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3 Green’s functions

3.1 Impulses and the delta function

3.1.1 Physical motivation

Newton’s second law for a particle of mass m moving in one dimension

subject to a force F (t) is

dp

dt
= F

where

p = m
dx

dt

is the momentum. Suppose that the force is applied only in the time

interval 0 < t < δt. The total change in momentum is

δp =

∫ δt

0

F (t) dt = I

and is called the impulse.

We may wish to represent mathematically a situation in which the momen-

tum is changed instantaneously, e.g. if the particle experiences a collision.

To achieve this, F must tend to infinity while δt tends to zero, in such a

way that its integral I is finite and non-zero.

In other applications we may wish to represent an idealized point charge

or point mass, or a localized source of heat, waves, etc. Here we need

a mathematical object of infinite density and zero spatial extension but

having a non-zero integral effect.

The delta function is introduced to meet these requirements.
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3.1.2 Step function and delta function

We start by defining the Heaviside unit step function

H(x) =







0, x < 0

1, x > 0

The value of H(0) does not matter for most purposes. It is sometimes

taken to be 1/2. An alternative notation for H(x) is θ(x).

H(x) can be used to construct other discontinuous functions. Consider

the particular ‘top-hat’ function

δǫ(x) =







1/ǫ, 0 < x < ǫ

0, otherwise

where ǫ is a positive parameter. This function can also be written as

δǫ(x) =
H(x)−H(x− ǫ)

ǫ

The area under the curve is equal to one. In the limit ǫ → 0, we obtain a

‘spike’ of infinite height, vanishing width and unit area localized at x = 0.

This limit is the Dirac delta function, δ(x).
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The indefinite integral of δǫ(x) is

∫ x

−∞
δǫ(ξ) dξ =



















0, x 6 0

x/ǫ, 0 6 x 6 ǫ

1, x > ǫ

In the limit ǫ → 0, we obtain
∫ x

−∞
δ(ξ) dξ = H(x)

or, equivalently,

δ(x) = H ′(x)

Our idealized impulsive force (section 3.1.1) can be represented as

F (t) = I δ(t)

which represents a spike of strength I localized at t = 0. If the particle

is at rest before the impulse, the solution for its momentum is

p = I H(t).

In other physical applications δ(x) is used to represent an idealized point

charge or localized source. It can be placed anywhere: q δ(x−ξ) represents

a ‘spike’ of strength q located at x = ξ.

3.2 Other definitions

We might think of defining the delta function as

δ(x) =







∞, x = 0

0, x 6= 0

but this is not specific enough to describe it. It is not a function in the

usual sense but a ‘generalized function’ or ‘distribution’.
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Instead, the defining property of δ(x) can be taken to be
∫ ∞

−∞
f(x)δ(x) dx = f(0)

where f(x) is any continuous function. So we should think of δ(x) as a

mapping between a function f and a number. Specifically, the unit spike

‘picks out’ the value of the function f at the location of the spike. It also

follows that

∫ ∞

−∞
f(x)δ(x− ξ) dx = f(ξ)

Since δ(x− ξ) = 0 for x 6= ξ, the integral can be taken over any interval

that includes the point x = ξ.

One way to justify this ‘sampling’ property is as follows. Consider a

continuous function f(x) with indefinite integral g(x), i.e. f(x) = g′(x).

Then
∫ ∞

−∞
f(x)δǫ(x− ξ) dx =

1

ǫ

∫ ξ+ǫ

ξ

f(x) dx

=
g(ξ + ǫ)− g(ξ)

ǫ

From the definition of the derivative,

f(ξ) lim
ǫ→0

∫ ∞

−∞
f(x)δǫ(x− ξ) dx = g′(ξ)

as required.

This result (the boxed formula above) is equivalent to the substitution

property of the Kronecker delta:

3
∑

j=1

ajδij = ai

The Dirac delta function can be understood as the equivalent of the

Kronecker delta symbol for functions of a continuous variable.
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δ(x) can also be seen as the limit of localized functions other than our

top-hat example. Alternative, smooth choices for δǫ(x) include

δǫ(x) =
ǫ

π(x2 + ǫ2)

and

δǫ(x) = (2πǫ2)−1/2 exp

(

− x2

2ǫ2

)
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3.3 More on generalized functions

Derivatives of the delta function can also be defined as the limits of

sequences of functions. The generating functions for δ′(x) are the deriva-

tives of (smooth) functions (e.g. Gaussians) that generate δ(x), and have

both positive and negative ‘spikes’ localized at x = 0. The defining

property of δ′(x) can be taken to be

∫ ∞

−∞
f(x)δ′(x− ξ) dx = −

∫ ∞

−∞
f ′(x)δ(x− ξ) dx = −f ′(ξ)

where f(x) is any differentiable function. This follows from an integration

by parts before the limit is taken.

Not all operations are permitted on generalized functions. In particular,

two generalized functions of the same variable cannot be multiplied to-

gether. e.g. H(x)δ(x) is meaningless. However δ(x)δ(y) is permissible

and represents a point source in a two-dimensional space.

3.4 Differential equations containing delta func-

tions

If a differential equation involves a step function or delta function, this

generally implies a lack of smoothness in the solution. The equation can

be solved separately on either side of the discontinuity and the two parts of
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the solution connected by applying the appropriate matching conditions.

Consider, as an example, the linear second-order ODE

d2y

dx2
+ y = δ(x) (1)

If x represents time, this equation could represent the behaviour of a

simple harmonic oscillator in response to an impulsive force.

In each of the regions x < 0 and x > 0 separately, the right-hand side

vanishes and the general solution is a linear combination of cosx and

sin x. We may write

y =







A cosx+ B sin x, x < 0

C cosx+D sin x, x > 0

Since the general solution of a second-order ODE should contain only two

arbitrary constants, it must be possible to relate C and D to A and B.

What is the nature of the non-smoothness in y?



3 GREEN’S FUNCTIONS 59

Consider integrating equation (1) from x = −ǫ to x = ǫ

∫ ǫ

−ǫ

d2y

dx2
dx +

∫ ǫ

−ǫ

y(x) dx =

∫ ǫ

−ǫ

δ(x) dx

y′(ǫ)− y′(−ǫ) +

∫ ǫ

−ǫ

y(x) dx = 1

and letting ǫ → 0. If we assume y is bounded the integral term makes no

contribution and we get
[

dy

dx

]

≡ lim
ǫ→0

[

dy

dx

]x=ǫ

x=−ǫ

= 1

Since y is continuous, the jump conditions are

[y] = 0,

[

dy

dx

]

= 1 at x = 0

Applying these, we obtain

C − A = 0

and

D − B = 1

and so the general solution is

y =







A cosx+ B sin x, x < 0

A cosx+ (B + 1) sin x, x > 0

In particular, if the oscillator is at rest before the impulse occurs, then

A = B = 0 and the solution is y = H(x) sin x.
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3.5 Inhomogeneous linear second-order ODEs

3.5.1 Complementary functions and particular integral

The general linear second-order ODE with constant coefficients has the

form

y′′(x) + py′(x) + qy(x) = f(x) or Ly = f

where L is a linear operator such that Ly = y′′ + py′ + qy.

The equation is homogeneous (unforced) if f = 0, otherwise it is inho-

mogeneous (forced).

The principle of superposition applies to linear ODEs as to all linear equa-

tions.

Suppose that y1(x) and y2(x) are linearly independent solutions of the

homogeneous equation, i.e. Ly1 = Ly2 = 0 and y2 is not simply a constant

multiple of y1. Then the general solution of the homogeneous equation

is Ay1 +By2.

If yp(x) is any solution of the inhomogeneous equation, i.e. Lyp = f ,

then the general solution of the inhomogeneous equation is

y = Ay1 + By2 + yp

since

Ly = ALy1 +BLy2 + Lyp

= 0 + 0 + f

Here y1 and y2 are known as complementary functions and yp as a par-

ticular integral.

3.5.2 Initial-value and boundary-value problems

Two boundary conditions (BCs) must be specified to determine fully the

solution of a second-order ODE. A boundary condition is usually an equa-
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tion relating the values of y and y′ at one point. (The ODE allows y′′

and higher derivatives to be expressed in terms of y and y′.)

The general form of a linear BC at a point x = a is

α1y
′(a) + α2y(a) = α3

where α1, α2, α3 are constants and α1, α2 are not both zero. If α3 = 0

the BC is homogeneous.

If both BCs are specified at the same point we have an initial-value prob-

lem, e.g. to solve

m
d2x

dt2
= F (t) for t > 0 subject to x =

dx

dt
= 0 at t = 0

If the BCs are specified at different points we have a two-point boundary-

value problem, e.g. to solve

y′′(x) + y(x) = f(x) for a 6 x 6 b subject to y(a) = y(b) = 0

3.5.3 Green’s function for an initial-value problem

Suppose we want to solve the inhomogeneous ODE

y′′(x) + py′(x) + qy(x) = f(x) for x > 0 (1)

subject to the homogeneous BCs

y(0) = y′(0) = 0 (2)

Green’s function G(x, ξ) for this problem is the solution of

∂2G

∂x2
+ p

∂G

∂x
+ qG = δ(x− ξ) (3)

subject to the homogeneous BCs

G(0, ξ) =
∂G

∂x
(0, ξ) = 0 (4)

Notes:
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• G(x, ξ) is defined for x > 0 and ξ > 0

• G(x, ξ) satisfies the same equation and boundary conditions with re-

spect to x as y does

• however, it is the response to forcing that is localized at a point x = ξ,

rather than a distributed forcing f(x)

If Green’s function can be found, the solution of equation (1) is then

y(x) =

∫ ∞

0

G(x, ξ)f(ξ) dξ (5)

To verify this, let L be the differential operator

L =
∂2

∂x2
+ p

∂

∂x
+ q

Then equations (1) and (3) read Ly = f and LG = δ(x−ξ) respectively.

