ul + ull, the total helicity, averaged over planes z = cst., 
is given by 
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using homogeneity with respect to x and y .  Hence 

where U, is the component of vorticity parallel to a. The ingredient 
~ (wu, )  is not determined (in terms of p ' )  by the above argument; 
Hide maintains that this ingredient should be negligible compared 
with (U* . V A ul) when a is sufficiently strong. However, order of 
magnitude estimates of the two contributions in (10.77) suggest that 

where UII, U*, LII and L L  are velocity- and length-scales parallel and 
perpendicular to 0 ,  related (via V . U = 0) by q I /LI I  = O(UL/LL). 
Since LII/LI is generally large in a rotation dominated system, it 
seems quite possible that the second contribution to (10.78) may in 
fact dominate the first. Estimates such as (10.79) do however 
depend critically on the phase relations between the velocity com- 
ponents, and the matter can really only be settled within the 
framework of more specific models such as that treated in the 
following section. 

10-6. Excitation of magnetostrophic waves by unstable 
stratification 

The following idealised problem (fig. 10.5), which has been widely 
studied in different forms (Braginskii, 1964c, 1967,1970; Eltayeb, 
1972, 1975; Roberts & Stewartson, 1974, 1975), provides a basis 
for the detailed consideration of the effects of unstable density 
stratification. Suppose that fluid is contained between two horizon- 
tal planes z = kzo, on which the temperature @ is prescribed as 
O = Oo r Pzo respectively. In the undisturbed state -P (<O) is then 
the vertical temperature gradient, and instabilities are to be 
expected if P is sufficiently large for the rate of release of potential 
energy associated with overturning of the 'top-heavy' fluid to 
exceed the rate of dissipation of energy due to viscous and/or ohmic 
diffusion. The equation for @(X, t )  is the heat conduction equation 
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Fig. 10.5 Configuration considered in § 10.6. Fluid is contained between 
the planes z = *zo, the lower plane being maintained at a higher tempera- 
ture than the upper plane. The system rotates about the z-axis with angular 
velocity a, and a uniform magnetic field (p@)1'2ho, with h. parallel to the 
x-axis, is supposed present. The system is unstable when the applied 
temperature difference is sufficiently large. 

(see § 3.3), 

d@/dt +U . V@ = K v2@, (10.80) 

where K is the thermal diffusivity of the fluid, and writing O = 

Oo - pz + 8 (X, t )  where 8 is a small perturbation, the linearised form 
of (10.80) (regarding U = (U, v,  W) also as small) is 

The perturbation 8 induces a density perturbation p' = a0 where 
a is the coefficient of thermal expansion, and the equation of 
motion, under the Boussinesq approximation, is 

where P includes a contribution due to the undisturbed density 
gradient. We shall restrict attention to the possibility of modes of 
instability having growth rate small compared with a; for these we 
have seen in § 10.2 that provided v/A 5 1, a legitimate approxima- 
tion to (10.82) is the magnetostrophic equation 

We suppose that in the undisturbed situation the field h. is uniform 
and horizontal. Putting h = h. + hl where lhll << ho, the linearised 
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form of (10.83) is 

where p is the perturbation in P, and the linearised induction 
equation still has the form 

Equations (10.81), (10.84) and (10.85) together with V . u = 
V . hl = 0 determine the evolution of small perturbations (U, hl, 0, 
p). We must of course impose boundary conditions on z = *zo; we 
have firstly that 

Secondly, neglect of all viscous effects is consistent with the adop- 
tion of the 'stress-free' conditions 

Finally, the simplest conditions on h1 result from the assumption 
that the regions 121 >zo  are perfectly conducting and that both 
magnetic and electric fields are confined to the region 121 <zo; it 
follows that (cf. 3.1 17 and 3.1 18) 

The above equations and boundary conditions admit solutions of 
the form 

where nzO/n is an integer. Substituting in (10.81), (10.84) and 
(10.85), and eliminating h1 gives, with k = (l, m, n ), 

-iu1 + 2Cl A 1 = -i(l, m, -in)$ + a i g ,  (10.90) 

-i(w + K ~ ~ ) B '  - P 6  = 0, (10.91) 

and, from V . u = 0, we have also 
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Here, a = -(U + iAk 2)(ho . k)2 (cf. (10.30) in the magnetostrophic 
limit). We may solve (10.90) and (10.91) to give the velocity 
components in terms of p̂  in the form 

and (10.92) then yields the dispersion relationship for o ,  which may 
be simplified to the form 

where 

We are interested in the possibility of unstable modes character- 
ised by o = or + ioi with wi > 0. If or = 0, these modes are non- 
oscillatory, while if or # 0 they have the character of propagating 
magnetostrophic waves of increasing amplitude. Suppose first that 
we neglect dissipative effects in (10.94), i.e. we put A = K = 0. This 
was the ideal situation to which Braginskii (1964c, 1967) restricted 
attention. The roots of the cubic (10.94) are then o = 0 and 

and the mode corresponding to the upper sign is clearly unstable 
whenever k is such that Z > 1 , 0  < Y < W. Now in the geophysical or 
solar contexts, it is appropriate (as in 5 9.6) to regard the y -direction 
as east, so that possible values of m are restricted by the require- 
ment of periodicity in longitude to a discrete set Nml, (N = 0, * 1, 
*2, . . .). The 'axisymmetric' mode corresponding to N = 0 is of no 
interest since, for it, Y = W and o = 0. The mode that is most prone 
to instability is that for which N = *l,  since (other things being 
equal) this gives the largest value of Z. This mode would correspond 
to e*" dependence on the azimuth angle q in the corresponding 
spherical geometry. Note that the above description in terms of the 
magnetostrophic approximation can only detect low frequency 



268 MAGNETIC FIELD GENERATION IN FLUIDS 

modes (Io 1 c< Cl) and the approximation breaks down for modes not 
satisfying this condition. 

Neglect of dissipative effects in this problem is a dangerous 
simplification, for reasons spelt out by Roberts & Stewartson 
(1974): if gap /h  :, exceeds m: by any amount, no matter how small, 
an infinite number of modes (corresponding to large values of l )  
apparently become unstable according to (10.96), since as l -* W, 

Z - apg/ h :m: > 1 ; this result is however spurious, since Y -* 0 as 
l -* (m and n being fixed), and the condition lo l <c fi is not 
therefore satisfied when 1 is very large; i.e. the contribution of 
Du/Dt in the equation of motion undoubtedly becomes important 
when l is large. Also, more obviously, diffusion effects must become 
important for large wave-number disturbances, and presumably 
have a stabilising effect. 

Weak diffusion also has the effect of shifting the degenerate root 
o = 0 of (10.94) away from the origin in the complex o-plane. 
Indeed linearisation of (1 0.94) in the quantities A, K and o (assumed 
small) gives for this root the expression 

o = - iAk2(Z-q)/(~- l),  q = K/A.  (10.97) 

then the modes given by (10.96) are stable, whereas that given by 
(10.97) is clearly unstable with a slow growth rate determined by the 
weak diffusion effects. The manner in which the ratio of the small 
diffusivities A and K enters this criterion is noteworthy. 

The behaviour of the roots of (10.94) for varying values of k, 
q = K/A, Y and Z was investigated by Eltayeb (1972), and the 
results have been summarised in 9 3 of Roberts & Stewartson 
(1974). Of particular interest is the question of whether, for given 
values of q, Q and R, where 

the preferred mode of instability (i.e. that for which oi is maximum) 
is oscillatory (or # 0) or non-oscillatory (or = 0). Fig. 10.6 (from 
Roberts & Stewartson, 1974) shows the region of the (q, Q) plane in 
which oscillatory modes are preferred; in particular, non-oscillatory 
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Oscillatory modes 
 referred 

0 1 2 3 4 5 6 7 ;  
Fig. 10.6 Regions of the Q-q plane in which oscillatory modes are possible 
and preferred. In the shaded regions, the preferred modes are oblique to 
the applied field (i.e. m # 0 in (10.101)), while in the unshaded regions the 
preferred modes are transverse to B. (i.e. m = 0). (From Roberts & 
Stewartson, 1974.) 

modes are always preferred (when unstable) if 

either q < 2  or Qs3 .273 ,  (10.100) 

and this result is independent of the value of R,. 
Let us now consider the helicity associated with unstable distur- 

bances. With 
i( lx +my -ot) u = Re (i; cos nz, 6 cos nz, I$ sin nz) e , 

(10.101) 

it is straightforward to show that 

(U . V A U) = Re [I$ * (ilu* - imi; )] cos nz sin nz eZ9', 
(10.102) 

the average being over horizontal planes. (Incidentally, the con- 
tribution (ul . V A ul) to the total helicity in the notation of 9 10.5 is 
zero in this case!) Now if the disturbance is non-oscillatory4, then w 
and o are both pure imaginary; putting 

The statement in Moffatt (1976) that the helicity vanishes in this case is incorrect. 
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we have from (10.93) and (10.102) 

n ~ ( m ~ + ~ ~ ) ( ~ i + ~ k ~ ) 1 $ I ~  / 
(U . V A U ) =  sin 2nz e2"it. 

( 4 n 2 + ~ ? ) [ ~ @ g  -~i(Uif  ~ k ~ ) ]  

This is antisymmetric about the centre-plane z = 0; in the case 
nzo = v, the helicity is positive or negative in 0 < z < zo according 

In the critically stable case (oi = O), the crucial importance of the 
ratio q = K/A is again apparent. 

Further detailed consideration of this problem, and of variations 
involving different orientations of and h. relative to the bound- 
aries, and different boundary conditions, may be found in Eltayeb 
(1975). 

10.7. Instability due to magnetic buoyancy 

The concept of magnetic buoyancy was introduced by Parker 
(1955a) in a discussion of the process of formation of sunspots by 
instabilities of a subsurface solar toroidal magnetic field. Compres- 
sibility is an essential element in this type of instability, which is 
closely related to the instability that occurs in a stratified atmos- 
phere when the (negative) temperature gradient is super-adiabatic. 

Suppose that in an equilibrium situation (fig. 10.7) with gravity 
g = (0, 0, -g), we have a density distribution p&) and a magnetic 
field distribution B0 = (0, B&), 0). The equation of magnetostatic 
equilibrium is 

where po(z) is the pressure distribution, which may be supposed a 
monotonic increasing function f (PO) of density p&) (in the particu- 
lar case of an isothermal 'atmosphere', p&) = C ~ ~ O ( Z )  where c2 is 
constant). 

Suppose now that a flux-tube of cross-sectional area A l at height 
z = zl, with Bo(zl) = B1, p(zl) = pl, is displaced upwards to the level 
z = 22, and that ohmic diffusion may be neglected. Then A 1, B1 and 
p1 will change to, say, A l ,  B1, bl, and conservation of mass and of 
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Fig. 10.7 Sketch illustrating the simplest instability due to magnetic 
buoyancy. The shaded flux-tube is displaced from the level z = zl to the 
level z = 2,; it will continue to rise if its new density p', is less than the 
ambient density p,. 

magnetic flux implies that 

p l ~ l = p " l A 1 ,  B ~ A ~ = B ~ A ~ ,  (10.107) 

and in particular 

During the displacement of the tube, it will tend to expand (if 
dpl/dz < 0) in such a way as to maintain pressure equilibrium with 
its new environment, and if the displacement is sufficiently slow, we 
may suppose that this equilibrium is maintained, i.e. 

where 

h =  f (;l), ~2 = P (~2) ,  B2 = Bo(~2). 

