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The general spinning motion of an axisymmetric rigid body on a horizontal table is
analysed, allowing for slip and friction at the point of contact P. Attention is focused
on the case of spheroids (prolate or oblate), and particularly on spheroids whose
density distribution is such that the centre-of-mass and centre-of-volume coincide.
Four classes of fixed points (i.e. steady states) are identified, and the linear stability
properties in each case are determined, assuming viscous friction at P. The governing
dynamical system is six-dimensional. Trajectories of the system are computed, and
are shown in projection in a three-dimensional subspace; these start near unstable
fixed points and (in the case of viscous friction) end at stable fixed points. It is
shown inter alia that a uniform prolate spheroid set in sufficiently rapid spinning
motion with its axis horizontal is unstable, and its axis rises to a stable steady state,
at either an intermediate angle or the vertical, depending on the initial angular
velocity. These computations allow an assessment of the circumstances under which
the condition described as ‘gyroscopic balance’ is realized. Under this condition, the
evolution from an unstable to a stable state is greatly simplified, being described
by a first-order differential equation. Oscillatory modes which are stable on linear
analysis may be destabilized during this evolution, with consequential oscillations in
the normal reaction R at the point of support. The computations presented here are
restricted to circumstances in which R remains positive.

Keywords: rigid body dynamics; dynamical systems; instability; spinning spheroid;
gyroscopic approximation; Jellett constant

1. Introduction

The problem of the rolling, spinning and slipping of an axisymmetric body (or ‘top’)
on a horizontal table, with or without friction at the point of contact, has been
studied for well over a century, and indeed the equations governing the behaviour
have been known since the work of Euler (for a historical review, see Perry (1957)). It
might be thought therefore that there is little more to be said on this very classical
problem. Surprisingly however, all treatments taking due account of slipping and
friction at the point of contact that we have been able to trace (Braams 1952; Cohen
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1977; Del Campo 1955; Ebenfeld & Scheck 1995; Fokker 1952; Gray & Nickel 2000;
Hugenholtz 1952; Kane & Levinson 1978; Mertens & De Corte 1978; Mertens et al .
1982; O’Brien & Synge 1954; Or 1994; Parkyn 1958) make the assumption that the
portion of the body surface that makes contact with the table is spherical. This is
perhaps a good approximation in consideration of the stability of spin about the
vertical, or for a top with a sharpened point which can be locally approximated by
a hemisphere (a ‘spherical-tip’ top), or for a nearly spherical body whose density
distribution is such that its centre-of-mass is displaced along the axis of symmetry
from its centre-of-volume (the so-called ‘tippe top’); but it clearly fails to describe
the behaviour of a body such as a spheroid when the axis of symmetry is inclined at
an arbitrary angle to the vertical. In such a situation, the assumption of sphericity
is plainly inadmissible.

A preliminary approach to this problem was briefly described by Moffatt & Shimo-
mura (2002) (hereafter referred to as MS02), who discussed the familiar phenomenon
of the rise to the vertical of a hard-boiled egg set in rapid spinning motion on a table.
In that paper, the governing equations were simplified on the assumption that the
friction is weak and the spin is large (so that the Coriolis force is dominant). Under
this ‘gyroscopic’ assumption, a first-order differential equation for the inclination θ
of the axis of symmetry was obtained, which, for the case of a prolate spheroid, did
indeed describe the rise of the axis to the vertical. This rise was associated with
the effect of the weak friction µ at the point of contact, and occurred on a ‘slow’
time-scale O(µ−1), irrespective of the nature of the frictional force (‘dry’ Coulomb
friction, or ‘wet’ viscous friction).

Under this gyroscopic approximation, it was found that the scalar product of
the angular momentum and the vector from the centre-of-mass O to the point of
contact P was a constant of the motion. This constant was first obtained for the case
of the spherical-tip top by Jellett (1872), and it has played a key role in some of the
analyses of the tippe top that have been published (e.g. Hugenholtz 1952; O’Brien
& Synge 1954). The fact that Jellett’s invariant is still invariant for an arbitrary
axisymmetric body under the gyroscopic approximation was, however, new, and it
was this fact that led to a profound simplification of the problem.

As indicated by MS02, there are many aspects of the problem that are not covered
by the gyroscopic approximation, and indeed it is only through study of the exact
problem that the limits of validity of the gyroscopic approximation can be deter-
mined. This is the purpose of the present paper. In §§ 2 and 3, the basic equations
are obtained in the form of a sixth-order nonlinear dynamical system, subject to the
single constraint that the normal reaction R at the point P must remain positive. In
§ 4, the gyroscopic approximation is restated, and a direct proof of the existence of
Jellett’s invariant under this approximation is given. In § 5, we specialize to the case of
a spheroid, which may be prolate or oblate; we suppose that the centre-of-mass coin-
cides with the centre-of-volume, and that the density distribution within the body is
axisymmetric, but otherwise arbitrary. Four distinct classes of steady motion (fixed
points in the phase-space) are identified, and in § 6, a linear stability analysis for each
of these types of motion is presented. It is shown that the weakly unstable (or ‘slow’)
mode for the case of a prolate spheroid set in precessional motion with θ = π/2 is
indeed governed by the gyroscopic approximation; other oscillatory modes are stable
in linear analysis. The stability analysis guides the choice of numerical simulations
presented in § 7, which show trajectories of the system evolving from unstable to
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stable states, and which provide further evidence for the validity of the gyroscopic
approximation over a significant range of parameters. The paper is summarized, and
some open issues indicated, in the concluding section.

In all the computations presented here, the normal reaction R does remain positive,
and the spheroid does therefore remain in contact with the table throughout the
motion. However, there are circumstances (in particular, high aspect ratio and high
initial angular momentum) when oscillatory modes can grow to such an extent that
R can fall to zero. This can lead to a ‘jumping’ phenomenon, in which the body
obviously passes into a different dynamical regime. This is an interesting and complex
phenomenon, which will be the subject of a subsequent paper (part II).

2. Geometry and kinematics of the problem

Consider a rigid body of revolution with surface S that spins on a horizontal table
with instantaneous point of contact P (figure 1). Let O be the centre-of-mass of the
body and Oz its axis of symmetry. The lines Oz and OP in general define a vertical
plane Π which also contains the upward vertical axis OZ. Let (θ, ϕ, ψ) be the Euler
angles of the body relative to OZ, and let

Λ = θ̇, Ω = ϕ̇, n = ψ̇ + Ω cos θ. (2.1)

Thus, Λ is the rate of change of inclination of the axis of symmetry to the vertical,
Ω the rate of precession of the plane Π about the vertical, and n the spin about the
axis of symmetry Oz.

Let Oxyz be the ‘body’ frame of reference, with Ox in the plane Π, and let OXY Z
be an alternative rotating frame with OX horizontal in the plane Π. The position
vector of the body relative to O may then be written

x = xi + yj + zk = XI + Y J + ZK, (2.2)

where
x = X cos θ − Z sin θ, y = Y, z = X sin θ + Z cos θ, (2.3)

and the unit vectors (i, j,k) and (I,J ,K) are related by

i = I cos θ − K sin θ, j = J , k = I sin θ + K cos θ. (2.4)

The frames OXY Z, Oxyz rotate with respective angular velocities

Ω = ΩK = −Ω sin θi + Ω cos θk, Ω′ = Ω + Λj, (2.5)

and the angular velocity of the body is

ω = −Ω sin θi + Λj + nk. (2.6)

Let h(θ) be the height of O above the table; then, from consideration of the effect
of a small change δθ in orientation of the body relative to the plane of the table, the
coordinates (in OXY Z) of the point of contact P are given by

XP = (XP, YP, ZP) = (h′(θ), 0,−h(θ)), (2.7)

and correspondingly, from (2.3),

xP = −h2 d
dθ

(
cos θ

h

)
, zP = −h2 d

dθ

(
sin θ

h

)
. (2.8)
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Figure 1. An axisymmetric body with centre-of-mass O spins on a horizontal table with point
of contact P. Its axis of symmetry Oz and the axis OZ define a plane Π (containing OP) which
precesses about OZ with angular velocity Ω. OXY Z is a rotating frame of reference, with OX
horizontal in the plane Π. The height of O above the table is h(θ) and the coordinates of P are
XP = dh/dθ, YP = 0, ZP = −h(θ). The forces acting on the body are its weight −MgK, the
normal reaction R at P, and the (horizontal) frictional force F at P.

