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Books

There are many books on quantum field theory, most are rather long. All those listed are worth
looking at.

M.E. Peskin and D.V. Schroeder, An Introduction to Quantum Field Theory
842p., Addison-Wesley Publishing Co. (1996).
A good introduction with an extensive discussion of gauge theories including QCD and
various applications.

M. Srednicki, Quantum Field Theory
641p., Cambridge University Press (2007).
A comprehensive modern book organised by considering spin-0, spin—% and spin-1 fields
in turn.

M.D. Schwartz, Quantum Field Theory and the Standard Model ,
842p., Cambridge University Press (2014).
A comprehensive textbook containing some advanced topics such as jets in QCD.

S. Weinberg, The Quantum Theory of Fields
vol. I Foundations, 609p., vol. IT Modern Applications, 489p., Cambridge University Press
(1995,1996).
Written by a Nobel Laureate, contains lots of details which are not covered elsewhere,
perhaps a little idiosyncratic and less introductory than the above. There is a third
volume on supersymmetry.

J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, 4th ed.
1054p., Oxford University Press (2002).
Devotes a large proportion to applications to critical phenomena in statistical physics but
covers gauge theories at some length as well; not really an introductory book.

C. Itzykson and J-B. Zuber, Quantum Field Theory
705p., McGraw-Hill International Book Co. (1980).
At one time the standard book, contains lots of detailed calculations but the treatment
of non abelian gauge theories is a bit cursory and somewhat dated.

T. Banks, Modern Quantum Field Theory, A Concise Introduction
271p., Cambridge University Press (2008).
As it says quite concise, contains an interesting selection of subjects and useful for sup-
plementary reading.

L. Alvarez-Gaume and M.A. Vazquez-Mozo, An Invitation to Quantum Field Theory
294p., Springer (2012).
Rather introductory.

M. Shifman, Advanced Topics in Quantum Field Theory
622p., Cambridge University Press (2012).
As the title indicates not an introduction but contains material on non perturbative
approaches.

There are also many much more mathematical approaches to quantum field theory, many very
sophisticated.

J. Dimock, Quantum Mechanics and Quantum Field Theory: A Mathematical Primer
283 p., Cambridge University Press (2011).
Some more mathematical stuff than usual.

P. Deligne et al., Quantum Fields and Strings: A Course for Mathematicians, vol. I,II
1499p., ed. P. Deligne, P. Etingof, D.S. Freed, L.C. Jeffrey, D. Kazhdan, J.W. Morgan,
D.R. Morrison, E. Witten, American Mathematical Society (1999).
Contains various articles by world renowned physicists and mathematicians, at a level
from the almost trivial to the sublime to the incomprehensible. A very alternative view.



K. Fredenhagen and K. Rejzner, Perturbative algebraic quantum field theory
arXiv:1208.1428
A review of the mathematical approach to QFT.

Online material

W Siegel, Fields
885p., hep-th/9912205 or http://de.arxiv.org/pdf/hep-th/9912205.
Contains additional material on GR, Strings, Supersymmetry, Supergravity, an unusual
point of view.

S. Coleman, Notes from Sidney Coleman’s Physics 253a
337p., arXiv:1110.5013.
Notes from Sidney Coleman’s lectures at Harvard in 1986. He was renowned for his
lecturing, the notes are very introductory.

L. Alvarez-Gaumé and M.A. Vazquez-Mozo, Introductory Lectures on Quantum Field

Theory
hep-th/0510040.
Rather elementary.

For more specialised material see

M. Polyak, Feynman Diagrams for Pedestrians and Mathematicians
arXiv:math/0406251.
I found the first part instructive.

M. Flory, R.C. Helling and C. Sluka, How I Learned to Stop Worrying and Love QFT
23p., arXiv:1201.2714.
Some nice remarks on QFT but there are quite a few typos.

D. Harlow, A Simple Bound on the Error of Perturbation Theory in Quantum Mechanics
arXiv:0905.2466.
Has a simple discussion of convergence of perturbation theory.

E. Witten, Notes On Supermanifolds and Integration
arXiv:1209.2199.
A fairly accessible discussion of integrals over Grassman variables.

T. Nguyen, The Perturbative Approach to Path Integrals: A Succinct Mathematical Treat-

ment
arXiv:1505.04809.
A rather mathematical discussion but in the spirit of parts of these notes.

Specialist topics

J.C. Collins, Renormalization
380p., Cambridge University Press (1984).
The introductory chapters and discussion of dimensional regularization are good, later
chapters are rather technical and perhaps better covered elsewhere.

H. Kleinert, Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Finan-
cial Markets, 3rd ed.
1468p., World Scientific (2003).
Not a field theory book but the bible on path integrals.

For an historical perspective it is instructive to read
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S.S. Schweber, QFED and the Men Who Made It: Dyson, Feynman, Schwinger and Tomon-
aga
732p., Princeton University Press (1994).
This is a history of how Feynman, Schwinger and Tomonaga learned how to calculate in
quantum field theory, and Dyson showed how Feynman rules could be derived.

L. O’Raifeartaigh, The Dawning of Gauge Theory
249p., Princeton University Press (1997).
Describes the rather tortuous route to understanding gauge invariance.

D.J. Gross, Oscar Klein and Gauge Theory
hep-th/9411233.

S. Weinberg, What is Quantum Field Theory, and What Did We Think It 1s?
hep-th/9702027.
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Introduction

The course “Advanced Quantum Field Theory” will build on the course “Quantum Field The-
ory” taught in Michaelmas Term. It will extend the material covered in this course to interacting
theories (including loops) and more realistic theories, which can at least potentially predict ex-
perimental results. It will also introduce how to deal with gauge theories.

The basic message that this course tries to convey is:
Quantum field theory is the basic language of particle physics, and also large parts of statistical
physics.

Quantum field theory is a subject with many technical complications; we will try to deal
with these ‘step by step’. It is, however, not a branch of mathematics yet. The lectures will
not be rigorous from a pure mathematical point of view.

In quantum field theory, the number of particles involved is potentially infinite, whereas
ordinary quantum mechanics deals with states describing one particle or a fixed number of
particles. Quantum field theory is quantum mechanics with an infinite number of degrees of
freedom. We are dealing with fields ¢(Z,t) defined on space-time. Quantisation of free fields
defines a space of states, or FOCK' space:

e a vacuum state |0), which has zero energy,

e single-particle states |p), which have energy E(p) = \/p? + m?,

e multi-particle states |py, pa, . . ., Dn), which have energy E(p1) + ...+ E(pn)-

(Note that we use units in which ¢ = A =1.)

We introduce creation and annihilation operators af(p), a(p), such that |p) = af(p)|0) etc.
Fields after quantisation change the number of particles. Whereas the number of particles is
conserved in the free theory, interactions can change the number of particles.

Quantisation takes you from fields to particles. (For example, quantising the electromagnetic
field leads to photons with energy E = |p].)

1 Path Integrals

In this first chapter, a different approach to quantum mechanics will be presented, the path
integral approach. We start with ordinary quantum mechanics, and the formalism will generalise
to quantum field theory.

1.1 Standard Approach to Quantum Mechanics

We start from a classical LAGRANGian? describing a system with n degrees of freedom ¢’, i =
1,...,n

L(g',d")- (1.1)
In the HAMILTONian® formalism, we replace ¢° by the conjugate momenta p;
oL i i i i
Pi = ga H(q",pi) = d'pi — L(q".4").- (1.2)

On quantisation, the coordinate and momenta become operators i]i,j)i satisfying the (equal
time) commutation relations

@), 5, (1)] = ih ' 1. (1.3)

LFock, Vladimir Aleksandrovich (1898-1974)
2Lagrange, Joseph Louis (1736-1813)
3Hamilton, Sir William Rowan (1805-1865)




The generalisation of this in field theory for scalar fields is

[6(@.1).6(7,1)] = ihs™ (@ —7)1. (1.4)
(From now on A =1).

The canonical approach is non-covariant and relativistic invariance is lost because of requir-
ing equal times (and thus picking a preferred frame in which time is measured). LORENTZ*
invariance is not manifest in a conspicuous way. That makes it hard to derive perturbation
expansions in terms of FEYNMAN?® rules.

FEYNMAN invented the path integral approach, which avoids a non-covariant approach, and
is equivalent to the standard operator approach. It is better equipped for dealing with gauge
theories, for example.

1.2 Path Integral in One-Particle Quantum Mechanics

In this section the path integral for a single particle will be derived, given operators p, g and a
classical HAMILTONian )
p

2m

H(q,p) =

which corresponds to a quantum mechanical operator

+Viq), (1.5)

H=H(q,p), (1.6)

where g, p satisfy [, p] = i1. The SCHRODINGER ¢ equation

0 ~
i 1%) = HIY) (L.7)

determines the time evolution of states. The (formal) solution to the
SCHRODINGER equation is

[9(1)) = exp(—iH)[1(0)) (1.8)
since H is independent of time.

We can also consider position states, satisfying

q(t)lg, t) = qlg.t), (1.9)
where ¢ is any real number. We use the convenient normalisation
(dtlg,t) =6(d —q)- (1.10)

Here consider the SCHRODINGER picture, where states |¢(t)) depend on time, and operators
q, p are fixed. Therefore, the states {|g)} are time-independent, and form a basis for any state.
We can define a wave function

P(g,t) = (qlP(D)), (1.11)
and acting on wave functions
. 1 d?
H—»-—— . 1.12
> gzt V@ (112)

The path integral approach expresses time evolution of states in terms of possible trajectories
of particles. First write the wave function as

¥(a:t) = (al exp(—iHB)[1(0)) (1.13)
and introduce a complete set of states |go), such that
1= /d(JO l90)(qo] » (1.14)

4Lorentz, Hendrik Antoon (1853-1928), Nobel Prize 1902
5Feynman, Richard Phillips (1918-1988), Nobel Prize 1965
6Schrodinger, Erwin Rudolf Josef Alexander (1887-1961), Nobel Prize 1933




to rewrite this result as

¥(q /dqo (al exp(—iHt)|q0)(go]1(0) /qu (¢, q0:t) ¥(qo, 0).- (1.15)
The SCHRODINGER equation has been converted into an integral expression, where
K(q,qo:t) == (q| exp(—iHt)qo) - (1.16)

Consider the evolution of the wave function over a time interval 0 < ¢t < T and divide this
interval up into smaller intervals 0 =ty < t1 < to < ... < tp41 = T. (These intervals are not
necessarily of equal length, though it may often be convenient to choose them to be so.) Then
rewrite

exp(—iHT) = exp(—iH (tp1 — tn)) exp(—iH (t, — tn_1))...exp(—iHt;). (1.17)
At each t,., where r = 1,...,n, now introduce complete sets of states:
K(q.q0:7 / H da(gra|exp (B (o~ 1)la)) - (@r | exp(—iHE)lgo) . (118)

where we set ¢,+1 = ¢. That means that the integration goes over all possible values of ¢ at
t1,t2,...,tn, as the value of q evolves from gy at t =0toqgat t =T

q0

Up to now, the calculation has only been complicated, and there is no straightforward way for
an explicit solution of the problem for an arbitrary potential V'(g).

We will approximate the factors

<QT+1| exp(—iIA{5t)|qr> (1'19)

arising in (1.18) for small §¢ = 41 — t,. But first consider a case where these expressions can
be evaluated explicitly, that is free theory, with V' = 0. In fact, the result

Ko(g,q';) = (| exp(—i 2-1)]q’) (1.20)

is valid for any value of ¢. To show this we use a complete set of momentum states {|p)} (i.e.
states which satisfy p|p) = p|p)) such that

i :/‘ip 1) (o] (1.21)

A basic result from quantum mechanics is that

(glp) = P4, (1.22)
which can be easily obtained by noting that when acting on wave functions, p — 72 . Fur-
thermore, o

(plg) = e 9. (1.23)



This means that
iy [ dp . p? n_ [0 i ip(a—q)
Ko(q,q';t) = o (qlexp(—igt)[p)(pld') = o ¢ fmte . (1.24)

(

Upon the substitution p’ = p — %ﬂ’) this becomes

mLa=a")? dp’ p’2 ma=aH? [ m
K (q7q t) 2t / 27T Z27rzt pry e’L 2t %’ (1.25)

where in the last step the integrand was rotated by p’ = e %% r, so that

dp o—idp _ux [ dr a2 1 .- /27
3P — v - 2T = e ta, | T, 1.26
271' € 271'6 2776 A ( )

Note that in the limiting case ¢ — 0, we have Ky(q,¢';t) — 6(q — ¢'), as necessary.
Let us return to (1.18), our integral expression for K(q,qo;T):

K(q,q0;T) = / 11 (dqr (1] exp(—iH (tr41 —tr)|‘h>) ~(q1| exp(—iHt1)]qo) -
r=1

We will in due course take the limit n — 00 and t,41 —t, — 0 for each r. We are concprned
with finding an approximation for exp(—iHdt) for small §¢. One thing to note is that if A and
B are operators, then in general

exp(A + B) # exp(A) exp(B) . (1.27)
In fact, one can obtain an expression
~ ~ o 1 ~ 4
exp(A) exp( ) = exp (A + B+ i[A’ B]+.. ) . (1.28)
However, we can say that for small €
exp(e(A + B)) = exp(eA) exp(eB) (1 + O(e?)) , (1.29)

since all following terms in the summation include commutators of A and B. This implies

exp(A+ B) = lim (exp(A/n) exp(E/n))n . (1.30)

n—oo

Hence, if ¢ is small, we can write

~ 2

exp(—iH8t) = exp ( - i%at) exp (— iV(@)6t) (1 + O(5t2)) , (1.31)
and so to leading order as it — 0,
(qry1] exp(—iHOt)|qr) = (gri1| exp <—i2p—m5t) exp(—iV (q)dt)|qr) - (1.32)

Because the states |g,.) are eigenstates of the operator §, the second exponential can actually
be factored out:

(@rs1| exp(—iH5t)|gq,) = eV (9709 (g, 1] exp ( sz&) lgr)

m .1 Ar41—49r\2 .
_ igm(—T5—)"0t—iV (q,)dt 1.
\ 2miot © ’ (1.33)

using the result (1.25) derived before for the free theory.