The tube will be in equilibrium in its new environment only if 
p"l = p2: clearly if 61 <p2, it will continue to rise, while if p"l >p2 it 
will tend to return to its original level. The neutral stability condi- 
tion = p2 implies = p2, and so from (10.109), 81 = B2. Hence, 
under neutral stability conditions, (10.108) becomes 
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or since this must hold for every pair of levels (21, z2), neutral 
stability requires that d(Bo/po)/dz = 0, and clearly the atmdsphere 
is stable or unstable to the type of perturbations considered accord- 
ing as 

Defining scale-heights 

the condition for instability may equally be written 

The above simple argument does not take any account of possible 
distortion of the field lines, and merely shows that the medium is 
prone to instabilities when the magnetic field strength decreases 
sufficiently rapidly with height. Distortion of the field lines is 
however of crucial importance in the problem of sunspot formation 
(6 5.3) and it is essential to consider perturbations which do distort 
the field lines, and which are affected by Coriolis forces when 
account is taken of rotation. Different instability models have been 
studied by Gilman (1970) and by Parker (1971f, 1975). Parker 
studies instability modes for which the pressure perturbation Sp 
may be neglected, i.e. modes whose time-scales are short compared 
with the time-scale associated with the passage of acoustic waves 
through the system. Gilman by contrast supposes that the thermal 
conductivity (due to radiative or other effects) is very large, and 
restricts attention to slow instability modes in which pressure and 
density remain in isothermal balance (Sp = c 26p) and the perturba- 
tion in total pressure (fluid plus magnetic) is negligible (as in the 
qualitative discussion above). We shall here follow the analysis of 
Gilman, including the effects of rotation, but making the additional 
simplifying assumption that the instability growth rates are suffi- 
ciently small for the magnetostrophic approximation (neglect of 
Du/Dt in the equation of motion) to be legitimate. This greatly 
simplifies the dispersion relationship, and allows some simple con- 
clusions to be drawn. 
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The Gilman model 

The equations describing small magnetostrophic perturbations 
about the equilibrium state of fig. 10.7 are 

and, following Gilman (1970), we assume that the pressure and 
density perturbations p and p are related by 

where c is the isothermal speed of sound. This is the situation if the 
effective diffusivity of heat (due to radiative transfer) is very large. 
In (10.114), viscous and ohmic diffusion effects are neglected, and 
also dulat is omitted5, so that we focus attention on modes with 
growth rate small compared with R. Note also that the centrifugal 
contribution to X is neglected, on the reasonable assumption (in the 
solar eontext) that gravitational acceleration greatly exceeds cen- 
trifugal acceleration. If Ox, Oy, Oz are interpreted as south, east 
and vertically upwards with origin 0 in the convective zone at 
colatitude 8, then the components of are given by 

a= (-a sin 9,0, R cos 8). (10.116) 

Equations (1 0.1 14), (1 0.11 5) admit solutions proportional to 
ei"x+mY -w t )  . The analysis is greatly simplified in focussing attention 
on disturbances for which ( l (  >> Im l ;  such disturbances are particu- 
larly relevant in the sunspot context - the longitudinal separation of 
the two members of a typical sunspot pair gives a measure of the 
spatial variation in the y -direction; variation in the X-direction is 
unconstrained by the magnetic field Bo, and can have length-scales 
small compared with the longitudinal separation scale. If, formally, 

In this respect we depart from the treatment of Gilman (1970) who obtained a 
more general dispersion relationship than (10.120) describing both fast and slow 
modes of instability. When = 0, Gilman found modes of instability whenever 
IBo(z)l decreases with height. Such modes are not helical in character, although 
there is little doubt that they become so when perturbed by rotation effects. 

/ 



274 MAGNETIC FIELD GENERATION IN FLUIDS 

we let l -, in the Fourier transform of (10.1 14), thelx-component 
of the equation of motion degenerates to ,f = 0. Consequently, in 
modes for which 11 I >> lm 1, we have equivalently 

With u = (U, v, W ) ,  b = (b,, by, b,), we may then easily obtain from 
(10.114)-(10.117) three linear equations relating v ,  W and by, viz. 

where6 q = 2 n  sin B, h0 = (popo)-1/2~o is the local ~ l f v 6 n  speed and 

The vanishing of the determinant of coefficients in (10.118) gives 
a dispersion relationship in the form 

u2q2(hg+~2)-oqmhi(g+h%B + c 2 ~ , )  

+rn2h;(g& - r n 2 c 2 ) = ~ .  (10.120) 

If the roots of this equation are complex, then we have instability; 
the condition for this is evidently 

Since the equilibrium condition (10.106) may (in the case of an 
isothermal atmosphere with c = cst.) be written 

the conclusion from (10.121) is that the medium is unstable to 
perturbations whose wave-number in the y (or azimuth) direction 
satisfies 

2 -1 1/2 m < m , = ( p ( ~ ~ - ~ ~ ) ( h ~ + c  ) ) . (10.123) 

As anticipated in the introductory comments, a necessary condition 
for this type of instability is KB > Kp (or equivalently LB <Lp); 
when this condition is satisfied, (10.123) gives the minimum scale 

Note that only the component of 0 perpendicular to g influences the perturbations 
when 11 l >> ]m l. 
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2.rr/mC on which perturbations will grow. It is interesting that this 
scale does not depend on the rotation parameter q (although the 
growth rates given by (10.120) are proportional to q-l). 

With o = or + ioi, when m < m,, the unstable mode (oi > 0) is 
given from (10.120)-(10.123) by 

Since o,m > 0, these instability waves propagate in the positive 
y -direction, i.e. towards the east. 

The helicity distribution (U. V A U) associated with this type of 
instability is given (for large l)  by 

the ratio of u to W being given by (10.118). A straightforward 
calculation using (10.125) gives7 

and since this is real, the leading order contribution (10.126) is in 
fact zero. Terms of order m/l would have to be retained in the 
analysis throughout in order to obtain the correct expression for X. 
We can however directly derive an a -effect associated with the type 
of instability considered. Writing 

the coefficient a may be obtained in the form 

The fact that this is in general non-zero is of course an indication of 
the lack of reflexional symmetry of the motion. 

I am indebted to Dr David Acheson and Mr M. Gibbons who pointed out errors in 
the first draft of this section, and who proved in particular that the helicity vanishes 
at leading order. 
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\ 
10.8. Helicity generation due to flow over a bumpy surface 

As a final example of a mechanism whereby helicity (and an 
associated cu -effect) may be generated, consider the problem 
depicted in fig. 10.8: an insulating solid is separated from a conduct- 

X 

Conducting fluid Boi 

Fig. 10.8 Sketch of the configuration considered in 8 10.8. This provides a 
crude model for the generation of magnetic fluctuations near the Earth's 
core-mantle boundary. 

ing fluid by the 'bumpy' boundary z = r ) (x) ,  and as in § 10.6 we 
suppose that a = (0,0, G), B. = (Bo, 0,O). Moreover we suppose 
that the fluid flows over the bumps, the velocity tending to the 
uniform value (Uo, 0,O) as z + -W. This may be regarded as a crude 
model of flow near the core-mantle boundary in the terrestrial 
context, crude because (i) the spherical geometry is replaced by a 
Cartesian 'equivalent', (ii) the tangential magnetic field in the 
terrestrial context falls to a near zero value at the core-mantle 
boundary because of the low conductivity of the mantle, whereas 
here we suppose the field to be uniform, and (iii) the bumps are 
regarded as two-dimensional whereas in reality they are surely 
three-dimensional. The model in this crude form has been consi- 
dered from different points of view by Anufriyev & Braginskii 
(1975) and by Moffatt & Dillon (1976). These studies are relevant 
(i) to the tangential stress (or equivalently angular momentum) 
transmitted from core to mantle and (ii) to the observed correlation 
between fluctuations in the Earth's gravitational and magnetic fields 
over its surface (Hide, 1970; Hide & Malin, 1970). Here we focus 
attention simply on the structure of the motion induced in the liquid 
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and the associated helicity distribution, which is the most relevant 
aspect as far as large-scale dynamo effects are concerned. 

Neglecting effects associated with variable density, and supposing 
that Iqf(x)l<< 1 so that all perturbations are small, the governing 
equations for the steady perturbations generated are (10.24) and 
(10.25) (with dullat = dhl/at = 0) together with V . ul = V . hl = 0. 
We shall also make the magnetostrophic approximation, which in 
this situation involves neglect of the convective acceleration term 
uo . Vul and of the viscous term vv2ul in (10.24). (The viscous term 
leads to a thin Ekman layer on the surface, and an associated small 
perturbation of the effective boundary condition (10.134~) below.) 
These equations admit solutions of the form 

where m = k ( l ,  0, y ) and possible values of y are to be determined; 
these must satisfy Im y < 0 since the perturbations must vanish as 
z + -m. Substitution in the equations and straightforward elimina- 
tion of the amplitudes 1 ,  h, p̂  leads to a cubic equation for y ': 

( 1 + y 2 ) + Y 2 [ ~ ( 1 + Y 2 ) + 2 i ~ ~ - 1 ] 2 = ~ ,  (10.129) 
where 

Moreover, if the three solutions of (10.129) satisfying Im y < 0 are 
denoted by y, (n = 1,2,3), then the ratios of the velocity and 
magnetic components are given in the corresponding modes by 

where 
2 ~ ~ = - 4 ~ : ( l + ~ : ) - l .  (10.132) 

In the insulating region, the field B is harmonic, i.e. B - B. = 

(popm)1'2~V say, where pm is the density of the solid ('mantle') 
region, and V, being a potential function, has Fourier transform 
given by 

V(x, y ) = 2 Re &(k) e-" eikx dk. 
Jo 

(10.133) 
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The amplitudes an(k), &(k) may be obtained in terms of the 
Fourier transform 6 (k) of q ( X )  by applying the linearised boundary 
conditions 

The first of these expresses the fact that the normal velocity on 
z = q (X) is zero; the second expresses continuity of both normal and 
tangential components of B. 

The nature of the cubic equation (10.129) makes the detailed 
subsequent analysis rather complicated. In the terrestrial context 
however both Q and A are small, and asymptotic methods may be 
adopted. If Q<< l and AK-'<< Q, the three relevant roots of 
(10.129) are, to leading order, 

This means that the mode corresponding to n = 1 has spatial 
dependence ekz+ikx ; the corresponding velocity and magnetic per- 
turbation~ are irrotational (to leading order) and penetrate a dis- 
tance ~ ( k - l )  into the fluid. The helicity associated with this mode is 
zero. By contrast the modes corresponding to n = 2 and 3 have a 
boundary layer character, penetrating a distance SB = ~ ( k - l ~ l ' ~ )  
into the fluid. Moreover these modes are strongly helical: the 
helicity 2tn (n = 2 or 3) associated with either mode is given (Moff att 
& Dillon, 1976) by 

Since k > 0 in the representation (10.128) adopted, this helicity is 
positive for both modes, a fact that could be anticipated from the 
arguments of Q 10.2: there is clearly a downward flux of energy from 
the boundary into the fluid and the associated helicity is therefore 
positive. The apparent contradiction between (10.136) and the 
result I~(k) l  G 2kE(k) bounding the helicity spectrum (Q 7.6) is 
accounted for by the fact that here we are dealing with a strongly 
anisotropic situation with severe attenuation of modes in the z -  
direction, and the argument leading to (7.55) simply does not apply. 
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The amplitude (9,12 in (10.136) is proportional to 14 l2 and also 
decays as e'z/Q as z -* -W. 