Applying L to equation (5) gives

Ly(x) =

∫ ∞

0

LGf(ξ) dξ =

∫ ∞

0

δ(x− ξ)f(ξ) dξ = f(x)

as required. It also follows from equation (4) that y satisfies the boundary

conditions (2) as required.

The meaning of equation (5) is that the response to distributed forcing

(i.e. the solution of Ly = f) is obtained by summing the responses to

forcing at individual points, weighted by the force distribution. This works

because the ODE is linear and the BCs are homogeneous.

To find Green’s function, note that equation (3) is just an ODE involving a

delta function, in which ξ appears as a parameter. To satisfy this equation,

G must be continuous but have a discontinuous first derivative. The jump

conditions can be found by integrating equation (3) from x = ξ − ǫ to

x = ξ + ǫ and letting ǫ → 0:

[

∂G

∂x

]

≡ lim
ǫ→0

[

∂G

∂x

]x=ξ+ǫ

x=ξ−ǫ

= 1
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Since p ∂G/∂x and qG are bounded they make no contribution under this

procedure. Since G is continuous, the jump conditions are

[G] = 0,

[

∂G

∂x

]

= 1 at x = ξ (6)

Suppose that two complementary functions y1, y2 are known. The Wron-

skian W (x) of two solutions y1(x) and y2(x) of a second-order ODE is

the determinant of the Wronskian matrix:

W [y1, y2] =

∣

∣

∣

∣

∣

y1 y2

y′1 y′2

∣

∣

∣

∣

∣

= y1y
′
2 − y2y

′
1

The Wronskian is non-zero unless y1 and y2 are linearly dependent (one

is a constant multiple of the other).

Since the right-hand side of equation (3) vanishes for x < ξ and x > ξ

separately, the solution must be of the form

G(x, ξ) =







A(ξ)y1(x) +B(ξ)y2(x), 0 6 x < ξ

C(ξ)y1(x) +D(ξ)y2(x), x > ξ

To determine A,B,C,D we apply the boundary conditions (4) and the

jump conditions (6).

Boundary conditions at x = 0:

A(ξ)y1(0) +B(ξ)y2(0) = 0

A(ξ)y′1(0) +B(ξ)y′2(0) = 0

In matrix form:
[

y1(0) y2(0)

y′1(0) y′2(0)

][

A(ξ)

B(ξ)

]

=

[

0

0

]

Since the determinant W (0) of the matrix is non-zero the only solution

is A(ξ) = B(ξ) = 0.



3 GREEN’S FUNCTIONS 64

Jump conditions at x = ξ:

C(ξ)y1(ξ) +D(ξ)y2(ξ) = 0

C(ξ)y′1(ξ) +D(ξ)y′2(ξ) = 1

In matrix form:
[

y1(ξ) y2(ξ)

y′1(ξ) y′2(ξ)

][

C(ξ)

D(ξ)

]

=

[

0

1

]

Solution:
[

C(ξ)

D(ξ)

]

=
1

W (ξ)

[

y′2(ξ) −y2(ξ)

−y′1(ξ) y1(ξ)

][

0

1

]

=

[

−y2(ξ)/W (ξ)

y1(ξ)/W (ξ)

]

Green’s function is therefore

G(x, ξ) =

{

0, 0 6 x 6 ξ
1

W (ξ) [y1(ξ)y2(x)− y1(x)y2(ξ)], x > ξ
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Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

⊲ Find Green’s function for the initial-value problem

y′′(x) + y(x) = f(x), y(0) = y′(0) = 0

Complementary functions y1 = cosx, y2 = sin x.

Wronskian

W = y1y
′
2 − y2y

′
1 = cos2 x+ sin2 x = 1

Now

y1(ξ)y2(x)− y1(x)y2(ξ) = cos ξ sin x− cosx sin ξ = sin(x− ξ)

Thus

G(x, ξ) =







0, 0 6 x 6 ξ

sin(x− ξ), x > ξ

So

y(x) =

∫ x

0

sin(x− ξ)f(ξ) dξ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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3.5.4 Green’s function for a boundary-value problem

We now consider a similar equation

Ly = f

for a 6 x 6 b, subject to the two-point homogeneous BCs

α1y
′(a) + α2y(a) = 0 (1)

β1y
′(b) + β2y(b) = 0 (2)

Green’s function G(x, ξ) for this problem is the solution of

LG = δ(x− ξ) (3)

subject to the homogeneous BCs

α1
∂G

∂x
(a, ξ) + α2G(a, ξ) = 0 (4)

β1
∂G

∂x
(b, ξ) + β2G(b, ξ) = 0 (5)

and is defined for a 6 x 6 b and a 6 ξ 6 b.

By a similar argument, the solution of Ly = f subject to the BCs (1) and

(2) is then

y(x) =

∫ b

a

G(x, ξ)f(ξ) dξ

We find Green’s function by a similar method. Let ya(x) be a com-

plementary function satisfying the left-hand BC (1), and let yb(x) be a

complementary function satisfying the right-hand BC (2). (These can al-

ways be found as linear combinations of y1 and y2.) Since the right-hand

side of equation (3) vanishes for x < ξ and x > ξ separately, the solution

must be of the form

G(x, ξ) =







A(ξ)ya(x), a 6 x 6 ξ

B(ξ)yb(x), ξ 6 x 6 b
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satisfying the BCs (4) and (5). To determine A,B we apply the jump

conditions [G] = 0 and [∂G/∂x] = 1 at x = ξ:

B(ξ)yb(ξ)− A(ξ)ya(ξ) = 0

B(ξ)y′b(ξ)− A(ξ)y′a(ξ) = 1

In matrix form:
[

ya(ξ) yb(ξ)

y′a(ξ) y′b(ξ)

][

−A(ξ)

B(ξ)

]

=

[

0

1

]

Solution:
[

−A(ξ)

B(ξ)

]

=
1

W (ξ)

[

y′b(ξ) −yb(ξ)

−y′a(ξ) ya(ξ)

][

0

1

]

=

[

−yb(ξ)/W (ξ)

ya(ξ)/W (ξ)

]

Green’s function is therefore

G(x, ξ) =







1
W (ξ) [ya(x)yb(ξ)], a 6 x 6 ξ

1
W (ξ) [ya(ξ)yb(x)], ξ 6 x 6 b

This method fails if the Wronskian W [ya, yb] vanishes. This happens if

ya is proportional to yb, i.e. if there is a complementary function that

happens to satisfy both homogeneous BCs. In this (exceptional) case the

equation Ly = f may not have a solution satisfying the BCs; if it does,

the solution will not be unique.
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Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

⊲ Find Green’s function for the two-point boundary-value problem

y′′(x) + y(x) = f(x), y(0) = y(1) = 0

Complementary functions ya = sin x, yb = sin(x− 1) satisfying left and

right BCs respectively.

Wronskian

W = yay
′
b − yby

′
a = sin x cos(x− 1)− sin(x− 1) cosx = sin 1

Thus

G(x, ξ) =







sin x sin(ξ − 1)/ sin 1, 0 6 x 6 ξ

sin ξ sin(x− 1)/ sin 1, ξ 6 x 6 1

So

y(x) =

∫ 1

0

G(x, ξ)f(ξ) dξ

=
sin(x− 1)

sin 1

∫ x

0

sin ξ f(ξ) dξ +
sin x

sin 1

∫ 1

x

sin(ξ − 1)f(ξ) dξ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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3.6 Unlectured remarks

1. Note that the solution y to a 2nd order differential equation of the

form Ly(x) = δ(x−x0) is continuous because of the properties of the

Dirac δ-function, specifically because its integral is finite (assuming the

limits of integration include x0).

2. So far we only considered problems with homogeneous boundary condi-

tions. One can also use Green’s functions to solve problems with inho-

mogeneous boundary conditions. The trick is to solve the homogenous

equation Lyp = 0 for a function yp which satisfies the inhomoge-

nous boundary condtions. Then solve the inhomogeneous equation

Lyg = f , perhaps using the Green’s function method discussed in this

chapter, imposing homogenous boundary conditions on yg. Then lin-

earity means that yp + yg satisfies the inhomogenous equation with

inhomogenous boundary conditions.
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4 The Fourier transform

4.1 Motivation

A periodic signal can be analysed into its harmonic components by cal-

culating its Fourier series. If the period is P , then the harmonics have

frequencies n/P where n is an integer.

The Fourier transform generalizes this idea to functions that are not pe-

riodic. The ‘harmonics’ can then have any frequency.

