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6 Elementary analysis

6.1 Motivation

Analysis is the careful study of infinite processes such as limits, conver-

gence, continuity, differential and integral calculus, and is one of the foun-

dations of mathematics. This section covers some of the basic concepts

including the important problem of the convergence of infinite series. It

also introduces the remarkable properties of analytic functions of a com-

plex variable.

6.2 Sequences

6.2.1 Limits of sequences

We first consider a sequence of real or complex numbers fn, defined for

all integers n > n0. Possible behaviours as n increases are:

• fn tends towards a particular value

• fn does not tend to any value but remains limited in magnitude

• fn is unlimited in magnitude

Definition 1. The sequence fn converges to the limit L as n → ∞ if,

for any positive number ǫ, |fn − L| < ǫ for sufficiently large n.

In other words the members of the sequence are eventually contained

within an arbitrarily small disk centred on L. We write this as

lim
n→∞

fn = L or fn → L as n → ∞

Note that L here is a finite number.

To say that a property holds for sufficiently large n means that there exists

an integer N such that the property is true for all n > N .
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Example:

lim
n→∞

n−α = 0 for any α > 0

Proof:

|n−α − 0| < ǫ holds for all n > ǫ−1/α

If fn does not tend to a limit it may nevertheless be bounded.

Definition 2. The sequence fn is bounded as n → ∞ if there exists a

positive number K such that |fn| < K for sufficiently large n.

Example:

(

n+ 1

n

)

einα is bounded as n → ∞ for any real number α

Proof:
∣

∣

∣

∣

(

n+ 1

n

)

einα
∣

∣

∣

∣

=
n+ 1

n
< 2 for all n > 2

6.2.2 Cauchy’s principle of convergence

A necessary and sufficient condition for the sequence fn to converge is

that, for any positive number ǫ, |fn+m − fn| < ǫ for all positive integers

m, for sufficiently large n. Note that this condition does not require a

knowledge of the value of the limit L.
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6.3 Convergence of series

6.3.1 Meaning of convergence

What is the meaning of an infinite series such as

∞
∑

n=n0

un

involving the addition of an infinite number of terms?

We define the partial sum

SN =
N
∑

n=n0

un

The infinite series
∑

un is said to converge if the sequence of partial sums

SN tends to a limit S as N → ∞. The value of the series is then S.

Otherwise the series diverges.

Note that whether a series converges or diverges does not depend on the

value of n0 (i.e. on when the series begins) but only on the behaviour of

the terms for large n.

According to Cauchy’s principle of convergence, a necessary and sufficient

condition for
∑

un to converge is that, for any positive number ǫ,

|SN+m − SN | = |uN+1 + uN+2 + · · ·+ uN+m| < ǫ

for all positive integers m, for sufficiently large N .

6.3.2 Classic examples

The geometric series
∑

zn has the partial sum

N
∑

n=0

zn =







1−zN+1

1−z , z 6= 1

N + 1, z = 1
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Therefore
∑

zn converges if |z| < 1, and the sum is 1/(1− z). If |z| > 1

the series diverges.

The harmonic series
∑

n−1 diverges. Consider the partial sum

SN =
N
∑

n=1

1

n
>

∫ N+1

1

dx

x
= ln(N + 1)

Therefore SN increases without bound and does not tend to a limit as

N → ∞.

6.3.3 Absolute and conditional convergence

If
∑

|un| converges, then
∑

un also converges.
∑

un is said to converge

absolutely.

If
∑

|un| diverges, then
∑

un may or may not converge. If it does, it is

said to converge conditionally.

[Proof of the first statement above: If
∑

|un| converges then, for any

positive number ǫ,

|uN+1|+ |uN+2|+ · · ·+ |uN+m| < ǫ

for all positive integers m, for sufficiently large N . But then

|uN+1 + uN+2 + · · ·+ uN+m| 6 |uN+1|+ |uN+2|+ · · ·+ |uN+m|

< ǫ

and so
∑

un also converges.]
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6.3.4 Necessary condition for convergence

A necessary condition for
∑

un to converge is that un → 0 as n → ∞.

Formally, this can be shown by noting that

un = Sn − Sn−1

If the series converges then

limSn = limSn−1 = S

and therefore limun = 0.

This condition is not sufficient for convergence, as exemplified by the

harmonic series.

6.3.5 The comparison test

This refers to series of non-negative real numbers. We write these as

|un| because the comparison test is most often applied in assessing the

absolute convergence of a series of real or complex numbers.

If
∑

|vn| converges and

|un| 6 |vn| for all n

then
∑

|un| also converges. This follows from the fact that

N
∑

n=n0

|un| 6

N
∑

n=n0

|vn|

and each partial sum is a non-decreasing sequence, which must either

tend to a limit or increase without bound.

More generally, if
∑

|vn| converges and

|un| 6 K|vn|

for sufficiently large n, whereK is a constant, then
∑

|un| also converges.
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Conversely, if
∑

|vn| diverges and

|un| > K|vn|

for sufficiently large n, where K is a positive constant, then
∑

|un| also

diverges.

In particular, if
∑

|vn| converges (diverges) and

|un|/|vn| tends to a non-zero limit as n → ∞

then
∑

|un| also converges (diverges).