In this context, Andrews & Hide (1975)ihave demonstrated that, 
in the non-dissipative limit (v = A = K = 0), free wave motions sub- 
ject to the influence of buoyancy forces, Coriolis forces and Lorentz 
forces can in a similar way be trapped against a solid plane boundary 
provided the boundary is inclined to the horizontal and provided 
the basic field B. is parallel to the wall; the trapped modes cease to 
exist if B0 has a component perpendicular to the wall. In the study 
described above, a component of B. perpendicular to the wall may 
likewise be expected to exert a strong influence on the structure of 
the three modes. 



C H A P T E R  1 1  

T U R B U L E N C E  W I T H  H E L I C I T Y A N D  

A S S O C I A T E D  D Y N A M O  A C T I O N  

11.1. Effects of helicity on homogeneous turbulence 

We have seen in chapters 7 and 8 that a lack of reflexional symmetry 
in a random 'background' velocity field u(x, t ) ,  and in particular a 
non-zero value of the mean helicity (U.  V A U), is likely to be a 
crucial factor as far as the effect on large-scale magnetic field 
evolution is concerned. In these circumstances, it is appropriate to 
consider the general nature of the dynamics of a turbulent velocity 
field endowed with non-zero mean helicity. First it must be stated 
that turbulence exhibiting such a lack of reflexional symmetry has 
seldom been submitted to direct experimental investigation in the 
laboratory. Nearly all traditional studies of turbulence (e.g. grid 
turbulence, boundary layer turbulence, turbulence in wakes and 
jets, channel and pipe turbulence, etc.) have been undertaken in 
conditions that guarantee reflexional symmetry of the turbulence 
statistics. In order to study turbulence with helicity it is necessary to 
deliberately inject lack of reflexional symmetry through appro- 
priate control of the source of energy for the flow. The natural way 
to do this, as indicated by the analysis of 5 10.2, is to generate 
turbulence in a rotating fluid by some means that distinguishes 
between the directions * a ,  where SZ is the rotation vector. For 
example, if a grid is rapidly drawn through a rotating fluid in the 
direction of SZ, the resulting random velocity field may be expected 
to lack reflexional symmetry. This situation has been realised in the 
laboratory by Ibbetson & Tritton (1975), who measured the decay 
of the mean square of the three velocity components; no technique 
however has as yet been realised for direct measurement of mean 
helicityl. 

A possible method for making such a measurement is proposed by LCorat (1975, 
Appendix A3). 
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Energy cascade in non -helical turbulence 

Before considering the effects of helicity on the dynamics of turbul- 
ence, let us first recall the essential features of high Reynolds 
number turbulence, as conceived by Kolmogorov (1941) and as 
expounded by Batchelor (1953). Consider a statistically steady state 
in which kinetic energy is generated on a length-scale l. at a rate E 

per unit mass. Let u ~ = ( u ~ ) ' / ~  and suppose that the Reynolds 
number R, = uolo/v is large. Due to dynamical instability, the 
energy then 'cascades' through a sequence of decreasing length 
scales l, << In-' (n = 1'2, . . .) until it reaches a scale l, say at which 
viscous dissipation is adequate to dissipate the energy at the rate E .  

This scale is determined in order of magnitude by E and v and is 
therefore given (dimensionally) by 

Moreover, on this picture, the energy level !U: depends on the rate 
of supply of energy E to the system and on lo, but not on v, so that 
again on dimensional grounds 

Eliminating E between (1 1.1) and (1 1.2) gives 

Equally, we may define characteristic wave-numbers ko = l;', k .  = 

l;', with 

In the range of wave-numbers koc< k << k, (described as the 
'inertial range'), the energy spectrum tensor aii(k) (see 9 7.8) is 
statistically decoupled from the energy source (which is confined to 
wave-numbers of order ko), and may therefore be expected to be 
isotropic and to be determined solely by the parameter E which 
represents the rate of flow of energy across any wave-number 
magnitude k in the inertial range. In the absence of any helicity 
effect, aij (k) is then given by 
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and the energy spectrum function E(k)  is given, again on dimen- 
sional grounds, by 

where C is a dimensionless constant of order unity. The associated 
vorticity spectrum function is given by 

For k sk , ,  both E(k)  and a ( k )  experience a rapid (quasi- 
exponential) cut-off due to viscous dissipation. The mean-square 
vorticity (w ') = 1; a ( k )  dk is clearly dominated by contributions 
from the neighbourhood of the viscous cut-off wave-number k = k,, 
and increases as v decreases; in fact, since the rate of dissipation of 
energy is 2v(w2), we have the exact result 

From (11.2) and (11.8) 

or equivalently 

l, = uO/(w 2)1/2 - R;~/~zO. (11.10) 

Here 1, is an intermediate length-scale satisfying 

l0 >> l, >> l,. (11.11) 

One interpretation of the length l, (the Taylor micro-scale) is that it 
provides a measure of the mean radius of curvature of an instan- 
taneous streamline of the flow. 

Effect of helicity on energy cascade 

Suppose now that the source of energy on the scale l. is such as to 
impart non-zero helicity (U. w) to the velocity field that is gener- 
ated. A 'thought experiment' incorporating this behaviour has been 
described in § 7.6. In such a situation, we may talk of 'helicity 
injection' as well as 'energy injection' at wave-numbers of order ko 
(Brissaud et al., 1973). However the level of helicity generated is 
limited by a Schwarz-type inequality: defining 

l 
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we must clearly have 

We have already commented in § 3.2 on the fact that the total 
helicity of a localised disturbance in an inviscid fluid is a conserved 
quantity (like its total energy). In homogeneous turbulence, a 
similar result holds (as recognised by Betchov, 1961): the helicity 
density U . m satisfies the equation (cf. (3.7)) 

when Y = 0, SO that, taking a spatial average and using homogeneity, 
we have immediately 

The helicity spectrum function F(k ), defined (cf. (7.52)) by 

F(k) = i 1 ~ i ~ ~ k k  h (k) ds, (11.16) 
Sk 

is therefore presumably controlled by a process of transfer of 
helicity from the 'source' at wave-numbers of order ko to the viscous 
sink at wave-numbers of order k, and greater. Injection of helicity 
may be thought of in terms of injection of large-scale linkages in the 
vortex lines of the flow. These linkages survive during the (essen- 
tially inviscid) cascade process through the inertial range, but they 
are eliminated by viscosity on the length-scale l ,  = k;'. 

We have seen (cf. (7.55)) that F(k) must satisfy a 'realisability' 
condition 

IF(k)l S 2kE (k) (11.17) 

for all k. This condition is in general much stronger than the 
condition (1 1.13); the two conditions in fact coincide only when a 
single wave-number magnitude is represented in the velocity spec- 
trum tensor. In normal turbulence with energy distributed over a 
wide range of length-scales, the condition (1 1.17) implies that 
IRol <c l. To see this, suppose for example that we have maximal 
positive helicity at each wave-number, so that F(k) = 2kE(k), and 
that E(k )  is given in an inertial range by the Kolmogorov spectrum 
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(11.6). Then F(k)cc k-2/3 in this inertial range, and so (U .  W) = 

F(k) dk is dominated by values of k near k,; this means that 
(U.  w) is determined by E and v, and so on dimensional grounds 

Hence 

Even (11.19) however is an overestimate of l%'ol in any real 
turbulent situation. Suppose for example that, at time t = 0, we 
impulsively generate a random velocity field on the scale l. = k i l  
with maximal helicity, i.e. 1201 = 0(1), and we allow this field to 
evolve under the Navier-Stokes equations. Viscosity has negligible 
effect until (w2) has increased (by random stretching) by a factor 
O(R.); during this process (U .  W) and (u2) remain essentially 
constant. Hence lXol decreases by a factor O(R;~/~) ,  i.e. at this 
stage 

l%'ol = o(R;'/~), (I 1.20) 

and it will presumably remain of this order of magnitude (at most) 
during the subsequent decay process. 

The difference between (1 1.19) and (1 1.20) provides an indica- 
tion that a state of maximal helicity F(k)= 2kE(k) is not in fact 
compatible with natural evolution under the Navier-Stokes equa- 
tions. Direct evidence for this is provided by the following simple 
argument of Kraichnan (1973). Suppose that at time t = 0 we have a 
velocity field consisting of two pure 'helicity modes', U = ul +u2, 
where 

A 

where C.C. represents the complex conjugate, and k, = 

k,/ k, (n = 1,2). These modes satisfy 

The choice of sign in u2 (corresponding to right-handed or left- 
handed circular polarisation) is retained in order to shed light on the 
nature of the interactions between helical modes of like or opposite 
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polarities. Writing the Navier-Stokes equation in the form 

where p" = p / p  + $u2, it is evident that the strength of the interaction 
is given by the non-linear term 

Since kl  + k2 > Ikl - k21, it is immediately apparent that modes of 
opposite polarity have a tendency to interact more strongly than 
modes of like polarity. In fact when kl = k2, U is parallel to o when 
the modes are of like polarity (X0 = 1) and there is no non-linear 
interaction whatsoever! 

To see that maximal helicity is not conserved, it is necessary to 
obtain ( a ~ / a t ) , = ~  from (11.23), and this involves elimination of p" 
using V . U = 0. The initial interaction generates modes with wave- 
vectors kl * k2. Let k = kl + k2 and choose axes (fig. 11.1) so that 

kl = kl(sin y, 0, -cos y), 

k2 = k2(-sin P, 0, -cos P), 

Fig. 11.1 Interaction of two helical modes; modes with wave-vectors k, and 
k, are each circularly polarised (cf. fig. 10.2) and of maximum positive 
helicity; these interact to generate a mode of wave-vector k = k, + kZ which 
is not of maximum helicity. (After Kraichnan, 1973.) 
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where kl  sin y - k:! sin p = 0. Then, as shown by Kraichnan (1973), 
the initial excitation of the mode u(k) eik." is given (ignoring the 
viscous effect) by 

so that, as anticipated above, Iu(k)I,=o is greater when the interact- 
ing waves have opposite polarity than when they have the same 
polarity; and moreover since ik A u(k) # *ku(k) when y # P, the 
condition of maximal helicity cannot be conserved under non-linear 
interactions. 

The conclusion of these arguments is that, no matter how strong 
the level of helicity injection may be at wave-numbers of order ko, 
the relative level of helicity as measured by the dimensionless ratio 
F(k)/2kE(k) must grow progressively weaker with increasing k ;  
and when k/ko is sufficiently large it may be conjectured (Brissaud 
et al., 1973) that the helicity has negligible dynamical effect, and is 
itself convected and diffused in much the same way as a dynamically 
passive scalar contaminant (Batchelor, 1959). Suppose that the rate 
of injection of helicity (a pseudo-scalar) at wave-numbers of order 
ko is q. This is clearly bounded by an inequality of the form I q  1 S koe 
since helicity cannot be injected without simultaneous injection of 
energy. If helicity is injected at a maximal rate, then 

The helicity spectrum F(k) must be proportional to q (the pseudo- 
scalar character of both quantit"ies ensures this) and in the inertial 
range kocc k << kv, the only other parameters that can serve to 
determine F(k) are E and k ; hence on dimensional grounds2 

where CH is a universal constant, analogous to the Kolmogorov 
constant C in (1 1.6). E (k ) is still given by (1 1.6), being unaffected 

The result (11.28) was presented as one of two possibilities by Brissaud et al. 
(1973). The other possibility conjectured involved a 'pure helicity cascade' without 
any energy casade; this possibility is incompatible with dynamical arguments, and 
has now been abandoned (Andri & Lesieur, 1977). 
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by helicity in the inertial range. Note that (11.27), together with 
(1 1.6) and (1 1.28), implies that 

I~(k)l<< 2kE (k), (k, << k << k,), (1 1.29) 

consistent with the discussion of the previous paragraphs. 
From the point of view of dynamo theory, perhaps the most 

significant point in the foregoing discussion is that the mean helicity 
in a turbulent field is given by (1 1.20) rather than (1 1.19); equival- 
ently it is a property of the 'energy-containing eddies' of the flow 
(scale O(lo)) rather than of the dissipative eddies (scale O(1,)). A 
crude maximal estimate of l(u . w)l is therefore given by ui/ lo,  
independent of the Reynolds number of the turbulence. This is in 
fact the estimate that we adopted in previous sections (see for 
example the argument leading to the estimate (7.90) for a), but it is 
reassuring now to have some retrospective dynamical justification. 