The Fourier transform provides a complementary way of looking at a

function. Certain operations on a function are more easily computed ‘in

the Fourier domain’. This idea is particularly useful in solving certain

kinds of differential equation.
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Furthermore, the Fourier transform has innumerable applications in diverse

fields such as astronomy, optics, signal processing, data analysis, statistics

and number theory.

4.2 Fourier series

A function f(x) has period P if f(x + P ) = f(x) for all x. It can then

be written as a Fourier series

f(x) =
1

2
a0 +

∞
∑

n=1

an cos(knx) +
∞
∑

n=1

bn sin(knx)

where

kn =
2πn

P

is the wavenumber of the nth harmonic.

Such a series is also used to write any function that is defined only on an

interval of length P , e.g. −P/2 < x < P/2. The Fourier series gives the

extension of the function by periodic repetition.

The Fourier coefficients are found from

an =
2

P

∫ P/2

−P/2

f(x) cos(knx) dx

bn =
2

P

∫ P/2

−P/2

f(x) sin(knx) dx
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Define

cn =



















(a−n + ib−n)/2, n < 0

a0/2, n = 0

(an − ibn)/2, n > 0

Then the same result can be expressed more simply and compactly in the

notation of the complex Fourier series

f(x) =
∞
∑

n=−∞
cn e

iknx

where, after multiplying the preceding equation by exp(−ikmx) and inte-

grating we find (recall km = 2πm/P )

cm =
1

P

∫ P/2

−P/2

f(x) e−ikmx dx

This expression for cm (equivalently cn, relabelling m → n) can be verified

using the orthogonality relation

1

P

∫ P/2

−P/2

ei(kn−km)x dx = δmn

which follows from an elementary integration.

4.3 Approaching the Fourier transform

Let P → ∞ so that the function f(x) above is defined on the entire real

line without any periodicity. The discrete wavenumbers kn = 2πn/P are

replaced by a continuous variable k, because

∆k = kn+1 − kn =
2π

P
→ 0 .

Consider the definition of the Fourier series

f(x) =
∞
∑

n=−∞
cn e

iknx =
1

2π

∞
∑

n=−∞
Pcn e

iknx∆k,
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In the limit of P → ∞ this looks like the Riemann definition of an integral

over k.
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In this limit, P → ∞

Pcn =

∫ P/2

−P/2

f(x) e−iknx dx →
∫ ∞

−∞
f(x)e−ikxdx ≡ f̃(k)

And thus

f(x) → 1

2π

∫ ∞

−∞
f̃(k)eikxdk

We therefore have the forward Fourier transform (Fourier analysis)

f̃(k) =

∫ ∞

−∞
f(x) e−ikx dx

and the inverse Fourier transform (Fourier synthesis)

f(x) =
1

2π

∫ ∞

−∞
f̃(k) eikx dk
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Notes:

• the Fourier transform operation is sometimes denoted by

f̃(k) = F [f(x)], f(x) = F−1[f̃(k)]

• the variables are often called t and ω rather than x and k (time ↔
angular frequency vs. position ↔ wavenumber)

• it is sometimes useful to consider complex values of k

• for a rigorous proof, certain technical conditions on f(x) are required:

A necessary condition for f̃(k) to exist for all real values of k (in the sense

of an ordinary function) is that f(x) → 0 as x → ±∞. Otherwise the

Fourier integral does not converge (e.g. for k = 0).

A set of sufficient conditions for f̃(k) to exist is that f(x) have ‘bounded

variation’, have a finite number of discontinuities and be ‘absolutely inte-

grable’, i.e.

∫ ∞

−∞
|f(x)| dx < ∞.

However, we will see that Fourier transforms can be assigned in a wider

sense to some functions that do not satisfy all of these conditions, e.g.

f(x) = 1.

Warning 2. Several different definitions of the Fourier transform are

in use. They differ in the placement of the 2π factor and in the signs

of the exponents. The definition used here is probably the most con-

ventional.

How to remember this convention:

• the sign of the exponent is different in the forward and inverse trans-

forms
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• the inverse transform means that the function f(x) is synthesized from

a linear combination of basis functions eikx

• the division by 2π always accompanies integration with respect to k
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4.4 Examples

Example (1): top-hat function:

f(x) =







c, a < x < b

0, otherwise

f̃(k) =

∫ b

a

c e−ikx dx =
ic

k

(

e−ikb − e−ika
)

e.g. if a = −1, b = 1 and c = 1:

f̃(k) =
i

k

(

e−ik − eik
)

=
2 sin k

k

Example (2):

f(x) = e−|x|

f̃(k) =

∫ 0

−∞
exe−ikx dx+

∫ ∞

0

e−xe−ikx dx

=
1

1− ik

[

e(1−ik)x
]0

−∞
− 1

1 + ik

[

e−(1+ik)x
]∞

0

=
1

1− ik
+

1

1 + ik

=
2

1 + k2
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Example (3): Gaussian function (normal distribution):

f(x) = (2πσ2
x)

−1/2 exp

(

− x2

2σ2
x

)

f̃(k) = (2πσ2
x)

−1/2

∫ ∞

−∞
exp

(

− x2

2σ2
x

− ikx

)

dx

Change variable to

z =
x

σx
+ iσxk

so that

−z2

2
= − x2

2σ2
x

− ikx+
σ2
xk

2

2

Then

f̃(k) = (2πσ2
x)

−1/2

∫ ∞

−∞
exp

(

−z2

2

)

dz σx exp

(

−σ2
xk

2

2

)

= exp

(

−σ2
xk

2

2

)
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where we use the standard Gaussian integral

∫ ∞

−∞
exp

(

−z2

2

)

dz = (2π)1/2

Actually there is a slight cheat here because z has an imaginary part. This

will be explained next term.

The result is proportional to a standard Gaussian function of k:

f̃(k) ∝ (2πσ2
k)

−1/2 exp

(

− k2

2σ2
k

)

of width (standard deviation) σk related to σx by

σk =
1

σx

This illustrates a property of the Fourier transform: the narrower the

function of x, the wider the function of k.
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4.5 Basic properties of the Fourier transform

Linearity:

g(x) = αf(x) ⇔ g̃(k) = αf̃(k) (1)

h(x) = f(x) + g(x) ⇔ h̃(k) = f̃(k) + g̃(k) (2)

Rescaling (for real α):

g(x) = f(αx) ⇔ g̃(k) =
1

|α| f̃
(

k

α

)

(3)

Shift/exponential (for real α):

g(x) = f(x− α) ⇔ g̃(k) = e−ikαf̃(k) (4)

g(x) = eiαxf(x) ⇔ g̃(k) = f̃(k − α) (5)

Differentiation/multiplication:

g(x) = f ′(x) ⇔ g̃(k) = ikf̃(k) (6)

g(x) = xf(x) ⇔ g̃(k) = if̃ ′(k) (7)

Duality:

g(x) = f̃(x) ⇔ g̃(k) = 2πf(−k) (8)

i.e. transforming twice returns (almost) the same function

Complex conjugation and parity inversion (for real x and k):

g(x) = [f(x)]∗ ⇔ g̃(k) = [f̃(−k)]∗ (9)

Symmetry:

f(−x) = ±f(x) ⇔ f̃(−k) = ±f̃(k) (10)
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Sample derivations: property (3):

g(x) = f(αx)

g̃(k) =

∫ ∞

−∞
f(αx) e−ikx dx

= sgn (α)

∫ ∞

−∞
f(y) e−iky/α dy

α

=
1

|α|

∫ ∞

−∞
f(y) e−i(k/α)y dy

=
1

|α| f̃
(

k

α

)

Property (4):

g(x) = f(x− α)

g̃(k) =

∫ ∞

−∞
f(x− α) e−ikx dx

=

∫ ∞

−∞
f(y) e−ik(y+α) dy

= e−ikαf̃(k)

Property (6):

g(x) = f ′(x)

g̃(k) =

∫ ∞

−∞
f ′(x) e−ikx dx

=
[

f(x) e−ikx
]∞
−∞ −

∫ ∞

−∞
f(x)(−ik)e−ikx dx

= ikf̃(k)

The integrated part vanishes because f(x) must tend to zero as x → ±∞
in order to possess a Fourier transform.
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Property (7):

g(x) = xf(x)

g̃(k) =

∫ ∞

−∞
xf(x) e−ikx dx

= i

∫ ∞

−∞
f(x)(−ix)e−ikx dx

= i
d

dk

∫ ∞

−∞
f(x) e−ikx dx

= if̃ ′(k)

Property (8):

g(x) = f̃(x)

g̃(k) =

∫ ∞

−∞
f̃(x) e−ikx dx

= 2πf(−k)

Property (10): if f(−x) = ±f(x), i.e. f is even or odd, then

f̃(−k) =

∫ ∞

−∞
f(x) e+ikx dx

=

∫ ∞

−∞
±f(−x) eikx dx

= ±
∫ ∞

−∞
f(y) e−iky dy

= ±f̃(k)



4 THE FOURIER TRANSFORM 83

4.6 The delta function and the Fourier transform

Consider the Gaussian function of example (3):

f(x) = (2πσ2
x)

−1/2 exp

(

− x2

2σ2
x

)

f̃(k) = exp

(

−σ2
xk

2

2

)

The Gaussian is normalized such that
∫ ∞

−∞
f(x) dx = 1

As the width σx tends to zero, the Gaussian becomes taller and narrower,

but the area under the curve remains the same. The value of f(x) tends

to zero for any non-zero value of x. At the same time, the value of f̃(k)

tends to unity for any finite value of k.