We return to the task of calculating K (g, go; T') in (1.18), conveniently writing ¢, 41 —t, = dt,
so that the time interval is divided into equal increments:

1(n+1) a, ar
2 /qur ¢! Trimo (3 (=5 =V (@ ))ét; Gn+1 =4 (1.34)

K(q,q0;T) = (QW%



The path integral is obtained by considering the limit as n — oo and 0t — 0. Firstly in the

exponent
Z ( (w) - V(Qr)) 5t — S[q], (1.35)

T T
/d ( mq® — ) /dt L(q,q) (1.36)
0 0

Here L(q,4) = img¢®> — V(q) is the classical LAGRANGian and the notation S[q] denotes a
dependence on a function ¢(t) defined on the given interval. While a function assigns a number
to a number, S is a functional which assigns a number to a given function, the action. Note
that the functions ¢(t) have the following property

q(0) = qo, qT)=q. (1.37)

where

As a formal definition, we also let

27:7& ﬁl <\/;qu> — dlg]. (1.38)

The expression d[g] can be given a more precise mathematical meaning in certain situations,
but we take the limit as a physicist, not worrying about any mathematical idiosyncrasies which
can be very non trivial. If necessary it should be defined by the limit of the discrete product
given on the left of (1.38) as n — oo and 6t = Z — 0. What then needs to be done is to show
that limit exists for any V(q). However ultimately, we can write for the limit

K(g,0:T) = {q] exp(—iFIT)|q0) = / dlg) &519 (1.39)

and usually the precise details of the limiting process may be ignored.

The path integral is a sum over all paths between ¢ and ¢ weighted by e®. It represents
the fact that the classical concept of a trajectory has no validity in quantum mechanics; in the
double-slit experiment, it is impossible to tell which path a particle has taken that is registered
on the screen. Unlike in classical physics, where there usually is a unique path, or at least
a finite number of paths, and certainly not a continuous range, we have to take all possible
trajectories into account when dealing with quantum mechanics.

This path integral (or functional integral) formalism is an alternative approach to quantum
mechanics which in many ways is quite intuitive. To illustrate it in more detail, let us consider
an example where the path integral can be carried out explicitly.

1.2.1 Example: The Harmonic Oscillator

Consider the potential

1
Vig) = imquz. (1.40)

This is the harmonic oscillator, of course. It is one of basically two solvable problems in quantum
mechanics, the second one being the hydrogen atom.” All paths ¢(t) have the property that

q(0) = g, q(T) =qy . (1.41)

In this case, the classical path will play a role in the evaluation of the path integral. We will
expand ¢(t) about the classical path g.(t), which is defined by obeying

Getw’ee=0, q(0)=q, q(T)=qs. (1.42)

"The path integral for the hydrogen atom was famously solved by KLEINERT, HAGEN of course (developing
work also with I.H. Duru).




So can we solve this differential equation? The best way to write the solution is the one which
is the simplest to write down. All solutions include sinwt and coswt, and one could write the
solution as a linear combination of these and then work out the prefactors. However it is much
nicer to choose instead sinwt and sinw(7T —¢).* You can then write down the answer almost
by inspection: .

sinwT

qe(t) =

Clearly this satisfies the differential equation, and it is easy to verify that the boundary condi-
tions are also satisfied, so we have solved (1.42).

(gfsinwt + g;sinw(T — 1)) . (1.43)

The action for the particular path is given by

T
1
Slge] = gm/dt (q? —wzqf) . (1.44)
0
Integrate this by parts
T
1 1
Slge] = 2 [QCCIC ém dt qe(Ge +w CL:), (1.45)
0

where the last integral vanishes since g. obeys the equation of motion (1.42). We know what
values ¢, itself takes at t =0and t =T

S[qc] = 7m(Qf QC(T) — 4 QC(O)) : (146)

2

Now use the explicit solution for g. to obtain

—2qrq; + (qf2 + ¢;2) coswT

c|] = . 1.4
Slae] = mew 2 sinwT (1.47)
Note as a consistency check that as w — 0,
1 (g5 —q)?
. - 7 1.4
Slge] = gm—=— (1.48)

We can write a general path as

q(t) = q(t) + f(),  f(0) = f(T)=0. (1.49)

For S[q] quadratic in ¢ then
Sla] = Slqe] + S[f] (1.50)

is exact since as S[qg| is stationary at ¢ = g.. (If you vary the action, you get the classical
equations of motion - that is what the action came from.) That is, there is no linear term
in f. This is analogous to expanding a function around a minimum, where the first terms in
the expansion will be the value of the function at the minimum and a term quadratic in the
deviation from the minimum.

We have also assumed that f is small, meaning that only paths close to the classical path
will contribute to the integral. Furthermore, we can assume

dlq] = d[f], (1.51)

which is something which is true for ordinary integrals, namely that d(z+a) = dx for a constant
a. (This also makes sense in terms of the more formal definition (1.38) which we gave.) We can
now write that in this particular example,

K(qf,q5T) = / d[q] €11 = ¢?Slac] / d[f]e™ 1. (1.52)

8These are actually identical in the case w1 = mn for some integer n. In this case, there is no classical
solution unless ¢ = (—1)™qo. This special case is ignored here.



Note that the integral is independent of gy and ¢, thus all the dependence on the initial and
final points is contained in the prefactor. There are various ways to derive the second factor;
we use one which is potentially useful later on.

Expand f(¢) in terms of a convenient complete set. We use a Fourier sine series for f:

£t) = ian\/gsinn;t. (1.53)
n=1

The sine functions form an orthonormal basis for functions vanishing at ¢t =0 and t = T. We
can write, integrating by parts, noting f(0) = f(T) = 0 and using orthonormality,

T
2,2
S[f] = f%m/dt F(f +w2f) = %mZai ("TZ w2> . (1.54)
0 n

We assume the relation

dif]=C ﬁ dan (1.55)

where C' is a normalisation constant.” We are now in the position to express the integral in the

form
n2 2

/d[f] Sl = CH /dan e B an (g ) (1.56)
n=1

The basic integral (solved by rotating the contour) here is

o0

i 271
/ dy 3™ = ,/—;” . (1.57)
It is convenient to write now
. a 1
d[f] eV = Gy [ ———. 1.58
[ = (1.5%)

where we have absorbed constant factors like ([, n)~! into Cp. This factor is divergent, but
does not depend on any of the critical parameters. (We will not talk about infinities appearing
here.) In the free case w = 0, the product is equal to one and we are left with

m
pr— —_— 1'
Co \ 2miT (1.59)

What can we say about this infinite product? It can be shown that

a w3T? sin w7’
11 (1 — n27r2> =" (1.60)
n=1

(Note that both sides have the same zeros as functions of wT. Furthermore, they both go to
one as wl — 0. Several other observations show that both sides have the same behaviour and

actually are identical.)
dlf] et = | — 1.61
/ [f]e ImisinwT’ (1.61)

Ultimately,
9Thinking about the formal definition (1.38), if we consider ¢, = er, with € = T//(N +1), then the transforma-
tion from {f(t;) :r=1,...,N} to{an:n=1,...,N}, f(tr) = Zi:’zl
so that det[O] =1 and [],. df (tr) =[1],, dan.

which fixes the normalisation.

an Opy is an orthogonal transformation



which is a nice everyday function. The overall result, in all its glory, is the following:

(qf2+qi2) coswT —2q¢q;

K(qf,95T) = % e e wT (1.62)
To check this, note that there are eigenfunctions |n) of H with
En=mn+}Hw, 1= |n)n|. (1.63)
A formula which can be obtained by using standard quantum mechanics is
K(q7,0:T) = Y vhn(qp)ty(gi)e 20T (1.64)
In the situation where T'= —it, 7 — o0,
2isinwT — e*7, 2coswT — e*7 . (1.65)
We find that
K(qp, g5 —im) "7 ﬁféme_émw(qﬁﬂi% = Yo(q)v5 (q0)e™ 7. (1.66)

In this special case, the result obtained from the path integral calculation is consistent with

standard quantum mechanics.

1.2.2 A Few Comments

ixz?

(i) Generally speaking, integrals of the form [ dx e

are rather ill-defined because they do

not converge (absolutely). It is much better to consider integrals [ dz e for A > 0.

The same thing happens with path integrals; note that

Sla] :/Tdt (;WF—V(CI))

(1.67)

is normally a real quantity. But in order to obtain well-defined integrals, we can consider

an analytic continuation of time

t— —ir, T — —im, (1.68)
so that
T1
. dq 2 ) 1 dq 2
P - (dT) Sl o [dr <2m (dT +V(g) (1.69)
0
and the path integral becomes
{alexp (— Hri)lgo) = / dplg) e~ 17" V@ dplg) = dlg] e I 4 GG (170)

The point about this is that the right-hand side can be given a precise mathematical
meaning. dufq] defines a measure on paths {q(7)} which is essentially a probability
measure. The integral can then be defined rigorously for wide class of potentials V,
subject to the requirement that V is bounded from below.

In many contexts, one considers these integrals with analytic continuation. They first
appeared in the context of BRowNian'? motion.

10Brown, Robert (1773-1858)



(ii) The path integral provides a method of making non-perturbative approximations; we will
show this for the example of tunnelling. A widely known result from quantum mechanics
is that particles can tunnel through a potential barrier. Consider a situation where we
have a potential

V(g

We want to calculate the amplitude to get from ¢y at time ¢y to g1 at time t;, eventually
taking the limits t) — —oo and ¢; — co. So use the path integral to evaluate

{@ilexp (= iH(t1 —t0))l0) - (1.71)
One way of proceeding with these path integrals is to expand around a classical path
q(t) = qc(t) + f (1), (1.72)

where the classical path ¢.(t) satisfies the classical equations and given boundary condi-
tions. This method was used in the example above. In general, there will not necessarily
be a classical path; here this is in the case when the total energy is smaller than the max-
imum of the potential between ¢y and q;. We make use of analytic continuation ¢t — —i7,

such that "
iS[q] = —/dT <;m (33) +V(q)> , (1.73)

and we are interested in the limit 79 — —oo, 71 — oo. (Note that this actually means we
choose a different contour in the complex plane to evaluate the integral. This is a method
commonly used to evaluate integrals over analytic functions, and we have in fact already
used it above. One makes use of this in the “method of steepest descents”, for example.)
The classical equation for ¢.(7) is now

d2
— e+ V'(g.) =0, 1.74
me + V' (a) (174)
which we integrate once to get
1 (dg.\*
- ) =E. 1.
27n(d7_> +Vig.) (1.75)

This is similar to classical mechanics, but with one sign flipped because of our funny
change in time. We want a situation in which as 7 — +o00, ¢(7) — qo or ¢(7) — ¢1, where
V(go) = V(q1) = 0. But if it is smoothly going to these points we must also have

dg|  _ dg
drlg=qo  dTle=ar

=0 ~ E=0. (1.76)

In this situation, we can actually solve this, assuming ¢; > gg and therefore taking the
positive square root to get

Qe _ | [2VNGe), (1.77)
Now substitute this in to evaluate iS[q.]:
[ee] q1
iS[ge) = —2 / dr V(g.) = f/dq V2mV(q), (1.78)
— 40



dq v/m
V2V (q)
As we have seen in the case of the harmonic oscillator, the dependence of the path integral
on the initial and final points is contained in €*5l%!, so the tunelling amplitude will be
proportional to

for this solution.

because dr =

g i dav2mVia@) (1.79)

This is an exponential suppression, which is a real quantity, but non-zero in all cases. (It
is known as the GAMOwW!! factor.)

The path integral calculation gives the same result as WKB, for example, in a relatively
simple way.

(iii) In general, there is no unique correspondence
H(q,p) — H =H(q,p) (1.80)

in quantum mechanics, because a product pg can be replaced by
pqg — {13? : (1.81)
q

and these are not equal (since [g,p] # 0). In many problems there are ways to resolve
this ambiguity, but it is still there. This is reflected in the path integral, although this
is far from obvious. There are more complicated problems where different discretisations
of the path integral will give different answers. Although we will not be very concerned
with this problem, it is worth bearing in mind it exists.

In due course, we are going to apply the ideas of path integrals to field theories. But first
let us do some calculations which will be useful later on.

1.3 GAussian Integrals and Extensions Over Multi-Dimensional Co-
ordinates

Consider a set of coordinates, represented by a column vector

z=(x1,...,2,)T €R"”, (1.82)
and define a scalar product
n
z-2' =ala = szx; : (1.83)
i=1

Let A be a n x n symmetric positive definite matrix and consider the GAusSian'? integral

Zy = / dny e~dzAz (1.84)

This kind of integral is essentially equivalent to free field theory, as will become apparent in
due course.

Its evaluation is quite simple: note that there is an orthogonal matrix U (| det U| = 1) such
that

A1 0
UAU" =D = : (1.85)
0 An
where \; > 0 for all i = 1,...,n. It is now quite straightforward to compute the integral with
a suitable change of variable; namely let
2 =Uz, d"z = d"a’ (1.86)

1 Gamow, George (1904-1968)
12GauB, Carl Friedrich (1777-1855)
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= Zj= /d”x’ o3z Dz’ _ . /d:c; e~ 3N’ (1.87)
=1
so the integral factorises because of
n
o -Da' =) PR (1.88)
The generic integral is of the form

R T AY feilly L.
/da:e 3 (1.89)

So now we know the answer

Z :f[ ﬁ: (2m)2 (1.90)

An important generalisations is to the complex case, when we have a column vector

z=(21,...,22)7 €C"™, (1.91)
and define a scalar product
22 =21 =) 4 (1.92)
i=1

In general, when z = z + iy, we define
d*"z = d"zd"y. (1.93)

Let us take B to be a HERMITian'® matrix with positive (real) eigenvalues and consider the
GAussian integral

Zp = /dZnZ e 28z, (1.94)
In this case, there is a unitary matrix U such that
A 0
UBU' = D = , (1.95)
0 An

where again all A; > 0. Now the same trick as before applies:

Z=Uz, d?"z = d*y (1.96)
and N
2D => Al (1.97)
i=1
The basic integral here is
/d22 e A= = /dx dy e @) = g (1.98)

(Note that [ dz usually denotes line integrals, where here we integrate over the whole complex
plane.) The result in this case is

n

T
Z =
= detB’

(1.99)

which should be compared to (1.90) - note that in this case the determinant of the matrix
appears instead of its square root.

I3Hermite, Charles (1822-1901)
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As a brief comment, let us consider an 7 in the exponent

o 2
4= /d”ac e 2zAL (”) (det A)~ 2 (1.100)
(2

where we have analytically continued each x integral into the complex plane.