A second general conclusion from the foregoing discussion is that 
the presence of helicity may be expected to exert a mild constraint 
on the energy cascade process, at any rate at wave numbers of order 
ko where the relative helicity level JF(k)l/2kE(k) may be quite high. 
The study of interacting helicity modes (Kraichnan, 1973) indicates 
that non-linear interactions are weaker when the interacting modes 
have like polarity; if all the modes present at the initial instant have 
the same polarity (corresponding to a state of maximal helicity at 
each wave-number magnitude) the net energy transfer to higher 
wave-numbers may be expected to be inhibited, and so the decay of 
turbulence should be delayed. More transparently perhaps, since 

maximisation of l(u . o)l may plausibly be associated with minimisa- 
tion of ((U A and so with a weakening (on the average) of 
non-linear effects associated with the term U A o in (1 1.23) (Frisch 
et al., 1975). 

Finally, we note that AndrC & Lesieur (1977) have numerically 
analysed the development of energy and helicity spectra on the 
basis of a closure of the infinite system of equations that gives the 
rate of change of nth order correlations in terms of correlations up 
to order n + l  (Batchelor, 1953); the particular closure scheme 
adopted by AndrC & Lesieur is a variant of the 'Eddy-damped 
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quasi-normal Markovian' closure (EDQNM) (Orszag, 1970,1977) 
by which 4th order correlations are expressed in terms of 2nd order 
correlations in a way that guarantees, that the realisability condi- 
tions E(k, t) 2 0, IF(k, ?)l S 2kE(k, t) are satisfied at all times. Num- 
erical integration of the resulting equations indicates (i) the 
development of k-5/3 inertial ranges for both E(k, t) and F(k, t), 
and (ii) aisignificant delay in the process of energy dissipation when 
a high level of helicity is initially present. These results, although not 
conclusive (being based on a closure scheme that is to some extent 
arbitrary), do support the general description of the dynamics of 
turbulence with helicity, as outlined in this section. 

11.2. Influence of magnetic helicity conservation in energy transfer 
processes 

Suppose now that the turbulent fluid is permeated by an equally 
turbulent magnetic field h(x, t), the mean value of h being 
zero. What can be said about the joint evolution of the spectra of U 

and h? We shall suppose in the following discussion that dissipation 
effects (both viscous and ohmic) are weak, or equivalently that both 
the Reynolds number R, = uolo/v and the magnetic Reynolds 
number R, = uolo/A are large. 

Consider first the new quadratic invariants that exist in the 
dissipationless limit A = v = 0. These are the total energy ET, the 
magnetic helicity IM, and the cross-helicity 3 ~ ~ :  

(see $5 3.1 and 10.1). Here a is a vector potential for h, i.e. h = V A a. 
Note that the value-of IM is independent of the gauge of a. The 
kinetic helicity (U .  o) is no longer invariant in the presence of a 
magnetic field distribution, because, under the influence of the 
rotational Lorentz force, vortex lines are no longer frozen in the 
fluid. 

The equations of magnetohydrodynamics, (1 0.9) and (10.1 O), are 
invariant under the transformation h(x, t) + -h(x, t) (i.e. to every 

In (11.31), factors involving the (uniform) density p and the constant p. are 
omitted for simplicity. The term 'cross-helicity' was introduced by Frisch et al. 
(1975); see also Moffatt (1969). 
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solution (u(x, t), h(x, t)) (there corresponds another solution u(x, t), 
-h@, t)). If, therefore, at some initial instant t = 0 the statistical 
properties of the (U, h) field are invariant under change of sign of h, 
then they will remain so invariant for all t > O  (this holds for 
arbitrary values of A and v and also if there is an arbitrary forcing 
term in the equation of m ~ t i o n ) ~ .  Under this condition, which we 
may describe as the condition of magnetic sign invariance, any 
statistical function of the fields U and h which appears to change sign 
under replacement of h by -h must in fact be permanently zero. In 
particular, under the condition of magnetic sign invariance, 

and similarly all moments of the form (uiui. . . hahp . . .) involving an 
odd number of h-factors will vanish for all t. We shall suppose, 
unless explicitly stated otherwise in the following discussion, that 
this condition of magnetic sign invariance is satisfied. 

Consider now for simplicity the idealised situation in which the U 

and h fields are statistically invariant under rotations (but not 
necessarily under point reflexions). The spectrum tensors Qii(k, t), 
Tii(k, t) of U and h are then given by 

iN(k t) rii (k, l )  = (k 26ij - kikj) + &iikkk, (I 1 34) 
47rk4 87rk 

where 
00 

#u2) = I E (k, t) dk, 
0 

00 

h = J-  M(k, t) dk, 

(U . 0) = IOW F(k, t) dk, 

CO 

(a . h) = jo N(k, t) dk. 

This result is mentioned by Pouquet et al. (1976). 
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Note that the spectrum tensor of the field a is (under the condition of 
isotropy) just k-21?ij(~, t), and that N(k, t) is defined with respect to 
the invariant (a . h) (rather than with respect to (h . V A h)); this leads 
to the factor k-2 in the antisymmetric term of (1 1.34), as contrasted 
with k-4 in the corresponding term of (11.33). The realisability 
conditions on rii(k, t) are simply 

M(k, t) 3 0,  IN(^, t)l S 2 k - ' ~ ( k ;  t). (1 1.37) 

Let us now consider in a qualitative way how the system will 
respond to injection of kinetic energy and kinetic helicity at wave- 
numbers of order ko (a situation studied within the framework of 
the EDQNM closure scheme by Pouquet, et al. (1976). 'suppose 
that an initially weak magnetic field is present with, in particular, 
ingredients on scales large compared with k i l .  On the scale k i l ,  
these ingredients will provide an almost uniform field h. say. Helical 
motion on scales s k i 1  will generate a perturbation field with 
magnetic helicity related to the kinetic helicity. If we represent the 
action of motions on scale k i l  by an eddy diffusivity A,, then the 
magnetic fluctuations on scales -k i l  are determined by the equa- 
tion 

with Fourier transform 

The corresponding relation between the spectra of h and U is 

(a result obtained in a related context by Golitsyn, 1960). The result 
(1 1.40) gives an anisotropic form for riiwhen Qii is isotropic, due to 
the preferred direction of ho. However, if we now take account of 
the fact that the large-scale field h. is non-uniform, all directions 
being equally likely, we may average over these directions to obtain 
the isotropic relationship 
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and hence, from (1 1.3 3) and (1 1.34), 

The magnetic helicity generated at wave-numbers of order ko is 
therefore of the same sign as the kinetic helicity. 

Consider now the development of the large-scale field ho. We 
know from the general considerations of chapter 7 that positive 
kinetic helicity gives rise to a negative a -effect. There is of course no 
a priori justification for a two-scale approach when the spectrum of 
h(x, t) is continuous; but if a two-scale approach is adopted, the 
evolution equation for h. is 

Writing h. = V A ao, we have equivalently 

for some scalar 40, and from (1 1.43) and (1 1.44), the development 
of the large-scale magnetic helicity is given by 

d 
-(a0 . ho) = a (ao . V A ho) + a (hi) +A (a0 . v2ho + h0 . V2ao) 
at 

= 2a (hi) - 2A ((aaj/a~i)(ahj/a~i)), (1 1.45) 

using the property of homogeneity. Assuming (U. W) > 0, so that 
a < 0, it is evident that the large-scale magnetic helicity generated 
by the a -effect will be negative (the effects of diffusion being 
assumed weak). 

We know, moreover, from the results of § 9.2 that, when dissipa- 
tion is negligible, the growth of magnetic Fourier components on 
the scale k-' due to the a-effect has a time-scale of order (la lk)-l; 
hence for a given level of helicity maintained by 'injection' at 
wave-numbers of order ko, it is to be expected that magnetic energy 
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(and associated magnetic helicity) will develop on progressively 
increasing length-scales of order la It (or equivalently at wave- 
numbers of order (1alt)-') as t increases. 

These qualitative considerations receive striking support from 
the work of Pouquet et a1 (1976), who have numerically integrated 
the four equations describing the evolution of the functions E(k, t), 
F(k, i), M(k, t), N(k, t), closed on the basis of the EDQNM scheme. 
Fig. 11.2(a), (b) show the development of M(k, t), N(k, t) as 

( a )  ( b) 
Fig. 11.2 Computed development (a) of magnetic energy spectrum and (b) 
of magnetic helicity spectrum on the basis of the EDQNM closure. Kinetic 
energy and helicity are injected at rates E and q ;  the injection spectra are 
iven by F, (K) = K-~F, (K) = C E K ~  e-2K2 with C chosen such that k F, (K) d~ = E and K = k/ ko. At time t = 0, the (normalised) kinetic and 

magnetic energy and helicity spectrum functions are given by 

The minimum and maximum wave-numbers retained in the computation 
were = 2-6, K ~ , ,  = 24. The Reynolds number based on the initial rms 
velocity and the length-scale k i l  was 30, and the magnetic Prandtl number 
v/A was unity. (From Pouquet, Frisch & LCorat 1976). 

functions of k and for t = 120,140 (the unit for time being (kouo)-l). 
The system is excited by injection of kinetic energy and helicity at 
wave-numbers of order ko. The figures show (i) the excitation of 
magnetic energy at progressively larger scales as t increases, and 
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(ii) the fact that magnetic helicity has the same sign as the injected 
kinetic helicity when klko = O(l), but the opposite sign when 
k/ko<< l. It is evident from both figures that a double-scale struc- 
ture emerges in the magnetic field spectrum, the separation in the 
two spectral peaks becoming more marked as t increases. It must be 
emphasised that these results emerge from a fully dynamic model in 
which the back-reaction of the Lorentz force distribution on the 
velocity field is fully incorporated. 

Pouquet*et al. (1976) have described the above excitation of 
magnetic modes on ever-increasing length-scales in terms of an 
'inverse cascade' of magnetic energy and magnetic helicity. It may 
be merely a matter of semantics, but this terminology could be just a 
little misleading in the present context. The word 'cascade' suggests 
'successive excitation' due to non-linear mode interactions, and 
'inverse cascade' suggests successive excitations that may be rep- 
resented diagrammatically in the form 

In fact in the present context, interaction of U and h fluctuations on 
the scale k i l  simultaneously generates large-scale Fourier compo- 
nents on all scales k-' >> k i l ;  this is not a step-by-step process, but 
rather a long-range spectral process; the fact that larger scales take 
longer to excite does not in itself justify the use of the term 
'cascade'. 

