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Celt reversals: a prototype of chiral dynamics
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A physically transparent and mathematically streamlined derivation is presented for
a third-order nonlinear dynamical system that describes the curious chiral reversals
of a celt (rattleback). The system is integrable, and its solutions are periodic,
showing an infinite succession of spin reversals. Inclusion of linear dissipation allows
any given number of reversals, and a typical celt’s observed behaviour is well
captured by tuning the dissipation parameters.

1. Introduction

A celt (alias rattleback or wobblestone) is a canoe-shaped rigid body with the
curious property of spin asymmetry: it tends to spin smoothly in one sense, but
when spun in the opposite sense a pitching instability develops which extracts
so much energy from the spin that the spin actually reverses in sign. This chiral
behaviour was first discussed by the meteorologist G. T. Walker [9], who recognized
that it results from misalignment of the celt’s principal axes of inertia and its axes
of curvature at the point of contact with the table. Many subsequent authors have
revisited this phenomenon, analysing aspects of the stability of steady spin [5, 7]
(these Russian works seem to have been largely overlooked in the West), [1], or
conducting a numerical simulation of the full nonlinear equations of motion [3, 4],
some including dissipation from slip [2].

Our objective here is to illuminate, streamline and extend previous analyses, in
order to provide a transparent derivation of a simple system of equations ((5.5) and
(7.1) below) that captures the celt’s reversal mechanism. The scalar form of (5.5)
was derived earlier by Markeev and Paskal [5,7]. Our derivation differs from theirs
in that

(i) at each step the physical meaning of the approximation is made explicit,

(ii) we pinpoint the chirality and Coriolis terms that are the direct physical causes
of the phenomenon.

The key physical observation is that, even from rest, if we tap a celt so as to make it
pitch, it spontaneously spins in one sense, whereas if we make it roll, it spins in the
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opposite sense (acting like a reversed celt); whatever we do, theory must account
for this. The key mathematical idea is separation of time-scales, slow and fast. The
mean torque from pitching and rolling was calculated also in [2] by averaging over
these fast oscillations.

Chiral dynamics is common in nature, yet very little studied. We like to think
of the celt as a model, and of its equations (5.5), (7.1) as the simplest prototype of
chiral dynamics. For example, the parallel between the celt equations and those of
the αω-dynamo is suggestive.

1.1. On the word ‘celt’

Though always confused with ‘Celt’ (pron. /kelt/) as in ‘Celtic people’, it is a
separate word pronounced /selt/, asserts the Oxford English Dictionary (2nd edn,
1989): ‘An implement with chisel-shaped edge, of bronze or stone (but sometimes
of iron), found among the remains of prehistoric man. . . ’. Etymologically, it has
come into existence by mistake:

[t]he received or Clementine text of the Vulgate has in Job xix.24 Stylo
ferreo, et plumbi lamina, vel celte sculpantur in silice; but, though this
is the reading of some MSS., the Codex Amiatinus and others read
certe ‘surely’[. . . ] the independent evidence for a word celtes or celte is
slender[. . . ] celtes, whatever its origin and character, was assumed, on
the authority of the Vulgate, to be a genuine word; and as such, the
term was admitted into the technical vocabulary of Archæology, about
1700[. . . ] the general adoption of the word by antiquaries was influenced
by a fancied etymological connexion with [the other word ‘Celt’].

The Authorized Version translates Job 19:23, 24 as

Oh that my words were now written! Oh that they were printed in a
book!

That they were graven with an iron pen and lead in the rock for ever!

Indeed, the word in question (laad) in the original Hebrew text means ‘for
certain’, ‘for ever’.

2. Pitching and rolling

We initially neglect dissipative effects which, though present in practice, are inci-
dental to the reversal mechanism and best incorporated at a later stage (see § 7).
Moreover, we focus on a body of specific geometry; the analysis is readily general-
ized.

