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1. *Particles in vortices*

Consider a stable steady Kida vortex in the shearing sheet model of a protoplanetary
disk. As shown earlier, the flow in the core of the vortex can be described by

u =
S

(r − 1)

(y
r

ex − rx ey

)
,

where r is the vortex’s aspect ratio.

(i) Suppose small test particles are caught up in the vortex. The motion of a test
particle obeys

ẍ− 2Ωẏ = 2ΩSx− εΩ(ẋ− ux),
ÿ + 2Ωẋ = −εΩ(ẏ − uy),

where [x(t), y(t)] is the position of the test particle, ux and uy are the x and y
components of the gas’s velocity, and ε is the Stokes number, which quantifies the
strength of the gas drag on the particle.

Solutions to these equations are of the form ∝ eλt. Show that

λ4 + 2εΩλ3 + (κ2 + ε2Ω2)λ2 − 2Ω2ζ0ελ+
S2ε2Ω2

(r − 1)2
= 0. (1)

(ii) Consider the limit 0 < ε � 1, which corresponds to relatively large particles. By
appropriately expanding λ in small ε, determine the four trajectories described by
Equation (1) and show that they all end up in the centre of the vortex if

−κ
2

Ω
< ζ0 < 0.

Rewrite this criterion in terms of the vortex ratio r.

2. Structure formation in Saturn’s rings: the ‘viscous overstability’

A dense portion of Saturn’s B-ring can be represented by a two-dimensional, compressible,
non-self-gravitating, viscous shearing sheet. It has surface density Σ(x, y, t) and two-
dimensional velocity u(x, y, t), governed by the equation of mass conservation,

∂Σ

∂t
+∇ · (Σu) = 0,
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and the equation of motion,

Σ

(
∂u

∂t
+ u ·∇u + 2Ω× u

)
= −Σ∇Φ−∇P +∇ ·T.

Here Ω = Ω ez is the angular velocity of the rotating frame of reference, Φ = −ΩSx2 is
the effective potential, P is the vertically integrated pressure and

T = 2ν̄Σ S + ν̄bΣ(∇ · u) I

is the vertically integrated viscous stress tensor. Also

S =
1

2

[
∇u + (∇u)T

]
− 1

3
(∇ · u) I

is the traceless shear tensor, I is the unit tensor, ν̄ is the mean kinematic shear viscosity
and ν̄b is the mean kinematic bulk viscosity. Assume that P , ν̄, ν̄b are known functions
of Σ, with dP/dΣ = v2s being the square of the sound speed.

The basic state of the sheet corresponds to the homogeneous solution in which u =
−Sx ey, while Σ, P and T are uniform, with Txy = −ν̄ΣS.

(i) Formulate the linearized equations for perturbations Σ′, v, etc., on this background.
Assume that the perturbations are axisymmetric (i.e. independent of y) and depend
on x and t through the factor exp(st + ikxx), where s is a complex growth rate.
Hence obtain the equations

sΣ′ = −Σ ikxvx,

svx = 2Ωvy − ikxv
2
s

Σ′

Σ
− (ν̄b + 4

3
ν̄)k2xvx,

svy = −(2Ω− S)vx − ν̄k2xvy − ikxS
d(ν̄Σ)

dΣ

Σ′

Σ
,

where unprimed quantities represent their values in the basic state. (Note that the
crucial final term comes from the fact the shear stress Txy is affected by the density
perturbation in the wave as well as the perturbed velocity gradient.)

(ii) Deduce that the dispersion relation is

s3 + (ν̄b + 7
3
ν̄)k2xs

2 + [κ2 + v2sk
2
x + ν̄(ν̄b + 4

3
ν̄)k4x]s+ 2ΩS

d(ν̄Σ)

dΣ
k2x + v2s ν̄k

4
x = 0,

where κ2 = 2Ω(2Ω− S) is the square of the epicyclic frequency (assumed positive).
Verify that this reduces to the expected result in the case of an inviscid disc.