The function h(θ) is in principle determined by the shape of S and the position of
O within S, and is clearly a continuous function of θ (0 � θ � π). If S is everywhere
convex, then XP = h′(θ) also varies continuously with θ; but if S is not everywhere
convex, then h′(θ) has discontinuities when, as θ varies, the point of contact P jumps
between two distinct points of S having a common tangent plane that is instanta-
neously coincident with the table.

Let U = UI + V j + WK be the velocity of the centre-of-mass O. The velocity of
the point P (of the body) is then

UP = U + ω ∧ XP = UPI + VPj + WPK, (2.9)

where

UP = U − hΛ, VP = V + xP(n − Ω cos θ) + Ωh′(θ), WP = W − Λh′(θ). (2.10)

Since WP = 0 for as long as the body remains in contact with the table, we have

W = Λh′(θ). (2.11)

Since we allow for slip however, UP and VP are in general non-zero.

Example 2.1 (spheroid of axisymmetric mass distribution). The case of
a spheroid of axisymmetric mass distribution is a useful prototype which will be
studied in some detail in this paper. If the mass distribution is non-uniform, then
its centre-of-mass may be displaced a distance d, say, from its centre-of-volume. The
equation of S is then

a2(x2 + y2) + b2(z − d)2 = a2b2, (2.12)
where a/b ≷ 1 according as the spheroid is prolate or oblate. The function h(θ) is
found from the condition that the plane Z = −h is tangent to S, in the form

h(θ) = (a2 cos2 θ + b2 sin2 θ)1/2 + d cos θ. (2.13)
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The following two cases should be noted.

(i) If d = 0, i.e. the centre-of-mass coincides with the centre-of-volume, then

h(θ) = (a2 cos2 θ + b2 sin2 θ)1/2, (2.14)

and then, from (2.7),

XP =
(b2 − a2) sin 2θ

2h
, ZP = −h, (2.15)

and, from (2.8),

xP =
b2 sin θ

h
, zP = −a2 cos θ

h
. (2.16)

The expression (2.10)2 for VP reduces in this case to

VP = V + xP(n − (a/b)2Ω cos θ). (2.17)

(ii) If a = b and d �= 0 (sphere with displaced centre-of-mass), then

h(θ) = b + d cos θ. (2.18)

This includes the case of the tippe top, which has been widely studied (see references
cited in § 1). It also covers the case of any ‘spherical-tip’ top for which the portion of
the surface in contact with the table can be assumed to be part of a sphere (b then
being the radius of this sphere and d the distance of its centre from the centre-of-mass
of the top).

3. Dynamical equations

From this point on, we use dimensionless variables with (M, b, (b/g)1/2) as the units
of mass, length and time, where M is the mass of the body, b the radius of its
section in the plane Oxy, and g the acceleration due to gravity. (Equivalently, we
formally set M = b = g = 1.) The forces acting on the body are its weight −K at
O, and the normal reaction R = RK and frictional force F = FXI + Fyj at P. This
frictional force depends on the physical properties of the two surfaces in contact; for
the moment, we need merely assume that F resists the slipping motion, so that

F · UP � 0. (3.1)

The momentum equation, in an inertial frame of reference, is

dU

dt
= −K + R + F . (3.2)

Moreover, the angular momentum relative to O is H = Î · ω, where Î is the inertia
tensor at O, and the angular momentum equation, in the same inertial frame, is

dH

dt
= XP ∧ (R + F ). (3.3)

The energy of the body (kinetic plus potential) is

E = 1
2U · U + 1

2ω · H + h(θ), (3.4)
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and the energy equation derived in a standard way from (3.2) and (3.3) is

dE

dt
= UP · F � 0. (3.5)

Energy is dissipated solely through slipping and the associated friction at P.
In the rotating frame OXY Z, (3.2) becomes(

∂U

∂t

)
OXY Z

+ Ω ∧ U = −K + R + F , (3.6)

with components

U̇ = ΩV + FX , V̇ = −ΩU + Fy, Ẇ = R − 1, (3.7)

and we recall that W = Λh′(θ). As regards (3.3), it is more convenient to use the
body frame Oxyz in which Î is diagonalized, with diagonal elements (the principal
moments of inertia) A, A, C. In this frame

H = −AΩ sin θi + AΛj + Cnk, (3.8)

and (3.3) becomes (
∂H

∂t

)
Oxyz

+ Ω′ ∧ H = XP ∧ (R + F ), (3.9)

with components

AΩ̇ sin θ + (2AΩ cos θ − Cn)Λ = zPFy,

AΛ̇ + Ω sin θ(Cn − AΩ cos θ) = −RXP + ZPFX ,

Cṅ = xPFy.

⎫⎪⎬
⎪⎭ (3.10)

The sets of equations (3.7) and (3.10) together with the defining equation Λ = θ̇
constitute a sixth-order nonlinear autonomous dynamical system in the variables

Ξ = (U, V, Ω, Λ, θ, n), (3.11)

which we may arrange in the standard form Ξ̇ = F(Ξ):

U̇ = ΩV + FX ,

V̇ = −ΩU + Fy,

Ω̇ =
−2ΩΛ cos θ + (C/A)nΛ + zPFy/A

sin θ
,

Λ̇ =
Ω sin θ(AΩ cos θ − Cn) − RXP + ZPFX

A
,

θ̇ = Λ,

ṅ =
xPFy

C
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.12)

Here XP, ZP, xP and zP are given by (2.7) and (2.8).
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The normal reaction R is given, from (3.7), by

R = 1 + Ẇ = 1 +
d(Λh′(θ))

dt
, (3.13)

and this may be expressed, via (3.12), as a function

R = R(U, Ω, Λ, θ, n)

=
1 + h′′Λ2 + h′Ω sin θ(Ω cos θ − Cn/A)

1 + h′(h′ − µhUP)/A
, (3.14)

for the case of viscous friction (see (5.7)). The dynamical model holds only for so
long as the condition R � 0 is satisfied. To complete the specification of the problem,
F must be prescribed in terms of R and UP (as given by (2.9) and (2.10)).

4. The gyroscopic approximation and the Jellett invariant

In the approach described by MS02, attention was focused on the high-spin situation,
in which Coriolis effects dominate over both frictional and gravitational effects and
the inclination θ in consequence changes slowly with time. In these circumstances,
(3.10)2 degenerates at leading order to

Cn − AΩ cos θ = 0, (4.1)

a state that we describe as one of ‘gyroscopic balance’. In this state, the kinetic
energy is much greater than the potential energy.

It was then shown (MS02) that under this gyroscopic approximation and using
(4.1), the quantity

J = −H · XP = AΩh (4.2)

is constant, independently of the nature of the frictional force F . This may be seen
directly as follows. Using (3.3), we have XP · dH/dt = 0, so that

dJ

dt
= −H · dXP

dt
. (4.3)

Now XP = h′(θ)I − h(θ)K, so that

dXP

dt
=

(
∂XP

∂t

)
OXY Z

+ Ω ∧ Xp = h′′(θ)θ̇I + (ΩJ − θ̇K)h′(θ) (4.4)

and hence

dJ

dt
= (AΩ cos θ − Cn)(h′′ sin θ − h′ cos θ)θ̇ = (Cn − AΩ cos θ)h′2 d

dt

(
sin θ

h′

)
. (4.5)

Thus, if the gyroscopic condition (4.1) is satisfied, then dJ/dt = 0, and J = const.
Since (4.1) is at best a ‘high-spin’ approximation, this constant should be regarded
as an adiabatic invariant, constant on a time-scale determined by the relatively weak
effect of friction at P: we would expect that J−1dJ/dt � µ � 1; some supporting
evidence is provided by the numerical simulations in § 7.