Consider a uniform solid ellipsoid of mass M with surface x2/a2+y2/b2+z2/c2 =
1, where a > b > c. It can rest in stable equilibrium on a table z = −c with z-axis
vertically up and gravity (0, 0,−g). We work in dimensionless variables adopting
M , c,

√
c/g as units of mass, length, time (so that M = c = g = 1). The point of

contact P then has coordinates (0, 0,−1), and the principal moments of inertia at
P are α = (b2 + 6)/5, β = (a2 + 6)/5, γ = (a2 + b2)/5. Near P the contact surface
is locally z = −1 + x2/2a2 + y2/2b2.
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If this ellipsoid is disturbed from rest, then, assuming no slip, the linearized
equations for the coordinates x(t), y(t) of the now moving point of contact P are
ẍ + ω2

1x = 0, ÿ + ω2
2y = 0, where the dot denotes time-derivative and the frequen-

cies ω1,2 are given by ω2
1 = 5(a2 − 1)/(a2 + 6), ω2

2 = 5(b2 − 1)/(b2 + 6). There are
thus two uncoupled modes of oscillation: pitching (x, y) = (1, 0) exp iω1t and rolling
(x, y) = (0, 1) exp iω2t. We suppose that b − 1 is of order 1, so that both ω1,2 are
also of order 1. In fact, ω2

1 > ω2
2 and ω2

1 ∼ 5 if a � 1. If the ellipsoid spins about
the z-axis, then these two modes get coupled, but they remain stable as long as the
no-slip condition persists.

3. Chiral distortion

Now redistribute the mass inside the ellipsoid, causing its principal axes to be
rotated by a small angle about the vertical relative to the principal axes of curva-
ture at P . The resulting body does not in itself exhibit chirality, since a rigid-body
motion brings it into coincidence with its mirror image; however, with the orienta-
tion of gravity toward the table, the system ‘body plus table’ does exhibit chirality.
This is our celt. If we still refer to xyz aligned with the axes of inertia, then it is
the axes of curvature that are rotated by a small angle, and the surface near P is
locally

z = −1 +
x2

2a2 + χ
xy

a2 +
y2

2b2 ,

where the chirality parameter χ (as in χείρ ‘hand’), positive or negative, is small.

4. Chiral instability

This body can spin with angular velocity (0, 0, n), but the effect of chirality χ �= 0
is to destabilize pitching or rolling, or both. To simplify matters, we suppose a � b,
i.e. the celt (like most toy models) is long in the x-direction compared with its
transverse length-scale of order 1. We suppose further that |n| � 1, |χ| � 1, so
that the pitching and rolling modes are weakly perturbed by spin and chirality (as
in most toy experiments). In these circumstances, the angular momentum equation
and the no-slip condition lead, as in [1], to linearized equations for the coupled
modes of oscillation which we arrange, at leading order in a2 � 1, in the form

ẍ + ω2
1x + χÿ = −6n2x − 12a−2nχẋ − (n2 − 5a−2)χy − (12b−2 − 5)nẏ,

ÿ + ω2
2y + Nẋ = −b2a−2χẍ − (1 + 6b−2)

× (6(1 − b−2)n2y − 12a−2nχẏ − (11 + b2)a−2χx),

where N = 5(1 + 6b−2)n. The reason for arranging the equations in this form
is that, as checked by standard analysis, all terms collected on the right merely
perturb the (real) frequencies ω1,2 of the pitching and rolling modes, and do not
induce any instability; by contrast, χÿ and Nẋ placed on the left act in conjunction
to shift these frequencies off the real axis, so these terms alone are responsible
for instabilities. A small shift of frequency along the real axis is immaterial: the
essential dynamics is thus adequately described if we ignore the terms on the right,
giving the strikingly simple system

ẍ + ω2
1x + χÿ = 0, ÿ + ω2

2x + Nẋ = 0. (4.1)
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To recap, the two crucial perturbative effects we have retained are

(i) a small change in the pitching mode due to chirality χ, and

(ii) a small change in the rolling mode due to the Coriolis effect of the spin N .