6.3.6 D’Alembert’s ratio test

This uses a comparison between a given series
∑

un of complex terms

and a geometric series
∑

vn =
∑

rn, where r > 0.

The absolute ratio of successive terms is

rn =

∣

∣

∣

∣

un+1

un

∣

∣

∣

∣

Suppose that rn tends to a limit r as n → ∞. Then

• if r < 1,
∑

un converges absolutely

• if r > 1,
∑

un diverges (un does not tend to zero)

• if r = 1, a different test is required

Even if rn does not tend to a limit, if rn 6 r for sufficiently large n, where

r < 1 is a constant, then
∑

un converges absolutely.

Example: for the harmonic series
∑

n−1,

rn =
n

n+ 1
→ 1 as n → ∞

A different test is required, such as the integral comparison test used

above.
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The ratio test is useless for series in which some of the terms are zero.

However, it can easily be adapted by relabelling the series to remove the

vanishing terms.

6.3.7 Cauchy’s root test

The same conclusions as for the ratio test apply when instead

rn = |un|
1/n

This result also follows from a comparison with a geometric series. It is

more powerful than the ratio test but usually harder to apply.

6.4 Functions of a continuous variable

6.4.1 Limits and continuity

We now consider how a real or complex function f(z) of a real or complex

variable z behaves near a point z0.

Definition 3. The function f(z) tends to the limit L as z → z0 if, for

any positive number ǫ, there exists a positive number δ, depending on

ǫ, such that |f(z)− L| < ǫ for all z such that |z − z0| < δ.

We write this as

lim
z→z0

f(z) = L or f(z) → L as z → z0

The value of L would normally be f(z0). However, cases such as

lim
z→0

sin z

z
= 1

must be expressed as limits because sin 0/0 = 0/0 is indeterminate.

Definition 4. The function f(z) is continuous at the point z = z0 if

f(z) → f(z0) as z → z0.
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Definition 5. The function f(z) is bounded as z → z0 if there ex-

ist positive numbers K and δ such that |f(z)| < K for all z with

|z − z0| < δ.

Definition 6. The function f(z) tends to the limit L as z → ∞ if,

for any positive number ǫ, there exists a positive number R, depending

on ǫ, such that |f(z)− L| < ǫ for all z with |z| > R.

We write this as

lim
z→∞

f(z) = L or f(z) → L as z → ∞

Definition 7. The function f(z) is bounded as z → ∞ if there exist

positive numbers K and R such that |f(z)| < K for all z with |z| > R.

There are different ways in which z can approach z0 or∞, especially in the

complex plane. Sometimes the limit or bound applies only if approached

in a particular way.

For example, consider tanh(z) as |z| → ∞

lim
z→+∞

tanh z = 1, lim
z→−∞

tanh z = −1

This notation implies that z is approaching positive or negative real infinity

along the real axis. But if z approaches infinity along the imaginary axis,

i.e. z → ±i∞, the limit of tanh is not even defined.

In the context of real variables x → ∞ usually means specifically x →

+∞. A related notation for one-sided limits is exemplified by

lim
x→0+

x(1 + x)

|x|
= 1, lim

x→0−

x(1 + x)

|x|
= −1
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6.4.2 The O notation

The useful symbols O, o and ∼ are used to compare the rates of growth

or decay of different functions.

• f(z) = O(g(z)) as z → z0 means that

f(z)

g(z)
is bounded as z → z0

• f(z) = o(g(z)) as z → z0 means that

f(z)

g(z)
→ 0 as z → z0

• f(z) ∼ g(z) as z → z0 means that

f(z)

g(z)
→ 1 as z → z0

If f(z) ∼ g(z) we say that f is asymptotically equal to g. This should

not be written as f(z) → g(z).

Notes:

• these definitions also apply when z0 = ∞

• f(z) = O(1) means that f(z) is bounded

• either f(z) = o(g(z)) or f(z) ∼ g(z) implies f(z) = O(g(z))

• only f(z) ∼ g(z) is a symmetric relation

Examples:

A cos z = O(1) as z → 0

A sin z = O(z) = o(1) as z → 0

ln x = o(x) as x → +∞

cosh x ∼
1

2
ex as x → +∞
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6.5 Taylor’s theorem for functions of a real vari-

able

Let f(x) be a (real or complex) function of a real variable x, which is

differentiable at least n times in the interval x0 6 x 6 x0 + h. Then

f(x0 + h) =f(x0) + hf ′(x0) +
h2

2!
f ′′(x0) + · · ·

· · ·+
hn−1

(n− 1)!
f (n−1)(x0) +Rn

where

Rn =

∫ x0+h

x0

(x0 + h− x)n−1

(n− 1)!
f (n)(x) dx

is the remainder after n terms of the Taylor series.

[Proof: integrate Rn by parts n times.]

The remainder term can be expressed in various ways. Lagrange’s expres-

sion for the remainder is

Rn =
hn

n!
f (n)(ξ)

where ξ is an unknown number in the interval x0 < ξ < x0 + h. So

Rn = O(hn)

If f(x) is infinitely differentiable in x0 6 x 6 x0 + h (it is a smooth

function) we can write an infinite Taylor series

f(x0 + h) =
∞
∑

n=0

hn

n!
f (n)(x0)

which converges for sufficiently small h (as discussed below).
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6.6 Analytic functions of a complex variable

6.6.1 Complex differentiability

Definition 8. The derivative of the function f(z) at the point z = z0

is

f ′(z0) = lim
z→z0

f(z)− f(z0)

z − z0

If this exists, the function f(z) is differentiable at z = z0.

