Example Sheet 3

1. *Particles in vortices*

Consider a stable steady Kida vortex in the shearing sheet model of a protoplanetary disk. As shown earlier, the flow in the core of the vortex can be described by

$$\mathbf{u} = \frac{S}{(r-1)} \left(\frac{y}{r} \, \mathbf{e}_x - rx \, \mathbf{e}_y \right),$$

where r is the vortex's aspect ratio.

(i) Suppose small test particles are caught up in the vortex. The motion of a test particle obeys

$$\ddot{x} - 2\Omega \dot{y} = 2\Omega S x - \epsilon \Omega (\dot{x} - u_x),$$

$$\ddot{y} + 2\Omega \dot{x} = -\epsilon \Omega (\dot{y} - u_y),$$

where [x(t), y(t)] is the position of the test particle, u_x and u_y are the x and y components of the gas's velocity, and ϵ is the Stokes number, which quantifies the strength of the gas drag on the particle.

Solutions to these equations are of the form $\propto e^{\lambda t}$. Show that

$$\lambda^4 + 2\epsilon \Omega \lambda^3 + (\kappa^2 + \epsilon^2 \Omega^2) \lambda^2 - 2\Omega^2 \zeta_0 \epsilon \lambda + \frac{S^2 \epsilon^2 \Omega^2}{(r-1)^2} = 0.$$
 (1)

(ii) Consider the limit $0 < \epsilon \ll 1$, which corresponds to relatively large particles. By appropriately expanding λ in small ϵ , determine the four trajectories described by Equation (1) and show that they all end up in the centre of the vortex if

$$-\frac{\kappa^2}{\Omega} < \zeta_0 < 0.$$

Rewrite this criterion in terms of the vortex ratio r.

2. Structure formation in Saturn's rings: the 'viscous overstability'

A dense portion of Saturn's B-ring can be represented by a two-dimensional, compressible, non-self-gravitating, viscous shearing sheet. It has surface density $\Sigma(x, y, t)$ and two-dimensional velocity $\boldsymbol{u}(x, y, t)$, governed by the equation of mass conservation,

$$\frac{\partial \Sigma}{\partial t} + \boldsymbol{\nabla} \cdot (\Sigma \boldsymbol{u}) = 0,$$

and the equation of motion,

$$\Sigma \left(\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \boldsymbol{\nabla} \boldsymbol{u} + 2\boldsymbol{\Omega} \times \boldsymbol{u} \right) = -\Sigma \boldsymbol{\nabla} \Phi - \boldsymbol{\nabla} P + \boldsymbol{\nabla} \cdot \mathbf{T}.$$

Here $\Omega = \Omega e_z$ is the angular velocity of the rotating frame of reference, $\Phi = -\Omega Sx^2$ is the effective potential, P is the vertically integrated pressure and

$$\mathbf{T} = 2\bar{\nu}\Sigma\mathbf{S} + \bar{\nu}_{b}\Sigma(\nabla \cdot \boldsymbol{u})\mathbf{I}$$

is the vertically integrated viscous stress tensor. Also

$$\mathbf{S} = \frac{1}{2} \left[\mathbf{\nabla} \boldsymbol{u} + (\mathbf{\nabla} \boldsymbol{u})^{\mathrm{T}} \right] - \frac{1}{3} (\mathbf{\nabla} \cdot \boldsymbol{u}) \mathbf{I}$$

is the traceless shear tensor, **I** is the unit tensor, $\bar{\nu}$ is the mean kinematic shear viscosity and $\bar{\nu}_{\rm b}$ is the mean kinematic bulk viscosity. Assume that P, $\bar{\nu}$, $\bar{\nu}_{\rm b}$ are known functions of Σ , with ${\rm d}P/{\rm d}\Sigma = v_{\rm s}^2$ being the square of the sound speed.

The basic state of the sheet corresponds to the homogeneous solution in which $\mathbf{u} = -Sx \, \mathbf{e}_y$, while Σ , P and \mathbf{T} are uniform, with $T_{xy} = -\bar{\nu}\Sigma S$.

(i) Formulate the linearized equations for perturbations Σ' , \boldsymbol{v} , etc., on this background. Assume that the perturbations are axisymmetric (i.e. independent of y) and depend on x and t through the factor $\exp(st + ik_xx)$, where s is a complex growth rate. Hence obtain the equations

$$s\Sigma' = -\Sigma i k_x v_x,$$

$$sv_x = 2\Omega v_y - i k_x v_s^2 \frac{\Sigma'}{\Sigma} - (\bar{\nu}_b + \frac{4}{3}\bar{\nu}) k_x^2 v_x,$$

$$sv_y = -(2\Omega - S) v_x - \bar{\nu} k_x^2 v_y - i k_x S \frac{d(\bar{\nu}\Sigma)}{d\Sigma} \frac{\Sigma'}{\Sigma}$$

where unprimed quantities represent their values in the basic state. (Note that the crucial final term comes from the fact the shear stress T_{xy} is affected by the density perturbation in the wave as well as the perturbed velocity gradient.)

(ii) Deduce that the dispersion relation is

$$s^{3} + (\bar{\nu}_{b} + \frac{7}{3}\bar{\nu})k_{x}^{2}s^{2} + [\kappa^{2} + v_{s}^{2}k_{x}^{2} + \bar{\nu}(\bar{\nu}_{b} + \frac{4}{3}\bar{\nu})k_{x}^{4}]s + 2\Omega S \frac{d(\bar{\nu}\Sigma)}{d\Sigma}k_{x}^{2} + v_{s}^{2}\bar{\nu}k_{x}^{4} = 0,$$

where $\kappa^2 = 2\Omega(2\Omega - S)$ is the square of the epicyclic frequency (assumed positive). Verify that this reduces to the expected result in the case of an inviscid disc.