In retrospect the interpretation of (4.1) is plausible from intuitive considerations.
We note that (4.1) is reminiscent of the equations of the αω-dynamo (see, for
example, [6]):

∂A

∂t
= αB + λ∇2A,

∂B

∂t
= (∇ ∧ Aiy) · ∇U + λ∇2B,

χ and N being replaced by α (related to helicity) and shear ∇U .
Stability and instability are governed not by χ and N separately, but by their

product Nχ. With (x, y) ∼ exp iωt (assuming N is constant), the characteristic
equation for ω is (ω2 − ω2

1)(ω2 − ω2
2) + iNχω3 = 0. For small |Nχ|, the perturbed

roots are ω1,2 − iσ1,2, where σ1,2 are given by

2(ω2
1 − ω2

2)σ1 = Nχω2
1 , 2(ω2

1 − ω2
2)σ2 = −Nχω2

2 ,

and the corresponding eigenvectors are

(x1, y1) =
(

1,
−iN

ω2
1 − ω2

2

)
, (x2, y2) =

(
χω2

2

ω2
1 − ω2

2
, 1

)
.

If Nχ > 0, then pitching ∼ exp(iω1 + σ1)t is unstable with growth rate σ1 while
rolling ∼ exp(iω2 +σ2)t is stable with decay rate |σ2|. If Nχ < 0, then the situation
is reversed: pitching becomes stable and rolling unstable. This agrees well with the
observed behaviour of long thin celts.

5. Two time-scales and conservation of energy

The growth rates σ1,2 of the above instabilities are both of order |Nχ|, small
compared with the frequencies |ω1,2| of the pitching and rolling modes. Hence,
N must vary on this slow time-scale. We use quasi-steady analysis to track the
evolution of the amplitudes A0(t), B0(t) of pitching and rolling, which evidently
satisfy dA0/dt = σ1A0, dB0/dt = σ2B0. In terms of a slow-time variable

τ =
|χ|

2(λ − 1)
t, where λ =

(
ω1

ω2

)2

,

these become (taking for the moment χ > 0)

dA0

dτ
= λNA0,

dB0

dτ
= −NB0, (5.1)

where we now regard N = N(τ) as varying on the slow time-scale. The phases of
the oscillations play no part in this analysis.

To describe the slow-time variation of N , we need only appeal to conservation
of energy. The energies E1 in pitching and E2 in rolling are given at leading order
by 2E1 = β(ẋ2 + ω2

1x2) = βω2
1A2

0 and 2E2 = αω2
2B2

0 , while the energy E3 in the
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spin n about the z-axis is given by 2E3 = γn2. If dissipation is neglected, the total
energy E = E1 + E2 + E3 is conserved: βω2

1A2
0 + αω2

2B2
0 + γn2 = 2E, an ellipsoid

in the (A0, B0, n) phase space. With rescaled amplitudes

A = 5(1 + 6b−2)
√

β/γA0, B = 5(1 + 6b−2)
√

α/γB0,

the ellipsoid is transformed to a sphere

A2 + B2 + N2 = const. (5.2)

in the (A, B, N) phase space, while (5.1) reads

dA

dτ
= λNA,

dB

dτ
= −NB. (5.3)

From (5.2) and (5.3), the equation for N is

dN

dτ
= −λA2 + B2. (5.4)

In the derivation so far the chirality parameter χ, which is hidden in the slow time τ ,
has been taken to be positive. When χ is negative, d/dτ acquires the sign of χ, and
the three scalar equations (5.3) and (5.4) combine as a clean vector equation

d
dτ

⎛
⎝A

B

N

⎞
⎠ = sgn χ

⎛
⎝ B

λA

0

⎞
⎠ ∧

⎛
⎝A

B

N

⎞
⎠ . (5.5)

Suppose that χ > 0. It is obvious now that, if the pitching mode A is excited
when N = 0, then dN/dτ < 0, i.e. the celt begins to spin in the negative sense,
whereas if the rolling mode B is excited, then dN/dτ > 0, i.e. it begins to spin
in the positive sense but with weaker angular acceleration because λ > 1. The
senses are reversed when χ < 0. The behaviour of the system on the slow time-
scale is completely described by the three-dimensional dynamical system (5.5), with
quadratic nonlinearity, involving the sign (±) of chirality χ and a single parameter λ.