Another way to write this is

df

dz
≡ f ′(z) = lim

δz→0

f(z + δz)− f(z)

δz

Requiring a function of a complex variable to be differentiable is a sur-

prisingly strong constraint. The limit must be the same when δz → 0 in

any direction in the complex plane.

6.6.2 The Cauchy–Riemann equations

Separate f = u+ iv and z = x+ iy into their real and imaginary parts:

f(z) = u(x, y) + iv(x, y)

If f ′(z) exists we can calculate it by assuming that δz = δx + i δy ap-

proaches 0 along the real axis, so δy = 0:

f ′(z) = lim
δx→0

f(z + δx)− f(z)

δx

= lim
δx→0

u(x+ δx, y) + iv(x+ δx, y)− u(x, y)− iv(x, y)

δx

= lim
δx→0

u(x+ δx, y)− u(x, y)

δx
+ i lim

δx→0

v(x+ δx, y)− v(x, y)

δx

=
∂u

∂x
+ i

∂v

∂x
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The derivative should have the same value if δz approaches 0 along the

imaginary axis, so δx = 0:

f ′(z) = lim
δy→0

f(z + i δy)− f(z)

i δy

= lim
δy→0

u(x, y + δy) + iv(x, y + δy)− u(x, y)− iv(x, y)

i δy

= −i lim
δy→0

u(x, y + δy)− u(x, y)

δy
+ lim

δy→0

v(x, y + δy)− v(x, y)

δy

= −i
∂u

∂y
+

∂v

∂y

Comparing the real and imaginary parts of these expressions, we deduce

the Cauchy–Riemann equations

∂u

∂x
=

∂v

∂y
,

∂v

∂x
= −

∂u

∂y

These are necessary conditions for f(z) to have a complex derivative.

They are also sufficient conditions, provided that the partial derivatives

are also continuous.

6.6.3 Analytic functions

If a function f(z) has a complex derivative at every point z in a region R

of the complex plane, it is said to be analytic in R. To be analytic at a

point z = z0, f(z) must be differentiable throughout some neighbourhood

|z − z0| < ǫ of that point.

Examples of functions that are analytic in the whole complex plane (known

as entire functions):

• f(z) = c, a complex constant

• f(z) = z, for which u = x and v = y, and we easily verify the CR

equations

• f(z) = zn, where n is a positive integer
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• f(z) = P (z) = cnz
n + cn−1z

n−1 + · · · + c0, a general polynomial

function with complex coefficients

• f(z) = exp(z)

In the case of the exponential function we have

f(z) = ez = exeiy = ex cos y + i ex sin y = u+ iv

The CR equations are satisfied for all x and y:

∂u

∂x
= ex cos y =

∂v

∂y

∂v

∂x
= ex sin y = −

∂u

∂y

The derivative of the exponential function is

f ′(z) =
∂u

∂x
+ i

∂v

∂x
= ex cos y + i ex sin y = ez

as expected.

Sums, products and compositions of analytic functions are also analytic,

e.g.

f(z) = z exp(iz2) + z3

The usual product, quotient and chain rules apply to complex derivatives

of analytic functions. Familiar relations such as

d

dz
zn = nzn−1,

d

dz
sin z = cos z,

d

dz
cosh z = sinh z

apply as usual.

Many complex functions are analytic everywhere in the complex plane ex-

cept at isolated points, which are called the singular points or singularities

of the function.
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Examples:

• f(z) = P (z)/Q(z), where P (z) and Q(z) are polynomials. This is

called a rational function and is analytic except at points where Q(z) =

0.

• f(z) = zc, where c is a complex constant, is analytic except at z = 0

(unless c is a non-negative integer)

• f(z) = ln z is also analytic except at z = 0

The last two examples are in fact multiple-valued functions, which require

special treatment (see next term).

Examples of non-analytic functions:

• f(z) = Re(z), for which u = x and v = 0, so the CR equations are

not satisfied anywhere

• f(z) = z∗, for which u = x and v = −y

• f(z) = |z|, for which u = (x2 + y2)1/2 and v = 0

• f(z) = |z|2, for which u = x2 + y2 and v = 0

In the last case the CR equations are satisfied only at x = y = 0 and

we can say that f ′(0) = 0. However, f(z) is not analytic even at z = 0

because it is not differentiable throughout any neighbourhood |z| < ǫ of

0.

6.6.4 Consequences of the Cauchy–Riemann equations

If we know the real part of an analytic function in some region, we can find

its imaginary part (or vice versa) up to an additive constant by integrating

the CR equations.