The result (4.5) shows that J is also constant if d(sin θ/h′)/dt = 0, i.e. if

h(θ) = b + d cos θ, (4.6)
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where b and d are constants. This is the special case (2.18) of a spherical-tip top, for
which the constant J was first identified by Jellett (1872). We continue to describe
it as Jellett’s constant in the distinct context of non-spherical bodies of revolution
in gyroscopic balance.

The fact that the behaviour is to some extent controlled by Jellett’s constant
(rather than by constancy of angular momentum) provides useful insight into cer-
tain aspects of observed behaviour. Recall that, for the well-known Euler problem of
a body spinning freely in space and subject to weak dissipation due to the presence
of viscous fluid in a small internal cavity, angular momentum is conserved and the
body will spin ultimately about its axis of greatest moment of inertia, thus mini-
mizing kinetic energy for the (prescribed) angular momentum. For a uniform prolate
spheroid, this axis is perpendicular to the axis of symmetry; for a uniform oblate
spheroid it coincides with the axis of symmetry.

By contrast, when the body spins on a table with weak friction at the point of
contact and under the condition of gyroscopic balance, it is Jellett’s constant J
that should be ‘prescribed’. Thus, for example, if a uniform spheroid (for which
A = 1

5(a2 + 1), C = 2
5) spins in the orientation θ = π/2 with angular velocity Ω,

then (with b = 1) J = AΩ, and the (dominant) kinetic energy is given by

Tπ/2 = 1
2AΩ2 =

J2

2A
. (4.7)

If it spins in the orientation θ = 0 with spin n, then J = Cna and the kinetic energy
is

T0 = 1
2Cn2 =

J2

2Ca2 . (4.8)

Hence
T0

Tπ/2
=

A

Ca2 =
a2 + 1
2a2 . (4.9)

For a prolate spheroid (a > 1) the orientation θ = 0 is preferred (the energy then
being minimal), while for an oblate spheroid (a < 1) the orientation θ = π/2 is
preferred. This is just the opposite of the situation for the free-rotation problem.

These results are familiar from ‘toy’ experiments: when a hard-boiled egg is rapidly
spun on a table, it will rise to spin on one end, whereas when a pebble as used in the
Chinese game of ‘Go’ (near enough an oblate spheroid) is spun on a table about its
axis of symmetry, it will rise to spin on its rim. In both these cases, potential energy
increases, but this is more than compensated by the decrease in the (dominant)
kinetic energy.

5. Steady states for the case of a spheroid

To be specific, we focus henceforth on the case of a spheroid whose density distribu-
tion is such that its centre-of-mass coincides with its centre-of-volume, so that (now
with b = 1)

h(θ) = ZP = (a2 cos2 θ + sin2 θ)1/2 (5.1)

and, from (2.17),
VP = V + xP(n − a2Ω cos θ). (5.2)
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Such a geometry, for which h(π − θ) = h(θ) may be described as ‘flip symmetric’.
(The situation when h(π −θ) �= h(θ) introduces qualitative differences, which will be
treated in a separate paper.) The dynamical characteristics of the spheroid are its
principal moments of inertia (A, C) at O, which depend on the density distribution
within the body (assumed axisymmetric). The following three cases are worth noting.

(i) Uniform spheroid:
A = 1

5(a2 + 1), C = 2
5 ; (5.3)

(ii) ‘Polar’ spheroid, for which half of the mass is concentrated at each pole:

A = a2, C = 0; (5.4)

(iii) ‘Equatorial’ spheroid, for which the mass is uniformly concentrated on a hoop
round the equator:

A = 1
2 , C = 1. (5.5)

Note that for any axisymmetric density distribution, A/C � 1
2 .

In order to make progress, we must also specify the relationship between the
frictional force F and the slip velocity UP. Here, there are two possible standard
choices.

(i) Dry (or ‘Coulomb’) friction, for which

F = F (c) = −µRUP

|UP| , (5.6)

where µ is a (dimensionless) coefficient of friction. This law is realistic provided
|UP| is bounded away from zero, but fails in a neighbourhood of UP = 0 where
(5.6) is non-analytic. In particular it cannot be used for stability analysis of
steady states, at which, necessarily, UP = 0 (see the energy equation (3.5)).

(ii) Wet (or ‘viscous’) friction, for which

F = F (v) = −µRUP, (5.7)

where µ is again a coefficient of friction (but now having dimensions (velo-
city)−1 when we return to dimensional variables). This law is approximately
realized in practice if there is a thin layer of oil or other lubricating fluid
between the spheroid and the table. (Friction due to pure rotation about the
normal at P will be ignored.) It has the great advantage of analyticity near
UP = 0 and provides a plausible model for analysis of the stability of steady
states.

The steady states of the system (3.12) are the fixed points where

Ξ̇ = F(Ξ) = 0. (5.8)

We adopt the viscous law (5.7) so that the energy equation becomes

dE

dt
= −µRU2

P. (5.9)

Proc. R. Soc. Lond. A (2004)

 on September 15, 2013rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/


3652 H. K. Moffatt, Y. Shimomura and M. Branicki

02468

a = 0.1 
a = 0.5 

a = 0.8 
a = 1.2 

a = 2 

a = 3 

a = 4 

Ω

n

 

horizontal
precession   

intermediate 
states

pure rolling 
states  

vertical spin 

E 

n    3 = 25Ω

/4 
/2

π
πθ

0 

4 

8 

12

16

Figure 2. Fixed-points of the dynamical system (3.12) for a uniform spheroid in the three-dimen-
sional subspace (Ω, θ, n) of the six-dimensional phase space Ξ = (U, V, Ω, Λ, θ, n). The solid
curves are the sets of intermediate steady states, which depend on the aspect ratio a; these
curves all pass through the point E (where Ω =

√
5) and terminate on the shaded plane θ = 0

at points on the curve nΩ3 = 25, and are there tangent to the planes n =
√

5a3. The dot-dashed
line represents states of horizontal precession, and the vertical dashed line is a projection into
the subspace of pure rolling states. Note that all fixed points are non-isolated.

Hence, in a steady state with µ > 0, it follows that UP = 0 and F = 0. From (3.7)
with U̇ = 0, we then have R = 1 and ΩU = ΩV = 0. Also Λ(= θ̇) = 0 in a steady
state, so from (2.11) W = 0 also; moreover, from (5.2)

V + xP(n − a2Ω cos θ) = 0, (5.10)

and from (3.12)4
(AΩ cos θ − Cn)Ω sin θ = XP. (5.11)

These equations have the following obvious solutions (see figure 2, in which they are
represented in the three-dimensional subspace (Ω, θ, n) of the six-dimensional phase
space Ξ = (U, V, Ω, Λ, θ, n)).

(a) Vertical spin states

U = V = θ = Λ = 0, n arbitrary, Ω undefined, (5.12)

representing spin about the axis of symmetry in the vertical orientation.

(b) Horizontal precession states

θ = 1
2π, U = V = Λ = n = 0, Ω arbitrary, (5.13)

representing a motion in which the axis of symmetry rotates in a horizontal plane
with precessional angular velocity Ω. These states are represented by the dot-dashed
line in figure 2.
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(c) Intermediate states

These are steady states for which U = V = Λ = 0 and 0 < θ < 1
2π (so xP �= 0); for

such states,
n = a2Ω cos θ, (5.14)

and (5.11) becomes

Ω2 = D((a2 − 1) cos2 θ + 1)−1/2, (5.15)

where

D =
a2 − 1

a2C − A
. (5.16)

The condition for the existence of such states is evidently D > 0, or equivalently

a2C ≷ A for prolate/oblate spheroids, (5.17)

and there is then, for given θ, a unique pair (Ω, n) with Ω > 0, n > 0 given by (5.14)
and (5.15). Note that for the case (5.3) of a uniform spheroid D = 5, so that such
intermediate states exist for all values of a; these are represented by the solid curves
of figure 2. These curves terminate on the shaded plane θ = 0 at points on the curve
nΩ3 = 25, and are there tangent to the plane n =

√
5a3. (For the polar spheroid

(5.4), D = (1 − a2)/a2, positive only if the spheroid is oblate (a < 1); and for the
equatorial spheroid (5.5), D = (a2 − 1)/(a2 − 1

2), positive for a2 > 1 or a2 < 1
2 .)