In this limit f approaches the Dirac delta function, δ(x).

The substitution property allows us to verify the Fourier transform of the

delta function:

δ̃(k) =

∫ ∞

−∞
δ(x) e−ikx dx = e−ik0 = 1

Now formally apply the inverse transform:

δ(x) =
1

2π

∫ ∞

−∞
1 eikx dk
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Relabel the variables and rearrange (the exponent can have either sign):

∫ ∞

−∞
e±ikx dx = 2πδ(k)

Therefore the Fourier transform of a unit constant (1) is 2πδ(k). Note

that a constant function does not satisfy the necessary condition for the

existence of a (regular) Fourier transform. But it does have a Fourier

transform in the space of generalized functions.

4.7 The convolution theorem

4.7.1 Definition of convolution

The convolution of two functions, h = f ∗ g, is defined by

h(x) =

∫ ∞

−∞
f(y)g(x− y) dy

Note that the sum of the arguments of f and g is the argument of h.

Convolution is a symmetric operation:

[g ∗ f ](x) =
∫ ∞

−∞
g(y)f(x− y) dy

=

∫ ∞

−∞
f(z)g(x− z) dz

= [f ∗ g](x)

4.7.2 Interpretation and examples

In statistics, a continuous random variable x (e.g. the height of a person

drawn at random from the population) has a probability distribution (or

density) function f(x). The probability of x lying in the range x0 < x <

x0 + δx is f(x0)δx, in the limit of small δx.
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If x and y are independent random variables with distribution functions

f(x) and g(y), then let the distribution function of their sum, z = x+ y,

be h(z). (E.g. let y be the height of a pair of shoes drawn at random.

Then z is the height of a random person while wearing a random pair of

shoes.)

Now, for any given value of x, the probability that z lies in the range

z0 < z < z0 + δz

is just the probability that y lies in the range

z0 − x < y < z0 − x+ δz

which is g(z0 − x)δz. That’s for a fixed x. But the probability that z lies

in this same range for all x is then

h(z0)δz =

∫ ∞

−∞
f(x)g(z0 − x)δz dx

which implies

h = f ∗ g

The effect of measuring, observing or processing scientific data can often

be described as a convolution of the data with a certain function.

e.g. when a point source is observed by a telescope, a broadened image

is seen, known as the point spread function of the telescope. When an

extended source is observed, the image that is seen is the convolution of

the source with the point spread function.

In this sense convolution corresponds to a broadening or distortion of the

original data.

A point mass M at position R gives rise to a gravitational potential

Φp(r) = −GM/|r−R|. A continuous mass density ρ(r) can be thought
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of as a sum of infinitely many point masses ρ(R) d3R at positions R.

The resulting gravitational potential is

Φ(r) = −G

∫

ρ(R)

|r −R| d
3R

which is the (3D) convolution of the mass density ρ(r) with the potential

of a unit point charge at the origin, −G/|r|.

4.7.3 The convolution theorem

The Fourier transform of a convolution is

h̃(k) =

∫ ∞

−∞

[
∫ ∞

−∞
f(y)g(x− y) dy

]

e−ikx dx

=

∫ ∞

−∞

∫ ∞

−∞
f(y)g(x− y) e−ikx dx dy

=

∫ ∞

−∞

∫ ∞

−∞
f(y)g(z) e−iky e−ikz dz dy (z = x− y)

=

∫ ∞

−∞
f(y) e−iky dy

∫ ∞

−∞
g(z) e−ikz dz

= f̃(k)g̃(k)

Similarly, the Fourier transform of f(x)g(x) is 1
2π [f̃ ∗ g̃](k).

This means that:

• convolution is an operation best carried out as a multiplication in the

Fourier domain

• the Fourier transform of a product is a complicated object

• convolution can be undone (deconvolution) by a division in the Fourier

domain. If g is known and f ∗ g is measured, then f can be obtained,

in principle.
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4.7.4 Correlation

The correlation of two functions, h = f ⊗ g, is defined by

h(x) =

∫ ∞

−∞
[f(y)]∗g(x+ y) dy

Now the argument of h is the shift between the arguments of f and g.

Correlation is a way of quantifying the relationship between two (typically

oscillatory) functions. If two signals (oscillating about an average value of

zero) oscillate in phase with each other, their correlation will be positive.

If they are out of phase, the correlation will be negative. If they are

completely unrelated, their correlation will be zero.

For example, consider an array of microphones that if fed a signal f(y)

outputs a signal g(y) that is identical to f except for a small unknown

time delay α. By computing the correlation h(x) we can find out what

the time delay is.

Let f(y) be the real part of the localised signal eiky−y2. The correlation

is then

h(x) = Re

∫ ∞

−∞
e−iky−y2eik(y−α+x)−(y−α+x)2dy,

= Re eik(α−x)−(α−x)2
∫ ∞

−∞
e−2y2+(α−x)ydy,

= cos [k(x− α)] e−
2
3(x−α)2.

The maximum of h occurs when x = α.
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The Fourier transform of a correlation is

h̃(k) =

∫ ∞

−∞

[
∫ ∞

−∞
[f(y)]∗g(x+ y) dy

]

e−ikx dx

=

∫ ∞

−∞

∫ ∞

−∞
[f(y)]∗g(x+ y) e−ikx dx dy

=

∫ ∞

−∞

∫ ∞

−∞
[f(y)]∗g(z) eiky e−ikz dz dy (z = x+ y)

=

[
∫ ∞

−∞
f(y) e−iky dy

]∗ ∫ ∞

−∞
g(z) e−ikz dz

= [f̃(k)]∗g̃(k)

This result (or the special case g = f) is the Wiener–Khinchin theorem.

The autoconvolution and autocorrelation of f are f ∗ f and f ⊗ f . Their

Fourier transforms are f̃ 2 and |f̃ |2, respectively.

4.8 Parseval’s theorem

If we apply the inverse transform to the WK theorem we find
∫ ∞

−∞
[f(y)]∗g(x+ y) dy =

1

2π

∫ ∞

−∞
[f̃(k)]∗g̃(k) eikx dk

Now set x = 0 and relabel y 7→ x to obtain Parseval’s theorem
∫ ∞

−∞
[f(x)]∗g(x) dx =

1

2π

∫ ∞

−∞
[f̃(k)]∗g̃(k) dk

The special case used most frequently is when g = f :

∫ ∞

−∞
|f(x)|2 dx =

1

2π

∫ ∞

−∞
|f̃(k)|2 dk

Note that division by 2π accompanies the integration with respect to k.

Parseval’s theorem means that the Fourier transform is a ‘unitary trans-

formation’ that preserves the ‘inner product’ between two functions (see

later!), in the same way that a rotation preserves lengths and angles.
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Alternative derivation using the delta function:

∫ ∞

−∞
[f(x)]∗g(x) dx

=

∫ ∞

−∞

[

1

2π

∫ ∞

−∞
f̃(k) eikx dk

]∗
1

2π

∫ ∞

−∞
g̃(k′) eik

′x dk′ dx

=
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
[f̃(k)]∗g̃(k′) ei(k

′−k)x dx dk′ dk

=
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
[f̃(k)]∗g̃(k′) 2πδ(k′ − k) dk′ dk

=
1

2π

∫ ∞

−∞
[f̃(k)]∗g̃(k) dk
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4.9 Power spectra

The quantity

Φ(k) = |f̃(k)|2

appearing in the Wiener–Khinchin theorem and Parseval’s theorem is the

(power) spectrum or (power) spectral density of the function f(x). The

WK theorem states that the FT of the autocorrelation function is the

power spectrum.

This concept is often used to quantify the spectral content (as a function

of angular frequency ω) of a signal f(t).

The spectrum of a perfectly periodic signal consists of a series of delta

functions at the principal frequency and its harmonics, if present. Its

autocorrelation function does not decay as t → ∞.

White noise is an ideal random signal with autocorrelation function pro-

portional to δ(t): the signal is perfectly decorrelated. It therefore has a

flat spectrum (Φ = constant).

Less idealized signals may have spectra that are peaked at certain fre-

quencies but also contain a general noise component.
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Spectrum of three active galactic nuclei at different red shifts
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5 Matrices and linear algebra

5.1 Motivation

Many scientific quantities are vectors. A linear relationship between two

vectors is described by a matrix. This could be either

• a physical relationship, e.g. that between the angular velocity and an-

gular momentum vectors of a rotating body

• a relationship between the components of (physically) the same vector

in different coordinate systems

Linear algebra deals with the addition and multiplication of scalars, vectors

and matrices.

Eigenvalues and eigenvectors are the characteristic numbers and direc-

tions associated with matrices, which allow them to be expressed in the

simplest form. The matrices that occur in scientific applications usually

have special symmetries that impose conditions on their eigenvalues and

eigenvectors.

Vectors do not necessarily live in physical space. In some applications

(notably quantum mechanics) we have to deal with complex spaces of

various dimensions.