Example:

u(x, y) = x2 − y2
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∂v

∂y
=

∂u

∂x
= 2x ⇒ v = 2xy + g(x)

∂v

∂x
= −

∂u

∂y
⇒ 2y + g′(x) = 2y ⇒ g′(x) = 0

Therefore v(x, y) = 2xy+ c, where c is a real constant, and we recognize

f(z) = x2 − y2 + i(2xy + c) = (x+ iy)2 + ic = z2 + ic

The real and imaginary parts of an analytic function satisfy Laplace’s

equation (they are harmonic functions):

∂2u

∂x2
+

∂2u

∂y2
=

∂

∂x

(

∂u

∂x

)

+
∂

∂y

(

∂u

∂y

)

=
∂

∂x

(

∂v

∂y

)

+
∂

∂y

(

−
∂v

∂x

)

= 0

The proof that ∇2v = 0 is similar. This provides a useful method for

solving Laplace’s equation in two dimensions. Furthermore,

∇u · ∇v =
∂u

∂x

∂v

∂x
+

∂u

∂y

∂v

∂y

=
∂v

∂y

∂v

∂x
−

∂v

∂x

∂v

∂y

= 0

and so the curves of constant u and those of constant v intersect at right

angles. u and v are said to be conjugate harmonic functions.

6.7 Taylor series for analytic functions

If a function of a complex variable is analytic in a region R of the complex

plane, not only is it differentiable everywhere in R, it is also differentiable

any number of times. If f(z) is analytic at z = z0, it has an infinite Taylor
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series

f(z) =
∞
∑

n=0

an(z − z0)
n, an =

f (n)(z0)

n!

which converges within some neighbourhood of z0 (as discussed below).

In fact this can be taken as a definition of analyticity.

6.8 Zeros, poles and essential singularities

6.8.1 Zeros of complex functions

The zeros of f(z) are the points z = z0 in the complex plane where

f(z0) = 0. A zero is of order N if

f(z0) = f ′(z0) = f ′′(z0) = · · · = f (N−1)(z0) = 0 but f (N)(z0) 6= 0

The first non-zero term in the Taylor series of f(z) about z = z0 is then

proportional to (z − z0)
N . Indeed

f(z) ∼ aN(z − z0)
N as z → z0

A simple zero is a zero of order 1. A double zero is one of order 2, etc.

Examples:

• f(z) = z has a simple zero at z = 0

• f(z) = (z − i)2 has a double zero at z = i

• f(z) = z2 − 1 = (z − 1)(z + 1) has simple zeros at z = ±1



6 ELEMENTARY ANALYSIS 143

Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

⊲ Find and classify the zeros of f(z) = sinh z.

0 = sinh z =
1

2
(ez − e−z)

ez = e−z

e2z = 1

2z = 2nπi

z = nπi, n ∈ Z

f ′(z) = cosh z = cos(nπ) 6= 0 at these points

⇒ all simple zeros

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.8.2 Poles

Suppose g(z) is analytic and non-zero at z = z0. Consider the function

f(z) = (z − z0)
−Ng(z)

Obviously, f(z) is not analytic at z = z0. We say that f(z) has a pole of

order N . Note that

f(z) ∼ g(z0)(z − z0)
−N as z → z0 .

A simple pole is a pole of order 1. A double pole is one of order 2, etc.

The behaviour of f(z) near z = z0 can be explored through an expansion

of the following type. Because g(z) is analytic

g(z) =
∞
∑

n=0

bn(z − z0)
n with b0 6= 0
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Then

f(z) = (z − z0)
−Ng(z) =

∞
∑

n=−N

an(z − z0)
n

with an = bn+N and so a−N 6= 0. This is not a Taylor series because it

includes negative powers of z − z0, and f(z) is not analytic at z = z0.

Notes:

• if f(z) has a zero of order N at z = z0, then 1/f(z) has a pole of

order N there, and vice versa

• if f(z) is analytic and non-zero at z = z0 and g(z) has a zero of order

N there, then f(z)/g(z) has a pole of order N there

Example:

f(z) =
2z

(z + 1)(z − i)2

has a simple pole at z = −1 and a double pole at z = i (as well as

a simple zero at z = 0). The expansion about the double pole can be

carried out by letting z = i + w and expanding in w:

f(z) =
2(i + w)

(i + w + 1)w2

=
2i(1− iw)

(i + 1)
[

1 + 1
2(1− i)w

]

w2

=
2i

(i + 1)w2
(1− iw)

[

1−
1

2
(1− i)w +O(w2)

]

= (1 + i)w−2

[

1−
1

2
(1 + i)w +O(w2)

]

= (1 + i)(z − i)−2 − i(z − i)−1 +O(1) as z → i
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6.8.3 Laurent series

It can be shown that any function that is analytic (and single-valued)

throughout an annulus a < |z − z0| < b centred on a point z = z0 has a

unique Laurent series

f(z) =
∞
∑

n=−∞

an(z − z0)
n

which converges for all values of z within the annulus.

If a = 0, then f(z) is analytic throughout the disk |z − z0| < b except

possibly at z = z0 itself, and the Laurent series determines the behaviour

of f(z) near z = z0. There are three possibilities:

• if the first non-zero term in the Laurent series has n > 0, then f(z) is

analytic at z = z0 and the series is just a Taylor series

• if the first non-zero term in the Laurent series has n = −N < 0, then

f(z) has a pole of order N at z = z0

• otherwise, if the Laurent series involves an infinite number of terms

with n < 0, then f(z) has an essential singularity at z = z0

A classic example of an essential singularity is f(z) = e1/z at z = 0. Here

we can generate the Laurent series from a Taylor series in 1/z:

e1/z =
∞
∑

n=0

1

n!