A further numerical study of direct relevance to the present 
discussion has been carried out by Pouquet & Patterson (1977). In 
this work, the Fourier transforms of the coupled momentum and 
induction equations, appropriately truncated, are directly inte- 
grated numerically, subject to initial conditions for the Fourier 
components of U and h chosen from Gaussian distributions of 
random numbers. No attempt was made to average over different 
realisations of the turbulent field, and in fact the behaviour of the 
spectra (defined by averaging over spherical shells in wave-number 
space) showed significant variation between different realisations. 
Nevertheless in all cases Pouquet & Patterson found a substantial 
net transfer of energy from kinetic to magnetic modes. They 
interpret this transfer in the following terms: (i) cascade of kinetic 
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energy towards higher wave-numbers due to conventional non- 
linear interactions; (ii) sharing of energy between kinetic and 
magnetic modes at small scales due to excitation of AlfvCn waves 
propagating on the large-scale magnetic field; (iii) intensification of 
the large-scale field due to what is again described as an 'inverse 
cascade' of magnetic energy, an effect that is most noticeable in the 
numerical solutions when magnetic helicity (rather than kinetic 
helicity) is initially present. These calculations (and the EDQNM 
calculations of Pouquet et al., 1976) were carried out for a magnetic 
Prandtl number A/v equal to unity; further calculations with A/v > 
1 (or even >>l) would perhaps be more relevant in the solar context 
and will be awaited with great interest. 

11.3. Modification of inertial range due to large-scale magnetic 
field 

The presence of a strong large-scale magnetic field profoundly 
modifies the energy transfer process in small scales, and in particu- 
lar in the inertial range, as pointed out by Kraichnan (1965). In the 
inertial range, the total energy content is small, relative to the total 
energy in scales zk;', and dissipative processes are negligible. The 
large-scale velocity field uo simply convects eddies on the scale k-' 
(where k >> ko) without significant distortion, and can in effect be 
'eliminated' by Galilean transformation. The large-scale magnetic 
field h. cannot be eliminated by Galilean transformation, and in fact 
provides an important coupling between U and h fields on scales 
k-'<c k i '  through the Alfvkn wave mechanism discussed in B 10.1. 
The inertial range may be pictured as a random sea of localised 
disturbances on scales k-' (k >> ko), propagating along the local 
mean field h. with velocity *ho, energy transfer to smaller scales 
occurring due to the collision of oppositely directed disturbances. In 
each such disturbance magnetic and kinetic energy are equal; hence 
E ( k )  = M(k) in the inertial range. Energy transfer will be maxim- 
ised when there are as many disturbances travelling in the direction 
+ho as in the direction -ho, i.e. when the cross-helicity Ic is zero. It 
is relevant to note here that Pouquet & Patterson (1977) have found 
that non-zero values of Ic leads to a decrease in energy transfer to 
small-scales in numerical simulations. 



TURBULENCE WITH HELICITY 295 

The time-scale for the interaction of blobs on the scale k-l is 
tk = O(hok)-l, and, as argued by Kraichnan (1965), the rate of 
energy transfer E through the inertial range may be expected to be 
proportional to t k .  Since there is no dissipation in the inertial range, 
E must be independent of k ; moreover, if the energy cascade is local 
in k-space, the only other parameters that can serve to determine E 

are E(k)  and k itself; dimensional analysis then gives 

E K h o ' ( ~  (k))'k3, 

or equivalently 

where A is a universal constant of order unity, and kd an upper 
wave-number for the inertial range at which dissipative effects 
(ohmic and/or viscous) become important. This cut-off wave- 
number is presumably determined (in order of magnitude) by 
equating the time-scale of interaction of blobs (hok)-l with the 
time-scale of ohmic or viscous dissipation (A k ')-l or (vk 2)-', 

whichever is smaller. If, as is more usual, A >> v, then evidently 

In (1 1.48) and (1 1.49), h. must be interpreted as (h2)'j2, and the 
condition that there should exist an inertial range of the form 
(1 1.48) is ko >> kd, or 

11.4. Non-helical turbulent dynamo action 

The generation of magnetic fields on scales of order ko' and greater, 
as discussed in § 11.2, is directly attributable to the presence of 
helicity in the smaller scale velocity and/or magnetic fields, Let us 
now briefly consider the problem that presents itself when both 
fields are assumed reflexionally symmetric, so that the a-effect 
mechanism for the generation of large-scale fields is no longer 
present. 

It has long been recognised that random stretching of magnetic 
lines of force leads to exponential increase of magnetic energy 
density, as long as ohmic diffusion effects can be neglected. This 
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random stretching is however associated with a systematic decrease 
in scale of the magnetic field (as in the differential rotation problem 
studied in 5 3.8), and ultimately ohmic diffusion must be taken into 
account. The question then arises as to whether magnetic energy 
generation by random stretching can still win over degradation of 
magnetic energy due to ohmic dissipation. 

Batchelor (1950) invoked the analogy between the vorticity 
equation in a non-conducting fluid 

and the induction equation in a oonducting fluid 

(see § 3.2). If, in either case, u(x, t) is a homogeneous turbulent 
velocity field, we may deduce equations for (w2) and (h2): 

Batchelor now argued that (w2), being a 'small-scale' property of 
the turbulence, is in statistical equilibrium on any time-scale (e.g. 
lo/uo) associated with the energy-containing eddies. Moreover the 
random stretching of magnetic lines of force may be expected to 
generate a similar statistical structure in the h-field as the random 
stretching of vortex lines generates in the w-field. Hence if A = v, 
(h2) may also be expected to be in statistical equilibrium, and 
therefore to remain constant on time-scales of order lo/uo; if A < v, 
(h2) may be expected to grow (and Batchelor argued that this 
growth would continue until arrested by the back-reaction of 
Lorentz forces); and if A v, (h2) may be expected to decay. 

The analogy with vorticity is of course not perfect, as has been 
pointed out in 9 3.2. A particular difficulty in its application to the 
turbulent dynamo problem is that we are really interested in the 
possibility of magnetic field maintenance on time-scales at least as 
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large as the ohmic time-scale [;/A, and this is large compared with 
lo/uo, when R, = uolo/A >> 1. In the absence of 'random stirring 
devices', (m2) decays on the time-scale lo/uo, and if A = v, (h2) may 
be expected to do likewise, i.e. we do not have a dynamo in the usual 
sense. If A < V, (h2) may at first increase by a factor of order v/A (as 
(W 2, would do if V in (1 1.53) were suddenly decreased to a value 
v l  = A < v), but may again be expected to decay in a time of order 
lo/uo. We can of course prevent the long-term decay of (m2) in 
(1 1.53) by invoking a random torque distribution in (1 1.51); but to 
maintain the analogy we should then introduce the curl of a random 
electromotive force in (1 1.52) - and we are then no longer consider- 
ing the problem of a self-excited dynamo. 

While the above considerations might suggest that reflexionally 
symmetric turbulence cannot provide sustained dynamo action, 
there is also the consideration (more prominent in the context of 
turbulence with helicity) that since the field h is not subject to the 
constraint W = V A U, modes of excitation may be available to h that 
are simply not available to W and so (h2) may grow (until Lorentz 
forces intervene) even when A > v. 

It seems likely that the questions raised by these considerations 
will be fully resolved only by extended numerical experimentation 
by methods similar to those of Pouquet & Patterson (1977). Com- 
puter capacities are however not yet adequate to yield reliable 
asymptotic laws in integrations over large times. Fortunately, as 
mentioned in the introductory chapter, the reflexionally symmetric 
problem, although profoundly challenging, has been largely by- 
passed in terrestrial and astrophysical contexts by the realisation 
that lack of reflexional symmetry will generally be present in 
turbulence generated in a rotating system, and that this lack of 
reflexional symmetry swamps all other purely turbulent effects as 
far as magnetic field generation is concerned. 
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CHAPTER 1 2  

D Y N A M I C A L L Y  CONSISTENT D Y N A M O S  

12.1. The Taylor constraint and torsional oscillations 

We shall now consider some general aspects of the dynamics of a 
rotating fluid within a spherical boundary subject to a combination 
of Lorentz, Coriolis and buoyancy forces. Under the Boussinesq 
approximation the equation of motion is 

where p is the mean density, and g the radial gravitational accelera- 
tion; O is the temperature field, its evolution being determined by 
(10.80). U is solenoidal, and satisfies U = 0 on the sphere r = R. 

The order of magnitude of U . VU and vV2U relative to 2 n  A U in 
(12.1) is given by the global estimates 

where L(=O(R)) is the scale of variation of U. We shall suppose 
that 

R,=U/flL<<l and ~ = v / f l ~ ~ < c l ,  (12.3) 

and shall neglect the convective acceleration and the viscous term in 
(12.1). The boundary condition for U is then simply 

the no-slip condition being accommodated by an Ekman layer, 
thickness o(E"~) on the surface (see e.g. Greenspan, 1968). Equa- 
tion (12.1) may now be written in the form 

where 

F = ~ - ~ J A B + ~ O ~ .  (12.6) 
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Necessary condition for d steady solution U(x) 

The Q-component of (12.5) is, in cylindrical polars (S, p, z), 

The fact that P must be single-valued places an important constraint 
(Taylor, 1963) on functions FQ(s, Q, z )  for which steady solenoidal 
solutions of (12.5) exist. Let C(so) denote the cylindrical surface 
s =so, l z l < ( ~ ~ - s ~ ) " ~  (fig. 12.1). Since V .  U =  0, and n . U =  0 on 
r =R,  it is evident that the flux of U across C(s0) must vanish, i.e. 

Us(s, p, 2)s d~ dz = 0, for all so.. (1 2.8) 

Fig. 12.1 The surface C(s,): S = S,, )z I < (R - S 2)1'2. 

Hence from (12.7) we have directly that if aUQ/at = 0 then 

B(so)= FQ (S, Q, Z)S dq dz = 0, for all so. (12.9) 
F(so) 

pB(so) 6so is evidently the torque exerted by the Lorentz force J A B 
on the annular cylinder of fluid so < s < so + 6so; unless this torque is 
identically zero, angular acceleration must result. Since g, = 0, the 
condition (12.9) may equally be written (under steady conditions 
aula t  = 0) 
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In this form, the condition is generally known as the Taylor con- 
straint. 

Sufficiency of the Taylor constraint for the existence of a steady 
solution U(x) 

It is a little more difficult to establish that the condition Y(s)= 0 is 
also sufficient to ensure that (12.5) can be solved for U(x). The 
following discussion is based on Taylor (1963), although differing in 
points of detail. The curl of (12.5) (with aU/at = 0) gives simply 

aU/az = (2 l l ) - '~  A F = A(x), say. (12.. l l )  

Note at once that 

using the definition (12.9) of Y(s). Hence if Y(s)=O, then also 

We now suppose that A(x) is a given solenoidal function satisfy- 
ing (12.13), and we attempt to solve (12.1 1) for U(x). Let z -  = 

- ( R ~ - s ~ ) ' / ~ , z +  = + ( R ~ - S ~ ) ' ' ~ ,  andforanyfunctionJl(s, q, z),let 

Also let 

Equation (12.11) then integrates to give 

where V is to be found; and evidently, integrating with respect to z, 
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The s and z components of V are determined by satisfying n. U = 0 
on r =R,  i.e. at z = z-, z+;  

These equations uniquely determine Vs ( S ,  Q )  and V, (S ,  c p )  in terms 
of the known function Uo. It remains therefore to determine 
V, (S ,  cp ). Now from V . U = 0 ,  

1 a iau, au, - -@us)+- -= --- - A from (12.11), (12.19) 
S as S acp az 

and so 

and hence 

where v ( S )  is an arbitrary function of integration. By virtue of (12.8) 
and (12.13), the function defined by (12.21) is single-valued, and so 
V,(s, c p )  as given by (12.17) is single-valued also. This completes 
the proof that the condition Y ( s ) =  0 is sufficient for the solvability 
of (12.1 1)  for steady U(x).  