Now consider the extension to a linear term in the exponent
Zap = /d”m e 3z Aztbz (1.101)

We can reduce this one to the previous case in the following way. Note that we can write

1
z-Az—b-z=-2 Az —

o b-A'b, (1.102)

|~
| =

where
=z —-A"'D. (1.103)

(Since the eigenvalues of A are assumed to be positive, there is no problem whatsoever in
defining the inverse.) With the result (1.90) obtained above, we then get

Zay = e%bé’lb./dnx’ -3z Az’ _ b ATb (2m)2 _ (1.104)
The analogous formula in the complex case is
ZQ,Q _ /dznz efzﬁﬁéﬁz-b _ eEﬁ_lQ AN (1.105)

Next we will consider how integrals can be expanded and how these expansions can be repre-
sented by pictures. This will lead to FEYNMAN graphs.

We will discuss things which are called expectation values:
1
(f@) = — [ d"x f(z)e 2=z, (1.106)
240

In general we are interested in functions which are polynomial in some sense. We will usually
assume that all relevant functions may be expanded in a power series, so that we can restrict
our considerations to polynomial functions (by linearity). Note that by definition,

(1)y=1. (1.107)

The major trick we are going to use here is the observation that

0 bz
f@)=f (8b> S (1.108)
where 5 5 5
— = ==, =] - 1.1
o~ <8b1’ ’ abn) (1.109)
The observation then follows directly from
9 s _ ze?T (1.110)

It follows therefore that we have a trick for evaluating the expectation value (f(z)). We can
write

_ 1 n 2 —tz-Aztbz
(f(2) = Zn d"x f ((%) e bo’ (1.111)
and take f outside the integral:
1 0
@) = 51 (55) Zasly (L112)



We can simplify this straight away by substituting in our previous result (1.104)

(f@) =f (38b> edbA™h bo’ (1.113)
This is a very convenient way for working out these expectations.
Let us consider some particular cases:
(zi) =0, (1.114)
(zi2;) = 0 (A7'b) et A = ATt (1.115)

ob; =0 Y

We introduce the notation that a component of the inverse of the matrix A is represented by a
line, whose ends are labelled by i and j:

i J
A little calculation will show that
(i@ ..., ) =0 for odd n, (1.116)
and also
(mimjapmy) = AT AL+ AGTAG + AT AL (1.117)

(Note that Ai_j1 denotes the component ij of the matrix A™', and not the inverse of the

component ij of the matrix A, A™! is symmetric since A is.)
Draw a picture for this case:

We can give a diagrammatic picture of how these things work.

The result (1.115) can be obtained in a slightly different way: Consider

1 n iz Az 1 n 9 —1lz. Az
Aik<.’13kf17j> = @ d X Aikxk"ﬂje 2= == = 7@ d T Ijaixl (6 2***) . (].1].8)
Integration by parts gives
1 7 0 —1lz.Ax

So the matrix A;; acting on (zrx;) gives the identity, which means that (because of symmetry)

(wizy) = AL (1.120)
Extending (1.115), (1.117) we have
Wick’s'* Theorem:
1 —1 ~1
(Tiy « - Tiy,,) = gl 25: Aia(l)ig(z) e 'Aia(zn_l)ia(zn) ) (1.121)
oESan

where Sy, is the permutation group. There are (2n)!/2"n! different terms in the sum, for n = 2
there are three terms in accord with (1.117). Together with (1.116) (1.121) determines (f(x)).

14Wick, Gian-Carlo (1909-1992)
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The complex case contains no essential new ideas as compared to the real case, and is
summarised here: Let B be HERMITian, then

| . T
(F(2:2) =~ /d2nz feBeFEi= iy ((%’ 8b> Zos| (1.122)

One finds that
(z:2) = By, (1.123)

which is no longer necessarily symmetric in ¢ and j. Therefore we denote this by
[

i.e. we add an arrow to denote which index comes first.
Exercise: Obtain this result by showing that

sz<zk2g> = (Sij = <Zi2k>Bkj . (].124)

Generally, to visualise (z;, ...®i,,), we draw n lines linking different points. One can write
down diagrammatically what an expectation value is by drawing more and more lines.

1.4 Non-GAussian Integrals and Perturbation Expansions

These integrals will correspond to interacting field theory (whereas the previous GAuUSSian
integrals corresponded to free field theory). The basic integral in this case is

1

=7 d"z e~ 2T Aztbe-V(z) (1.125)

VA

where the prefactor conveniently ensures that Z ’ p—0v—o = 1- We require that the real function
V() is bounded below, and also V(0) = 0. Now we use the same trick as before:

1 1
7V 1 /dnx e~ 2z Aztbz (1.126)

This is very formal, but for finite integrals there is no real problem in writing down this expres-
sion. Substituting in, we get ‘
Z = V(E0)eib AT (1.127)

9
We can evaluate this by expanding eV(3). This will give the rise to a perturbation expansion.
However, there is a slightly alternative way of doing it which from some point of view makes
the manipulations a little easier. V' may be a complicated function.

()70 s (3
Proof

We will show this for a special case: Let G(z) = e2'®, F(b) = 22, Then the left-hand side is

Lemma

(1.128)

¢ (;) F(b) = e 2F(b) = F(b+a) = 2 ), (1.129)

Let us attempt to consider the right-hand side:

The result is then true for any F' and G as one may express F and G as a Fourier series. [

— B 55 oz (atd) — o@t+B)-(a+d) — Blath) (1.130)
=0 =0 z=0

14



Let us apply this to the expression for Z, so that

&l

AT V(e the

Nl

J=e

(1.131)

z=0

We get a perturbative expansion by expanding both exponentials, setting for simplicity b = 0.
We use the notation

o 0 0
Vi i = L ve| 1.132
it T G G G (x)lzg (1.132)
where i1,...,ix € {1,...,n}. The first few terms of the expansion are, assuming that V' (0) =

Vi(0) =0,

1 1 . - 1 _ 1 1,
Z=1- iAijIVZ-j — §Aij1Akll‘/ijkl + gAijl‘/ijAMIVkl + Z‘/;inklAjllvkl
1

T3

1
Vih Aj A A Vimn + 15 Vi A A Ay Vienn + - (1.133)

Jm

These expressions are not very transparent; proliferation of indices makes it hard to see what
is going on.

Diagrammatic interpretation:

We represent Ai_j1 by a line joining the points ¢ and j, as before, and —Vj,4,. i, by a vertex
joining k lines, e.g.

13 o
14 11

15 \ig

Then we can associate the terms shown above in the expansion of Z — 1 with the diagrams
1 1 1 1 1 1 +...
Feroslolororotolle

Diagrams like the third one are called disconnected. In general, all these diagrams are called
vacuum diagrams, since there are no external lines. Check the following, known as EULER’s'®
formula, holds for all connected diagrams:

[L=1-V+1,]| (1.134)

where L is the number of closed loops!®, I is the number of internal lines and V is the number
of vertices. To demonstrate consider the subgraph where the V' vertices are linked by just V' —1
lines to create a minimal connected tree graph (this may of course not be unique). Then add
the remaining I — V 4+ 1 lines between the various vertices to restore the complete graph; each
addition creates a new loop.

Let us summarise the FEYNMAN rules for diagrammatic expressions of integrals of this type:
e Lines, with end points labelled by ¢ and j, represent Ai_jl.
e Vertices represent —V;, ;.

e Contract all indices.

5Fuler, Leonhard (1707-1783)

16For a graph which can be drawn in the plane, this means the number of ‘faces’, or regions separated by
edges. In general, the definition is slightly harder to see geometrically. The most natural way to think of this
for our purposes is as follows: imagine some conserved number (like momentum) is flowing through the graph;
then if you are told how much goes in/out at the external points, you can deduce something about flow within
the graph. However, an arbitrary amount can flow around a circle in the graph. The number of independent
such amounts we will later think of as the number of loops.

15



Now take the general case b # 0; let us see how this is modified. We can now always maintain
V;(0) = 0 for all ¢ by redefining V (), absorbing all contributions into b. We introduce external
lines

b

associated with one b;. The first terms in the expansion which will now also contribute are

] n

1, 0 - >E o -
2

In all of these expressions, all lines are attached to external lines, there are no superfluous
indices. Of course, the complexity increases quite dramatically as one proceeds. Diagrams such
as those just described which have no loops are called tree diagrams vacuum diagrams always
have loops). A one loop diagram with two external lines is

1 1 1
3 biA by — G bibibr AP AT ATV — 3 bibjA;,jAj‘llvkl +.... (1.135)

o=
N

mp= - ng

1
o i A AR Vi Vipg A Arg + - (1.136)

1
1

For each diagram it is necessary to also include an associated coefficient %, where S is termed
the symmetry factor of the diagram. For any graph I' there is a symmetry or automorphism
group Sr which is the group of permutations of lines and vertices which leave the graph invariant.
A graph T' consists of vertices {v} and lines {l} linking vertices, for ¢ € Sr we require that
for all [ linking v to v’ then o(l) links o(v) to o(v’) or, if the lines have no direction, o(v’)
to o(v). S is the order of Sp, S = |Sr|, so that it is the number of ways lines and vertices
may be permuted leaving the diagram invariant. External lines with labels such a momenta
cannot be permuted as this would not leave the graph invariant. If the graph has only vertices
linked by single lines then the symmetry group is found by considering just permutations of the
vertices which leave it invariant. For the graphs representing the expansion of Z it may also
be defined as the group formed by non trivial permutations of the indices associated with the
vertices Vi; = Viyjy, Vijk = V(ijk), - - - which leave the expression corresponding to the diagram
unchanged (trivial permutations are those which are just a different relabelling of all the indices,
which are just summed over dummy variables). For instance, the second diagram in the sum
above has S = 3! = 6, since all three lines can be commuted. The last diagram has S = 4, since
both external lines can be commuted, as well as the lines in the middle. If the external lines
are labelled by indices or momenta then the symmetry group does not include permutations
of the external lines. (If (1.136) is differentiated with respect to b;,b; to give a graph with
two external lines labelled by i,j then this reduces the symmetry factor to %) It takes some
experience to work these factors out in practice, and it is always worth trying to check the
results, for it is not very difficult to get these things wrong.

To actually prove that the coefficient is indeed % is less straightforward. Suppose the graph
is a collection p, n-vertices, at which n identical lines are incident. External lines can be
regarded as vertices with n = 1. Each vertex has an associated 1/n! from the expansion of V'
and also 1/p,! from the expansion of the exponential. Label the graph uniquely by giving all
lines a unique label. If we count the number of ways of forming a particular labelled graph
then there is an n! for each n-vertex, from the n! ways of coupling the labelled lines to each
n-vertex, and also a p,! from permuting all the n-vertices. These factors then cancel the 1/n!
and 1/p,! factors. However the Feynman integrals correspond to unlabelled graphs, each of
which generates Sr unique labelled graphs so it is necessary to introduce a factor 1/S which
may be regarded as arising from an incomplete cancellation of the 1/n! and 1/p,! factors.

We now consider a couple of special cases, just to verify how this works:

16



Let b=0and V;, ;, = 0for k > 3. If we represent the second derivatives of V' by an (n xn)
matrix V", the result you can write is

Z=1- L)+ L an ) b eanva vy o (1.137)

where tr(A~'V") = A;jlvj’g , of course. But the problem can also be solved exactly, with the

exact result being given by

1
2

1 1 1 n
7 = 7 /d"a: e 3z (A+V )z _ Z(gw)f (det(A+ V")) (1.138)
_1 _1
= (det A™" - det(A+ V")) 2 = (det(I+A7'V")) ® (1.139)
where (det M)~! = det(M ') and det(M - N) = det M - det N . was used.
For any (diagonalisable) matrix M, we have the following identity
logdet M = trlog M , (1.140)

which follows from the observation that the determinant of a matrix is the product of its
eigenvalues and a logarithm of a product is the sum of logarithms. For an eigenvalue \; = 0,
the identity becomes singular.

We use this identity and the expansion log(1+z) =z — % 4+ ... to obtain an expansion for
A

7 — efélogdet(IJrA_lZ") —Ltrlog(I+A~'V")

=€

_ 67%tr(é—lqu’»%(A—lzué—lzu)+.“)

1 1 1
1-3 tr(A~V) + 3 (tr(A_lz”))z +7 tr(A~ VATV 4 (1.141)

so we have reproduced the previous result.
Note that we can also consider b # 0, where only the second derivatives of V' are non-zero (as
before). We will get additional terms (only second order in b)

_|_

1
i -

N|—
N[

corresponding to

1 1
5 bi(A — AL VEAS 4+ )by = 5 bi(A+ V)5t (1.142)

where the expansion arises from a geometric series and the final line is an exact result. The
series must reproduce what we would expect; recall (1.104)

Zab

4,

|
(8]

To draw a connection to field theory, we need to consider the following integral with a
complex exponent:

/ A"z e~ (3w V() (1.143)
In this case the FEYNMAN rules are slightly modified, namely that
e Lines, with end points labelled by ¢ and j, represent —z'AZ-_jl.

e Vertices represent —iV;, 4, .

17



The symmetry factors are unchanged.

Feynman diagrams provide a very convenient shorthand for expressing expansions of inte-
grals of the exponential form which defines Z. The expansion makes sense only when V' is small,
of course, and in general gives only an asymptotic series, the actual radius of convergence is
Z€ro.

Up to this point we have played around with toy problems, path integrals in standard
quantum mechanics and calculated some integrals. The motivation for this is to extend all
these ideas to quantum fields, which is what we will now do.

18



2 Functional Methods in Quantum Field Theory

2.1 Free Scalar Field Theory

We usually have a scalar field
¢(x) = o(T,1). (2.1)

Our convention for the MINKOWSKI'” metric is
N = diag (—=1,+1,...,4+1). (2.2)
The LAGRANGian density for free field theory is given by

Ly = —%('nga#d) - %m2¢2 = %¢2 - %(6(?5)2 - %mg(bzv (2'3)

which leads to the action
Solo] = / diz Lo = — / diz (;gﬁ(m)AQS(x)) , (2.4)

by integration by parts, where

62
=-0+4m?= 5 —-V>+m?, 2.5
e T (2:5)
is the KLEIN-GORDON operator. Note that we take the number of dimensions to be d, which
can generally take any value. The classical equation of motion is

A¢ =0, (2.6)

the KLEIN-GORDON!® equation. It was actually discovered by SCHRODINGER, but because of
problems arising in standard quantum mechanics he then tried to find a differential equation
which was first order in time. However, it is perfectly o.k. when you move to quantum field
theory.