(

1

z

)n

=
0

∑

n=−∞

1

(−n)!
zn

The behaviour of a function near an essential singularity is remarkably

complicated. Picard’s theorem states that, in any neighbourhood of an es-

sential singularity, the function takes all possible complex values (possibly

with one exception) at infinitely many points. (In the case of f(z) = e1/z,

the exceptional value 0 is never attained.)
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6.8.4 Behaviour at infinity

We can examine the behaviour of a function f(z) as z → ∞ by defining

a new variable ζ = 1/z and a new function g(ζ) = f(z). Then z = ∞

maps to a single point ζ = 0, the point at infinity.

If g(ζ) has a zero, pole or essential singularity at ζ = 0, then we can say

that f(z) has the corresponding property at z = ∞.

Examples:

f1(z) = ez = e1/ζ = g1(ζ)

has an essential singularity at z = ∞.

f2(z) = z2 = 1/ζ2 = g2(ζ)

has a double pole at z = ∞.

f3(z) = e1/z = eζ = g3(ζ)

is analytic at z = ∞.

6.9 Convergence of power series

6.9.1 Circle of convergence

If the power series

f(z) =
∞
∑

n=0

an(z − z0)
n

converges for z = z1, then the series converges absolutely for all z such

that |z − z0| < |z1 − z0|.

[Proof: The necessary condition for convergence,

lim
n→∞

an(z1 − z0)
n = 0
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implies that

|an(z1 − z0)
n| < ǫ

for sufficiently large n, for any ǫ > 0. Therefore

|an(z − z0)
n| < ǫ rn

for sufficiently large n, with

r = |(z − z0)/(z1 − z0)| < 1

By comparison with the geometric series
∑

rn,
∑

|an(z−z0)
n| converges.]

It follows that, if the power series diverges for z = z2, then it diverges for

all z such that |z − z0| > |z2 − z0|.

Therefore there must exist a real, non-negative number R such that the

series converges for |z − z0| < R and diverges for |z − z0| > R. R is

called the radius of convergence and may be zero (exceptionally), positive

or infinite.

|z − z0| = R is the circle of convergence. The series converges inside it

and diverges outside. On the circle, it may either converge or diverge.

6.9.2 Determination of the radius of convergence

The absolute ratio of successive terms in a power series is

rn =

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

|z − z0|

Suppose that |an+1/an| → L as n → ∞. Then rn → r = L|z − z0|.

According to the ratio test, the series converges for L|z − z0| < 1 and

diverges for L|z − z0| > 1. The radius of convergence is R = 1/L.

The same result, R = 1/L, follows from Cauchy’s root test if instead

|an|
1/n → L as n → ∞.
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The radius of convergence of the Taylor series of a function f(z) about

the point z = z0 is equal to the distance of the nearest singular point

of the function f(z) from z0. Since a convergent power series defines an

analytic function, no singularity can lie inside the circle of convergence.

6.9.3 Examples

The following examples are generated from familiar Taylor series.

ln(1− z) = −z −
z2

2
−

z3

3
− · · · = −

∞
∑

n=1

zn

n

Here |an+1/an| = n/(n + 1) → 1 as n → ∞, so R = 1. The series

converges for |z| < 1 and diverges for |z| > 1. (In fact, on the circle

|z| = 1, the series converges except at the point z = 1.) The function

has a singularity at z = 1 that limits the radius of convergence.

arctan z = z −
z3

3
+

z5

5
−

z7

7
+ · · · = z

∞
∑

n=0

1

2n+ 1
(−z2)n

Thought of as a power series in (−z2), this has |an+1/an| = (2n +

1)/(2n + 3) → 1 as n → ∞. Therefore R = 1 in terms of (−z2). But

since | − z2| = 1 is equivalent to |z| = 1, the series converges for |z| < 1

and diverges for |z| > 1.

ez = 1 + z +
z2

2
+

z3

6
+ · · · =

∞
∑

n=0

zn

n!

Here |an+1/an| = 1/(n + 1) → 0 as n → ∞, so R = ∞. The series

converges for all z; this is an entire function.
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7 Ordinary differential equations

7.1 Motivation

Very many scientific problems are described by differential equations. Even

if these are partial differential equations, they can often be reduced to

ordinary differential equations (ODEs), e.g. by the method of separation

of variables.

The ODEs encountered most frequently are linear and of either first or

second order. In particular, second-order equations describe oscillatory

phenomena.

Part IA dealt with first-order ODEs and also with linear second-order ODEs

with constant coefficients. Here we deal with general linear second-order

ODEs.

The general linear inhomogeneous first-order ODE

y′(x) + p(x)y(x) = f(x)

can be solved using the integrating factor

g = exp

∫

p(x) dx

to obtain the general solution

y =
1

g

∫

gf dx

Provided that the integrals can be evaluated, the problem is completely

solved. An equivalent method does not exist for second-order ODEs, but

an extensive theory can still be developed.

7.2 Classification

The general second-order ODE is an equation of the form

F (y′′, y′, y, x) = 0
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for an unknown function y(x), where y′ = dy/dx and y′′ = d2y/dx2.

The general linear second-order ODE has the form

Ly = f

where L is a linear operator such that

Ly = ay′′ + by′ + cy

where a, b, c, f are functions of x.

The equation is homogeneous (unforced) if f = 0, otherwise it is inho-

mogeneous (forced).

The principle of superposition applies to linear ODEs as to all linear equa-

tions.