Torsional oscillations when the Taylor constraint is violated 

I f  F(s )$O,  then integration of (12.7) over the cylinder C ( s )  gives 

i.e. angular acceleration is inevitable. Defining 

U,@, c p ,  2)s dcp dz, (12.23) 

where A ( S )  = 4 ~ s  (R - is the area of C(s) ,  (12.22) becomes 
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where we now take explicit account of time dependence. UG(s, t) is 
the geostrophic ingredient of the total velocity field, and it is 
unaffected by the rotation S Z .  Determination of UG is clearly 
equivalent to the determination af v in (12.21). 

Again following Taylor (1963) we can obtain a further equation 
by differentiating (12.10) with respect to t and using the induction 
equation. This gives 

In this complicated integral, let us write 

and regard &(S, t) as the unknown ingredient. We know, from 
8 3.11, that 

and so 

a [v A [V h (uGiQ A B)] A B], =S-'B,--(S~B~' as 
ds %). S 

(12.28) 

Hence (12.25) reduces to the form 

where 

and c (S) contains all the other contributions to (12.25), which do not 
involve UG. 

Equations (12.24) and (12.29) clearly constitute a hyperbolic 
system, which may be expected to admit oscillatory solutions about 
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the steady state for which Y =  0. In such oscillatory solutions, each 
cylinder C(s) ds of fluid rotates about its axis, coupling between the 
cylinders being provided by the radial field B, via the coefficients 
a(s) and b(s). Such torsional oscillations have been studied by 
Braginskii (1970); the damping of the oscillations, due to Ekman 
layer effects on r = R -, has been discussed by Roberts & Soward 
(1972, 5 3). The time-scale associated with the oscillations is deter- 
mined essentially by the mean value of h: = B : / ~ ~ ~  ; it is therefore 
of order ~/(h:) ' '~, the time for an Alfvkn wave to propagate on the 
radial field a distance of the order of the radius of the sphere. 

In a situation in which the poloidal field Bp develops on a very 
long time-scale (tA = o(R~/A))  by dynamo action (associated with, 
say, an a-effect), then, provided the damping time td for the above 
torsional oscillations is small compared with tA, a quasi-static situa- 
tion in which Y=O and UG/S is the resulting steady solution of 
(12.29) may be anticipated. If td is not small compared with tA then 
torsional oscillations may be expected to persist as long as the 
development of the poloidal field continues. 

12.2. Dynamo action incorporating mean flow effects 

We have seen in 5 9.5 that dynamo action in a sphere can result from 
the a-effect alone; and that when, for example, 

the critical value of a. at which dipole modes are excited is given 
(numerically) by 

R, = (ao(R/A = 7.64 =Rac, say. (12.32) 

If R, >R,, then a mode of dipole symmetry will grow exponentially 
until the effects of the Lorentz force become important. We have 
seen in 5 11.2 that one manifestation of the increasing influence of 
the Lorentz forde will be an ultimate reduction in the level of the 
a-effect. There is another mechanism of equilibration that may 
however intervene and stop the growth at an earlier stage if R, is 
just a little larger than R,,, viz. the effect of the mean velocity 
distribution that will be driven by the large-scale Lorentz force 
distribution; this mean velocity will modify the structure of the 



304 MAGNETIC FIELD GENERATION IN FLUIDS 

growing B-field and in general may be expected to modify it in such 
a way that the rate of ohmic dissipation increases. The total energy 
in the B-field may then be expected to saturate at a low level, which 
tends to zero as R, -R,, -, 0. 

A formalism for this problem has been developed by Malkus & 
Proctor (1975), by developing all the fields as power series in 
(R, -R,,) and seeking conditions for steady-state finite-amplitude 
magnetic field distributions. It is importafit to recognise that in this 
work the a-eff ect is supposed given by a formula such as (12.3 1) and 
unaffected by the magnetic field. Attention is focussed on the 
development of large-scale or 'macro' fields, and all the usual 
difficulties associated with the small-scale turbulent dynamics are 
bypassed. The equations studied are 

a u / a t + u .  V U + ~ ~ A U = - V P + ~ - ~ J A B + V V ~ U ,  
(12.341 

with a (X) prescribed and with initial conditions 

where Bo(x) is the eigenfunction of the kinematic problem (12.35) 
when U = 0 and R, =R,, (as discussed in 9 9.5). The field B is of 
course as usual matched to an irrotational field of dipole symmetry 
in the region r >R.  

When R, = R,, (1 + E )  with 0 < E << 1, the magnetic field initially 
grows exponentially, and the Lorentz force (which is certainly 
non-zero by the general result of § 2.4) generates a velocity field 
which develops according to (12.34). This velocity field will con- 
tinue to grow until it has a significant effect in1(12.35); and compar- 
ing the terms V A (U A B) and A V ~ B ,  it is evident that the relevant 
scale for U at this stage1 is U0 = AIR. 

The problem is characterised by three dimensionless numbers, 

E = v / C 2 ~ ~ ,  E,,, = ~ 1 1 1 ~ ~  = Uo/C2R, R, = Ia I,..R/A, 
(12.37) 

Strictly Uo= (A /R) f (&)  where f ( & ) + O  as E + 0. 
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and interest centres on the geophysically relevant situation 

E<<1 ,  Em<<l. (12.38) 

Note that Em (the 'magnetic Ekman number') in fact plays the role 
of a Rossby number here, providing a measure of the importance of 
inertia forces relative to the Coriolis force in (12.34). In the limit 
(12.38), the ultimate level of magnetic energy is determined by 
magnetostrophic balance in which Lorentz forces and Coriolis 
forces are of the same order of magnitude, i.e. the relevant scale for 
B is B. where 

&O~)-~B:= QUoR = QA, (12.39) 

and the magnetic energy may be expected to level off at a value 
of order QA (again multiplied by a function of E which vanishes 
with E ) .  

Solutions of the above problem have been computed by Proctor 
(1977a), for the particular case when a, is given by (12.31), and 
values of R, in the range between the critical value 7.64 and 10.0. 
In each of the cases studied, Proctor found that the growth of 
magnetic energy was arrested by the mean flow effect, the level of 
equilibrium magnetic energy increasing with R, -Rac; fig. 12.2 
shows the ultimate level of magnetic energy associated with the 
toroidal field for two cases of particular interest, (i) E, = 0.04, 
E = 0.01, and (ii) E, = 0.0025, E = 0.005. In case (i), the magnetic 
energy settled down to its ultimate level after some damped oscilla- 
tions about this level. In case (ii), which was as near to the geo- 
strophic limit (Em = 0, E = 0) as the numerical scheme would 
permit, there were again oscillations of small amplitude about the 
ultimate mean level of magnetic energy, and these oscillations 
showed no tendency to decay, with increasing time. The frequency 
of these oscillations was 0 (QE y2) = 0 ((QA ) 1 ' 2 / ~  ), and Proctor 
identified them with the torsional oscillations described in 9 12.1. 
The suggestion here is that when Em and E are sufficiently small, 
the steady state in which the Taylor constraint is operative is in fact 
unattainable, and that torsional oscillations about this state are 
inevitable. Further investigation at different values of Em and E in 
order to explore this phenomenon further would be of great 
interest. 
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Fig. 12.2 Equilibrium level of magnetic energy MT of the toroidal field as a 
function of R, for two choices of (E,, E). Note that when viscosity is 
decreased (i.e. when E is decreased) the equilibrium level is lower because 
the Lorentz force more easily drives the mean flow which provides the 
equilibration mechanism. (From Proctor 1977a.) 

It would be interesting also to extend the approach to cover 
dynamos of cuo-type. Here it would be necessary to specify not only 
the distribution of a! (S, z )  but also the distribution o (S, z), and since 
the Lorentz force tends to change the toroidal (as well as the 
poloidal) velocity, the only consistent way to achieve this would be 
through the assumption of a prescribed toroidal force field F, (S, z )  
which is unaffected by Lorentz forces. 

Greenspan (1974) has studied a non-linear eigenvalue problem 
that presents itself in the magnetostrophic limit E = E ,  = 0, viz. 
suppose that U = v (s)i,, that a! (S, z ) is prescribed, that 
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and finally that 

The matching conditions to a current-free field in r >R are under- 
stood. The problem is to determine the values of the parameter 
la I,,,R/h for which solutions {B(x), v (S)} exist, and to determine 
the form of these solutions. Greenspan finds a formal solution to 
this problem in terms of infinite series when a(s, z )  is non-zero only 
in a thin layer on (s2+z2)'I2 = R- .  The physical structure and 
significance of this solution remain to be determined. 

A similar formulation to that of Malkus & Proctor (1975) has also 
been studied by Braginskii (1975) who however puts forward the 
possibility that IBs I may be much weaker than (B, I in the liquid core 
of the earth, and that in consequence the coupling of cylindrical 
shells due to the 'threading' of the field B, may be so weak that the 
Taylor function Y(s), though small, need not vanish identically in 
the steady state. Solutions based on this supposition have not yet 
however been worked out in detail and it remains to be seen 
whether this approach will give a class of dynamos that is genuinely 
distinct from that of Malkus & Proctor. 

12.3. Dynamos driven by buoyancy forces 

As discussed in 5 4.4, the question of whether the liquid core of the 
Earth is stably or unstably stratified is not yet fully resolved, and 
buoyancy forces of thermal or non-thermal origin remain as one of 
the most likely sources of energy for core motions. We have 
discussed in 5 10.6 the stability problem for a plane rotating layer 
heated from below, and have shown there that when the system is 
unstable, the motions that ensue may generally be expected to have 
non-zero mean helicity, and therefore at least to have the potential 
to act as a dynamo. The key question that now arises is to what level 
the magnetic energy will rise when such dynamo action does occur. 

If the Rayleigh number R, (see (12.42b) below) describing the 
state of the system is just above the critical value R,, for the onset of 
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cellular convection, then in the absence of any magnetic effects, the 
amplitude of the motions may on general grounds be expected to 
settle down to a value of order E = (R, -R,)"~ (Malkus & Veronis, 
1958). If this motion is strongly helical, then there will be an 
associated a-effect, in general strongly anisotropic due to the 
influence of rotation, but with a0 = 0(s2) ,  where a0 is a typical 
ingredient of the pseudo-tensor aij. If now the system is sufficiently 
large (in at least one of its dimensions) for the growth of a large- 
scale field (due essentially to an a2-type process), then, as in the 
discussion of 5 10.3, this growth may be expected to continue until 
the Lorentz force modifies the cellular convection pattern in such a 
way as to reduce the a-effect. If E decreases (keeping all other 
parameters fixed), then we must reach a critical value, say, at 
which dynamo action just occurs. If now E is just greater than E (i.e. 
q = (E -E  << l), then there may exist a stable state near to the 
original state of steady convection with a typical field amplitude B. 
of order q (or some positive power of q depending on the detailed 
equilibration mechanism), and if q is sufficiently small the magnetic 
energy in this new equilibrium situation will be small compared with 
the kinetic energy of the cellular motion. In this situation, a pertur- 
bation approach may lead to the determination of the equilibrium 
field structure and amplitude. It is not however certain a priori that 
such a neighbouring state exists, since, as indicated in the earlier 
discussion of 5 10.3, it is always possible that a suitably oriented 
magnetic field may release the constraint of strong rotation, permit- 
ting more vigorous convection in which case a runaway situation 
would result; the field would then presumably grow to a large 
amplitude, the Lorentz force becoming at least comparable with the 
Coriolis force, i.e. a state of magnetostrophic equilibrium might be 
a'nticipated. 