We can define a quantum field theory, instead of by using the classical approach of going
to the HAMILTONian formalism and then imposing certain commutation relations for fields and
conjugate momenta, through a functional integral:

ZO[J] _ /d[¢] eiSo[¢]+ifdd:c J(@)¢(z) (2.7)

Square brackets, as usually, denote that Z; is a functional, depending on a function J(z).
J is sometimes referred to as a source, like an external current in classical electrodynamics.
Formally,

di¢] = [ [ dé(z). (2:8)
We sort of define it in the following way

[[dé(@) ~ lim ][ do(z:). (2.9)

where the points x; belong to a lattice of size a. One will first consider a finite volume for this
lattice, then take the limit of infinite volume. This is the same approach as in one-dimensional
quantum mechanics, where we divided a time interval into smaller intervals, taking the limit of
the size of the steps going to zero.

We introduce the idea of a functional derivative, defined by the essential rule

=6z —vy), (2.10)

"Minkowski, Hermann (1864-1909)
18Klein, Oskar (1894-1977), Gordon, Walter (1893-1939)
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together with the usual LEIBNIZ and chain rules for differentiation.
This means that for instance,

5 . d . d
_ % ifdtz I(x)p(z) _ i [ dz J(z)o(x)
5J(x)€ id(x)e . (2.11)
Note that 5
537 Sl = —0@), (212)

since §So[¢] = — [ d%x S (z) Ap().

In order to evaluate the functional integral, we replace
1
Soldl + [ e Ja)o(w) = Sold) + 5 [ ' J@) A1), (213)
where ¢/(z) = ¢(z) — A~1J(z); note that then

Sold) = = 5 [ @' (B)B6() — (0] (@) + T2 A1 (@) — 57 (@) 2(a)

1

- -3 / Az (p(x)A(x) — 2¢(x) ] (x) + J(2) AT () - (2.14)

If we choose the normalisation
Zo[0] = /d[qb] etSoldl — 1 (2.15)
we would then have _
Zo[J] _ e%zj dz J(z) A" I (x) ) (216)

In principle we have worked out the functional integral, but we need to find A™'. A is a
differential operator, hence A~! is a GREEN '?’s function. So the next step will be to obtain
the inverse of A.

Note that our final result is the infinite-dimensional analogue of the result we derived before,

Zpp=ZyertA7L (2.17)

£ 2

where A~! was the inverse of the matrix A. In this case, we essentially have to solve the
equation
— Dy Ap(z —y) =64z —y), (2.18)

so that Ap(x) is a GREEN’s function of the operator A. We can solve this fairly easily by using
FoURIER?" transformations: We define

Ap(p) = /ddm e PTAR(z) = /ddx e @A Lz — ), (2.19)

where p - ¢ = p,2*. Multiplying the above equation by e~ (*=Y) and integrating over all z
components gives

— /ddx e P @A Ap(x—y) = /ddx 0z —y) e @y =1, (2.20)

Since A, = —[, + m?, we can integrate the left-hand side twice by parts, dropping surface
terms to obtain

— /ddx Dy (e PENAp(z —y) = —/dd:c (P* +mP)e P VAR(z—y)=1. (2.21)

9Green, George (1793-1841)
20Fourier, Joseph (1768-1830)
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So the equation that you then get is
— (P> +m?)Ap(p)=1. (2.22)

There is an ambiguity here; there is no unique solution to the above differential equation since
one can always add a solution of the homogeneous equation to Ap(x — y). We need boundary
conditions to make A unique. The choice

Ar(p) = — (2.23)

_p2+m27ie

defines the FEYNMAN propagator, where € > 0 guarantees that the denominator will not be
zero, and is essentially infinitesimal.

Why is this an appropriate description? To motivate this, let us go back to the original
integral

Zo[J] = /d[(b] o5 [ dle (0" ¢(2)0u¢(x)+m?¢® (2))+i [ dlz J(z)(x) (2.24)

This is an integral with a highly oscillating integrand; if we replace m? — m? — ie for positive
small e this will give a factor

paeldle (@) (2.25)
ensuring convergence of the functional integral. The integration is damped for large ¢.

Let us try and analyse Ag(x). We can do this by going back to the FOURIER transform

dip 1
AN =—1 P . 2.26
A () Z/ (2m)d ¢ p? +m? —ie (2.26)

Defining Ey = \/m? + p?, we can rewrite
p? +m? —ie=—(p")? + (Ey —ie)?. (2.27)

Note that this means a re-definition of ¢, since there will now be a term of —2iEze on the
right-hand side (and we ignore €?). But since the exact magnitude of ¢ does not matter and
we will in both cases get a small negative imaginary quantity appearing on both sides, this is
a valid replacement. We obtain the expression

ddflp dpo C 0, = 1
iA — I —ip t+ip-T
d—1 0
— Z/ AT [dpT ipoerips L 1 - 1 ) (2.28)
(2m)d=1 [ or 2E; \p° — Ez+ie p°+ Ez—ie

To evaluate the p° integral, close the contour in the complex plane in the upper half or lower
half plane such that e~#’t 5 0. Note that this means that for £ < 0 the contour is closed in the
upper half plane, whereas for ¢ > 0 the contour is closed in the lower half plane (which gives
an extra minus sign in the residue because of clockwise orientation):

. , d'p 1 1 s . —iEy . iBy
ZAF(Q?) = Z/ W %Ee P (—27T29(t)€ Ept _ 27T19(—t)6 Ept) s (229)
1, t>0

0 is a step function. Our final result is

where 0(t) = {
‘A dp 1 —iBEst it
The first term corresponds to positive frequency or positive energy particles going forward

in time, the second term corresponds to negative frequency anti-particles (or particles going
backwards in time).
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We now have the final expression for the generating functional

ZolJ] = e 2 'z Ay I@idp(a-)I (W) (2.31)

We define the two-point correlation function to be given by

(B1)p(22)) = (—1)? Zol) (2.32)

8J (1) 6J(z2) J=0"

a relation which is true for free fields. Explicitly this gives, since Ap(z —y) = Ap(y — ),

) . )

Oao(en)) = 5o [dle J@idplo— o) —iBploi—z). (239

6J(z1) J=0

We interpret this diagrammatically as a line joining two points:

£ Y
Similarly we define the n-point correlation function
(B(@1) - $a)® = (i) o 77| (2.34)
0J(x1) 6T (xy) J=0

This is zero for any odd value of n. We can again represent the different contributions by
diagrams, e.g. for n = 4 there will be three contributions:

Z1 Z2 Z1 T2 Z1 Z2
xs3 T4 x3 x4 I3>< Ty
For free fields, we have the relation
{$(@1)... ¢xn)) = (OIT{B(1) ... (xn) }[0) , (2.35)

where T denotes time ordering and ¢A> is the field operator. See the result in the “Quantum
Field Theory” course

(OIT{¢(2)(y) }|0) = iAp(x — ), (2.36)
al

which can be derived using the standard expansion ¢ in terms of creation operators a
annihilation operators a.
Free fields, however, are not terribly interesting; we extend these ideas to interacting theory.

5 and

2.2 Interacting Scalar Field Theory

We include a potential V(¢) into the action

Slg) = / d'z (Lo — V(9)), (2.37)

where L is the free theory LAGRANGian, quadratic in the fields, and we assume the potential
to include terms only of order ¢* and higher.

Consider what happens when we define the functional integral
Z[J} _ /d[gﬁ] 6iS[¢]+ifddz J(z)p(x) ' (238)

In due course we will differentiate this with respect to J and define correlation functions. We can
define this integral by a perturbation expansion. This can be expressed in terms of FEYNMAN
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diagrams, and for each diagram there is an amplitude given by the FEYNMAN rules. FEYNMAN
diagrams are a pictorial way of expressing a perturbative expansion of integrals like this.

Formally, by the same tricks as previously,

Z1J] = oS de V(—i%)ZO[J]

— o i A Vi—isiey) o4 [ d%ad?y J(2)Ar(z—y) I (y)

_ o S d%edy s Ar(e-y) sy | i S dte (<V(6() 4T (2)6(=)) (2.39)

¢=0"

where in the first line we have used that —iw‘zm) etlJ? = ¢(z) e’/ /¢, and from the second

to the third line we have used the infinite-dimensional form the lemma derived in Section 1,
namely
G |-i2| i) = F || Glgjet/ ¢'oo@rs@
oJ Y0,

o (2.40)

Expand this to get the perturbation expansion; we obtain the FEYNMAN rules:

2.2.1 Feynman Rules for Interacting Scalar Field Theory
The FEYNMAN rules to derive correlation functions between different points in spacetime are
e A line between z and y represents a propagator iAp(z — y).

x Y

e A vertex with n lines represents a factor —iV' (") (0), where V(") (¢) = d‘f:n, V(o).

€3 X2
Xy T
T5\Te
e J(z) is represented by a vertex with one outgoing line.

iJ(x)

e Integrate over x for all vertices.

Introduce a symmetry factor S where necessary and divide by S.
If we consider an n-point correlation function

(@(x1) - dlan )™, (2.41)

we have diagrams with n external lines, one for each x;, and we drop J. The first contributions

to (9(2)6(y)) will be

@ y + ZOw y (S=2)

There are slightly alternative versions of the FEYNMAN rules:

FEYNMAN Rules for Momentum Space
Consider

/ddgc1 cd, et Pt Az () L p(w,)Y ™ = F™ (py, . pn), (2.42)

which will contain an overall delta function 6¢(3", p;) (energy-momentum conservation).
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We make use of the FOURIER transform of the FEYNMAN propagator,

d .
iAp(z —y) = / AP gy (T (2.43)
(2m)d p2+m2—ie/)’

and after integrating over the position for each vertex, generating a J-function, this leads to
the following rules:

e For each internal line with associated momentum k, add a propagator
i
k2 +m?2 —ie’

k

(2.44)

e For an external line with associated momentum p, add a propagator Z)eriimg.

e For each vertex with n outgoing lines, add a factor
— iV (0) (2m) 4 (i) - (2.45)
e Integrate over momenta for all internal lines with measure

d%k;
(2m)?

. (2.46)

The (27)~¢ factor could have been associated with the propagator.

Thus for the loop diagram

the vertices will give factors ¢(p — ki — k) and 6%(ky + ka — p'), so after integration there will
be an overall delta function §¢(p — p).

Recall (1.134), Euler’s formula for connected diagrams:
L=I1-V+1,

where L is the number of loops, I is the number of internal lines and V' is the number of vertices.
Let us look at the integrations performed for a particular diagram in momentum space. We
have the integral

: d’k; o dsd
/1:[ (2m)d H(27T) 5 (X ipiw) s (2.47)

since there are I momenta associated to internal lines and V' vertices where energy-momentum
conservation is imposed for all momenta {p;,} for all lines incident at each vertex v. For
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connected graphs there is one overall delta function for overall momentum conservation. After
removing all but one the momentum conservation §-functions there are I — V' 4 1 remaining
momenta to be integrated over, which is equal to L, the number of loops. Hence this becomes

~

(2m)*5% (32 ,p1)

(2.48)

where the sum ), runs over external lines and []. is such that {k;} are L independent,
after imposing momentum conservation at each vertex, internal line momentum. The overall
(2m)46%(3°;pi) is usually factored out.

Furthermore, if we look at the various factors of 7 in the FEYNMAN integral, we notice that
there is a factor of —i for each internal line and a factor of —¢ for each vertex giving in total

(=)' (=)Y = (=¥ " (2.49)
We can use this to simplify the FEYNMAN rules in momentum space:

e For each internal line with associated momentum k, add a propagator

m . (2.50)
e For an external line with associated momentum p, add a propagator 1)2_;7‘7712
e For each vertex with n outgoing lines, add a factor —V () (0).
e Impose momentum conservation at each vertex.
e Add a factor —i for each loop and integrate over undetermined loop momenta [ (2‘1(17’)2.

e There is an overall factor of i(27)? times a delta function imposing overall energy-
momentum conservation.

These rules may seem complicated, but to work them out in practice is quite straightforward.
Here are some illustrations.

For the simplest case n = 2, the diagram

P1——=P2

corresponds to the amplitude

m (27T)d5d(171 +p2). (2.51)

For a potential with V(*)(0) = A, the diagram

D1 D2

corresponds to

dk 1
(2m)d k2 +m?2 —4e’

1 (—i)?
2 (pi +m?)(p3 +m?)

i2m) 15 (1 + pa) (—N)(—i) / (2.52)

where we have added a symmetry factor of 2.
For a potential V with V(3)(0) = ¢, the diagram
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D1 D2
— P

is associated to the amplitude

(—i)?

1 dok 1
2 (p} +m?2)(p3 +m?)

2m)4 (k2 +m?2 —ie)((k — p1)2 + m?2 —ie)

(2.53)
The guts of these calculations are in terms of doing the integrals. These are both one-loop
diagrams. When a diagram has no loops, there are no momentum integrations left.

i(2m)46% (1 + p2) (—9)2(—2')/(

In general, calculations with one or two loops are quite straightforward, but become rapidly
difficult for more loops.

2.2.2 Connected and Disconnected Graphs

A connected graph is one in which all lines are linked. Consider

(@(1)d(w2)d(x3)d(x4)) . (2.54)

In free theory, there are the following sets of graphs:

T x2 T T2 Z1 €2

T4 1'3>< Ty

These are all disconnected graphs. In interacting theory, we have the following connected graphs:

xs3 T4 T3

1 T ol ]
{E3>< T4 1’3>:< T4

Of course, there can still be disconnected graphs:

fliL X2 st

T4 xéP

It is sort of obvious that any disconnected graph is composed of connected subgraphs. For
instance, in the above examples all disconnected graphs consist of two connected subgraphs.
In calculations, one can calculate disconnected graphs by calculating the connected subgraphs
and multiplying them together.