5.2 Vector spaces

5.2.1 Abstract definition of scalars and vectors

We are used to thinking of scalars as numbers, and vectors as directed

line segments. For many purposes it is useful to define scalars and vectors

in a more general (and abstract) way.
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Scalars are the elements of a number field, of which the most important

examples are:

• R, the set of real numbers

• C, the set of complex numbers

A number field F :

• is a set of elements on which the operations of addition and multiplica-

tion are defined and satisfy the usual laws of arithmetic (commutative,

associative and distributive)

• is closed under addition and multiplication

• includes identity elements (the numbers 0 and 1) for addition and

multiplication

• includes inverses (negatives and reciprocals) for addition and multipli-

cation for every element, except that 0 has no reciprocal

Vectors are the elements of a vector space (or linear space) defined over

a number field F .

A vector space V :

• is a set of elements on which the operations of vector addition and

scalar multiplication are defined and satisfy certain axioms

• is closed under these operations

• includes an identity element (the vector 0) for vector addition

We will write vectors in bold italic face (or underlined in handwriting).

Scalar multiplication means multiplying a vector x by a scalar α to obtain

the vector αx. Note that 0x = 0 and 1x = x.
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The basic example of a vector space is F n. An element of F n is a list of

n scalars, (x1, . . . , xn), where xi ∈ F . This is called an n-tuple. Vector

addition and scalar multiplication are defined componentwise:

(x1, . . . , xn) + (y1, . . . , yn) = (x1 + y1, . . . , xn + yn)

α(x1, . . . , xn) = (αx1, . . . , αxn)

Hence we have R
n and C

n.

Notes:

• vector multiplication is not defined in general

• R
2 is not quite the same as C because C has a rule for multiplication

• R
3 is not quite the same as physical space because physical space has

a rule for the distance between two points (i.e. Pythagoras’s theorem,

if physical space is approximated as Euclidean)

The formal axioms of number fields and vector spaces can be found in

books on linear algebra.

5.2.2 Span and linear dependence

Let S = {e1, e2, . . . , em} be a subset of vectors in V .

A linear combination of S is any vector of the form e1x1 + e2x2 + · · ·+
emxm, where x1, x2, . . . , xm are scalars.

The span of S is the set of all vectors that are linear combinations of S.

If the span of S is the entire vector space V , then S is said to span V .

The vectors of S are said to be linearly independent if no non-trivial linear

combination of S equals zero, i.e. if

e1x1 + e2x2 + · · ·+ emxm = 0 implies x1 = x2 = · · · = xm = 0

If, on the other hand, the vectors are linearly dependent, then such an

equation holds for some non-trivial values of the coefficients x1, . . . , xm.
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Suppose that xk is one of the non-zero coefficients. Then ek can be

expressed as a linear combination of the other vectors:

ek = −
∑

i 6=k

ei
xi
xk

Linear independence therefore means that none of the vectors is a linear

combination of the others.

Notes:

• if an additional vector is included in a spanning set, it remains a span-

ning set

• if a vector is removed from a linearly independent set, the set remains

linearly independent

5.2.3 Basis and dimension

A basis for a vector space V is a subset of vectors {e1, e2, . . . , en} that

spans V and is linearly independent. The properties of bases (proved in

books on linear algebra) are:

• all bases of V have the same number of elements, n, which is called

the dimension of V

• any n linearly independent vectors in V form a basis for V

• any vector x ∈ V can be written in a unique way as

x = e1x1 + · · ·+ enxn

and the scalars xi are called the components of x with respect to the

basis {e1, e2, . . . , en}
Vector spaces can have infinite dimension, e.g. the set of functions defined

on the interval 0 < x < 2π and having Fourier series

f(x) =
∞
∑

n=−∞
fn e

inx
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Here f(x) is the ‘vector’ and fn are its ‘components’ with respect to

the ‘basis’ of functions einx. Functional analysis deals with such infinite-

dimensional vector spaces.

5.2.4 Examples

⊲ Example (1): three-dimensional real space, R3:

vectors: triples (x, y, z) of real numbers

possible basis: {(1, 0, 0), (0, 1, 0), (0, 0, 1)}

(x, y, z) = (1, 0, 0)x+ (0, 1, 0)y + (0, 0, 1)z

⊲ Example (2): the complex plane, C:

vectors: complex numbers z

EITHER (a) a one-dimensional vector space over C

possible basis: {1}

z = 1 · z

OR (b) a two-dimensional vector space over R (supplemented by a mul-

tiplication rule)

possible basis: {1, i}

z = 1 · x+ i · y

⊲ Example (3): real 2× 2 symmetric matrices:

vectors: matrices of the form
[

x y

y z

]

, x, y, z ∈ R

three-dimensional vector space over R
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possible basis:

{[

1 0

0 0

]

,

[

0 1

1 0

]

,

[

0 0

0 1

]}

[

x y

y z

]

=

[

1 0

0 0

]

x+

[

0 1

1 0

]

y +

[

0 0

0 1

]

z

5.2.5 Change of basis

The same vector has different components with respect to different bases.

Consider two bases {ei} and {e′i}. Since they are bases, we can write the

vectors of one set in terms of the other, using the summation convention

(sum over i from 1 to n):

ej = e′iRij

The n×n array of numbers Rij is the transformation matrix between the

two bases. Rij is the ith component of the vector ej with respect to the

primed basis.

The representation of a vector x in the two bases is

x = ejxj = e′ix
′
i

where xi and x′i are the components. Thus

e′ix
′
i = ejxj = e′iRijxj

from which we deduce the transformation law for vector components:

x′i = Rijxj

Note that the transformation laws for basis vectors and vector components

are ‘opposite’ so that the vector x is unchanged by the transformation.
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Example: in R
3, two bases are {ei} = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} and

{e′i} = {(0, 1, 0), (0, 0, 1), (1, 0, 0)}. Then

Rij =









0 1 0

0 0 1

1 0 0









There is no need for a basis to be either orthogonal or normalized. In

fact, we have not yet defined what these terms mean.

5.3 Matrices

5.3.1 Array viewpoint

A matrix can be regarded simply as a rectangular array of numbers:

A =













A11 A12 · · · A1n

A21 A22 · · · A2n
...

... . . . ...

Am1 Am2 · · · Amn













This viewpoint is equivalent to thinking of a vector as an n-tuple, or, more

correctly, as either a column matrix or a row matrix:

x =













x1

x2
...

xn













, xT =
[

x1 x2 · · · xn

]

The superscript ‘T’ denotes the transpose. In the typed notes, we will

use sans serif fonts (A, x) to denote matrices, to distinguish them from

linear operators and vectors (see next subsection) which we will denote

with bold fonts (A, x). In handwritten notes, I will do my best to draw

a distinction where one is necessary.
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The transformation matrix Rij described above is an example of a square

matrix (m = n).

Using the suffix notation and the summation convention, the familiar rules

for multiplying a matrix by a vector on the right or left are

(Ax)i = Aijxj (xTA)j = xiAij

and the rules for matrix addition and multiplication are

(A+ B)ij = Aij +Bij (AB)ij = AikBkj

The transpose of an m× n matrix is the n×m matrix

(AT)ij = Aji

5.3.2 Linear operators

A linear operator A on a vector space V acts on elements of V to produce

other elements of V . The action of A on x is written A(x) or just Ax.

The property of linearity means:

A(αx) = αAx for scalar α

A(x+ y) = Ax+Ay

Notes:

• a linear operator has an existence without reference to any basis

• the operation can be thought of as a linear transformation or mapping

of the space V (a simple example is a rotation of three-dimensional

space)

• a more general idea, not considered here, is that a linear operator can

act on vectors of one space V to produce vectors of another space V ′,

possibly of a different dimension
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The components of A with respect to a basis {ei} are defined by the

action of A on those basis vectors:

Aej = eiAij

The components form a square matrix. We write (A)ij = Aij and (x)i =

xi.

Since A is a linear operator, a knowledge of its action on a basis is

sufficient to determine its action on any vector x:

Ax = A(ejxj) = xj(Aej) = xj(eiAij) = eiAijxj

or

(Ax)i = Aijxj

This corresponds to the rule for multiplying a matrix by a vector.

The sum of two linear operators is defined by

(A+B)x = Ax+Bx = ei(Aij +Bij)xj

The product, or composition, of two linear operators has the action

(AB)x = A(Bx) = A(eiBijxj) = (Aek)Bkjxj = eiAikBkjxj

The components therefore satisfy the rules of matrix addition and multi-

plication:

(A+B)ij = Aij +Bij (AB)ij = AikBkj

Recall that matrix multiplication is not commutative, so BA 6= AB in

general.

Therefore a matrix can be thought of as the components of a linear

operator with respect to a given basis, just as a column matrix or n-tuple

can be thought of as the components of a vector with respect to a given

basis.
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5.3.3 Change of basis again

When changing basis, we wrote one set of basis vectors in terms of the

other:

ej = e′iRij

We could equally have written

e′j = eiSij

where S is the matrix of the inverse transformation. Substituting one

relation into the other (and relabelling indices where required), we obtain

e′j = e′kRkiSij

ej = ekSkiRij

This can only be true if

RkiSij = SkiRij = δkj

or, in matrix notation,

RS = SR = 1

Therefore R and S are inverses: R = S−1 and S = R−1.