(iii) Consider the limit of long wavelengths, kx → 0. Show that one root of the dispersion
relation behaves as

s = −2ΩS

κ2
d(ν̄Σ)

dΣ
k2x +O(k4x)

in this limit. This root yields exponential growth (viscous instability) when

d(ν̄Σ)

dΣ
< 0.
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(iv) Show that the other two roots behave in this limit as

s = ±iκ

(
1 +

v2sk
2
x

2κ2

)
+

1

2

[
−(ν̄b + 7

3
ν̄) +

2ΩS

κ2
d(ν̄Σ)

dΣ

]
k2x +O(k4x).

These roots yield exponentially growing oscillations (viscous overstability) when

d(ν̄Σ)

dΣ
> (ν̄b + 7

3
ν̄)

κ2

2ΩS
.

Show that this condition is satisfied even when ν̄ is independent of Σ, ν̄b = 0 and
the disc is Keplerian.

3. Horseshoe orbits

Consider a disc of non-interacting particles in the local approximation:

ẍ− 2Ωẏ = 3Ω2x− ∂Ψ

∂x
,

ÿ + 2Ωẋ = −∂Ψ

∂y
,

with Ψ = −GMs (x2 + y2)
−1/2

the gravitational potential of an embedded satellite.

(i) Demonstrate that ε = (ẋ2 + ẏ2)/2− 3
2
Ω2x2 + Ψ is an integral of the motion.

(ii) Show that for y = 0 there are three equilibrium points where accelerations and
velocities are zero, and calculate their locations.

(iii) Particle streamlines can be classified into three types: (a) particles with large |x| are
only marginally perturbed and stream past the satellite; (b) particles close to the
satellite form bound orbits that encircle it; (c) particles that start with small x but
large y undergo horseshoe turns once they come near the satellite. Separating these
three classes are special orbits (sepatrices) that join two of the equilibrium points
and also extend from them to ±∞. Sketch the equilibrium points, the separatrices,
and some of the streamlines.

(iv) By following the flow from an equilibrium point to infinity, calculate the width w of
the horseshoe region.

(v) Consider a stream of particles in the horseshoe region at distance x = x0 > 0 far
away from the satellite (y > 0). Show that a stream of particles of width δx, surface
density Σ(x0), induces a mass flow towards the satellite δṀ = Σ(x0)vy0(x0)δx.
Argue that the resulting torque onto the satellite is δΓ = Ωx0δṀ . Show that the
torque due to a stream originating at x = −x0 is δΓ = −Ωx0Σ(−x0)vy0(x0)δx.

Now assume that the disk exhibits asymmetric background density structure de-
scribed by Σ = Σ0(1 + kx). Integrate over all streams making a horseshoe turn for
x0 > 0 to get the total torque from one side. Then show that the total torque is
given by Γ = (3/4)kΣ0Ω

2w4.
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4. *Mechanical analogue of the MRI*

In the local approximation, the dynamics of two particles of mass m connected by a spring
of spring constant k = βm is described by the equations

ẍ1 − 2Ωẏ1 − 2ΩSx1 = β(x2 − x1)
ÿ1 + 2Ωẋ1 = β(y2 − y1)
z̈1 + Ω2

zz1 = β(z2 − z1),

together with similar equations in which the suffixes 1 and 2 are interchanged.

(i) Give a physical interpretation of the equations, explaining the meaning of the sym-
bols Ω, S and Ωz.

(ii) Assume that the quantities β, Ω, S, κ2 = 2Ω(2Ω−S) and Ω2
z are all positive. Show

that relative motions of the two particles in the (x, y) plane proportional to exp(λt)
are possible, where

λ4 + (κ2 + 4β)λ2 + 4β(β − ΩS) = 0.

(iii) Determine the range of β for which instability occurs. For fixed Ω and S, find the
maximum growth rate of the instability and the value of β for which this occurs.
Write down the explicit form of x1(t) and x2(t) for this optimal solution.

(iv) Discuss the relation of this problem to the MRI in astrophysical discs. In the
magnetohydrodynamic case, what quantity would correspond to β in the above
analysis?

Please send any comments and corrections to hl278@cam.ac.uk
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