T2

xs3 T4

Let us now assume for simplicity that (¢(z)) = 0, and write

((a1)p(x2)) P = (d(a1)d(x2)) P, - (2.55)

By assumption, there are no graphs with one external line; we represent the sum of connected
graphs by
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Now use this to decompose (¢(x1)d(z2)p(23)p(x4)) ) into connected pieces. This will give

(0(21)d(w2)d(w3)B(24)) D = (1) P(22)) P ($(w3)b(24))® + 2 similar terms
+{(0(1)$(x2)9(w3) $(24)) h. - (2.56)
We can represent this pictorially by

3001 3 1{%3 1 3

= + +
2 4 2 2{%42 4
1 3
"
2 4

Now we want to discuss the generating functional which does this, i.e. which only gives con-
nected amplitudes. We previously defined Z[.J] such that

(_i)"wfxl) . M(‘;n) Z[J]’ = ($(@1)... p(x)) ™. (2.57)

J=0

If we now write Z[J] = !Vl then W[.J] is the generating functional for connected amplitudes.
We make the assertion that

\n—1 J J
(=9) 8J(x1) 6T (zn) W

)| = (6@1) - 0) B (2.58)

J=0

The way to justify this is to show that if we substitute this formula into the first expression, this
gives the correct expansion of an n-point correlation function (...) in terms of connected m-
point correlation functions (.. .)conn, Which represent only connected diagrams. (All graphs with
n points can be expressed in terms of connected graphs with m < n points.) Mathematically,
we express this relation as

n—1

(B(z1) .. Plan)™ = > > (B(x1)B(@i,) .. Blxi, ) ED)
=0 {i1,...,i, }C{2,...,n}
X <¢(mir+l) o ¢(xin_1)>(n—r—l) ) (259)

where the second sum runs over all subsets of {i1,...,4,} € {2,...,n} which contain r elements,
and we define {i,41,...,in—1} = {2,...,n}\{é1,...,4,}. This means that we pick one preferred
line corresponding to x1, and sum over all connected graphs including x; with between one and
n external lines, multiplied by all possible graphs for the remaining external lines. This gives a
recursive definition for the left-hand side.

In calculations like these, it is sometimes hard to see the wood for the trees; we will clarify
the mathematical expression by drawing appropriate pictures.

2 2 3 2 5
1 1
- ._+
i

exclude 7

1
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We will now show that assuming that W[.J] generates all connected graphs, the relation Z[J] =
e'WI/] holds. We use the above relation, substituting in our expressions for the (r + 1)-point
correlation function and the connected (n — r — 1)-point correlation function in terms of Z[.J]
and W[J]:

1) 0
8J(x1) 6J(xn)Z[J]‘J:0

— 5 5 5 5 5
- ZZ Z (SJ(.’El) (SJ(ZL'“) o (5J(£L’ZT)W[J]‘J=O (SJ(ZL’iH_l) o (5J(£L’Zn 1)Z[J]‘Jzo

7=0 {i1,...,ir}C{2,...,n}

B i (n — 1)
- —1)!
(TL 1) pern]utathnb r=0
5 )

o o

X 5J(11) 0 (mil) 5J(xir)W[J]’J=0' 5T ) T ) [‘”‘Jzo

=1 6J?x2) 5J(6xn) ((&]?fl) W[J}) Z[J}) i’ (2.60)
where in the last line we have used the generalised LEIBNIZ 2! rule,

B (f(@) - o) = Z (") @) rate), (2:61)

extended to functional derivatives. After applying this the result is symmetric in xs,..., %,

and the sum over permutations then just cancels the (n — 1)! factor. Since the relation is true
for arbitrary n it shows that all terms in a TAYLOR?? expansion of both sides of

5 a
5J<x)Z[J}:z(5J(z) [J])Z[J]. (2.62)

around J = 0 are the same and hence this holds for any J. Finally this is solved by

Z[J] = W, (2.63)

This is the relationship between the generating functional for all n-point functions and the
corresponding functional for connected n-point functions.

The overall normalisation of Z[J] is generally chosen such that Z[0] = 1 (which basically
means that (1) = 1) and then W[0] = 0.

In momentum space, all connected amplitudes have an overall momentum conservation delta
function. You can always write

/ddg;1 ceedbry, 2P G(2y) () M = i(2m) 8N (i) T(P1s - D) s (2.64)

where the function 7(p1,...,py,) is defined only for ). p; = 0, and so basically is a function of
n — 1 momenta. In the case n = 2, we have 7(p, —p).

21Leibniz, Gottfried Wilhelm von (1646-1716)
22Taylor, Brook (1685-1731)
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2.2.3 One Particle Irreducible Graphs

A connected graph is one particle reducible if it can be made disconnected by cutting one
(internal) line; otherwise it is one particle irreducible. For example, the graphs

are one particle reducible, whereas the graph

is one particle irreducible.

As we have seen it is convenient to consider connected graphs only. We notice that since all
one particle reducible graphs can be formed from one particle irreducible graphs, we can also
consider one particle irreducible graphs only.

Now construct a generating functional for one particle irreducible (short: “1PI”) graphs; we
will call it I'. We seek to find a relation between W and I' to have relations

Z[J] < W[J] & T[] (2.65)

The relationship between W and I' is a little more complicated than the one between Z and
W. Assume we have W[J], which is defined for any J(x); then a TAYLOR expansion will give
(p(x1) ... d(xn))conn.- We define

((x))s = =: p(z). (2.66)

We assume that there is an invertible relation between ¢ and J, so that we can express ¢ = ¢(J)
and J = J(p) (this is non local so that ¢(z) does not just depend on J(z)). Let us also assume
that if J =0, then ¢ = 0. Then define I'[¢] by

WJ] + Tl = / ' o(a') (). (2.67)

To see what this means, let us differentiate with respect to ¢(x):

5J(z)
dp(z)

Il = J(x) + / de’ (') (2.68)

* S ()
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The first term on the left is, by the standard chain rule,

Wi = / gty SWIILOI @) / a0 o(a) ) (2.69)

op(x) 6J (") dp(x) op(x)
So it cancels with the second term on the right and we are left with
0 Clp] = J(x). (2.70)
dep(x)

The relationship between W and I' is sometimes called a LEGENDRE?® transformation. (You
encounter this in thermodynamics, for example; consider the relationship F' +» E between
free energy and energy. Given the energy E(S) as a function of entropy, we can define the

temperature T by T = g—g and make a LEGENDRE transformation

£(T) = E - TS, (2.71)

so that g—g =-5.)
T[] is the generating functional of one particle irreducible graphs.
We need to find a formula for %(m) in terms of %(y). We use the chain rule to obtain

) B op(y) o B (52W[J] )
/ & / Y ST@eI ) i

5J(x) doly)

)
=i [ dy Ga(w,y)——, :

5o(y)
with the definition

N 5
(=9) 16J(x1) 5T ()

Gn(z1,...,2pn) = wlJ], (2.73)

so that G (x1,... 7xn)|J=0 = (p(x1) ... ¢(xn)>£l}2m . We also introduce the notation

0 5
dp(x1) " dp(zn)

Now we claim that T'[¢] generates one particle irreducible graphs, i.e.

= <¢($1) s (b(xn»conn.,lPI . (275)

Tn(z1,...,2,)
@=0

By using our previously derived formula, we note that

d —z—(sJ(Z)—i d z 76 z
2
:i/ddy G2($,y)(w<;§wr[¢] = */ddy Ga(z,y)l2(y, 2) . (2.76)

Now, Ga(x,y) and I'y(z,y) are essentially like matrices with continuous indices z,y, z; then
§%(x — z) is essentially the unit matrix. This shows that

Gy =-T5". (2.77)
For further calculations, introduce pictorial representations. Represent GG,, and I';, by

1

23Legendre, Adrien-Marie (1752-1833)
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where we write W for G,, and T" for T',, respectively. We have shown that

SO CoS)

Note also that from the above formula,

Note that —i% adds an external line to G,,, while %(y) adds an external line to I';,. Therefore

N N

0J ()
(w8 ( ) )1
mwe

where we have generalised the standard result for matrices

dyr1_ a1 d ~1
d)\M =-M d)\MM ) (2.78)
to infinite dimensions, so that
) _ 1009 (u,v)
—(-T L= [ q%udiT 12225 Jp
iy (Taw2) ™ = [t o SR . 2)
= /ddu d% Dy (y, u) T3 (w, u,v)y(v, 2) "
= /ddu d% Ga(y, u)T3(w,u, v)Ga(v, 2) . (2.79)
This gives
)
Gs(x,y,2) = —szz(y,z) = /ddu d% d%w Go(x, w)Go(y,u)s(w, u,v)Ga(v,2), (2.80)

expressing G5 in terms of I'3. This can be extended to higher values of n, for instance in

diagrammatic terms for n = 4,
.0 _ —
—— = =
0J(x)
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+ 2 others +

In the first graph, and its two partners, we
can substitute for the W bubble with three
external lines using previous results. If this
is done all graphs on the right-hand side are
then one particle reducible graphs.

2.2.4 Tree Approximation

If Feynman graphs with loops are neglected there is a very simple expression for the generating
functionals W and I" in terms of the original action S. We start from the functional integral
result

Z1] :‘/}ﬂ¢]e%uﬂw+fddeuﬁMxn7 (2.81)

where Planck’s constant is reintroduced. This ensures the exponent is dimensionless if S has
the dimensions of action (ML?*T~!). In the classical limit when loops are discarded i — 0.
The functional integral is then dominated by contributions where the exponent is stationary or

)
Slo ‘ =—J(x), 2.82
RGN (282)
and then v
Z[J] ~ et (Slosl+ [ dlz J(2)ds(x)) (2.83)

Hence setting 7 = 1 again in this limit for zero loops

mmmm:swﬂ+/ﬁ%J@wﬂm. (2.84)
It is easy to see that
O W© = ¢, (2.85)
§J () ’ '
and therefore
T @ = -5 (2.86)

2.3 FERMIonic Fields

We proceed to FERMIonic?* fields and will develop a formalism to define a quantum field theory
for FERMIons in terms of path integrals. The critical difference to Bosonic?® fields is that
FERMIonic fields anti-commute, which is necessary for consistency with relativity and locality.
We know how to define functional integrals for BOSonic fields, and we want to construct a
framework where we can look at functional integrals in a similar fashion.

To do this we first discuss functions of a finite set of anti-commuting or GRASSMANNZ0
variables {6;}, i = 1,...,n, which satisfy

0,0; + 0,6, =0, (2.87)

24Fermi, Enrico (1901-1954), Nobel Prize 1938
25Bose, Satyendra Nath (1894-1974)
26 Grassmann, Hermann Giinther (1809-1877)
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for all ¢ and j. It follows that for all 4
07 =0. (2.88)

Apart from anti-commuting GRASSMANN numbers form a vector space, they can be added and
multiplied by conventional numbers a so that a6 = fa and since multipliction 6;6; is allowed
mathematically they form a ring.

It follows from 62 = 0 that any function f(#) is a finite linear sum

1 1
f(Q) =a+ a;0; + §aij91‘0j + ...+ Eail_“inﬁilﬂiz R Qin R (289)
where we can take the coefficients to be totally antisymmetric, i.e. a;; = —aji, aijr = —ajix =

aji; etc.

We can also define a differentiation operator % that also anti-commutes

0 0

—0;+0,— =0d;; . 2.90

801 J + J 891 ) ( )
We further need to extend the notion of integration to GRASSMANN numbers, requiring that for
any function f(#) it is linear, translation invariant and gives an ordinary number depending on

o0
f. (We only consider analogues to integrals over all [ dx f(z).) By translation invariance

we must have B
/d@ 0= /d& 0+ 6y), (2.91)
which means that

/d9 =0. (2.92)

We can choose a normalisation such that

/de 6=1. (2.93)

In consequence, we have for any function

0
/d9 (0 +08) =b= 1 -(a+10), (2.94)
so differentiation and integration is much the same, at least in this case. For n variables 6; we
define an integration measure

4" = db,, db,,_ ...do . (2.95)

Note that since
do;db; = —do;do; , (2.96)

which is necessary for consistency, the order of the differentials is important. So for a general
function f(0),

1
/dn9 f(Q) =ai2.n = Eﬁim...inailig...in s (2-97)

where ¢;, ; is the n-dimensional antisymmetric symbol with €12, = 1.27 Equivalently, we

can note that

It is easy to see that with these definitions

ngy 0 _
/d 0 5510 =0, (2.99)

and hence we can integrate by parts, taking into account the anti-commuting properties of the
derivative.

27This is the higher-dimensional analogue of the famous “e;51 ", of course.
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For a change of variables 0] = A;;0;, where A is an (n X n) matrix:
/d"@ f(A0) = /d"ﬁ a12..nA1iy - Api, 0i, ... 0y
=a12. nAtiy - Ani, €iriy..i, = (det A) - a1, ., = detA/d"H f(@). (2.100)
Let us consider this in terms of ' = A6:

/d"@f(Q’) = detA/d”&'f(Q’), (2.101)
so we obtain the transformation law

a9 = d"(A9) = (det A)'d"6 .| (2.102)

Note that for BoSonic variables,
d"(Az) = det A - d"x. (2.103)

det A is the JAcoB1an?® which appears in this context.

2.3.1 GAvussian Integrals for GRASSMANN Variables
Consider integrals of the following form
/d”@ ez 40300 (2.104)

where A is an antisymmetric (n x n) matrix, i.e. A;; = —A;;, where the dimension n is taken
to be even and we write n = 2m.
To evaluate this we expand the exponential; only the term containing n powers of 6 give

a non zero contribution to the integral, i.e. we only need to consider the mth term in the
expansion:

1
/dn0 G%Aijaiaj = /dne QTTn'Aili?' . Ainfl,;wﬂil A ein

o) itz

A €ir...i, = P (4), (2.105)

7;nflin
where Pf (A) is the PFAFFian?.