(d) Pure rolling states

Finally, there are also ‘pure rolling states’ for which n is arbitrary, and

θ = 1
2π, V = −n, U = Ω = Λ = 0. (5.18)

The vertical dashed line in figure 2 represents the projection of these pure rolling
states into the three-dimensional subspace.

Note that each of these four categories of steady states is represented by a continu-
ous line or curve in phase-space, and that all fixed points are non-isolated. This means
that neutrally stable perturbations to neighbouring steady states are always possible;
such (trivial) perturbations may be ignored in the following stability analysis.

6. Stability of the steady states

In order to analyse the stability of the steady states identified above, we shall continue
to use the viscous friction model (5.7), which permits analytical treatment. This
analysis will help in the interpretation of the computed trajectories of the system
that follows in § 7. These trajectories may be computed for either viscous friction
or Coulomb friction; as recognized by Kane & Levinson (1978) for the case of a
spherical-tip top, the dependence on the friction parameter µ may be expected to be
qualitatively different in these two cases.

Proc. R. Soc. Lond. A (2004)

 on September 15, 2013rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/


3654 H. K. Moffatt, Y. Shimomura and M. Branicki

(a) Stability of vertical spin

The state of vertical spin is, in some sense, degenerate, because Ω is undefined in
this state. Nevertheless, the linear stability of this state may be analysed as follows.

When θ is small, (2.15) and (2.16) give (with b = 1)

ZP = −a + 1
2cθ2 + O(θ4), (6.1)

where c = −h′′(0) = a − a−1, and, to order θ,

XP = −cθ, xP = a−1θ, zP = −a. (6.2)

If we linearize (2.10) in θ, we have

UP = U − aΛ, VP = V + a−1nθ − aΩθ. (6.3)

Also W = 0 and R = 1 in this approximation, and equation (3.10)3 implies that
ṅ is also quadratic in small quantities; hence (in the linear approximation) we may
take n = const. (thus eliminating trivial perturbations which merely change n).
Equations (3.7) and (3.10)1,2 then give

U̇ − ϕ̇V = −µ(U − aθ̇),

V̇ + ϕ̇U = −µ

(
V − aϕ̇θ +

nθ

a

)
,

⎫⎪⎬
⎪⎭ (6.4)

and
A(θ̈ − ϕ̇2θ) + Cnθϕ̇ = cθ + aµ(U − aθ̇),

A(ϕ̈θ + 2ϕ̇θ̇) − Cnθ̇ = aµ

(
V − aϕ̇θ +

nθ

a

)
.

⎫⎪⎬
⎪⎭ (6.5)

Now, as in Murakami (1995), let

ζ = θeiϕ, w = (U + iV )eiϕ. (6.6)

Then
ζ̇ = (θ̇ + iθϕ̇)eiϕ, ζ̈ = ((θ̈ − θϕ̇2) + i(θϕ̈ + 2θ̇ϕ̇))eiϕ, (6.7)

and
ẇ = ((U̇ + iV̇ ) + i(U + iV )ϕ̇)eiϕ. (6.8)

Hence (6.4) and (6.5) give

ẇ = −µw + aµζ̇ − iµa−1nζ, (6.9)

and
Aζ̈ − iCnζ̇ = (c + iµn)ζ − µa2ζ̇ + µaw. (6.10)

These equations admit solutions of the form

(ζ, w) = (ζ̂, ŵ)ept, (6.11)

provided p satisfies a determinantal condition which reduces to the cubic equation

D1(p; µ) ≡ (p + µ)(Ap2 − iCnp − c) + µp(a2p − in) = 0. (6.12)
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Figure 3. Real part of roots of (6.12) for a uniform spheroid for two values of the friction
parameter µ: (a) oblate spheroid (a = 0.5), stable for n < n1. (b), (c) Prolate spheroid (a = 1.2)
subject to fast instability for n < nb and slow instability for nb < n < n1.

When µ = 0, the roots of (6.12) are p1, p2, p3, where

p1 = 0 and p2,3 =
i(Cn ± S)

2A
, (6.13)

with
S2 = C2n2 − 4Ac. (6.14)

For stability with µ = 0, we thus require that

n2 >
4Ac

C2 , (6.15)

a condition that is always satisfied for an oblate spheroid (c < 0). For a prolate
spheroid however, there is a bifurcation at

n = nb =
2
√

Ac

C
. (6.16)

For n < nb, the orientation is unstable, the spin being insufficient to overcome the
effect of gravity. We may describe this as a ‘fast’ instability†, because its growth rate
is O(1) in the frictionless limit µ → 0 (this behaviour is evident in figure 3b, c).

Suppose now that 0 < µ � 1. Provided S �= 0, the roots (6.13) are perturbed at
order µ to

p1 = −µ and p2,3 =
i(Cn ± S)

2A
− µ(Sa2 ± n(a2C − 2A))

2AS
. (6.17)

† This terminology is borrowed from dynamo theory, a ‘fast’ dynamo being one whose growth rate
remains O(1) as the magnetic resistivity tends to zero (see, for example, Childress & Gilbert 1995).
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For stability of both oscillatory modes when n > nb, we thus require in addition that

n2(a2C − 2A)2 < a4S2, (6.18)

which reduces to
(a2C − A)n2 > a3(a2 − 1). (6.19)

Note that the condition D > 0 (see (5.17)) for the existence of intermediate states is
also a necessary condition for the stability of vertical spin of a prolate spheroid, and
also for the instability of spin with axis vertical of an oblate spheroid.

For the case of a uniform spheroid, a2C − A = 1
5(a2 − 1), and (6.19) becomes

n2 ≷ 5a3 = n2
1, say, according as a ≷ 1. (6.20)

In this case,

n2
b =

5(a4 − 1)
a

< n2
1. (6.21)

The uniform oblate spheroid thus becomes unstable at θ = 0 if

n > n1 =
√

5a3. (6.22)

The growth rate of this instability is O(µ) in the limit µ → 0; it is thus a ‘slow’ (or
‘secular’) instability. The uniform prolate spheroid by contrast is stable for n > n1;
for nb < n < n1, it is subject to a slow instability, and for n < nb it is subject to
the fast instability already described.

These conclusions are illustrated in figure 3 which shows the three values of Re p as
a function of n for two typical cases: an oblate spheroid with a = 0.5 (figure 3a), for
which n1 ≈ 0.79; and a prolate spheroid with a = 1.2 (figure 3b, c), for which nb ≈
2.11, n1 ≈ 2.94. For both cases the roots are computed from the exact equation (6.12)
for µ = 0.01 and µ = 0.1. In the prolate case, the distinction between the slow and
fast regimes is very clear.

(b) Stability of horizontal precession

Consider now the linear stability of the steady state (5.13). Let θ = 1
2π + θ′;

linearizing in θ′ then gives

xP = −ZP = 1, XP = (1 − a−2)zP = (a2 − 1)θ′. (6.23)

Since n = 0 in the undisturbed state, (3.12)3 shows that Ω̇ is quadratic in small
quantities; hence we may take Ω = const. This reduces the dimension of the system
from six to five (the neutrally stable mode corresponding to perturbation of Ω alone
being suppressed). The linearized equations become

U̇ − ΩV = −µ(U − θ̇′),

V̇ + ΩU = −µ(V + a2Ωθ′ + n),

Aθ̈′ + AΩ2θ′ + CnΩ = −(a2 − 1)θ′ + µ(U − θ̇′),

Cṅ = −µ(V + a2Ωθ′ + n).