(iii) Consider the limit of long wavelengths, $k_x \to 0$. Show that one root of the dispersion relation behaves as

$$s = -\frac{2\Omega S}{\kappa^2} \frac{\mathrm{d}(\bar{\nu}\Sigma)}{\mathrm{d}\Sigma} k_x^2 + O(k_x^4)$$

in this limit. This root yields exponential growth (viscous instability) when

$$\frac{\mathrm{d}(\bar{\nu}\Sigma)}{\mathrm{d}\Sigma} < 0.$$

(iv) Show that the other two roots behave in this limit as

$$s = \pm \mathrm{i}\kappa \left(1 + \frac{v_\mathrm{s}^2 k_x^2}{2\kappa^2} \right) + \frac{1}{2} \left[-(\bar{\nu}_\mathrm{b} + \frac{7}{3}\bar{\nu}) + \frac{2\Omega S}{\kappa^2} \frac{\mathrm{d}(\bar{\nu}\Sigma)}{\mathrm{d}\Sigma} \right] k_x^2 + O(k_x^4).$$

These roots yield exponentially growing oscillations (viscous overstability) when

$$\frac{\mathrm{d}(\bar{\nu}\Sigma)}{\mathrm{d}\Sigma} > (\bar{\nu}_{\mathrm{b}} + \frac{7}{3}\bar{\nu})\frac{\kappa^2}{2\Omega S}.$$

Show that this condition is satisfied even when $\bar{\nu}$ is independent of Σ , $\bar{\nu}_{\rm b}=0$ and the disc is Keplerian.

3. Horseshoe orbits

Consider a disc of non-interacting particles in the local approximation:

$$\ddot{x} - 2\Omega \dot{y} = 3\Omega^2 x - \frac{\partial \Psi}{\partial x},$$

$$\ddot{y} + 2\Omega \dot{x} = -\frac{\partial \Psi}{\partial u},$$

with $\Psi = -GM_{\rm s} \left(x^2 + y^2\right)^{-1/2}$ the gravitational potential of an embedded satellite.

- (i) Demonstrate that $\epsilon = (\dot{x}^2 + \dot{y}^2)/2 \frac{3}{2}\Omega^2 x^2 + \Psi$ is an integral of the motion.
- (ii) Show that for y = 0 there are three equilibrium points where accelerations and velocities are zero, and calculate their locations.
- (iii) Particle streamlines can be classified into three types: (a) particles with large |x| are only marginally perturbed and stream past the satellite; (b) particles close to the satellite form bound orbits that encircle it; (c) particles that start with small x but large y undergo horseshoe turns once they come near the satellite. Separating these three classes are special orbits (sepatrices) that join two of the equilibrium points and also extend from them to $\pm \infty$. Sketch the equilibrium points, the separatrices, and some of the streamlines.
- (iv) By following the flow from an equilibrium point to infinity, calculate the width w of the horseshoe region.
- (v) Consider a stream of particles in the horseshoe region at distance $x = x_0 > 0$ far away from the satellite (y > 0). Show that a stream of particles of width δx , surface density $\Sigma(x_0)$, induces a mass flow towards the satellite $\delta \dot{M} = \Sigma(x_0)v_{y0}(x_0)\delta x$. Argue that the resulting torque onto the satellite is $\delta \Gamma = \Omega x_0 \delta \dot{M}$. Show that the torque due to a stream originating at $x = -x_0$ is $\delta \Gamma = -\Omega x_0 \Sigma(-x_0)v_{y0}(x_0)\delta x$.

Now assume that the disk exhibits asymmetric background density structure described by $\Sigma = \Sigma_0(1 + kx)$. Integrate over all streams making a horseshoe turn for $x_0 > 0$ to get the total torque from one side. Then show that the total torque is given by $\Gamma = (3/4)k\Sigma_0\Omega^2w^4$.

4. *Mechanical analogue of the MRI*

In the local approximation, the dynamics of two particles of mass m connected by a spring of spring constant $k = \beta m$ is described by the equations

$$\ddot{x}_1 - 2\Omega \dot{y}_1 - 2\Omega S x_1 = \beta(x_2 - x_1)$$

$$\ddot{y}_1 + 2\Omega \dot{x}_1 = \beta(y_2 - y_1)$$

$$\ddot{z}_1 + \Omega_z^2 z_1 = \beta(z_2 - z_1),$$

together with similar equations in which the suffixes 1 and 2 are interchanged.

- (i) Give a physical interpretation of the equations, explaining the meaning of the symbols Ω , S and Ω_z .
- (ii) Assume that the quantities β , Ω , S, $\kappa^2 = 2\Omega(2\Omega S)$ and Ω_z^2 are all positive. Show that relative motions of the two particles in the (x, y) plane proportional to $\exp(\lambda t)$ are possible, where

$$\lambda^4 + (\kappa^2 + 4\beta)\lambda^2 + 4\beta(\beta - \Omega S) = 0.$$

- (iii) Determine the range of β for which instability occurs. For fixed Ω and S, find the maximum growth rate of the instability and the value of β for which this occurs. Write down the explicit form of $\mathbf{x}_1(t)$ and $\mathbf{x}_2(t)$ for this optimal solution.
- (iv) Discuss the relation of this problem to the MRI in astrophysical discs. In the magnetohydrodynamic case, what quantity would correspond to β in the above analysis?

Please send any comments and corrections to h1278@cam.ac.uk