There is a relation between Pf (A) and det A: Consider a change of variables § — B = 4
and use the rules for a change of variables to obtain

Pf (A) _ /dnol B%Ai]ﬂ;@} _ (detﬁ)fl /dno e%AijBikakleel — (detﬁ)fl Pt (ETAB)y

(2.106)
(note that A;; BixBj; = (ETAE)M.) This implies

Pf (BTAB) = det B- Pf (A). (2.107)

A standard result for matrices is that we can find a matrix B to put A in a standard form,
namely that (note that BT AB is antisymmetric for any matrix B):

o)
!
S
sy
[
R
o
[
I~

(2.108)

28 Jacobi, Carl Gustav Jakob (1804-1851)
29Pfaff, Johann Friedrich (1765-1825)
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Taking the determinant on both sides we get
(det B)* - det A = 1. (2.109)

Furthermore,

1 1
= WJiliQ NN J’in—lineiln-in = 2mmlm'2m = 1, (2110)

therefore det B- Pf (4) = 1. Eliminating det B from these relations we get

Pt (J)

Pf (A)> =det 4, Pf(A)==4+/detA. (2.111)
We may also extend this to the complex case: introducing Grassmann variables 6; and 0;,
i=1,...,n, where 0; is the conjugate of ;. We treat 6; and 6; as independent and assume the
rule - -
(0i,...0;)=10; ...0; . (2.112)
Furthermore all §; anticommute with all §;. Let B be a (n x n) matrix and consider
/d”& 4@ e%iBii% (2.113)
where the integration measure is defined via
— n — — — — —
are d"o = H db;db; = db,db, ...db,do, = db,do,, ...do1do (2.114)

i=1

for we can move pairs of GRASSMANN variables around without picking up minus signs. What
is nontrivial, slightly, is that 6 is placed to the right of 6 here.
We expand the exponential and keep the nth term:

— =1 - 1
/dngdng 69131',-9]- = /d”@d”@ H(&LBMQJ)” = Eeil-”ine]’l---jnBiljl .. Bln]n = detﬁ

' (2.115)

In general integration for GRASSMANN variables is more an exercise in algebra rather than
analysis and in some respects rather formal. However it plays a crucial part in the discussion of
quantum field theories with fermion fields which include so-called ghost fields in gauge theories.

2.3.2 The FErRMIonic Oscillator

The harmonic oscillator for FERMIonic fields can be described by introducing creation and

annihilation operators lA)TJA) which satisfy
b= (b2 =0, {bb'}=1. (2.116)
The states are built on a ground state |0) which satisfies
bl0) =0. (2.117)

We can define )
1) = bf|0), (2.118)

so that bT|1) = 0, b|1) = |0). We have a two-dimensional space of states which can be expressed

in matrix form:
0) = (é) 1) G); bt = <(1) 8) b= (8 (1)) (2.119)

We define a HAMILTONian

o (000
— Th —
H=uwblb= (0 ) . (2.120)



We now set up a path integral formalism to describe the system. It is convenient to introduce
a GRASSMANN variable 6. Define states

10) = [0) +0|1), (0] = (0] + 6(1], (2.121)

and note that (82 = 0 = 6?)
blo) = 0]0), (B]b" = 6(0]. (2.122)

These are analogous to the states |z) which satisfy a|z) = z|z) for the bosonic oscillator. Now
we want to express the time evolution between these states

(0] exp(—iHt)|0) = (0]0) + 66(1|e~“t[1) = 1 + Bfe™™" = exp(Ahe ™), (2.123)

in terms of a path integral by breaking up the time interval into small increments, just as we
did when we first introduced path integrals. We need a completeness relation, which is given
by

/dé d0 %16)/(3] — /d§ d0 ¢ (|0)(0] + 68/1)(1]) = 0)(0] + |1)(1] = 1, (2.124)

where we dropped mixed terms like #]0) (1| under the integral because they give no contribution.
We can use this to construct the path integral:

(9] exp(—iH1)|0) = / ' do’ % (0] exp(—iH (t — t'))|0')(0"| exp(—i EIt')|6) . (2.125)

This shows how to introduce an intermediate set of states to break up the time evolution into
smaller parts.

2.3.3 Path Integral Formalism for FERMIonic Fields
We want to express the exact result for a time evolution amplitude

(6 exp(—iHT)|0g) = 1 + 06y e~ T = o™ " (2.126)
in terms of a path integral, proceeding in a fashion analogous to the BOSonic case. We write

T = (N+1)e, being interested in the limit N — oo, € — 0. We introduce N sets of intermediate
states and use the completeness relation (2.124) to obtain

(0] exp(—iHT)|6o) = /(H df, db, % (8| exp(— iIAIe)Gr_Q) (0] exp(—iHe)|On)

~ /H d, do, e (2.127)
r=1

where the exponential is

S =

Mz

(6,0, + 6,0, 1€7) + 00 e

%
I
-

Mz

(610, + 6,6, _1(1 — iwe)) + 005 (1 — iwe) (2.128)

%
Il
—

the approximation being valid for small e. We can rewrite this as

N
S=e>_ (wr O =61 _ w9T9T1> — il . (2.129)

€
i=1
Now we formally take the limit N — oo, ¢ — 0; the sum is essentially like the standard
definition of an integral:
T
S — / dt (i()(t) — wib(tye(t)) — iB(T), (2.130)

0
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making the replacements 6, — ¥(t,), 0, — ¥(t.), and where ¢, = re becomes a continuous
variable in the limit and we have the conditions 1 (0) = 6y, ¥(T) = 0. This is now written as
a path integral

(lexp(~iHT)60) = [ ) ) 5, (2.131)

where the integration runs over all fermion fields v (t),)(t) with ¥(0) = 6y, (T) = 0. This is
the FERMIonic path integral.

The path integral can be shown to give the required answer for this free example in a direct
way: expand 1, 1 about a classical path for which the action S is stationary, treat ¢ and v as
independent fields. What are the equations that you get? If you vary v, you get

iWh(t) = wip(t), (2.132)
vary ¢ to get (using integration by parts)
—ip(t) = wip(t). (2.133)

We can write down the classical solutions

Ve(t) = Ope ™t Po(t) = fe =), (2.134)
It is an exercise to substitute this in so that the result for the action is
Se = S[the,be] = —i0p(T) = —iffge 7T . (2.135)
Now use the expansion

D(t) = ve(t) +E(1),  D(t) = e(t) +£(2), (2.136)

and the fact that S is stationary for the classical path (s. above discussion for the BOsonic
harmonic oscillator), to state that

S[, ] = S[tbe, vhe] + S[E, €] - (2.137)

Then the path integral will become
/d[qm d[w] ez‘S[i/mZ] — eiSe /d[é] d[‘f] eis[g,g_]_ (2.138)

Note that the integral is independent of fy, § and basically a constant so that it can be defined
to be one. This will yield the result

/dw_}} d[w] eiS[wﬂZ] — eiSe — 1 + 0_00 efin, (2.139)

and we have reproduced the result derived before.

Note that we can rewrite

T
(w0 = [ dt oDw - 6u(T) (2.140)
0
where D = —i% +w, which is essentially the DIRAC3? operator in one dimension. The integral

that we have defined to be one is then generally equal to det D.

Let us briefly generalise this to field theory; the essential idea was already contained in the
simple example before. We are interested in integrals of the following form

/d[z/?] dy) e, §= —/ddx YD, (2.141)

30Dirac, Paul Adrien Maurice (1902-1984), Nobel Prize 1933, St. John’s
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where the generalisation is that the DIRAC operator in d dimensions is

D=v-0+ml, (2.142)
with the DIRAC matrices v* satisfying
{" "t =2n"". (2.143)
(Note that in the convention used herein, n°° = —1, % = §%.) As before,
/ d[Y] d[yp] e = det D, (2.144)

and for the free theory we may choose the normalisation such that det D = 1.

2.3.4 Canonical Treatment
For the simple fermionic oscillator the Lagrangian is just
L=i)—wi, (2.145)

and we may define the canonical momentum associated with 1 by

OL -
= — =—iv, 2.146
Py =73 7 Y ( )

and Hamiltonian ) -
H=pyp—L=wyy. (2.147)

In a quantum treatment 1, ) become operators with anti-commutation relations at equal times

{9} =1. (2.148)
In this case .
H=wyp, (2.149)
and o R NS ~
[H,¢] =-w, [H,¢| =wip. (2.150)
2.3.5 Propagators
This is the situation for free fields. We define a propagator
_ 1 _ _ ,
ISk ( = Pas = (a@)30)) = 15 [ dIF) Y] Gal@)Bsly) ¢ (2.151)

where S is the FEYNMAN propagator for FERMIons. Let us follow the same procedure which
we considered in the BOSonic case to derive the form of the propagator. Apply the DIRAC
operator to the propagator, suppressing spinor indices:

1

_ _ 58 .-
D@ = g [ 9] A 5 0)

_ 1 7 . 0 s\

~ g [ W] ) (e ) ot

_ 1 7 s 0 5

= g5 0 ] i i

=i16%x —y), (2.152)
where we have used the fact that D, ¢ (z) = —%@S and integrated by parts. We need to solve
the differential equation
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and therefore use FOURIER transforms, as before. The FOURIER transform is defined by
Sp(p) = / dz e P Sp(z), (2.154)

which gives the equation for Sp

(—iy-p—ml)Sp(p)=1. (2.155)

To solve that we make use of the identity

(=i p+ml)(~iy-p—ml) = —(y-p)* =m’1 = (—p* - m’)1, (2.156)
so that R
(—p* —m?®)Sk(p) = =iy -p+ml, (2.157)
& —iy-p+ml
S = 2.158
(p) 2 —m? Tt e ( )
The diagrams representing propagators are drawn as before, with a propagator
(¢a(2)vs(y)) = iSr(z = Y)ap (2.159)
being represented by a line
o 5
€ Y
while a propagator B
(s (2)s(y)) = —iSk(y — )5y (2.160)
is represented by
v 1)
€ Y

Besides the Fermion fields by themselves it is necessary to consider operators formed by
products such as 1M1 where M is some Dirac matrix. The electromagnetic current for charged
Fermions is of this form with M — *. We may then consider correlation functions involving
such operators at different points. Even for free fields these are more complicated. For the
simplest case of two such operators we obtain

(W () My (x) P(y) M'd(y)) = tr(MSp(z — y)M'Sp(y — z)) (2.161)

using the above results for the propagators for v (z)v(y) and 1 (y)y(x) where it is also nec-
essary to include also a minus sign to take account of the anti-commuting properties of the
Fermion fields. In calculating this result we neglect contributions involving the propagator for
Y(x)v(z), proportional to Sg(0) which is divergent. In terms of Feynman diagrams this result
is represented by

which describes a Fermion loop. In general for any Feynman diagram with closed Fermion loops
the Feynman rules require that there is an additional minus sign for each such loop.
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3 Operator Aspects of Quantum Field Theory

Many aspects of quantum field theories require and understanding of how the fields and opera-
tors constructed from them act on the space of states formed by all multi-particle states. It is
also necessary to understand the role of symmetries.

3.1 Symmetries and NOETHER’s theorem

Continuous symmetries, which form LIE groups, lead to relations between correlation functions
of fields. To derive these we first consider a crucial result in classical dynamics. NOETHER?!
showed that when an action has a continuous symmetry, there is a conserved current and a
corresponding conserved charge.

Proof
Assume that there is a continuous symmetry of the classical theory. The symmetry transfor-
mations act on the fields such that they transform as

o= ¢ =d+00, (3.1)
for € an infinitesimal parameter. If this is a symmetry this means that the action is invariant
d:S[6] = 0. (3.2)

Now allow €(z) to be a function of z; in that case

5.506] = - [ ' 0,ela)" (0) (3.3)

for some j#, any contribution must involve a derivative of ¢ since for € a constant the action
is invariant (we can always discard total derivatives under the integral, this may introduce an
ambiguity in j# but this is not crucial.) If the equations of motion are obeyed then

0eS[o] =0, (3.4)

for any € because this the action is stationary for arbitrary d¢ when ¢ satisfies its equations of

motion. Hence we must have
auj“ = (3.5)

subject to the equations of motion. A conserved charge is then given by

¢= / a1z 10(a), (3.6)

since Q = — [d* 'z V- j(z) = 0. O
In a quantum treatment the charge becomes an operator such that
Q. d()] = idcp(z). (3.7)

As an illustration let £ = —0"¢*0,¢ — V(¢*$). This has a symmetry corresponding to U(1)
transformations d.¢ = iep, d.¢* = —iep™ and the corresponding conserved current is then

JH =1i(0Mp* ¢ — ¢* 0 ¢). In this case [Q, (}5(56)] = —¢(2).

3.2 WARD Identities

In a quantum field theory there are Ward®? identities associated with symmetries for correlation
functions. In general we consider

() = 5 [ die) X(@)es, (39)

31Noether, Emmy (1882-1935)
32Ward, John Clive (1924-2000), unfortunately no Nobel Prize
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where X (¢) is a function of the fields, e.g. X (¢) = ¢(x1)¢(z2).... Let us suppose that under
the transformation ¢ — ¢',
X X' =X(¢)=X+6.X, (3.9)

and since the functional integral does not depend on the choice of variable

/ dj¢] X' 5] — / d[é] X e519]. (3.10)

We then expand the left-hand side in €, assuming invariance of the measure d[¢'] = d[¢], with
the implications,

/ d[¢'] X' eS19'] = / d[¢] (X + 6.X)et51e] (1 —i / ddx 6Hej”) +0(e?), (3.11)
and this then requires
(6.X) = i/ddz Dye(x) (5" (x) X) . (3.12)
Taking a functional derivative with respect to e(z) on both sides, we obtain a WARD identity
d (0.X) = —i0,(j*(x) X) (3.13)
Se(z) " J ' '

WARD first emphasised this in a particular example in quantum electrodynamics where it played
a crucial role in understanding renormalisation since it showed two divergent renormalisation
constants were equal. Integrating over z, we obtain

§
d — =
/d x 5e(@) (0.X) =0, (3.14)
or for constant e,
0
5 (8X) =0. (3.15)

This argument, however, is by no means watertight. It may fail for two reasons, which are
essentially related;

(i) we assumed invariance of the measure d[¢] = d[¢'];

(ii) the functional integral is not defined without regularisation, and you have to check whether
the regularisation also satisfies the symmetries otherwise this might lead to anomalies.

3.3 Energy Momentum Tensor

In any relativistic quantum field theory the energy momentum tensor plays a crucial role. From
it the momentum operator, the angular momentum operators and the generators of Lorentz
boosts can be constructed. The Noether procedure can be adapted to determine the form of the
energy momentum starting from an action which is invariant under translations and Lorentz
transformations.