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(6.24)
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This fifth-order system admits solutions with (U, V, θ′, n) ∝ ept, where p satisfies the
determinantal condition

D2(p; µ) ≡

∣∣∣∣∣∣∣∣∣

p + µ −Ω −µp 0
Ω p + µ µa2Ω µ

−µ 0 AG(p) + µp CΩ

0 µ µa2Ω Cp + µ

∣∣∣∣∣∣∣∣∣
= 0, (6.25)

where

G(p) = F (p) +
a2 − 1

A
, F (p) = p2 + Ω2. (6.26)

By standard manipulations, this determinant may be written so that the parameter
µ appears only in the first two rows. It is then evident that D2(p; µ) is quadratic in
µ: it reduces to

D2(p; µ) = ACpG(p)F (p)

+ µ{AF (p)G(p) + C(p2 − a2Ω2)F (p) + 2ACp2G(p)}
+ µ2p(1 + C)(AG(p) + F (p)) = 0, (6.27)

a quintic equation for p. It is perhaps worth noting that D2(−p; −µ) = −D2(p; µ).
When µ = 0, the five roots of (6.27) are evidently

p1 = 0, p2,3 = ±iΩ, p4,5 = ±i
(

Ω2 +
a2 − 1

A

)1/2

. (6.28)

For prolate spheroids, the roots (6.28) all have zero real part and the corresponding
fixed points are (linearly) neutrally stable. For oblate spheroids (a < 1), however,
there is a bifurcation at

Ω2 = Ω2
b =

1 − a2

A
. (6.29)

For Ω > Ωb the modes are all stable as for the prolate spheroid, but for Ω < Ωb the
roots p4,5 are real:

p4,5 = ∓(Ω2
b − Ω2)1/2, (6.30)

and the mode corresponding to the root p5 is unstable. This fast instability is of
course again to be expected: the oblate spheroid set in spinning motion on its rim
will fall over if the spin rate is insufficient to overcome the effect of gravity.

When 0 < µ � 1, the roots (6.28) are slightly perturbed, the perturbation being
regular in the prolate case, but singular at the bifurcation point in the oblate case.
It is expedient to consider these cases separately.

(i) Prolate case (a > 1)

Here we may consider a regular perturbation of each of the roots pi (i = 1, . . . , 5)
to order µ.
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Figure 4. (a) Real parts of roots of (6.27) as a function of Ω for a uniform prolate spheroid with
a = 2, µ = 0.1; the real eigenvalues are as indicated in bold; (b) maximum real part as a function
of Ω for a = 2 and four values of µ; the instability threshold is always at Ω = Ω2 =

√
5, a result

associated with the viscous-friction model adopted for the stability analysis.

The root p1. This root is perturbed to p1 = µq, say; substituting in (6.27) and
retaining only terms of order µ, we obtain, for Ω �= 0,

q =
Ω2(Ca2 − A) − (a2 − 1)

C(AΩ2 + a2 − 1)
=

(Ca2 − A)(Ω2 − D)
AC(Ω2 + Ω2

1)
, (6.31)

where

Ω2
1 =

a2 − 1
A

, D =
a2 − 1

Ca2 − A
. (6.32)

Note that this is the same D as was encountered in (5.16). If Ca2 − A < 0 (as,
for example, for the polar spheroid (5.4)), then q < 0, i.e. the mode is damped by
friction. If, however, Ca2 − A > 0 (as, for example, for the uniform spheroid (5.3) or
the equatorial spheroid (5.5)), then D > 0; q is then positive for

Ω2 > D = Ω2
2 , say. (6.33)

The corresponding mode is then subject to slow instability with growth rate µq. Note
that here the condition D > 0 for the existence of intermediate states now appears
as a necessary condition for instability in the prolate case. For the important case of
a uniform spheroid,

Ω2
1 =

5(a2 − 1)
a2 + 1

, Ω2
2 = 5, q = 1

2Ω2
1

Ω2 − 5
Ω2 + Ω2

1
, (6.34)

and we have a slow instability for

Ω2 > 5. (6.35)

We may seek to understand this instability as follows. In the unstable mode with
µ � 1, we have

θ̇′ = O(µ), θ̈′ = O(µ2). (6.36)
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Moreover, from (6.24)3, U = O(µ) and V = O(µ2), and the primary balance in (6.24)
is

AΩ2θ′ + CnΩ = −(a2 − 1)θ′. (6.37)

Thus, θ′ is related to n in quasi-static manner. At leading order in µ, the slip velocity
is UP = VPj, where

VP = a2Ωθ′ + n =
[
1 − a2CΩ2

AΩ2 + a2 − 1

]
n, (6.38)

and (6.24)4 gives, at the same leading order

ṅ = µqn, (6.39)

where q is as given by (6.31). The source of the instability is thus evident in the
torque exerted by the frictional force F ≈ −µVPj, which tends to increase the spin
n, the feedback being positive when the condition (6.33) is satisfied.

The situation is further simplified when

AΩ2 
 (a2 − 1). (6.40)

Then (6.37) becomes
AΩθ′ + Cn ≈ 0. (6.41)

Here we recognize the gyroscopic approximation (4.1) for θ near π/2. Thus it is
evident that, when µ � 1 and (6.40) is also satisfied, the mode of secular instability
that is realized is indeed governed by the gyroscopic approximation. (It was in fact
through such consideration that we first recognized the possibility of extending the
gyroscopic approximation into the nonlinear regime, as described in MS02.)

The roots p2,3 = ±iΩ. These are similarly perturbed to, say, p = ±iΩ + µq. Since
F (±iΩ) = 0, we have F (p) ≈ µqF ′(±iΩ) = ±2µqiΩ. Hence (6.27) easily gives

p2,3 = ±iΩ − µ, (6.42)

i.e. both modes are damped by the frictional effect.

The roots p4,5 = ±i(Ω2 + (a2 − 1)/A)1/2. We write similarly p = p4,5 + µq. In this
case,

G(p4,5) = 0, G(p) ≈ µqG′(p4,5) = 2µqp4,5, F (p4,5) = −a2 − 1
A

,

and (6.27) gives

q = − 1
2A

(
1 +

a2Ω2

Ω2 + Ω2
1

)
. (6.43)

This is real and negative, and so these modes are also damped by the frictional effect,
whatever the value of Ω.

To summarize, for a prolate spheroid for which Ca2 − A > 0, there is one non-
oscillatory unstable mode when the condition (6.33) is satisfied. When Ω2 is suffi-
ciently above this threshold for instability, its structure is governed by the gyroscopic
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Figure 5. (a) Real parts of roots of (6.27) as a function of Ω for an oblate spheroid with a = 0.8
and µ = 0.1; real eigenvalues are indicated in bold type; (b) maximum real part as a function of
Ω for µ = 0.01 and µ = 0.1. Note the slow instability for Ωb < Ω < Ω2 and the fast instability
for Ω < Ωb.

balance condition (6.41). There are also four oscillatory modes (two complex conju-
gate pairs) which are all damped by friction in the linear stability analysis. In the
terminology of dynamical systems (see, for example, Guckenheimer & Holmes 1983),
the unstable manifold is one dimensional (two dimensional if the unstable manifold
emerging from the line of non-isolated fixed points (θ = π/2, n = 0) is considered).
The results are confirmed by numerical determination of the roots of (6.27). Fig-
ure 4a shows the real parts of the roots (one real, two complex conjugate) for a
uniform spheroid with a = 2, µ = 0.1 as a function of Ω. The onset of instability at
Ω = Ω2 =

√
5 is evident, consistent with the fact that for a uniform spheroid, from

(6.27), D2(0, µ) = µΩ2(a2 − 1)(1 − Ω2/5). Figure 4b shows the maximum of these
real parts for various values of µ; for the uniform spheroid and with viscous friction,
there is evidently no instability for Ω <

√
5, even for the larger values of µ.