Although the solution may be of interest only for real x, it is often infor-

mative to analyse the solution in the complex domain.

7.3 Homogeneous linear second-order ODEs

7.3.1 Linearly independent solutions

Divide through by the coefficient of y′′ to obtain a standard form

y′′(x) + p(x)y′(x) + q(x)y(x) = 0

Suppose that y1(x) and y2(x) are two solutions of this equation. They

are linearly independent if

Ay1(x) +By2(x) = 0 (for all x) implies A = B = 0

i.e. if one is not simply a constant multiple of the other.

If y1(x) and y2(x) are linearly independent solutions, then the general

solution of the ODE is

y(x) = Ay1(x) +By2(x)
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where A and B are arbitrary constants. There are two arbitrary constants

because the equation is of second order.

7.3.2 The Wronskian

The Wronskian W (x) of two solutions y1(x) and y2(x) of a second-order

ODE is the determinant of the Wronskian matrix:

W [y1, y2] =

∣

∣

∣

∣

∣

y1 y2

y′1 y′2

∣

∣

∣

∣

∣

= y1y
′
2 − y2y

′
1

Suppose that Ay1(x) + By2(x) = 0 in some interval of x. Then also

Ay′1(x) +By′2(x) = 0, and so
[

y1 y2

y′1 y′2

][

A

B

]

=

[

0

0

]

If this is satisfied for non-trivial A, B then W = 0 (in that interval of x).

Therefore the solutions are linearly independent if W 6= 0.

7.3.3 Calculation of the Wronskian

Consider

W ′ = y1y
′′
2 − y2y

′′
1

= y1(−py′2 − qy2)− y2(−py′1 − qy1)

= −pW

since both y1 and y2 solve the ODE. This first-order ODE for W has the

solution

W = exp

(

−

∫

p dx

)

This expression involves an indefinite integral and could be written as

W (x) = exp

[

−

∫ x

p(ξ) dξ

]
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Notes:

• the indefinite integral involves an arbitrary additive constant, so W

involves an arbitrary multiplicative constant

• apart from that, W is the same for any two solutions y1 and y2

• W is therefore an intrinsic property of the ODE

• if W 6= 0 for one value of x (and p is integrable) then W 6= 0 for all

x, so linear independence need be checked at only one value of x

7.3.4 Finding a second solution

Suppose that one solution y1(x) is known. Then a second solution y2(x)

can be found as follows.

First find W as described above. The definition of W then provides a

first-order linear ODE for the unknown y2:

y1y
′
2 − y2y

′
1 = W

y′2
y1

−
y2y

′
1

y21
=

W

y21

d

dx

(

y2
y1

)

=
W

y21

y2 = y1

∫

W

y21
dx

Again, this result involves an indefinite integral and could be written as

y2(x) = y1(x)

∫ x W (ξ)

[y1(ξ)]2
dξ
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Notes:

• the indefinite integral involves an arbitrary additive constant, since any

amount of y1 can be added to y2

• W involves an arbitrary multiplicative constant, since y2 can be multi-

plied by any constant

• this expression for y2 therefore provides the general solution of the ODE

Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

⊲ Given that y = xn is a solution of x2y′′ − (2n− 1)xy′ + n2y = 0, find

the general solution. Standard form

y′′ −

(

2n− 1

x

)

y′ +

(

n2

x2

)

y = 0

Wronskian

W = exp

(

−

∫

p dx

)

= exp

∫
(

2n− 1

x

)

dx

= exp [(2n− 1) ln x+ constant]

= Ax2n−1

Second solution

y2 = y1

∫

W

y21
dx = xn

(
∫

Ax−1 dx

)

= Axn ln x+Bxn

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The same result can be obtained by writing y2(x) = y1(x)u(x) and ob-

taining a first-order linear ODE for u′. This method applies to higher-order

linear ODEs and is reminiscent of the factorization of polynomial equa-

tions.
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7.4 Series solutions

7.4.1 Ordinary and singular points

We consider a homogeneous linear second-order ODE in standard form:

y′′(x) + p(x)y′(x) + q(x)y(x) = 0

A point x = x0 is an ordinary point of the ODE if:

p(x) and q(x) are both analytic at x = x0

Otherwise it is a singular point.

A singular point x = x0 is regular if:

(x− x0)p(x) and (x− x0)
2q(x) are both analytic at x = x0
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Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

⊲ Identify the singular points of Legendre’s equation

(1− x2)y′′ − 2xy′ + ℓ(ℓ+ 1)y = 0

where ℓ is a constant, and determine their nature. Divide through by

(1− x2) to obtain the standard form with

p(x) = −
2x

1− x2
, q(x) =

ℓ(ℓ+ 1)

1− x2

Both p(x) and q(x) are analytic for all x except x = ±1. These are the

singular points. They are both regular:

(x− 1)p(x) =
2x

1 + x
, (x− 1)2q(x) = ℓ(ℓ+ 1)

(

1− x

1 + x

)

are both analytic at x = 1, and similarly for x = −1. . . . . . . . . . . . . . . . . .

7.4.2 Series solutions about an ordinary point

Wherever p(x) and q(x) are analytic, the ODE has two linearly indepen-

dent solutions that are also analytic. If x = x0 is an ordinary point, the

ODE has two linearly independent solutions of the form

y =
∞
∑

n=0

an(x− x0)
n

The coefficients an can be determined by substituting the series into the

ODE and comparing powers of (x−x0). The radius of convergence of the

series solutions is the distance to the nearest singular point of the ODE

in the complex plane.