First we consider just translations. For a translation invariant theory the action is invariant
under under infinitesimal translations so that

dap = a0, = 0,5[¢] =0, (3.16)
for constant infinitesimal d-vectors a*. If a* is allowed to depend on x this implies

52S[¢] = — / e B, () TV (). (3.17)

and as before when the equations of motion are satisfied so that S is stationary then T*#, is
conserved and the momentum operator is defined by a spatial inteegral

0,T", =0, P,= /dd—lx T°,(x). (3.18)
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However in relativistic quantum field theories the energy momentum tensor should be sym-
metric O* = ©Y# as required for coupling to gravity. To construct ©#” from S we must also
consider Lorentz transformations. In general these act on the fields according to

0 = why a0, ¢ + %w‘“’sw(b, Wy = —Wyp (3.19)

where s, = —s,, are the spin generators acting on ¢. These are matrices satisfying the
commutation relations

[SW” Sap] = Nuo Svp — NMvo Sup — NMup Sve + Nup Spo (320)

so that
(0w 0 = 00 0 ) = Oy 1@, [ WPy = W ow?, — wHow',, . (3.21)

Lorentz and translation invariance ensures that the lagrangian density £ is a scalar so that
0o L(¢,00) = v"0,L(p,00), () = ap +wpp ¥, (3.22)

where §,¢ is defined by combining d,¢ and d,¢ and §,0¢ = 9(6,¢). Note that

Opvy(z) + Oyvyu(x) =0, (3.23)
so that v, () is a KILLING vector. For general v,(z) and w,,(z) = —w,,(z) then we can write
8v.0S[¢] = — / A"z ((Opvy + wyw) TH + Ogwpy XTH), XM = X7V, (3.24)

so that when v, = a, +w,, 2% with a,,w,, constants then S is invariant. This determines 7"
but it is not in general symmetric. However if we define

O = TH — 9, (X1 — XV 4 XV, (3.25)

then since
/ddm Opvy Op (XTHY — XMV 4 XVH9) = — /ddz (050,01 — 0,050, + 0,0,05) X =0
/ A Wy, g (XTHY — XMV 4 XVHT) = — / A% Opw,, XM (3.26)
the invariance condition becomes
OpwS[d] = — /ddx (0pvy + wp) OF. (3.27)

For ¢ satisfying the equations of motion 6.5[¢] = 0 for any d¢ so that then 6, ., S[¢] = 0. Since
v, (), wy (x) are arbitrary this gives, subject to the equations of motion,

(0.0 =0, e =e. (3.28)

If we define
MY = gl — YO | (3.29)

then the symmetry and conservation equations imply

O M7 =0. (3.30)
Alternatively let
Jiy=v,0" = 0,JI'=0 for v, aKilling vector. (3.31)

This allows us to define the Lorentz generators by

M = / di=ty MO (3.32)
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Ward identities for the energy momentum tensor can be derived in a similar fashion as for
conserved currents. It is convenient first to assume the energy momentum tensor is symmetric
and require

6,S[¢] = — / d%z 0,0, O for 6,0 = v"0.p — $0"” S0 (3.33)
Then the Ward identities come from
(6,X) = i / de 9,0, () (O (x) X) . (3.34)

If v, is a Killing vector this just says that (6,X) = 0. For general v,(x) we may obtain the

Ward identity

5 . pv T
W<6”X> = —i8, (0" (z) X). (3.35)

3.4 Relation of n-Point Functions and Scattering Amplitudes

We go back to the case of just BOSonic fields, having dealt with FERMIonic fields in the last
section. Consider the identity

(B(x1) ... d(xn)) = OT{P(x1) ... P(xn)}|0), (3.36)

where ¢ denotes the HEISENBERG® operator fields.
We would like to be able to talk about scattering amplitudes, which are measurable quantities:

2 particles — many. (3.37)

First of all, we need to find a representation for the case of two particles (¢(z1)¢(z2)), which
incorporates standard field theory and LORENTZ invariance. We use operator methods and
look at the operator fields ¢p. We have the momentum operator

Pr = (H,P), (3.38)

with the commutator o R
[P, ¢(x)] =i0,¢(x). (3.39)
In a sense, you can always solve this in terms of the field at the origin

@(x) = exp(—iP - 2)p(0) exp(iP - z). (3.40)

We assume to have a complete set of states, such that
1= [n)n|. (3.41)
Consider the following quantity (for a given d-vector p):
[ s lss@l0er = 3 [ dt 0160)n) (nl(z) 0)e
=2 / d'x ¢ (016(0)|n) (n](0)]0)
= (2m)* Y " 8%(p — Pa)|(n|9(0)[0)?, (3.42)

where P*|0) = 0 and P¥|n) = P¥|n) are used. The summation is constrained by virtue of
the delta function. There will only be a non-zero contribution if p° > 0 since the states have
positive energy; furthermore it is a LORENTZ scalar and it is convenient to write this as

/ dz (01b(0)(x)[0) e = 2mB(°)p(~p?) (3.43)

33Heisenberg, Werner (1901-1976), Nobel Prize 1932
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where 0(p°) is a step function and p(—p?) is a function which can only be non-zero for —p? > 0,
since P,,2 < 0. We also have p(—p?) > 0.
In a corresponding fashion we also have

/ddfﬂ (0l¢(2)p(0)[0)e™* = (2m) Y~ 6%(p + Po)|(nl$(0)[0)* = 2m0(—p*)p(—p") . (3.44)

These results then allow us to obtain a formula for the time-ordered product by inverting the
FOURIER transform:

d

TGOS0 = 27 [ G 7o) (0(=")06) +060(—") . (345)

which combines the two separate cases for 20 > 0 and 2° < 0 together. In order to separate
the dependence on p we introduce another integration variable so that:

< d
(O[T {$(0)b(x)}]0) = 2 / do p(o) / (;’T’;d 50 + 0) (0(—2)0(°) + 6(=)6(—p))
0

(3.46)
It is now possible to carry out the p? integration using the delta function; we get a contributions

for p° = £E, := ++/0 + p?, but only one contributes in each term because of the step function.
This gives

(OIT{(0)(x)}]0) = / do p(o / dd);pl 62;1’ (B(-a%)e™" 100 5") . (3.47)

Note that this expression is almost identical to our expression for the FEYNMAN propagator for
free scalar field theory, so reiterating the calculation we did then we get

d e—ipm
(0/T{B(0)d(2)}]0) = /dap '/(dp . (3.48)

2m)d p2 + o — e

This is a sum of FEYNMAN propagators for different values of m?.
The formula is valid for any field theory incorporating the assumption of LORENTZ invariance
and so on.

We now determine the contribution of a single particle to the sum over states. Remember
that the function p(—p?) was defined by

2m0(p°)p(—p°) = Y (2m) 6% (p — Po)|(n|d(0)[0)*. (3.49)

n

Let \ﬁ> be a single-particle state, satisfying —P? = m? and P° > 0. We use the convention for
normalisation of single-particle states

(P'|P) = (2m)4" Y (2E 5)8¢~ Y (P — P). (3.50)

Suppose that L
(Pl¢(0)|0) = N, (3.51)
where N is a scalar that only depends on P2 = —m?, and so is essentially independent on

P. The contribution to the sum which results from this particular particle may be isolated

explicitly: o
d*—pP 1 =
E |n){n / )= 12E~| ><P|+ (3.52)
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To find the contribution to p(—p?), consider the following integral, obtained by inserting the
above relation into the defining relation for p:

~ d_l — A
S50 = PIISO = [ Gt g 205 = PIPIGO) 0
P

n

1 0

= N2275(p? + m?)0(p°) , (3.53)

= N?(27)

where Ey = \/m? + p2. This requires p(—p?) = 6(p* + m?)N? or
plo) = 6(c —m?)N?. (3.54)

What implication does this have for the time-ordered expression? Consider

o0
PR , 1 N?
d ipr . .
/d x (0|T{(0)p(x)}|0) P = —z/dap(a)p2 e —sz ey +..., (3.55)
0
where ... includes contributions whose singularities arise for —p? > m?. In general n-particle

states contribute to p(c) only when o > (nm)? and these give rise to branch cuts in (3.55) with
branch points at —p? = (nm)?.

Hence single particle states give rise an isolated pole at p?> = —m?, which we express as this as
P P . N?
~N —l——F
p? +m?’

where ~ means that only single-particle contributions are considered.

Let us show how we can now relate the amplitudes including fields to scattering amplitudes.
Consider the integral

/ddac <B|é5(x)|a>conn' AN (3.56)

corresponding to the picture

s

FOURIER transform

of (p(0)p(z)) — 1P

We have an external line corresponding to (}5, with an associated momentum p. The amplitude
contains a factor [ d%z (¢(0)¢(z)) e’ which corresponding to all one particle reducible graphs
connected to this external line. As we have seen, this has a pole for p? — —m? resulting from
the contribution of the single-particle state |p), which is only defined for physical momenta such
that —p? = m?2, to the sum over states. Acting on the vacuum state, to the right or to the left,
the field ¢, in a time ordered product, thus creates a single particle state so that

/ iz G(a)[0) e~ — — | ESO)0),  p° >0,
/ Ol (x) €77 ~ — — ' (0$(0)—) 71, 1° <0, (3.57)
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as p> = —m?2. A similar result holds also when q?) acts on any state |a) to the right, giving
|, P), or equivalently on (8| to the left giving then (8, —p]. Hence for the full amplitude there
are poles at —p? = m? corresponding to an additional incoming or outgoing particle, with
momentum p or —p, so that

/#xwwwwwmww

N{4wmmﬁ;ﬁmaww=%wmmﬁﬂﬂ 0

(3.58)
Alternatively this can be written as
202 2
. 1(p”+m A .
(B, p) = pZEIPmZ % /ddaz (Blo(z)]|a)e®*, p° >0, (3.59)

with a similar result for (8, —pla) when p® < 0. This can be extended to arbitrarily many
initial or final particles. For four the situation looks like this:

The analogous expression is

4
/Hddxl eip-;-zi <¢(x1)¢(z2)¢(x3)¢(x4)>conn. = Z(QW)déd(lel) T4(p13p23p3ap4) . (360)

We claim that the scattering amplitude for physical particles is given by (e.g.for p{,pJ > 0 and
0 .0
p37p4 < 0)

4

1_[(1%2 +m?) 74(p1, P2, P3, P1) - (3.61)
=1

~ 1
—Da, —ou| T\ Dy .D0) = — 1m
< P3, p4| |p1’p2> N4 pf7p§7p§7pi—>—m2

46



4 Calculation of FEYNMAN Amplitudes and Divergences

This is a very broad subject, and there are very complicated methods for very complicated
diagrams. We can only touch the surface here. Let us start with a LAGRANGian density

1 A
L= —10,00"0~ V(o). (41)
The FEYNMAN rules for this theory in momentum space were derived above:

e For each internal line with associated momentum k, add a propagator

1

_ 4.2
k2 +m?2 —ie (4.2)

e For an external line with associated momentum p, add a propagator pz_;ilmz

For each vertex with n outgoing lines, add a factor —V (™ (0).

e Impose momentum conservation at each vertex.

Add a factor —i for each loop and integrate over undetermined loop momenta [ (ng’)Cd.

There is an overall factor of i(27)? times a delta function imposing overall energy-
momentum conservation.

For any graph, we denote the number of internal and external lines by I and F, the number
of n-vertices by V,,, the total number of vertices by V, so that V =3 V,,, and the number of
loops by L.

4.1 Two Key Ideas

First of all let us describe a useful trick which simplifies things, the so-called WIcK?>* rotation.

4.1.1 WIicK Rotation

Note that all propagators have singularities at k? +m? = 0. The actual FEYNMAN integrals
define analytic functions, and one should think of all variables they depend on as being poten-
tially complex. When we get poles in the propagator, these correspond to single-particle states;
branch cuts correspond to multi-particle states.

Let us analyse the nature of these poles:

1 1 -
— E = k2 2 4.3
k2+m?2—ie  —(kO)2+ (E —ie)?’ e (43)

where € has been slightly redefined. This expression has poles at k° = +(E — i), as we can
display in the complex kg plane:

< new contour

34Wick, Gian-Carlo (1909-1992)
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We can rotate the kg contour in a standard way to the imaginary axis
Ky —ikq, where kg is real. (4.4)

You do this for all loop momenta; as long as there are no contributions at infinity you get the
same answer. The propagator becomes

1 1 i ddly
R Rtm  RikRem  iend @
0 d

(4.5)

where [ is any loop momentum. We can apply this to any integration and it simplifies calcula-
tions since all singularities have been removed. However there are slight caveats.

For the rotation to be consistent, we also have to rotate the external momenta to ensure
momentum conservation, so we must require

(pf)? >0, (4.6)
for each external line, and more generally for any subset of external lines
(Xpf)? > 0. (4.7)

WICK rotation changes FEYNMAN amplitudes to integrals over EUCLIDean?® space. We avoid
discussing singularities when we want to determine the form of some amplitude.

WICK rotations go from MINKOWSKI to EUCLIDean space.
4.1.2 Appearance of Divergences in FEYNMAN Integrals

Divergences may arise in integrating over L undetermined loop momenta according to the
FEYNMAN rules. The basic integral we have to consider is (very schematically)

dity 1

where k = k(1) is typically linear in [, i.e. k ~ [ + other momenta. When does such an integral
diverge? Consider for o > 0 the finite integral

rd 1
x
— =Ty, 4.9
/(w+u)“+1 o (+9)
0
This integral is divergent for @ < 0 and the right-hand side expression has a pole at « = 0. We
define the degree of divergence of an integral F' by
D=dL-2I. (4.10)

Evidently, if D > 0, then the integral F is divergent. In order to rewrite D in a slightly different
form, we use Euler’s formula (1.134), that is

L=I1-V+1,

together with the condition
> nVy=2I+E, (4.11)

which states that each internal line is connected to two vertices and each external line is con-
nected to one vertex. First we eliminate I from the definition of D in (4.10) to obtain

D=dL-> nV,+E, (4.12)

35Ruclid of Alexandria (c. 330 BC-c. 275 BC)
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and then combining (4.11) and (1.134) we find

2L = nV, -2V -E+2. (4.13)
n

Now assuming d =~ 4, we add (4.12) and twice (4.13) to get the final result

D=(d—4)L+)» (n—4)V,— E+4. (4.14)

If the number of dimensions d is indeed equal to four, and we only have an interaction term
V(¢) = 552, then

D=4-F, (4.15)
so D > 0 for 0 < E < 4; graphs with more than four external lines are superficially finite,
there may however still be divergences from subgraphs. The important thing to notice here is

that D is independent of the number of loops; this will result in a renormalisable theory. (The
meaning of this word will become apparent in due course.)

In the situation d ~ 3, we get the slightly different formula

D:(d—3)L+Z<;n—3)Vn—;E+3. (4.16)

You can combine the formulae in various ways at your personal convenience, and here we have
combined them in a way that brings out the point we want to make. For d = 3 and only a ¢°

interaction we get

D:3f%E, (4.17)

that is a divergence for not more than six external lines. Just as in the previous case, the theory
will be renormalisable.