The transformation law for vector components, x′i = Rijxj, can be written

in matrix notation as

x′ = Rx

with the inverse relation

x = R−1x′

How do the components of a linear operator A transform under a change

of basis? We require, for any vector x,

Ax = eiAijxj = e′iA
′
ijx

′
j
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Using ej = e′iRij and relabelling indices, we find

e′kRkiAijxj = e′kA
′
kjx

′
j

RkiAijxj = A′
kjx

′
j

RA(R−1x′) = A′x′

Since this is true for any x′, we have

A′ = RAR−1

These transformation laws are consistent, e.g.

A′x′ = RAR−1Rx = RAx = (Ax)′

A′B′ = RAR−1RBR−1 = RABR−1 = (AB)′

5.4 Inner product (scalar product)

This is used to give a meaning to lengths and angles in a vector space.

5.4.1 Definition

An inner product (or scalar product) is a scalar function 〈x|y〉 of two

vectors x and y. Other common notations are (x,y), 〈x,y〉 and x · y.

An inner product must:

• be linear in the second argument:

〈x|αy〉 = α〈x|y〉 for scalar α

〈x|y + z〉 = 〈x|y〉+ 〈x|z〉

• have Hermitian symmetry :

〈y|x〉 = 〈x|y〉∗
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• be positive definite:

〈x|x〉 > 0 with equality if and only if x = 0

Notes:

• an inner product has an existence without reference to any basis

• the star is needed to ensure that 〈x|x〉 is real

• the star is not needed in a real vector space

• it follows that the inner product is antilinear in the first argument:

〈αx|y〉 = α∗〈x|y〉 for scalar α

〈x+ y|z〉 = 〈x|z〉+ 〈y|z〉

The standard (Euclidean) inner product on R
n is the ‘dot product’

〈x|y〉 = x · y = xiyi

which is generalized to C
n as

〈x|y〉 = x∗i yi

The star is needed for Hermitian symmetry. We will see later that any

other inner product on R
n or Cn can be reduced to this one by a suitable

choice of basis.

〈x|x〉1/2 is the ‘length’ or ‘norm’ of the vector x, written |x| or ‖x‖. In
one dimension this agrees with the meaning of ‘absolute value’ if we are

using the dot product.

5.4.2 The Cauchy–Schwarz inequality

|〈x|y〉|2 6 〈x|x〉〈y|y〉
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or equivalently

|〈x|y〉| 6 |x||y|

with equality if and only if x = αy (i.e. the vectors are parallel or an-

tiparallel).

Proof: We assume that x 6= 0 and y 6= 0, otherwise the inequality is

trivial. We consider the non-negative quantity

〈x− αy|x− αy〉 = 〈x− αy|x〉 − α〈x− αy|y〉
= 〈x|x〉 − α∗〈y|x〉 − α〈x|y〉+ αα∗〈y|y〉
= 〈x|x〉+ αα∗〈y|y〉 − α〈x|y〉 − α∗〈x|y〉∗

= |x|2 + |α|2|y|2 − 2Re (α〈x|y〉)

This result holds for any scalar α. First choose the phase of α such that

α〈x|y〉 is real and non-negative and therefore equal to |α||〈x|y〉|. Then

|x|2 + |α|2|y|2 − 2|α||〈x|y〉| > 0

(|x| − |α||y|)2 + 2|α||x||y| − 2|α||〈x|y〉| > 0

Now choose the modulus of α such that |α| = |x|/|y|, which is finite

and non-zero. Then divide the inequality by 2|α| to obtain

|x||y| − |〈x|y〉| > 0

as required.

In a real vector space, the Cauchy–Schwarz inequality allows us to define

the angle θ between two vectors through

〈x|y〉 = |x||y| cos θ

If 〈x|y〉=0 (in any vector space) the vectors are said to be orthogonal.
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5.4.3 Inner product and bases

The inner product is bilinear : it is antilinear in the first argument and

linear in the second argument.

Warning 3. This is the usual convention in physics and applied math-

ematics. In pure mathematics it is usually the other way around.

A knowledge of the inner product of the basis vectors is therefore sufficient

to determine the inner product of any two vectors x and y. Let

〈ei|ej〉 = Gij

Then

〈x|y〉 = 〈eixi|ejyj〉 = x∗iyj〈ei|ej〉 = Gijx
∗
i yj

The n × n array of numbers Gij are the metric coefficients of the basis

{ei}. The Hermitian symmetry of the inner product implies that

〈y|x〉 = Gijy
∗
i xj

is equal to

(〈x|y〉)∗ = G∗
ijxiy

∗
j = G∗

jiy
∗
i xj

(in the last step we exchanged the summation indices i ↔ j) for all

vectors x and y, and therefore

Gji = G∗
ij

We say that the matrix G is Hermitian.

An orthonormal basis is one for which

〈ei|ej〉 = δij
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in which case the inner product is the standard one

〈x|y〉 = x∗i yi

We will see later that it is possible to transform any basis into an or-

thonormal one.

5.5 Hermitian conjugate

5.5.1 Definition and simple properties

We define the Hermitian conjugate of a matrix to be the complex conju-

gate of its transpose:

A† = (AT)∗ (A†)ij = A∗
ji

This applies to general rectangular matrices, e.g.

[

A11 A12 A13

A21 A22 A23

]†

=









A∗
11 A∗

21

A∗
12 A∗

22

A∗
13 A∗

23









The Hermitian conjugate of a column matrix is

x† =













x1

x2
...

xn













†

=
[

x∗1 x∗2 · · · x∗n

]

Note that

(A†)† = A

The Hermitian conjugate of a product of matrices is

(AB)† = B†A†
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because

[(AB)†]ij = [(AB)ji]
∗

= (AjkBki)
∗ = (A∗

jkB
∗
ki) = B∗

kiA
∗
jk = (B†)ik(A

†)kj = (B†A†)ij

Note the reversal of the order of the product, as also occurs with the

transpose or inverse of a product of matrices. This result extends to

arbitrary products of matrices and vectors, e.g.

(ABCx)† = x†C†B†A†

(x†Ay)† = y†A†x

In the latter example, if x and y are vectors, each side of the equation is

a scalar (a complex number). The Hermitian conjugate of a scalar is just

the complex conjugate.

5.5.2 Relationship with inner product

We have seen that the inner product of two vectors is

〈x|y〉 = Gijx
∗
i yj = x∗iGijyj

where Gij are the metric coefficients. This can also be written

〈x|y〉 = x†Gy

and the Hermitian conjugate of this equation is

〈x|y〉∗ = y†G†x

Similarly

〈y|x〉 = y†Gx

The Hermitian symmetry of the inner product requires 〈y|x〉 = 〈x|y〉∗,
i.e.

y†Gx = y†G†x
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which is satisfied for all vectors x and y provided that G is an Hermitian

matrix:

G† = G

If the basis is orthonormal, then Gij = δij and we have simply

〈x|y〉 = x†y

5.5.3 Adjoint operator

A further relationship between the Hermitian conjugate and the inner

product is as follows.

The adjoint of a linear operator A with respect to a given inner product

is a linear operator A† satisfying

〈A†x|y〉 = 〈x|Ay〉

for all vectors x and y. With the standard inner product this implies

[

(A†)ijxj
]∗
yi = x∗iAijyj

(A†)∗ijx
∗
jyi = Ajix

∗
jyi

(A†)∗ij = Aji

(A†)ij = A∗
ji

The components of the operator A with respect to a basis are given by a

square matrix A. The components of the adjoint operator (with respect to

the standard inner product) are given by the Hermitian conjugate matrix

A†.

5.5.4 Special square matrices

The following types of special matrices arise commonly in scientific appli-

cations.
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A symmetric matrix is equal to its transpose:

AT = A or Aji = Aij

An antisymmetric (or skew-symmetric) matrix satisfies

AT = −A or Aji = −Aij

An orthogonal matrix is one whose transpose is equal to its inverse:

AT = A−1 or AAT = ATA = 1

These ideas generalize to a complex vector space as follows.

An Hermitian matrix is equal to its Hermitian conjugate:

A† = A or A∗
ji = Aij

An anti-Hermitian (or skew-Hermitian) matrix satisfies

A† = −A or A∗
ji = −Aij

A unitary matrix is one whose Hermitian conjugate is equal to its inverse:

A† = A−1 or AA† = A†A = 1

In addition, a normal matrix is one that commutes with its Hermitian

conjugate:

AA† = A†A

It is easy to verify that Hermitian, anti-Hermitian and unitary matrices

are all normal.

5.6 Eigenvalues and eigenvectors

5.6.1 Basic properties

An eigenvector of a linear operator A is a non-zero vector x satisfying

Ax = λx
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for some scalar λ, the corresponding eigenvalue.

The equivalent statement in a matrix representation is

Ax = λx or (A− λ1)x = 0

where A is an n× n square matrix.

This equation states that a non-trivial linear combination of the columns

of the matrix (A−λ1) is equal to zero, i.e. that the columns of the matrix

are linearly dependent. This is equivalent to the statement

det(A− λ1) = 0

which is the characteristic equation of the matrix A.