Since p(x) and q(x) are analytic at x = x0,

p(x) =
∞
∑

n=0

pn(x− x0)
n, q(x) =

∞
∑

n=0

qn(x− x0)
n
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inside some circle centred on x = x0. Let

y =
∞
∑

n=0

an(x− x0)
n

y′ =
∞
∑

n=0

nan(x− x0)
n−1 =

∞
∑

n=0

(n+ 1)an+1(x− x0)
n

y′′ =
∞
∑

n=0

n(n− 1)an(x− x0)
n−2 =

∞
∑

n=0

(n+ 2)(n+ 1)an+2(x− x0)
n

Note the following rule for multiplying power series:

AB =
∞
∑

ℓ=0

Aℓ(x− x0)
ℓ

∞
∑

m=0

Bm(x− x0)
m

=
∞
∑

n=0

[

n
∑

r=0

An−rBr

]

(x− x0)
n

Thus

py′ =
∞
∑

n=0

[

n
∑

r=0

pn−r(r + 1)ar+1

]

(x− x0)
n

qy =
∞
∑

n=0

[

n
∑

r=0

qn−rar

]

(x− x0)
n

The coefficient of (x− x0)
n in the ODE y′′ + py′ + qy = 0 is therefore

(n+ 2)(n+ 1)an+2 +
n

∑

r=0

pn−r(r + 1)ar+1 +
n

∑

r=0

qn−rar = 0

This is a recurrence relation that determines an+2 (for n > 0) in terms of

the preceding coefficients a0, a1, . . . , an+1. The first two coefficients a0

and a1 are not determined: they are the two arbitrary constants in the

general solution.

The above procedure is rarely followed in practice!!
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If p and q are rational functions (i.e. ratios of polynomials) it is a much

better idea to multiply the ODE through by a suitable factor to clear

denominators before substituting in the power series for y, y′ and y′′.

Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

⊲ Find series solutions about x = 0 of Legendre’s equation

(1− x2)y′′ − 2xy′ + ℓ(ℓ+ 1)y = 0

x = 0 is an ordinary point, so let

y =
∞
∑

n=0

anx
n, y′ =

∞
∑

n=0

nanx
n−1, y′′ =

∞
∑

n=0

n(n− 1)anx
n−2

Substitute these expressions into the ODE to obtain

∞
∑

n=0

n(n− 1)anx
n−2 +

∞
∑

n=0

[−n(n− 1)− 2n+ ℓ(ℓ+ 1)] anx
n = 0

Rewriting

∞
∑

n=0

n(n− 1)anx
n−2 =

∞
∑

n=2

n(n− 1)anx
n−2

=
∞
∑

n=0

(n+ 2)(n+ 1)an+2x
n

we can see that the coefficient of xn (for n > 0) is

(n+ 1)(n+ 2)an+2 + [−n(n+ 1) + ℓ(ℓ+ 1)] an = 0

The recurrence relation is therefore

an+2 =
n(n+ 1)− ℓ(ℓ+ 1)

(n+ 1)(n+ 2)
an =

(n− ℓ)(n+ ℓ+ 1)

(n+ 1)(n+ 2)
an

a0 and a1 are the arbitrary constants. The other coefficients follow from

the recurrence relation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Notes:
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• an even solution is obtained by choosing a0 = 1 and a1 = 0

• an odd solution is obtained by choosing a0 = 0 and a1 = 1

• these solutions are obviously linearly independent since one is not a

constant multiple of the other

• since |an+2/an| → 1 as n → ∞, the even and odd series converge for

|x2| < 1, i.e. for |x| < 1

• the radius of convergence is the distance to the singular points of

Legendre’s equation at x = ±1

• if ℓ > 0 is an even integer, then aℓ+2 and all subsequent even coeffi-

cients vanish, so the even solution is a polynomial (terminating power

series) of degree ℓ

• if ℓ > 1 is an odd integer, then aℓ+2 and all subsequent odd coefficients

vanish, so the odd solution is a polynomial of degree ℓ

The polynomial solutions are called Legendre polynomials, Pℓ(x). They

are conventionally normalized (i.e. a0 or a1 is chosen) such that Pℓ(1) = 1,

e.g.

P0(x) = 1, P1(x) = x, P2(x) =
1

2
(3x2 − 1)
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7.4.3 Series solutions about a regular singular point

If x = x0 is a regular singular point, Fuchs’s theorem guarantees that the

ODE has at least one solution of the form

y =
∞
∑

n=0

an(x− x0)
n+σ, a0 6= 0

i.e. a Taylor series multiplied by a power (x− x0)
σ, where the index σ is

a (generally complex) number to be determined.