The perturbation approach based on the above idea of equili- 
brium at weak field strength has been developed by Soward (1974, 
see also Childress & Soward, 1972) for the plane rotating layer 
problem, and by Busse (1975b) for an annular geometry. The 
detailed analysis of these papers is complicated, and it is not 
practicable to give the details here. It will be sufficient to describe 
the essential approximations adopted and the nature of the conclu- 
sions in the two cases. 
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The So ward convection -driven dynamo 

Soward (1974) studies the configuration sketched in fig. 12.3(a). 
The planes z = 0, zo are supposed stress-free, perfectly conducting 
and isothermal, conditions that (as in 8 10.6) lead to the simplest 
combination of boundary conditions for analytical solution of the 
stability problem. (If the stress-free condition were replaced by a 
no-slip condition, then, as Soward observes, Ekman layers on the 
two boundaries can play an important part in the long-term finite 
amplitude behaviour of convection cells; the system may be 
expected to be equally sensitive to the electrical and thermal 
boundary conditions.) In the absence of any magnetic field, the 
system is characterised by the Ekman, Rayleigh and Prandtl num- 
bers, 

where A 0  is the temperature difference between the plates, and K 

the thermal diffusivity, and it is supposed that 

The critical Rayleigh number (Chandrasekhar, 1961) is in these 
circumstances 

and the horizontal wave-number for which R,, is minimal is 

Soward supposes that the layer is just unstable, in the sense that 

so that only modes with horizontal wave-vectors k = (kl, k2,O) such 
that lkl= k, are excited. He supposes moreover that U > 1, under 
which condition (Chandrasekhar, 1961) the motion at the onset 
of convection is steady, rather than time-periodic. Under the 

Our notation in this subsection differs slightly from Soward's, in the interest of 
retaining consistency with the notation of earlier chapters. 
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[From Veronis 19591 
( b) 

Fig. 12.3 (a) Sketch of the configuration studied by Soward (1974); the 
vertical lines indicate the boundaries of convection cells when the Rayleigh 
number exceeds the critical value; when E <c l ,  the horizontal scale is 
O(E1'3zo) as indicated. (b) A perspective sketch of a fluid particle path 
which passes through the centre of a cell when the cell planform is 
hexagonal; the helicity associated with this type of motion is evidently 
antisymmetric about the centre plane z = iz,, and the a-effect (given by 
(12.51) and (12.52)) is likewise antisymmetric about z = $zO. 
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condition (1 2.46), the amplitude of the velocity in the convection 
cells excited has order of magnitude (Malkus & Veronis, 1958) 

This indicates that an expansion of all mean and fluctuating field 
variables as power series in the small parameter E is appropriate, 
and this is the basis of Soward's perturbation procedure. 

Motions periodic in the x and y directions are determined 
uniquely by the vertical velocity distribution 

T Z  
W (X, t) = Re 6 (k, t) sin - eik.'. (12.48) 

k zo 

The fact that the horizontal scale l = o(E"~)z~ is small compared 
with zo now permits the use of the methods of mean-field electro- 
dynamics, means being defined over the horizontal plane. The 
magnetic Reynolds number based on uo and l is 

and this is small provided3 v/A 5 O(1). Hence in calculating the 
pseudo-tensor a i j  (cf. § 7.8) the magnetic field perturbation b is 
effectively determined (at leading order in E by 

and calculation of 

iYi = (U A b)i = aijBj 

is a relatively straightforward matter, with the result 

where q(k, t )  = 16 (k, t)I2. This calculation of course requires know- 
ledge of the phase relationships between horizontal and vertical 

Soward assumes v/A = O(1); the fact that v/A << 1 in the core of the Earth should 
perhaps be incorporated in the expansion procedure to make the theory more 
relevant in the terrestrial context. 
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velocity components, as determined by the linear stability analysis. 
In the expression (12.51), the mean field B(z, t) is necessarily 
horizontal, and it evolves according to the (now) well-known equa- 
tion 

- of-fhe calculation is to derive equations for the 
in (12.52) by continuation of the systematic 

perturbation procedure to the order (o(E"~)) at which Lorentz 
forces have a significant effect on the dynamics. These equations, as 
derived by Soward, take the form 

provided all the wave-vectors k in the velocity spectrum have equal 
magnitude. Here A (k, k') is a coupling coefficient representing 
non-linear interactions between the instability modes; m (k, t) is a 
weighted average of (B . k)2 over 0 < z i 20, and the terms involving 
m represent the effect of the mean magnetic field on the small-scale 
motions. 

In order to integrate (12.53) and (12.54), it is necessary to adopt 
initial conditions, and in particular to specify the horizontal struc- 
ture of the cellular convection pattern at time t = 0: if only one 
wave-vector kl is represented (i.e. q (k, 0) = 0 unless k = *kl) then 
the motion has the form of cylindrical rolls with 'axes perpendicular 
to kl; it is almost self-evident that this motion has too simple a 
structure to provide dynamo maintenance of B. If two wave-vectors 
kl, k2 are equally represented (q (kl, 0) = q (k2,O) with lkll= 1k2l 
and kl . k2 = 0) and if the amplitudes of thevarious modes are equal, 
then the convection cells have square boundaries4. If three wave- 

Cf. the velocity field (3.114) in § 3.12, although in that case, four horizontal 
wave-vectors are represented, viz. (kl, 0, O), (0, kl ,  O), 2-'I2(kl, kl ,  O), 
2-'I2(kl, -kl, 0), with k l  = ' T T / z ~ .  
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vectors kl, k2, k3, are equally represented, and if 

then the cell boundaries are regular hexagons; a typical particle 
path in this case is sketched in fig. 12.3(b) (Veronis, 1959). 

Numerical integration of (12.53) and (12.54) for the case of 
square cell boundaries indicates that both the magnetic energy 

and the quantity v (t) = q (k, t) -q  (k2, t) settle down to a time- 
periodic behaviour when A ~ / L ~  becomes large. The ratio of mean 
magnetic energy to mean kinetic energy in this asymptotic periodic 
state is of order E 'l3 (i.e. small as required for validity of the 'weak 
field' approach) and the fluctuations in magnetic energy are of order 
*3% about the mean value. Soward presented these results in the 
form of an approach to a limit cycle in the plane of the variables 
v (t), M(t) (see fig. 12.4). 

The results for hexagonal cell boundaries are naturally more 
complicated since now the kinetic energy is shared among three 
modes rather than two; nevertheless Soward's numerical integra- 
tions again indicate asymptotic weak fluctuations of the magnetic 
energy about its ultimate mean level, while the kinetic energy (or 
rather a substantial fraction of it) appears to 'flow' cyclically among 
the three modes. 

It is a characteristic feature of these dynamos that both velocity 
and magnetic field distributions are unsteady (though ultimately 
periodic in time with period of order z ;/A ). 

Busse's (1975b) model of the geodynamo 

One of the difficulties in analysing the problem of thermal convec- 
tion in a rotating spherical annulus (as a model of convection 
between the solid inner core of the Earth and the mantle) is that the 
radial gravity vector g does not make a constant angle with the 
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Fig. 12.4 Phase plane evolution of magnetic energy M(t) and the quantity 
v(t) which represents twice the difference between the kinetic energies in 
the modes corresponding to wave-vectors k, and k,; the normalising 
constants M, and v,  depend on the precise initial conditions of the problem. 
The figure shows the evolution, over 16 000 time-steps in the integration 
prqcedure, towards a limit cycle in which M(t) and v(t) vary ~eriodically 
with time. (From Soward, 1974.) 

rotation vector a. However convection at small Ekman number 
(and when Lorentz forces are sufficiently weak) is characterised b,y 
long thin convection cells aligned with the direction of a (fig. 
12.5(a)). Thermal instabilities of this kind have been investigated 
by Busse (1970). Only the component g sin 8 of g perpendicular to 

is effective for cells of this structure. Since the centrifugal force 
f i2r sin 8 has the same &dependence, the effects of radial gravity 
can be simulated in laboratory experiments by the centrifugal force 
in a spherical annulus rotated about a vertical axis; in such experi- 
ments, unstable stratification is provided by heating the outer 
sphere and cooling the inner sphere (a deliberate reversal to meet 
the fact that the centrifugal force is outwards, whereas the gravita- 
tional force in the terrestrial context is inwards). Such experiments 
(Busse & Carrigan, 1974) confirm the appearance of convection 
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Fig. 12.5 (a) Sketch of the marginally unstable convective motions in a 
sphere of rapidly rotating fluid with a uniform distribution of heat sources. 
(From Busse, 1970.) (b) Section of the cylindical geometry which incorpo- 
rates the essential features of the spherical system; the outer cylinder is 
heated (0, > 0,); the (locally) Cartesian coordinates Oxyz used in the 
analysis are as indicated. (From Busse, 1975b.) 
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columns in the region outside the cylinder C(so) where so is the 
radius of the inner sphere. 

These considerations led Busse (1975 b) to consider the possibil- 
ity of dynamo action due to thermal convection in the simpler 
cylindrical geometry of fig. 12.5 (b). The cylindrical annulus 

has approximately the same form as the region occupied by convec- 
tion cells in fig. 12.5(a). The parameter q represents the slope of the 
upper and lower surfaces of the annulus and is assumed small in the 
theory5. Moreover it is assumed that zo<< s l  -so<< sl so that (as in 
earlier studies) the cylindrical polar coordinates (S, cp, z )  may be 
replaced by Cartesian coordinates ( X ,  y, 2). These latter assump- 
tions are of course not reflected in the spherical annulus problem, 
but the hope is that the qualitative behaviour of the latter problem 
will nevertheless be adequately represented by the quasi-cartesian 
model. 

It is clear that simple motions of the kind represented by fig. 
12.5(a) have zero helicity and will not in themselves be sufficient to 
provide an a-effect. What is needed is a superposed motion within 
each cell, roughly aligned with the axis of the cell, and correlated 
with the sense of rotation in the cell. This ingredient of the motion in 
Busse's theory is provided by the Ekman suction effect (Greenspan, 
1968) associated with the Ekman layers on the upper and lower 
boundaries; it is of order E " ~  relative to the primary cellular 
motion, and provides a mean helicity linear and antisymmetric in z, 
and of order E 1'2z i1 relative to the mean kinetic energy. This need 
for an ingredient of flow parallel to two-dimensional convection 
cells, if dynamo action is to occur, was recognised in an earlier study 
of Busse (1973). 

Busse's calculation proceeds in three stages. (i) The first stage 
consists in calculation of the critical stability conditions when there 
is no magnetic field present, of the structure of the critically stable 
disturbances, and of their amplitude when conditions are slightly 
supercritical; this involves the procedure of Malkus & Veronis 

The perturbation procedures adopted also require that E " ~  << q << zo/(sl - so). A 
non-zero value for q is of crucial importance in determining the stability properties 
of the system. 
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(1958), but with the additional feature here that the small slope of 
the upper and lower surfaces generates weak unsteadiness in the 
instability modes which propagate slowly in the azimuth direction. 
(ii) The second stage involves solution of the kinematic dynamo 
problem with the velocity field determined by stage (i); here, as in 
Soward's (1974) work, the methods of mean-field electrodynamics 
are applied, averages being defined over the x and y variables. The 
dynamo mechanism is again of a2-type, the effective value of a 
being linear in z (like the helicity discussed above). As in all such 
dynamos, the toroidal and poloidal fields are of the same order of 
magnitude. Busse restricts attention to fields of dipole symmetry6 
about z = 0, and obtains a criterion for growth of the field. Since the 
a-eff ect is proportional in intensity to E 1 ' 2 ~  g where u g = (u2), this 
criterion in effect puts a lower bound on ~ " ~ u g  in terms of other 
dimensionless parameters of the problem, for dynamo action to 
occur. (iii) In the third stage, Busse calculates the small modification 
of the convection pattern due to the presence of the field excited 
(when E " ~ U ~  is just large enough) as calculated in stage (ii). The 
field has an as yet undetermined amplitude B. which is assumed 
small. The amplitude uo of the modified motion and the amplitude 
B. are simultaneously determined by the condition that the funda- 
mental magnetic mode should have zero growth rate under the 
a 2-action of the slightly modified convection cells. Since increase of 
B. leads to a decrease in uo (other things being constant), an 
equilibrium in which the magnetic energy density is small compared 
with the kinetic energy density is attained. 