(ii) Oblate case (a < 1)

For this case, the above type of perturbation analysis may be carried out provided
Ω is not near the bifurcation point Ω = Ωb (given by (6.29)). We simply summarize
the results for the case of a uniform oblate spheroid for which

Ω2
2 = 5, Ω2

b =
5(1 − a2)
1 + a2 < Ω2

2 . (6.44)

For Ω > Ω2 the state θ = π/2 is stable. For Ωb < Ω < Ω2, it is subject to slow
instability; and for Ω < Ωb, it is subject to fast instability.

This behaviour is shown in figure 5 for a uniform oblate spheroid with a = 0.8;
for this case Ω2

2 = 5, Ω2
b ≈ 1.1. Figure 5a shows the real parts of p as a function of

Proc. R. Soc. Lond. A (2004)

 on September 15, 2013rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/


Dynamics of a spinning axisymmetric body. I 3661

Ω for µ = 0.1, while figure 5b shows the maximum of these values for µ = 0.01 and
µ = 0.1. In the former case, the regime of slow instability (

√
1.1 < Ω <

√
5) is quite

evident.

(c) Stability of intermediate states

We shall suppose in this subsection that the condition D > 0 (or equiva-
lently, (5.17)) for the existence of intermediate steady states is satisfied. In any
such state, U = V = Λ = 0 and (Ω, n, θ) are related by (5.14), (5.15). Let
Ξ0 = (0, 0, Ω0, 0, θ0, n0) represent one such state, and suppose this to be perturbed
to

Ξ = Ξ0 + Ξ ′. (6.45)

The corresponding linearization of Ξ̇ = F(Ξ) is of the form

Ξ̇ ′ = M0Ξ
′, (6.46)

where M0 is the matrix F ′(Ξ0). This equation has solutions of the form Ξ ′ = Ξ̂ept,
where p satisfies a determinantal condition which reduces to the polynomial equation

pD3(p; µ) ≡ p(p5 + c4p
4 + c3p

3 + c2p
2 + c1p + c0) = 0. (6.47)

The coefficients c0, . . . , c4, obtained with the help of Maple, are given in the
appendix. Note that c1, c3 are even, and c0, c2, c4 odd (actually linear) in µ. Thus,
again in this case, D3 satisfies the symmetry condition D3(−p; −µ) = −D3(p; µ).
The expressions for c0, . . . , c4 involve a parameter α given by

α = (λ − 2)2 cos2 θ0 + sin2 θ0
(a2 − 1) cos2 θ0 + λ

(a2 − 1) cos2 θ0 + 1
, (6.48)

where λ = a2C/A. As shown in the appendix, α > 0 for both prolate and oblate
spheroids.

The factor p in (6.47) is to be expected: it corresponds to neutrally stable perturba-
tions in phase-space in the direction tangent to the continuous curve of intermediate
states (figure 2). The corresponding eigenvector thus depends on θ0. We may disre-
gard such perturbations in what follows.

Consider first the situation when µ = 0. Then (6.47) gives

D3(p; 0) = p(p4 + d3p
2 + d1) = 0, (6.49)

where

d3 = c3|µ=0 =
AΩ2

0(α + 1 + X2
P0/A)

A + X2
P0

, d1 = c1|µ=0 =
AΩ4

0α

A + X2
P0

. (6.50)

The roots are

p
(0)
1 = 0, p

(0)
2,3 = ±iΩ0, p

(0)
4,5 = ±iΩ0

(
Aα

A + X2
P0

)1/2

. (6.51)

Since Re p
(0)
j = 0 (j = 1, . . . , 5), the state Ξ0 is (linearly) neutrally stable when µ = 0.

Note that if
Aα = A + X2

P0, (6.52)
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Figure 6. The positive root η2 of (6.53) as a function of a, and
the corresponding variation of the angle θR of resonant instability.

then there is a resonance between the p
(0)
2,3 modes and the p

(0)
4,5 modes. Equa-

tion (6.52) is a quadratic equation for η = cos2 θ0, and this resonance occurs only if
this quadratic has a real root between 0 and 1. For the case of a uniform spheroid,
the quadratic equation reduces to

2(a2 − 1)(2a2 + 1)η2 − (5a4 + 2a2 − 1)η + (a2 + 1) = 0, (6.53)

and this does indeed have a real root between 0 and 1 for all values of a (see figure 6).
The resonance does therefore always exist in this case at an angle θR, say, dependent
on a. (The situation is a little more complicated for the cases of polar and equatorial
spheroids.)

Provided we are not too near this resonant angle, it is to be expected that when
0 < µ � 1, the roots will be slightly perturbed to

pj = iξj + µqj , (6.54)

where iξj = p
(0)
j . Substitution into (6.47) and retaining only terms linear in µ gives

qj =
−c4ξ

4
j + c2ξ

2
j − c0

µ(5ξ4
j − 3d3ξ2

j + d1)
. (6.55)

These values of qj do not depend on µ because of the linearity of c0, c2 and c4 in µ
noted above. Using these expressions, the five perturbed roots are found in the form

p1 = −µxP0

(
xP0

C
− a2β

Aα

)
, p2,3 = ±iΩ0 − µ, (6.56)

and

p4,5 = p
(0)
4,5 − µ

2

(
a2xP0

Aα
(β − αzP0 cot θ0) +

Z2
P0

A + X2
P0

)
, (6.57)
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where β is also as given in the appendix. At least for the case of a uniform spheroid,
qj < 0 for each j, so that friction is stabilizing at O(µ).

Figure 7a shows computed values of Re(pj) as a function of θ0 based on the exact
equation (6.48), for µ = 0.1 and two values of a (a = 0.5 for which θR ≈ 0.48, and
a = 2 for which θR ≈ 1.32). The effect of the resonances is evident for both cases;
this effect is not captured in the O(µ) analysis above: it is a higher-order effect which
is nevertheless important because it indicates a very small (actually O(µ)) region of
instability in the neighbourhood of the resonant angle, in which Re p4,5 is positive
(and also O(µ)). Parts (b) and (c) of figure 7 show the maximum of the real parts of
pj for various values of a and µ, respectively. The unstable band becomes increasingly
spiked as µ decreases towards zero. However, the magnitude of the positive real part
in the unstable band remains small compared with the magnitudes of the (negative)
real parts of the other eigenvalues which correspond to stable disturbances (figure 7a).
Trajectories near the resonant angle are in fact rapidly attracted towards the fixed-
point line and then slowly shifted along the line to fixed points outside the unstable
band (see figure 9).

(d) Stability of pure rolling states

Finally, consider a pure rolling state, for which Ξ0 = (0, V0, 0, 0, 1
2π, n0), with

V0 = −n0, and again, let Ξ = Ξ0 + Ξ̂ept. In this case, linearization of the system
(3.12) leads to

p2D4(p; µ) ≡ p2[Cp2Q(p) + µp{(1 + 2C)Q(p) + ACp2 + C2n2
0}

+ µ2(1 + C){Ap2 + n2
0C + Q(p)}] = 0, (6.58)

where
Q(p) = A2p2 + A(a2 − 1) + C2n2

0. (6.59)

Here, there is a double root p0,1 = 0. The corresponding linearly independent eigen-
vectors are

Ξ̂0 = (0,−1, 0, 0, 0, 1), Ξ̂1 = (−n0, 0, µ, 0, µn0(C + 1)(a2 − 1)−1, 0). (6.60)

The first of these corresponds to neutrally stable perturbations along the line (in
phase space) of pure rolling states. The second corresponds to perturbations in a
direction orthogonal to this line; it is neutrally stable only in linear analysis. Centre-
manifold analysis using the basis vectors (6.60) shows that, under general pertur-
bation, the rolling states are weakly unstable due to nonlinear effects. Trajectories
computed with a starting point near pure rolling states are consistent with this
conclusion: these lead—at any rate for the prolate spheroid—from the (unstable)
rolling state (for which the angular momentum H is horizontal) to a precessional or
intermediate state (for which H is vertical or oblique).