Notes:

• this is a Taylor series only if σ is a non-negative integer

• there may be one or two solutions of this form (see below)

• the condition a0 6= 0 is required to define σ uniquely

To understand in simple terms why the solutions behave in this way, recall

that

P (x) ≡ (x− x0)p(x) =
∞
∑

n=0

Pn(x− x0)
n

Q(x) ≡ (x− x0)
2q(x) =

∞
∑

n=0

Qn(x− x0)
n

are analytic at the regular singular point x = x0. Near x = x0 the ODE

can be approximated using the leading approximations to p and q:

y′′ +
P0y

′

x− x0
+

Q0y

(x− x0)2
≈ 0

The exact solutions of this approximate equation are of the form y =

(x− x0)
σ, where σ satisfies the indicial equation

σ(σ − 1) + P0σ +Q0 = 0

with two (generally complex) roots.
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[If the roots are equal, the solutions are (x−x0)
σ and (x−x0)

σ ln(x−x0).]

It is reasonable that the solutions of the full ODE should resemble the

solutions of the approximate ODE near the singular point.

Frobenius’s method is used to find the series solutions about a regular

singular point. This is best demonstrated by example.

Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

⊲ Find series solutions about x = 0 of Bessel’s equation

x2y′′ + xy′ + (x2 − ν2)y = 0

where ν is a constant. x = 0 is a regular singular point because p = 1/x

and q = 1− ν2/x2 are singular there but xp = 1 and x2q = x2 − ν2 are

both analytic there.

Seek a solution of the form

y =
∞
∑

n=0

anx
n+σ, a0 6= 0

Then

y′ =
∞
∑

n=0

(n+ σ)anx
n+σ−1,

y′′ =
∞
∑

n=0

(n+ σ)(n+ σ − 1)anx
n+σ−2

Bessel’s equation requires

∞
∑

n=0

[

(n+ σ)(n+ σ − 1) + (n+ σ)− ν2
]

anx
n+σ +

∞
∑

n=0

anx
n+σ+2 = 0

Now compare powers of xn+σ:

n = 0 :
[

σ2 − ν2
]

a0 = 0 (1)

n = 1 :
[

(1 + σ)2 − ν2
]

a1 = 0 (2)
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n > 2 :
[

(n+ σ)2 − ν2
]

an + an−2 = 0 (3)

Since a0 6= 0 by assumption, equation (1) provides the indicial equation

σ2 − ν2 = 0

with roots σ = ±ν. Equation (2) then requires that a1 = 0 (except

possibly in the case ν = ±1
2 , but even then a1 can be chosen to be 0).

Equation (3) provides the recurrence relation

an = −
an−2

n(n+ 2σ)

Since a1 = 0, all the odd coefficients vanish. Since |an/an−2| → 0 as

n → ∞, the radius of convergence of the series is infinite.

For most values of ν we therefore obtain two linearly independent solutions

(choosing a0 = 1):

y1 = xν
[

1−
x2

4(1 + ν)
+

x4

32(1 + ν)(2 + ν)
+ · · ·

]

y2 = x−ν

[

1−
x2

4(1− ν)
+

x4

32(1− ν)(2− ν)
+ · · ·

]

However, if ν = 0 there is clearly only one solution of this form. Further-

more, if ν is a non-zero integer one of the recurrence relations will fail

at some point and the corresponding series is invalid. In these cases the

second solution is of a different form (see below). . . . . . . . . . . . . . . . . . . . .

A general analysis shows that:

• if the roots of the indicial equation are equal, there is only one solution

of the form
∑

an(x− x0)
n+σ

• if the roots differ by an integer, there is generally only one solution

of this form because the recurrence relation for the smaller value of

Re(σ) will usually (but not always) fail

• otherwise, there are two solutions of the form
∑

an(x− x0)
n+σ



7 ORDINARY DIFFERENTIAL EQUATIONS 163

• the radius of convergence of the series is the distance from the point

of expansion to the nearest singular point of the ODE

If the roots σ1, σ2 of the indicial equation are equal or differ by an integer,

one solution is of the form

y1 =
∞
∑

n=0

an(x− x0)
n+σ1, Re(σ1) > Re(σ2)

and the other is of the form

y2 =
∞
∑

n=0

bn(x− x0)
n+σ2 + cy1 ln(x− x0)

The coefficients bn and c can be determined (with some difficulty) by

substituting this form into the ODE and comparing coefficients of (x−x0)
n

and (x− x0)
n ln(x− x0). In exceptional cases c may vanish.

Alternatively, y2 can be found (also with some difficulty) using the Wron-

skian method (section 7.3.4).

Example: Bessel’s equation of order ν = 0:

y1 = 1−
x2

4
+

x4

64
+ · · ·

y2 = y1 ln x+
x2

4
−

3x4

128
+ · · ·

Example: Bessel’s equation of order ν = 1:

y1 = x−
x3

8
+

x5

192
+ · · ·

y2 = y1 ln x−
2

x
+

3x3

32
+ · · ·

These examples illustrate a feature that is commonly encountered in sci-

entific applications: one solution is regular (i.e. analytic) and the other is

singular. Usually only the regular solution is an acceptable solution of the

scientific problem.
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7.4.4 Irregular singular points

If either (x−x0)p(x) or (x−x0)
2q(x) is not analytic at the point x = x0,

it is an irregular singular point of the ODE. The solutions can have worse

kinds of singular behaviour there.

Example: the equation x4y′′+2x2y′−y = 0 has an irregular singular point

at x = 0. Its solutions are exp(±x−1), both of which have an essential

singularity at x = 0.

In fact this example is just the familiar equation d2y/dz2 = y with the

substitution x = 1/z. Even this simple ODE has an irregular singular

point at z = ∞ .