It is this latter fact that most distinguishes the Busse and Soward 
dynamos from the type of dynamo conceived by Malkus & Proctor 
(1975), which is characterised by magnetostrophic force balance 
and consequently a magnetic energy density that is the more 
relevant as far as the Earth's liquid core is concerned. Extensions of 
the Busse and Soward models to strong (rather than weak) field 

Busse does not actually match the field to a field in the current-free region outside 
the annulus. He claims that the condition of dipole symmetry 'allows for the 
continuation of the meridional field towards infinity in such a way that it will decay 
at least as fast as a dipolar field'. The claim is plausible, but it is desirable that the 
actual matching should be explicitly carried out, since in the dynamo context the 
presence of a 'source at infinity', which might also generate a field of dipole 
symmetry about z = 0, must be carefully excluded. 
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situations (as outlined by Childress & Soward, 1972) are doubtless 
possible and will be eagerly awaited. Busse (1976) has already made 
a move in this direction. 

12.4. Reversals of the Earth's field, as modelled by coupled disc 
dynamos 

A simple model for reversals of the Earth's magnetic field was 
proposed by Rikitake (1958) and has been subsequently studied by 
Allan (1962) and Cook & Roberts (1970). This is the coupled disc 
dynamo model sketched in fig. 12.6(a), an elaboration of the single 

(a)  (b)  

Fig. 12.6 (a) Coupled disc dynamo (after Rikitake, 1958); the discs rotate 
(under applied torques) with angular velocities Rl(t), Rz(t) and drive cur- 
rents Il(t), 12(t) through the wires which make sliding contact with rims and 
axles as indicated. ( 6 )  The corresponding gross currents and rotation in the 
Earth's core; R, (not shown in the figure) is associated with the a-effect (see 
(12.61)) and R2 is associated with differential rotation (see (12.60)) about 
the axis of mean rotation. 

homopolar disc dynamo discussed in chapter 1 .  For the coupled 
system, there are two degrees of freedom represented by the 
angular velocities Rl( t )  and R2(t) of the discs, and two 'electrical 
degrees of freedom' represented by the currents I l ( t )  and 12(t) in the 
wires which must both be twisted in the same sense relative to the 
rotation vectors if field regeneration is to occur. Under symmetric 
conditions, the equations describing the evolution of this system, 
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when a constant torque G is applied to each disc, are 

L dIl/dt + RI1 = MO112 

L dl,/dt + RI2 = M0211, 

where L and R are the self-inductance and resistance of each 
circuit, C is the moment of inertia of each disc about its axis, and 
27rM is the mutual inductance between the circuits. The terms 
M0112 and M0211 represent the electromotive forces arising from 
the rotations O1 and a 2 ,  while the term -M1112 represents the 
torque associated with the Lorentz force distribution in each disc. 

In what sense may the simple system (12.58) be regarded as a 
model for the (literally) infinitely more complicated situation in the 
Earth's liquid core? First (fig. 12.6(b)) we can regard Il(t) and I2(t) 
as providing measures of the total toroidal current (integrated 
across a meridian plane) and 'total meridional current' which may 
bedefinedby 

Il(t) is then associated with mean poloidal field, and 12(t) wiih the 
mean toroidal field (the mean being over the azimuth angle p). The 
term M0211 in (12.58b) then represents production of toroidal 
field, and 02(t) is then best interpreted as a measure of the mean 
differential rotation in the core, say 

where VC is the volume of the liquid core, and RC the core radius. 
Similarly the term M0112 represents production of poloidal field, 
and Rl(t) is best interpreted as a measure of the mean intensity of 
the a-effect, say 

n l o )  =-L 111 1.1 d v .  
RCVC core 

The term -M1112 in (12.58~) then represents the reduction of the 
a-effect as described in !j 10.3, while in (12.58d) it represents the 
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modification of the mean velocity distribution (purely toroidal in 
this idealisation) as described in § 12.2. The term G in (12.58c, d )  
represents on the one hand the driving forces (of thermal or other 
origin) which generate an a-effect, and on the other hand the source 
of differential rotation (due to transfer of angular momentum by 
small-scale mixing associated with the a-effect). 

It would of course be nice to provide a formal derivation of a 
system of ordinary differential equations similar to (12.58), by 
appropriate averaging of the full magnetohydrodynamic equations, 
but the non-linearity of these equations makes this a difficult (if not 
impossible) task7, and all that can be said at present is that the 
equations (12.58) provide a plausible model, the behaviour of 
which is at the least suggestive in the terrestrial context. The model 
can of course be varied (e.g. by introducing different coupling 
constants M1, M2, different coefficients of inertia Cl, C2, and 
different torques G1, GZ, or by increasing the number of degrees of 
freedom through the introduction of further discs), but the simple 
system (12.58) already contains enough parameters to permit a 
wide range of behaviour, and we therefore restrict attention to this 
system in the following discussion, which closely follows the treat- 
ment of Cook & Roberts (1970). 

With the definition of dimensionless variables 

the equations (12.58) take the simpler form 

x + p x = z y ,  

Y + ~ Y =  VX, (12.63) 

i = v = i - X Y ,  
where p = (c/GLM)"~R. These equations have a trivial first 

integral 2- V = A ,  (12.64) 
where A is a constant which may be assumed non-negative. Note 
also that 

' An approach based on truncation of the system of moment equations derivable 
from (12.34) and (12.35) has been explored by Robbins (1976). 
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an energy equation for the system: the first bracketed term on the 
right represents the rate of working of the applied torques, while the 
second represents the ohmic dissipation in the two circuits; under 
steady conditions these two terms are in balance. The non-linear 
terms in (12.63) make no contribution to the total energy budget, 
and correspond simply to transfer of energy between magnetic and 
kinetic 'reservoirs'. 

Steady state solutions of (12.63) satisfy 

Introducing a constant K 2 1 such that 

these steady state solutions are given by 

In these two states, which may be (arbitrarily) described as the 
normal state S+ and the reversed state S-, the currents are either 
both positive (i.e. in the sense indicated in fig. 12.6(a)) or both 
negative. It is of course no surprise that two complementary states 
of this kind exist; we have previously (5  11.2) referred to the general 
invariance of the equations of magneto-hydrodynamics under 
change of sign of B, a property shared by the system (12.63) under 
the transformation (X, Y) -* (-X, - Y). The interesting question 
now is whether transitions from a neighbourhood of one stationary 
state to a neighbourhood of the other are possible, a question that 
naturally involves the stability of the two states. 

To examine the stability of the state S+ (the state S- being 
entirely similar) we put 

substitute in (12.63) and linearise in (6, q, 5); this gives three linear 
homogeneous equations in (&v, 5) which admit solutions propor- 
tional to eP' possible values of p being given by the vanishing of a 



322 MAGNETIC FIELD GENERATION IN FLUIDS 

3 X 3 determinant. This gives a cubic for p with the three roots 

p1 = -2p, p2 = i(K2 + K - ~ ) ' / ~ ,  p3 = -i(K2 + K-~)"~ .  
(12.70) 

The pure imaginary value of p2 and p3 suggest neutral stability. 
However in this situation the terms non-linear in the small pertur- 
bations 5, q and 5 may have a long-term destabilising influence. 
Cook & Roberts examined this possibility using the method of 
Liapounov (1947), and showed that when K > 1 the S+ state is 
indeed unstable (as is the S- state also) as a result of the cumulative 
effect of these non-linear terms over times T large compared with 

IK2 + ~ - ~ 1 - " ~ *  
A solution of the system (12.63) may be represented by the 

motion of a point P(T) with Cartesian coordinates (X(T), Y(T), 
Z(T)), the orbit in this phase space naturally depending on the initial 
position P(0). At each point of this phase space is defined a 'velocity 
field' 

u=(x, P,z)=(-~x+zY, -PY+(z-A)X, I-XY), 
(12.71) 

for which 

The associated 'density field' p (X, Y, Z )  satisfies the conservation 
equation (in Lagrangian form) 

with Lagrangian solution 

Equivalently the volume d V  occupied by any element of 'phase 
fluid' tends to zero in a time of order p-', suggesting that, for nearly 
all possible initial positions P(O), the trajectory of P(T) will ulti- 
mately lie arbitrarily close to a limit surface F(X, Y, Z )  = 0, with the 
property that 
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This type of behaviour was confirmed by Cook & Roberts who 
computed solution trajectories of (12.71), and who succeeded in 
describing the topological character of the limit surfaces for particu- 
lar values of the parameters p and A. Fig. 12.7 shows a typical 
evolution of X(T), and a projection of a typical trajectory on the 
(Y, Z )  plane, in both cases for p = 1, K = 2. The stationary states S, 
for this case are given by 

The transitions from a neighbourhood of S+ to a neighbourhood of 
S- are evident in both figures, although what is most striking is the 
fact that the oscillations about these states are typically of large 
amplitude; even if P(0) is very near to either S+ or S-, P(T) 
ultimately follows a trajectory which orbits alternatively about S+ 
and S- without ever again approaching very near to either state. 

This type of behaviour is at least qualitatively comparable with 
the behaviour of the north-south component pil'(t) of the Earth's 
dipole moment over time-scales of the order of millions of years, as 
described in 8 4.3. The existence of two time-scales (one charac- 
teristic of the mean time between reversals, the other of the 
duration of reversals), the oscillations about the present 'normal' 
state on the shorter time-scale, and the occasional appearance of 
short 'bursts' of one state between much longer periods of the other, 
are all reflected in the behaviour of the solution curve of fig. 12.7(a). 
This provides a strong indication that reversals of the Earth's field 
are indeed the result of coupled non-linear dynamic and magnetic 
oscillations. The work of Proctor (1977a) and Soward (1974) as 
described in 65 12.2 and 12.3 indicates that for some dynamo 
models, even when a steady dynamically equilibrated state exists, 
the system may well prefer to seek a state involving finite amplitude 
oscillations of magnetic energy. Whether such models, based on 
systematic deduction from the equations of magnetohydro- 
dynamics in a rotating fluid, can also yield genuine field reversals 
in a spherical geometry is as yet unknown; this problem continues to 
present an exciting challenge in an important area of mathematical 
geophysics. 



Fig. 12.7 Computed solution of the system (12.63) with p = 1, K = 2. (a) Note how X(r) exhibits large 
amplitude oscillations about the stationary state value *2 and reversals of sign at irregular intervals. (b) 
The projection of a typical trajectory in phase space on the (Y, 2) plane; mote that ,Y(r) (like X(r)) 
reverses sign at irregular intervals, whereas Z(r) is always positive. (From Cook & Roberts, 1970.) 
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