To compute the eigenvalues and eigenvectors, we first solve the charac-

teristic equation. This is a polynomial equation of degree n in λ and

therefore has n roots, although not necessarily distinct. These are the

eigenvalues of A, and are complex in general. The corresponding eigen-

vectors are obtained by solving the simultaneous equations found in the

rows of Ax = λx.

If the n roots are distinct, then there are n linearly independent eigenvec-

tors, each of which is determined uniquely up to an arbitrary multiplicative

constant.

If the roots are not all distinct, the repeated eigenvalues are said to be

degenerate. If an eigenvalue λ occurs m times, there may be any number

between 1 and m of linearly independent eigenvectors corresponding to

it. Any linear combination of these is also an eigenvector and the space

spanned by such vectors is called an eigenspace.

Example (1):
[

0 0

0 0

]

characteristic equation

∣

∣

∣

∣

∣

0− λ 0

0 0− λ

∣

∣

∣

∣

∣

= λ2 = 0
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eigenvalues 0, 0

eigenvectors:

[

0− λ 0

0 0− λ

][

x

y

]

=

[

0

0

]

⇒
[

0

0

]

=

[

0

0

]

two linearly independent eigenvectors, e.g.

[

1

0

]

,

[

0

1

]

two-dimensional eigenspace corresponding to eigenvalue 0

Example (2):

[

0 1

0 0

]

characteristic equation

∣

∣

∣

∣

∣

0− λ 1

0 0− λ

∣

∣

∣

∣

∣

= λ2 = 0

eigenvalues 0, 0

eigenvectors:

[

0− λ 1

0 0− λ

][

x

y

]

=

[

0

0

]

⇒
[

y

0

]

=

[

0

0

]

only one linearly independent eigenvector

[

1

0

]

one-dimensional eigenspace corresponding to eigenvalue 0

5.6.2 Eigenvalues and eigenvectors of Hermitian matrices

The matrices most often encountered in physical applications are real

symmetric or, more generally, Hermitian matrices satisfying A† = A. In

quantum mechanics, Hermitian matrices (or operators) represent observ-

able quantities.



5 MATRICES AND LINEAR ALGEBRA 112

We consider two eigenvectors x and y corresponding to eigenvalues λ and

µ:

Ax = λx (1)

Ay = µy (2)

The Hermitian conjugate of equation (2) is (since A† = A)

y†A = µ∗y† (3)

Using equations (1) and (3) we can construct two expressions for y†Ax:

y†Ax = λy†x = µ∗y†x

(λ− µ∗)y†x = 0 (4)

First suppose that x and y are the same eigenvector. Then y = x and

µ = λ, so equation (4) becomes

(λ− λ∗)x†x = 0

Since x 6= 0, x†x 6= 0 and so λ∗ = λ. Therefore the eigenvalues of an

Hermitian matrix are real.

Equation (4) simplifies to

(λ− µ)y†x = 0

If x and y are now different eigenvectors, we deduce that y†x = 0, pro-

vided that µ 6= λ. Therefore the eigenvectors of an Hermitian matrix

corresponding to distinct eigenvalues are orthogonal (in the standard in-

ner product on C
n).

5.6.3 Related results

Normal matrices (including all Hermitian, anti-Hermitian and unitary ma-

trices) satisfy AA† = A†A. It can be shown that:
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• the eigenvectors of normal matrices corresponding to distinct eigenval-

ues are orthogonal

• the eigenvalues of Hermitian, anti-Hermitian and unitary matrices are

real, imaginary and of unit modulus, respectively

These results can all be proved in a similar way.

Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

⊲ Show that the eigenvalues of a unitary matrix are of unit modulus and

the eigenvectors corresponding to distinct eigenvalues are orthogonal.

Let A be a unitary matrix: A† = A−1

Ax = λx

Ay = µy

y†A† = µ∗y†

y†A†Ax = µ∗λy†x

(µ∗λ− 1)y†x = 0

y = x : |λ|2 − 1 = 0 since x 6= 0

⇒ |λ| = 1

y 6= x :

(

λ

µ
− 1

)

y†x = 0

µ 6= λ : y†x = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Note that:

• real symmetric matrices are Hermitian

• real antisymmetric matrices are anti-Hermitian

• real orthogonal matrices are unitary

Note also that a 1× 1 matrix is just a number, λ, which is the eigenvalue

of the matrix. To be Hermitian, anti-Hermitian or unitary λ must satisfy

λ∗ = λ, λ∗ = −λ or λ∗ = λ−1

respectively. Hermitian, anti-Hermitian and unitary matrices therefore

correspond to real, imaginary and unit-modulus numbers, respectively.

There are direct correspondences between Hermitian, anti-Hermitian and

unitary matrices:

• if A is Hermitian then iA is anti-Hermitian (and vice versa)

• if A is Hermitian then

exp(iA) =
∞
∑

n=0

(iA)n

n!
is unitary

[Compare the following two statements: If z is a real number then iz is

imaginary (and vice versa). If z is a real number then exp(iz) is of unit

modulus.]

5.6.4 The degenerate case

Suppose we have an n by n matrix A. If a repeated eigenvalue λ occurs

m times, it can be shown (with some difficulty) that there are exactly m

corresponding linearly independent eigenvectors if A is normal.

It is always possible to construct an orthogonal basis within this m-

dimensional eigenspace (e.g. by the Gram–Schmidt procedure: see Ex-

ample Sheet 3, Question 2). Therefore, even if the eigenvalues are de-

generate, it is always possible to find n mutually orthogonal eigenvectors,
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which form a basis for the vector space. In fact, this is possible if and

only if the matrix is normal.

Orthogonal eigenvectors can be normalized (divide by their norm) to make

them orthonormal. Therefore an orthonormal basis can always be con-

structed from the eigenvectors of a normal matrix. This is called an

eigenvector basis.

Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

⊲ Find an orthonormal set of eigenvectors of the Hermitian matrix








0 i 0

−i 0 0

0 0 1









Characteristic equation:
∣

∣

∣

∣

∣

∣

∣

∣

−λ i 0

−i −λ 0

0 0 1− λ

∣

∣

∣

∣

∣

∣

∣

∣

= 0

(λ2 − 1)(1− λ) = 0

λ = 1,−1, 1

Eigenvector for λ = −1:








1 i 0

−i 1 0

0 0 2

















x

y

z









=









0

0

0









x+ iy = 0, z = 0

Normalized eigenvector:

1√
2









1

i

0








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Eigenvectors for λ = 1:








−1 i 0

−i −1 0

0 0 0

















x

y

z









=









0

0

0









−x+ iy = 0

Normalized eigenvectors:

1√
2









1

−i

0









,









0

0

1









. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.7 Diagonalization of a matrix

5.7.1 Similarity

We have seen that the matrices A and A′ representing a linear operator

in two different bases are related by

A′ = RAR−1 or equivalently A = R−1A′R

where R is the transformation matrix between the two bases.

Two square matrices A and B are said to be similar if they are related by

B = S−1AS (1)

where S is some invertible matrix. This means that A and B are repre-

sentations of the same linear operator in different bases. The relation (1)

is called a similarity transformation. S is called the similarity matrix.

A square matrix A is said to be diagonalizable if it is similar to a diagonal

matrix, i.e. if

S−1AS = Λ
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for some invertible matrix S and some diagonal matrix

Λ =













Λ1 0 · · · 0

0 Λ2 · · · 0
...

... . . . ...

0 0 · · · Λn













5.7.2 Diagonalization

An n × n matrix A can be diagonalized if and only if it has n linearly

independent eigenvectors. The columns of the similarity matrix S are just

the eigenvectors of A, denoted x(j). The diagonal entries of the matrix Λ

are just the eigenvalues of A, λj:

(S−1AS)ij = (S−1)ikAkℓSℓj

= (S−1)ikAkℓ(x
(j))ℓ

= (S−1)ikλj(x
(j))k no sum on j

= λj(S
−1)ikSkj = λjδij no sum on j

The meaning of diagonalization is that the matrix is expressed in its sim-

plest form by transforming it to its eigenvector basis.

5.7.3 Diagonalization of a normal matrix

An n×n normal matrix always has n linearly independent eigenvectors and

is therefore diagonalizable. Furthermore, the eigenvectors can be chosen

to be orthonormal. In this case the similarity matrix is unitary, because

a unitary matrix is precisely one whose columns are orthonormal vectors

(consider U†U = 1):

(S†S)ij = (S†)ik(S)kj = S∗
kiSkj = (x(i))∗k (x

(j))k = (x(i))† x(j) = δij
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Therefore a normal matrix can be diagonalized by a unitary transforma-

tion:

U†AU = Λ

where U is a unitary matrix whose columns are the orthonormal eigenvec-

tors of A, and Λ is a diagonal matrix whose entries are the eigenvalues of

A.

In particular, this result applies to the important cases of real symmetric

and, more generally, Hermitian matrices.

Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

⊲ Diagonalize the Hermitian matrix








0 i 0

−i 0 0

0 0 1









Using the previously obtained eigenvalues and eigenvectors,








1/
√
2 −i/

√
2 0

1/
√
2 i/

√
2 0

0 0 1

















0 i 0

−i 0 0

0 0 1

















1/
√
2 1/

√
2 0

i/
√
2 −i/

√
2 0

0 0 1









=









−1 0 0

0 1 0

0 0 1









. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.7.4 Orthogonal and unitary transformations

The transformation matrix between two bases {ei} and {e′i} has compo-

nents Rij defined by

ej = e′iRij

The condition for the first basis {ei} to be orthonormal is

e†iej = δij
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(e′kRki)
†e′lRlj = δij

R∗
kiRlje

′†
k e

′
l = δij

(In going from the second to the third line, note Rki is a number, so

R†
ki = R∗

ki.) If the second basis is also orthonormal, then e′†k e
′
l = δkl and

the condition becomes

R∗
kiRkj = δij

R†R = 1

Therefore the transformation between orthonormal bases is described by

a unitary matrix.

In a real vector space, an orthogonal matrix performs this task. In R
2 or

R
3 an orthogonal matrix corresponds to a rotation and/or reflection.

A real symmetric matrix is normal and has real eigenvalues and real orthog-

onal eigenvectors. Therefore a real symmetric matrix can be diagonalized

by a real orthogonal transformation.

Note that this is not generally true of real antisymmetric or orthogonal

matrices because their eigenvalues and eigenvectors are not generally real.

They can, however, be diagonalized by complex unitary transformations.

5.7.5 Uses of diagonalization

Certain operations on (diagonalizable) matrices are more easily carried

out using the representation

S−1AS = Λ or A = SΛS−1

Examples:

Am =
(

SΛS−1
) (

SΛS−1
)

· · ·
(

SΛS−1
)

= SΛmS−1

det(A) = det
(

SΛS−1
)

= det(S) det(Λ) det(S−1) = det(Λ)
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tr(A) = tr
(

SΛS−1
)

= tr
(

ΛS−1S
)

= tr(Λ)

tr(Am) = tr
(

SΛmS−1
)

= tr
(

ΛmS−1S
)

= tr(Λm)

Here we use the properties of the determinant and trace:

det(AB) = det(A) det(B)

tr(AB) = (AB)ii = AijBji = BjiAij = (BA)jj = tr(BA)

Note that diagonal matrices are multiplied very easily (i.e. component-

wise). Also the determinant and trace of a diagonal matrix are just the

product and sum, respectively, of its elements. Therefore

det(A) =
n
∏

i=1

λi

tr(A) =
n

∑

i=1

λi

In fact these two statements are true for all matrices (whether or not they

are diagonalizable), as follows from the product and sum of roots in the

characteristic equation

det(A− λ1) = det(A) + · · ·+ tr(A)(−λ)n−1 + (−λ)n = 0

5.8 Quadratic and Hermitian forms

5.8.1 Quadratic form

The quadratic form associated with a real symmetric matrix A is

Q(x) = xTAx = xiAijxj = Aijxixj

Q is a homogeneous quadratic function of (x1, x2, . . . , xn), i.e. Q(αx) =

α2Q(x). In fact, any homogeneous quadratic function is the quadratic
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form of a symmetric matrix, e.g.

Q = 2x2 + 4xy + 5y2 =
[

x y
]

[

2 2

2 5

][

x

y

]

The xy term is split equally between the off-diagonal matrix elements.

A can be diagonalized by a real orthogonal transformation:

STAS = Λ with ST = S−1

The vector x transforms according to x = Sx′, so

Q = xTAx = (x′TST)(SΛST)(Sx′) = x′TΛx′

The quadratic form is therefore reduced to a sum of squares,

Q =
n

∑

i=1

λix
′2
i

Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

⊲ Diagonalize the quadratic form Q = 2x2 + 4xy + 5y2.

Q =
[

x y
]

[

2 2

2 5

][

x

y

]

= xTAx

The eigenvalues of A are 1 and 6 and the corresponding normalized eigen-

vectors are

1√
5

[

2

−1

]

,
1√
5

[

1

2

]

(calculation omitted). The diagonalization of A is STAS = Λ with

S =

[

2/
√
5 1/

√
5

−1/
√
5 2/

√
5

]

, Λ =

[

1 0

0 6

]

Therefore

Q = x′2 + 6y′2 =

[

1√
5
(2x− y)

]2

+ 6

[

1√
5
(x+ 2y)

]2
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The eigenvectors of A define the principal axes of the quadratic form. In

diagonalizing A by transforming to its eigenvector basis, we are rotating

the coordinates to reduce the quadratic form to its simplest form.

A positive definite matrix is one for which all the eigenvalues are positive

(λ > 0). Similarly:

• negative definite means λ < 0

• positive (negative) semi-definite means λ > 0 (λ 6 0)

• definite means positive definite or negative definite

In the above example, the diagonalization shows that Q(x) > 0 for all

x 6= 0, and we say that the quadratic form is positive definite.

5.8.2 Quadratic surfaces

The quadratic surfaces (or quadrics) associated with a real quadratic form

in three dimensions are the family of surfaces

Q(x) = k = constant

In the eigenvector basis this equation simplifies to

λ1x
′2
1 + λ2x

′2
2 + λ3x

′2
3 = k

The equivalent equation in two dimensions is related to the standard form

for a conic section, i.e. an ellipse (if λ1λ2 > 0)

x′2

a2
+

y′2

b2
= 1

or a hyperbola (if λ1λ2 < 0)

x′2

a2
− y′2

b2
= ±1
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The semi-axes (distances of the curve from the origin along the principal

axes) are a =
√

|k/λ1| and b =
√

|k/λ2|.
Notes:

• the scale of the ellipse (e.g.) is determined by the constant k

• the shape of the ellipse is determined by the eigenvalues

• the orientation of the ellipse is determined by the eigenvectors

In three dimensions, the quadratic surfaces are ellipsoids (if the eigenval-

ues all have the same sign) of standard form

x′2

a2
+

y′2

b2
+

z′2

c2
= 1

or hyperboloids (if the eigenvalues differ in sign) of standard form

x′2

a2
+

y′2

b2
− z′2

c2
= ±1

The quadrics of a definite quadratic form are therefore ellipsoids.

Some special cases:

• if λ1 = λ2 = λ3 we have a sphere

• if (e.g.) λ1 = λ2 we have a surface of revolution about the z′-axis

• if (e.g.) λ3 = 0 we have the translation of a conic section along the

z′-axis (an elliptic or hyperbolic cylinder)

Conic sections and quadric surfaces

ellipse x2

a2 +
y2

b2 = 1 hyperbola x2

a2 −
y2

b2 = 1
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ellipsoid hyperboloid of one sheet

x2

a2 +
y2

b2 +
z2

c2 = 1 x2

a2 +
y2

b2 − z2

c2 = 1

hyperboloid of two sheets x2

a2 +
y2

b2 − z2

c2 = −1

Example:

Let V (r) be a potential with a stationary point at the origin r = 0. Then

its Taylor expansion has the form

V (r) = V (0) + Vijxixj +O(x3)

where

Vij =
1

2

∂2V

∂xi∂xj

∣

∣

∣

∣

∣

r=0

The equipotential surfaces near the origin are therefore given approxi-

mately by the quadrics Vijxixj = constant. These are ellipsoids or hy-

perboloids with principal axes given by the eigenvectors of the symmetric

matrix Vij.
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5.8.3 Hermitian form

In a complex vector space, the Hermitian form associated with an Hermi-

tian matrix A is

H(x) = x†Ax = x∗iAijxj

H is a real scalar because

H∗ = (x†Ax)† = x†A†x = x†Ax = H

We have seen that A can be diagonalized by a unitary transformation:

U†AU = Λ with U† = U−1

and so

H = x†(UΛU†)x = (U†x)†Λ(U†x) = x′†Λx′ =
n

∑

i=1

λi|x′i|2 .

5.9 Stationary property of the eigenvalues

The Rayleigh quotient associated with an Hermitian matrix A is the nor-

malized Hermitian form

λ(x) =
x†Ax

x†x

Notes:

• λ(x) is a real scalar

• λ(αx) = λ(x)

• if x is an eigenvector of A, then λ(x) is the corresponding eigenvalue

In fact, the eigenvalues of A are the stationary values of the function λ(x).

This is the Rayleigh–Ritz variational principle.
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Proof:

δλ = λ(x+ δx)− λ(x)

=
(x+ δx)†A(x+ δx)

(x+ δx)†(x+ δx)
− λ(x)

=
x†Ax+ (δx)†Ax+ x†A(δx) +O(δx2)

x†x+ (δx)†x+ x†(δx) +O(δx2)
− λ(x)

=
(δx)†Ax+ x†A(δx)− λ(x)[(δx)†x+ x†(δx)] +O(δx2)

x†x+ (δx)†x+ x†(δx) +O(δx2)

=
(δx)†[Ax− λ(x)x] + [x†A− λ(x)x†](δx)

x†x
+O(δx2)

=
(δx)†[Ax− λ(x)x]

x†x
+ c.c.+O(δx2)

where ‘c.c.’ denotes the complex conjugate. Therefore the first-order

variation of λ(x) vanishes for all perturbations δx if and only if Ax =

λ(x)x. In that case x is an eigenvector of A, and the value of λ(x) is the

corresponding eigenvalue.