In terms of the constant energy E, N is of order
√

E/a; the slow time-scale is
therefore of order a/

√
E|χ|, and the condition for validity of the two-time-scale

approach adopted here is Eχ2 � a2.

6. Another conservation law, phase-space trajectories
and multiple reversals

From (5.5) we see that (B, λA, 0) is perpendicular to d/dτ(A, B, N), yielding an-
other conservation law ABλ = const., a family of quasi-hyperbolic cylinders in the
(A, B, N) phase space. Trajectories of the system are closed curves of intersection
of these surfaces with the spheres (5.2). Therefore, in the absence of dissipation the
behaviour of the celt is time-periodic, and its spin will reverse an infinite number of
times, reversal being induced in turn by the pitching instability when Nχ > 0 and
by the rolling instability when Nχ < 0. Figure 1 shows a sample solution exhibiting
this periodicity.

Figures 2 and 3 show another interesting solution. If we tap the celt at a suitable
spot between the x- and y-axes to make B2 = λA2, then it pitches and rolls in
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Figure 1. Solutions of the conservative equation (5.5) with λ = 4 and A(0) = B(0) = 0.01,
N(0) = 0.5. The thin curve is pitching A, the dashed curve is rolling B, the thick curve
is spin N . Rapid reversals from N positive to negative are induced by pitching instabil-
ity, slow reversals from N negative to positive by rolling instability. Both reversals are
approximated by tanh, the solution for N when A or B is 0.
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Figure 2. The same graph as in figure 1, this time from A(0) = B(0) = 0.4, N(0) = 0.

synchrony with no spin. The perturbed motion near this steady state is stable,
N wobbling to and fro but not inducing a net spin in either sense; A, B, N all
oscillate sinusoidally, with a period that depends on the amplitude of the initial
perturbation.

7. Effects of dissipation

Dissipation is associated with slipping friction at the point of contact, and with
air viscosity in the immediate vicinity of this point. These effects, for which no
adequate theory is as yet available, may be modelled in a semi-empirical manner
by including simple linear dissipation in (5.5), giving the modified system

d
dτ

⎛
⎝A

B

N

⎞
⎠ = sgn χ

⎛
⎝ B

λA

0

⎞
⎠ ∧

⎛
⎝A

B

N

⎞
⎠ −

⎛
⎝µ1A

µ2B

µ3N

⎞
⎠ . (7.1)
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Figure 3. In this phase portrait, N is vertical, A and B are horizontal. Perturbed motions
around the non-spinning steady state of synchronous pitching and rolling are stable.
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Figure 4. Solution of the dissipative equation (7.1) with λ = 4, µ1 = 0.04, µ2 = 0.08,
µ3 = 0.1; initial conditions are as in figure 1. The pitching instability still induces a spin
reversal, but the subsequent rolling instability is not strong enough to induce a second
reversal against dissipation.

We can tune the dissipation parameters µ1, µ2, µ3 to realize any number of reversals
before the ultimate decay of energy to zero. Walker [9] claimed to have designed a
celt that reversed four times, and predicted that celts capable of ‘twelve or fifteen
reversals’ could be constructed. In the Cavendish Laboratory, Pippard [8] fashioned
one from a slice of a Rhine wine bottle, which ‘may reverse sense four or, rarely,
five times’. Figure 4 shows the solution when the dissipation parameters have values
that realize a single strong reversal. The contrasting solution when the initial spin
is in the opposite sense is shown in figure 5. The curves mimic closely the behaviour
of real celts.
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Figure 5. As figure 4, this time with N(0) = −0.5. A single weak reversal is induced
very late (τ ∼ 19) by rolling instability. Pitching instability is not excited.
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