Turning now to the roots of the quartic D4(p; µ) = 0, when µ = 0 these are

p
(0)
2,3 = 0, p

(0)
4,5 = ± i(A(a2 − 1) + C2n2

0)
1/2

A
. (6.61)

Again for the oblate case (a < 1), there is a fast instability if

n2
0 <

A(1 − a2)
C2 = n2

2. (6.62)
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Figure 7. Stability of the intermediate states: (a) real parts of the roots of (6.47) as a function
of the inclination angle θ of the steady state; real eigenvalues are as indicated. (b) Maximum
real part of the five eigenvalues along the fixed-point curve parametrized by θ. (c) Similar to (b)
but with a fixed and µ varied.

Provided we are not near this bifurcation point, when 0 < µ � 1 the roots may be
obtained by the now familiar procedure, giving, to O(µ),

p2 = −µ(1 + C)
C

, p3 = −µ

(
1 +

Cn2
0

A(a2 − 1) + C2n2
0

)
, (6.63)

and

p4,5 = p
(0)
4,5 + µq, where q =

C(A − C)n2
0 − A(a2 − 1)

2A(A(a2 − 1) + C2n2
0)

. (6.64)

If q > 0, then we have slow instability.
For the case of a uniform spheroid, (6.64) reduces to

q =
5(a2 − 1)(2n2

0 − 5(a2 + 1))
2(a2 + 1)(4n2

0 + 5(a4 − 1))
. (6.65)

Thus, for a prolate spheroid rolling on a plane with its axis horizontal, we have slow
instability if

n2
0 > 5

2(a2 + 1) = n2
3. (6.66)

This instability may or may not dominate over the nonlinear instability referred to
above, depending on the amplitude of the initial disturbance from the steady state.

Similarly, a uniform oblate spheroid (a < 1) is subject to a slow instability for

n2
0 < 5

2(a2 + 1). (6.67)
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Figure 8. Trajectories of the system (3.12) projected onto the subspace of the variables (Ω, θ, n)
for a uniform prolate spheroid (a = 2), with viscous friction (µ = 0.1). The dashed curve is that
of intermediate steady states (5.14), (5.15). The small bullet point indicates the centre of the
unstable band around the resonant angle θR. For Ω0 > Ω2 =

√
5, fixed points on θ = π/2 are

unstable, and the trajectories are attracted to stable fixed points either on the dashed curve or
(for Ω0 > ΩV ≈ 5.06) on the plane θ = 0 above the dotted line (n =

√
5a3 ≈ 6.32). The two

insets show blow-ups of trajectories near two fixed points (one stable, one unstable) on θ = π/2.

Just as for the stability of horizontal precession (figure 5), this slow instability is
triggered by friction over a range of values of n0 (n2 < n0 < n3) greater than the
value n2 (equation (6.62)) at which the fast instability sets in.

7. Numerical treatment

We now present the results of some computations based on the exact system (3.12).
We used an adaptive method based on second-order numerical differentiation formu-
lae due to Klopfenstein (1971) and similar to that described by Shampine (1980).
This method has two desirable properties: easy implementation of time-step adap-
tivity and allowance for possible stiffness of the system (associated with L-stability).
For most runs, we used a relative error tolerance 10−9.

(a) System trajectories

We focus here on the case of a uniform prolate spheroid with a = 2, and with
viscous friction at the point P. The trajectories lie in the six-dimensional phase
space; here we show simply their projections in the three-dimensional subspace of
the variables (Ω, θ, n). Figure 8 shows a number of trajectories starting from initial
conditions (U = 0, V = 0, Ω0, Λ = 0.01, θ = π/2, n = 0). It is evident that the points
with Ω0 �

√
5 are stable whereas those for which Ω0 >

√
5 are unstable. Trajectories

originating near the unstable fixed points are attracted along the unstable manifold
either to one of the intermediate-state fixed-points at an angle θF > 0 or, if Ω0
is sufficiently large (greater than ΩV, say), to a fixed point for which θF = 0 and
n = nF, say; in this case, the spheroid rises fully to a stable vertical position. The
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Figure 9. Blow-up of four trajectories in the vicinity of the bullet point of figure 8. The band
of unstable fixed points is shown dotted; the trajectory that spirals in towards this band then
slowly drifts to a stable fixed point outside the band.

blow-ups in the insets show damped oscillations in the immediate neighbourhood of
the fixed points; these depend on the precise initial conditions adopted, and are to
be expected in view of the existence of the damped oscillatory modes identified in
the foregoing stability analysis.

For a = 2 the resonant instability discussed in § 6 c above occurs at θ = θR ≈ 1.32
(see figure 6); this is marked by the bullet on the dashed curve of figure 8. Close
examination of the trajectories near this point (figure 9) shows rapid attraction
towards the dashed curve coupled with slow drift to points outside the narrow band
of resonant instability.

Similar computations using Coulomb (rather than viscous) friction (for which the
set of fixed points is unchanged) give similar trajectories except very near the fixed
points, where Coulomb friction becomes indeterminate in direction (and therefore of
dubious validity) and where the trajectories exhibit oscillations suggestive of limit-
cycle behaviour (shown later in figure 12b).

The second critical angular velocity ΩV above which a uniform prolate spheroid
will rise to the vertical may be estimated using the gyroscopic approximation dis-
cussed in § 4; for then we have Jellett’s constant which gives

nFa =
Ω0A

C
= 1

2(1 + a2)Ω0. (7.1)

From (6.22), this spin is stable provided nF >
√

5a3; hence the condition that the
spheroid rises to a vertical state that is just stable implies that

Ω2
V =

20a5

(1 + a2)2
, > 5 for a > 1. (7.2)

Figure 10 shows the asymptotic angle of inclination θF as a function of the initial
rate of precession Ω0 for various values of a > 1. The critical value ΩV is where
these curves hit the axis θF = 0. The inset figure shows this ΩV as a function of a,
showing agreement to within about 5% with the above formula (7.2). This indicates
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Figure 10. Final (asymptotic) value θF as a function of the initial precessional angular velocity
Ω0, for a trajectory originating near a fixed-point (Ω0, θ = π/2, n = 0), for various values of a
(left to right, a = 1.6, 1.8, 2.0, 2.2, 2.4, 2.6, 2.8, 3.0, 3.2, 3.4, 3.6) and for µ = 0.1 (thin solid) and
µ = 0.2 (thick dashed). The curves hit the axis θF = 0 at Ω0 = ΩV, and the inset shows the
variation (solid curve) of this ΩV as a function of a; this compares quite well with the estimate
(7.2) based on the gyroscopic approximation (dashed curve).

that even when the precessional speed is only just sufficient to raise the axis to the
vertical, the gyroscopic approximation works reasonably well. Note that figure 10 is
insensitive to change of µ; indeed the curves (thick dashed) obtained with µ = 0.2
are indistinguishable from those (thin solid) for µ = 0.1. The evidence here is that,
at least within the parameter range of these computations, the value of µ affects the
time taken to follow a trajectory in phase-space, but not its final destination.

(b) Validity of the gyroscopic approximation

The linear stability analysis of § 6 indicates that when µ is small, Λ = θ̇ is O(µ)
during the linear phase of evolution along the unstable manifold. As shown by MS02,
under the gyroscopic approximation this behaviour persists during the subsequent
nonlinear evolution also. Figure 11 shows the evolution of Λ for the rise of a prolate
spheroid for several values of Ω0 and for two values of µ (0.01 and 0.1). In both cases
it is evident that Λ does indeed remain of the order of µ. (The curves for Ω0 = 15
show oscillations of such high frequency that they appear blurred, although in fact
they are well resolved; we are confident that they are not numerical artefacts.) These
oscillations induce corresponding oscillations in R via (3.14), and are a prelude to the
jumping phenomenon referred to in the introduction; analysis of this phenomenon is
deferred to part II.

Figure 12a shows the computed time evolution of the angle θ from unstable to
stable states for an oblate (a = 0.5) and a prolate (a = 2) spheroid. In both cases,
the curves closely shadow the thick solid curves, previously obtained by MS02 under
the gyroscopic approximation. The oscillations are interesting; these are filtered out
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Figure 11. Time evolution of Λ = θ̇ during the rise of a prolate spheroid (a = 2) for various
Ω0: (a) µ = 0.01; (b) µ = 0.1. In both cases Λ remains O(µ). The rapid oscillations that appear
with increasing Ω0 (here with amplitude O(µ)) lead to corresponding oscillations in R, and are
a prelude to the jumping phenomenon.

in the gyroscopic approximation, just as inertial waves are filtered out under the
geostrophic approximation in geophysical fluid dynamics. Figure 12b shows similar
evolution when Coulomb (rather than viscous) friction is used.

The gyroscopic approximation leads to the gyroscopic balance condition (4.1).
Figure 13a shows the evolution of Cn and AΩ cos θ separately, and also of their dif-
ference G = |Cn−AΩ cos θ| for Ω0 = 10. It is evident that for this value, gyroscopic
balance is achieved to within about 5%. This balance improves as Ω0 increases, but
the incidence of strong oscillations eventually invalidates the gyroscopic approxima-
tion. Figure 13b shows the extent to which the Jellett ‘constant’ remains constant
for different values of Ω0; note again that, for Ω0 = 10, the variation is within 5%.
Figure 13c, d shows the evolution of G with time for various values of Ω0 and a (> 1);
gyroscopic balance improves as either Ω0 increases or (a − 1) decreases.

8. Discussion and conclusions

Despite the apparent simplicity of the problem addressed in this paper, the detailed
analysis has revealed a remarkable richness of structure in dynamical behaviour. The
governing nonlinear dynamical system is six-dimensional and, even for the prototype
problem of a uniform spheroid under viscous friction at the point P, there remain
two independent parameters (a and µ), so that a complete exploration of all possible
behaviours in the six-dimensional phase-space is a formidable undertaking.

A framework is, however, provided by a classification of the fixed points (or steady
states) of the system, and analysis of the stability of these fixed points under small
perturbations. This analysis, presented in §§ 5 and 6, provides a guide map to the
choice of computed trajectories of the system, as presented in § 7. A guiding theme
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Figure 12. (a) Evolution of θ under viscous friction (µ = 0.1) from unstable to stable equilibrium
for a prolate (a = 2) and an oblate (a = 0.5) spheroid; the thick solid curves denote solutions
under the gyroscopic approximation. (b) The same under Coulomb friction with µ = 0.1.
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Figure 13. (a) Evolution of Cn, AΩ cos θ and G = |Cn − AΩ cos θ| during the rise of a uniform
prolate spheroid; Ω0 = 10, a = 1.6, µ = 0.1. (b) Evolution of the normalized Jellett ‘constant’
measured on trajectories originating near fixed points (Ω0, θ = π/2, n = 0); a = 1.6, µ = 0.1;
(i) Ω0 = 12; (ii) Ω0 = 10; (iii) Ω0 = 9; (iv) Ω0 = 8; (v) Ω0 = 7; (vi) Ω0 = 5. (c) Evolution
of G for a = 1.6, µ = 0.1 and various Ω0; (i) Ω0 = 5; (ii) Ω0 = 7; (iii) Ω0 = 9; (iv) Ω0 = 10;
(v) Ω0 = 12; (vi) Ω0 = 12.5. (d) the same for Ω0 = 10, µ = 0.1 and various a.
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has been the concept of gyroscopic balance, as previously introduced by MS02, which
applies when friction is weak and the Coriolis force is dominant, and which in effect
provides a one-dimensional description of the dynamics, from which any latent oscil-
latory modes of motion have been filtered out. The numerical work of § 7 has allowed
a partial assessment of the usefulness of this greatly simplified description.

We have restricted attention to circumstances in which the normal reaction R
at P remains positive. However, we note that when the initial angular momentum
imparted to the spheroid is sufficiently large, the growth of oscillatory modes can be
such as to reduce R to zero, in which case the spheroid may lose contact with the
table. This ‘jumping’ phenomenon is the subject of a further paper in preparation
(part II).

We have emphasized the distinction between ‘fast’ and ‘slow’ modes of instability,
the fast modes being those that survive in the limit µ → 0. This distinction helps
in understanding the structure of the growth rate (instability) diagrams presented
in figures 3 and 5. The (slow) resonant instability encountered in § 6 c is intriguing,
and perhaps merits further investigation. It is reminiscent of the ‘elliptic’ instability
that occurs in two-dimensional fluid flows with elliptic streamlines (see, for example,
Saffman 1992, § 12.4).

Further generalizations are clearly possible: spheroids with displaced centre-of-
mass (d �= 0), axisymmetric bodies of non-spheroidal shape including those that are
not everywhere convex, even spheroids with internal fluid-filled cavities. It is hoped
to address such generalizations in future communications.
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Appendix A.

The coefficients, c4, . . . , c0, of the characteristic polynomial D3(p, µ) (equation (6.47))
obtained in § 6 c are, with h0 = h(θ0), h′

0 = h′(θ0):

c4 = µ

(
2 +

x2
P0

C
+

h2
0

A + h′2
0

− a2xP0zP0
cot θ0

A

)
,

c3 =
1

A + h′2
0

{
AΩ2

0

(
α + 1 +

h′2
0

A

)

+
(

µ2

ACh2
0

)
(h2

0 + A + h′2
0 ){a2(a2C − A) cos2 θ0 + A(1 + C)h2

0}
}

,

c2 =
µAΩ2

A + h′2
0

{
x2

P0(α + 1 + h′2
0 /A)

C
+

h2
0

A
+ 2α

− a2xP0
β + zP0(1 + h′2

0 /A) cot θ0

A

}
,
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c1 =
1

A + h′2
0

{
AΩ4

0α +
(

µ2Ω2
0

ACh4
0

)
{−A(h2

0 − 1)(a2C − A) sin4 θ0

+ [(a2C − A)((a2C(a2 + 2) − 4A)h2
0 + Ca4) cos2 θ0

+ h2
0(((A + a2 + 1)C + 1)h2

0 + C(a2C − A))A] sin2 θ0

+ h4
0C cos2 θ0(a2(C − 1) − 2A)2}

}

c0 =
µAΩ4

0

A + h′2
0

(
xP0α

C
− a2β

A

)
xP0,

where xP0, zP0 are given by (2.16) at θ = θ0, and α and β are given by

α = (λ − 2)2 cos2 θ0 + sin2 θ0
(a2 − 1) cos2 θ0 + λ

(a2 − 1) cos2 θ0 + 1
, (A 1)

β = xP0(1 − (λ − 1) cos2 θ0) + (λ − 1)
(

1 +
1
h2

0

)
zP0 sin θ0 cos θ0, (A 2)

with λ = a2C/A.
The parameter α is always positive. This can be easily seen for prolate spheroids

(a > 1), since both contributions to (A 1) are positive. As regards oblate spheroids
(a < 1), α could possibly become negative only if

λ < (1 − a2) cos2 θ0 = λa,θ0 � 1, (A 3)

and it is therefore sufficient to examine the region 0 � a < 1, 0 � λ < λa,θ0 . In this
region however, we have

α � (λ − 2)2 cos2 θ0 − max
0�a<1,

0�λ<λa,θ0

[
sin2 θ0

1 − (1 − a2) cos2 θ0
((1 − a2) cos2 θ0 − λ)

]

= cos2 θ0((λ − 2)2 − 1) > 0 for 0 � λ < λa,θ0 . (A 4)

Hence α is always positive for both prolate and oblate spheroids, as stated.
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