We can extend this to more complicated theories, e.g.

L~ ¢?0¢ + o7, (4.18)

: : ><
where a vertex of the first type has an associated momentum % because of the derivative

appearing in the LAGRANGian. (We need not worry about the details for this point of view.)
The basic integral is then of the following form:

el ks
—_— 4.1
| i i (4.19)

The definition for the quantity D is now modified from (4.10) to become

which contains vertices

D=dL+Vs—2I, (4.20)

since each three-edged vertex contributes a power of the momentum to the integral F'; elimi-
nating I, we find the analogy of (4.12) is

D=dL—-2V3 -4V, + E. (4.21)
The second equation we need is (4.13), which in our special case now reads
2L= V3+2V, —FE+2. (4.22)
—_———

S anVa—2V
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We can combine these together to obtain
D=(d-4)L+4-F, (4.23)

and so D =4 — FE in the case d = 4. This corresponds to a gauge theory.

For completeness, let us give one example of a non-renormalisable theory: Consider an
interaction of the following form

L~ ¢"2(0)?, n=23..., (4.24)

which is indeed what you get when you apply the standard rules of quantisation to gravity. We
have vertices with an arbitrary number of lines, with two associated momenta:

kk
The basic integral
ddLl kQVn
—_— 4.25
/ (2)dL |21 ( )
has the degree of divergence
D=dL+2V, -2 =(d—2)L+2. (4.26)

Any graph in this example is divergent if d > 2, and D increases with L.

A few comments:

e For a renormalisable theory, if vertices of a certain type are present, e.g. V5 for d = 4, the
degree of divergence is reduced. But for other types of vertices, e.g. if V5 # 0, the theory
becomes non-renormalisable.

e It is possible that D < 0 for a graph but that there are subgraphs with D > 0; then there
are sub-divergences. For instance, consider ¢* theory in four dimensions and a graph with
external lines, so that D = —2:

There are subgraphs

which have D = 0 and are divergent.

We now consider ¢* theory in four dimensions and one- and two-loop graphs. The number
of external lines E must be even for any graph in this theory. Vacuum graphs (E = 0) may be
disregarded. Hence it is sufficient to consider just graphs with two and four external lines to
get all divergences.

The one-loop graphs we find are
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X O

whilst the two-loop graphs with F = 2 are

- 4 ao

where the last one is one-particle reducible corresponding to two one-loop integrals; and finally

for £ =4 we get

4.2 Regularisation

The critical thing to realise is that divergent integrals are meaningless; for unambiguous cal-
culations, it is necessary to remove the divergences. They arise when the momentum goes to
infinity, so we need to suppress the large k contribution to the integral. There is no unique
prescription how to do this, and in the end, the exact method does not matter since they all lead
to the same result. Different methods however may be more or less useful in doing calculations.

A simple procedure is introducing a momentum cut-off, after WIiCK rotation,
K? < A? (4.27)

in all integrals. This is not very good in general because it produces more complicated integrals.
Furthermore it is not systematic and does not respect the translation invariance (kK — k + ko)
of infinite range integrals.

There are some desirable requirements for a regularisation scheme. A good regularisation
should

(i) be valid for arbitrary FEYNMAN graphs, to all orders of perturbation theory;

(ii) respect the basic symmetries of the theory (this is very desirable), e.g. LORENTZ invari-
ance;

(iii) ideally be applicable outside perturbation theory since quantum field theories are not just
a perturbation expansion.

We will now consider one particular process which will work at least in some theories. We
modify the LAGRANGian

1 0?
L= 758’% -P (A2> Oud —V(g), (4.28)
where P is some polynomial satisfying P(0) = 1. Suppose that the potential is of the form

V(p) = %m2¢2 +0(¢4%). (4.29)
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Note that the propagator is the inverse of the quadratic part of the LAGRANGian, so we can
actually write down what the propagator is. After a FOURIER transform which transforms
—0% — k2, we get
1 1
k;2P(/’§—22)+m2 (kQ)thl

where we suppose that P is a polynomial of degree h. As A — oo, we recover the original
propagator

for large k, (4.30)

1
k2 + m2
For a finite value of A the divergences of FEYNMAN integrals are suppressed. To demonstrate

this, we can consider a simple example; we set m = 0 and P(/k\—z) =1+ f\—z and obtain the
propagator

(4.31)

N SR S O U ws2)
2(1+5) k2 A1+ 5
The first part of that corresponds to a (physical) particle; the second part has a pole at k? = —A2
with negative residue, and so it is not a physical particle! Because of the wrong sign appearing
in the propagator, you will get negative norm states and thus the theory with P # 1 is not a
physical theory. We need to take the limit A — oo to get a physical theory.

This method is complicated to calculate.

4.2.1 Dimensional Regularisation for One-Loop Graphs

Another method that is frequently used is dimensional reqularisation: Consider the theory in
d dimensions, where the number d is a complex parameter. We can extend FEYNMAN graphs
to arbitrary d, and the critical thing is that we will find that D < 0 for sufficiently small d. We
will define the FEYNMAN integrals by analytic continuation in d.

Let us first consider a more mundane example which will be useful for later calculations.
The Gamma function is defined by

INa) = /dac e, (4.33)
0

This is finite (i.e. well-defined) if Re @ > 0 and diverges for Re o < 0. But there is a standard
procedure by which we can extend the definition to allow for an analytic continuation: rewrite
the integral as

1 T d 1 1 T 1

INa) = S /dm (dxxa> e’ = o [xae_z]go + o /dm x%e " = aF(a +1), (4.34)
0 0

where we used integration by parts and assumed the surface term vanished since Re a > 0. But

since I'(aw + 1) is given by a finite integral for Re @ > —1, we can use this relation to extend

the definition of I'(a) to the region Re aw > —1. Since I'(1) = 1, we get

D(0) ~ao (4.35)

There is clearly a pole at a = 0 which reflects the divergence in the original integral. For
applications later it is worth noting that the Gamma function may be expanded

o+ 1) = 70— Tyna(-D4 ¢k ak (4.36)

where 7 is EULER’s number and ((k) =}, 5, n=k.

We now calculate the FEYNMAN integrals for specific one and two loop FEYNMAN graphs
focusing on those where there are divergencies. We consider only connected one-particle irre-
ducible graphs, which are related to the generating functional I'[p]. We seek to calculate 7, as
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defined by,
/ TT dai 7 (p(1) - .- Bn))eonn 101 = i@TV U pi)Fnlprs- - opa) - (437)
=1

The FEYNMAN rules for the 7,, are

e Consider all connected one-particle irreducible graphs with n external lines.
e For each internal line there is a factor Wlnﬂ

e For each n-vertex add a factor —V;,(0) and impose conservation of momenta for all lines
meeting at the vertex.

e Integrate over the independent loop momenta with
dl d?l
—1 — —. 4.
i) [ e = | G (438)

e Add the appropriate symmetry factor % for the graph.

after WICK rotation.

Note that there are no additional factors for external lines. For divergent Feynman integrals
we need only consider n < 4 and the calculations are manageable just for one and two loops.

Suppose we have a LAGRANGian of the form

1 3
69¢ -

iw‘ . (4.39)

1 1
_ _ - w242
L=—50u00"0 = gm0 924

(The prefactors appearing in front of the interaction terms correspond to dividing by the order of
the permutation group for each term; they ensure that the symmetry factors for each Feynman
diagram are calculated as described previously.) For zero loops the non zero results are just
(using superscripts to denote the number of loops)

75 (. —p) = —p* = m”, (4.402)
2 (p1, 2, pa,pa) = — A, (4.40D)
?350)(17171927173) =—-9g. (4.40¢)

Consider first one-loop diagrams for n = 2; one contribution arises from the diagram

— X p

According to the FEYNMAN rules, it will be given by

(1) B A dik 1
7y ' (p—p) = —5/7(%)(1 ol (4.41)

This is a EUCLIDean integration and the integrand has no angular dependence, which means
we can replace the integration measure by

dk — Sylk|4d|k|, (4.42)

where Sy is a constant prefactor given by

[\

3

oI
U

51:2,82:271',53:471',54:271'2,..., Sd: (443)

=
—~
[S]ISH
~—
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To justify the result for general d consider the integral
d . d
(f) P /ddk e = d/ = de/du wile M = 5y —20  (4.44)
A 2 d
0 0
set A =1 to obtain the result. In consequence, we can say that
S A FIRYE 4.45
) (p7 p) F(%) %/ k2+m2 ( . )
(4.46)

Now in order to work out this integral, we need another trick; we can rewrite

1 (oo}
- —a(k®+m?)
k2+m2—/do¢eo‘ m,
0
The integrals in this example are then just those defining the Gamma function

/da/dk g temalim)
d Y
§ 47T 2

Y (p, —p) =
_ 1 o0 o0
kZZu d . /dOé e—am /du uffl —au
[(3) (4m)2
0

A o0
5 e /da e % . (4.47)

0

Hence we obtain the final result for this one loop graph
1
A ( - g) (m?)% 1 (4.48)

M (p,—p) = 2 am?

Note that this result does not depend on the momentum p in any way.
The integral is divergent for d > 2 which is consistent with the formula for the degree of
divergence derived above; this is reflected in that T'(1 — £) has poles at d = 2 and d = 4. To
exhibit these we use the recurrence relation for Gamma functions to obtain
I(x+1) 1 9
Ne—1)=———<=——¢e""77(1 (0] 4.49
o) = -l o), 19
in the limit z — 0. Now let us consider
d=4—¢, (4.50)
where in due course we will take the limit ¢ — 0. Then we can use this expansion to rewrite
d 2 1 9
r{i-¢ _F(f—l) _< ’575<1 ‘io 2), 451
(1-5) -1 2o (142 o) (451)
(4.48), which gives the asymptotic expression for 7 as € — 0
2\4-1
1 A 2
(M) —1e 51653 2 ( +1 logm2> JeT74x]7e . (4.52)

(1) 1 (2 )
p,—p) ~ A (-
P =p)~ 572 (47)%
In this result the divergent part, as a pole in ¢, has been separated from the finite part. This

2
is true generally using the method of dimensional regularisation for FEYNMAN integrals; the

divergencies which may be present are reduced to poles in ¢
A rather more non-trivial one loop example corresponds to the graph
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—-p
+p
for which the associated Feynman integral is
d
(1) 15 d®k 1 4
—-p) == . .53
Ty (p’ p) 29 / (27T)d (IC2 +m2)((k+p)2 +m2) ( )
To evaluate this we use -
—= [dae™ ™ .
- / ae (4.54)
0
(4.55)

AR oy (2 )= aa(p)Pm)

to rewrite the expression as
)= 50" [ o [ |
—p) == o o
P, =P) =59 1 2 | Gy
0 0

The exponent is then simplified by completing the square,
P’ + (a1 + Oéz)mz) ) K

A1)
(4.56)

2
(0]

=k +
a1+a2p

102
_ k/2
((011 + 052) + o T g
Now we can shift the integral d?k — d?k’; there are no surface terms when d such that the
integral is finite. The basic integral we need becomes
dik’ / 1 1
/ d 67(a1+a2)k = d 4 (4'57)
(2m) (4m)2 (g + ag)?
and using this
(o) o0
1 1 1 2192 12 () tag)m
75 (0, —p) = 50" — /dal /do@ ;e mrragp (erbeam?, (4.58)
27 (4m)2 (a1 +ag)2
0 0
The divergences which are present when d = 4 arise from the singular behaviour of the integrand
as a1, as — 0. These may be exhibited explicitly, and the result reduced to a single integral,
by making the substitution
a1+ as=s, o) = sa, az =s(1—a), (4.59)
(4.60)

where 0 < s < oo and 0 < a < 1, and
doy dog = sds do .

(4.61)

Hence we obtain

vl

1 o)
: /da/ds 51— e=s(al-a)p*+m?)
0 0

(1) 1
75 (p,—p) = 592 =
(4.62)

The s integral gives a Gamma function so the result becomes
p 1

1 1 d_

2 F(22)/da(a(1a)p2+m2)2 2

For d = 4 — ¢, we want to find the leading terms as ¢ — 0, if we are interested in the theory
(4.63)

in four dimensions. We use the asymptotic form for z — 0
1
[(x) = —e"* (1 + 0(502)) ,
x
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to obtain

g (2
1672 \ ¢

R 1
1 (p,—p) ~ 3

- /da log (a(1 — a)p® + m?) [e"4m]3° . (4.64)

Again this is expressed in terms of a divergent pole term and a finite part. In this case the
integral depends on the momentum, but the divergent part does not.%

Now consider n = 4, a ¢* interaction and only one-loop graphs:

1 D3 D1
p1 k+p P3 p3
+ +
D2 k 4 » Pa
2 Y2\

In this case we need to consider

d

(1) 1.4 d®k 1

74 (P1, 2,3, p1) = E f)\/ < 5 5 5 5, (4.65)
P=p1+p2, p1+p3, p1+pa 2 (2m)® (k2 +m?)((k + P)* +m?)

where the sum corresponds to the three one-loop graph contributions. The divergent part of
the integral follows from previous calculations,

2
(1) L3 A2 4.66
Ty (p17p27p37p4) ) 167'('2 c . ( . )
Other graphs are finite, for example
while these graphs with one three- and one four-point vertex also have a divergence
The divergent term will be of the order
3 g\ 2
2 2 4.67
21672 ¢ (4.67)

There is also a one loop graph with one external line

p=0

360ne should be concerned that we take the logarithm of a dimensionful quantity; we will come back to that
later.
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and the associated integral gives

. 1 dik 1 m?
Tl(l)(O):—*g/( ~ (4.68)

2 2m) k2 +m2  16mw2e
Let us summarise the above one-loop results for the n-point functions %,(Ll)(pl, .eyPn), NE-
glecting the finite parts:
#9(0) ~ 16;26 gm?, (4.69a)
75V (p, —p) ~ 16;26 (Am?* + ¢%), (4.69b)
Y (p1,p2,ps) ~ ﬁ 39X, (4.69c)
7 (pr, p2, D3, pa) ~ 1671r2€ 302, (4.69d)

If we had introduced a cutoff A instead of dimensional regularisation then we would effectively
replace L by 1 logA?.

The essential claim is, in a quantum field theory arising from a LAGRANGian L, these
divergent contributions can be cancelled by adding new terms to the LAGRANGian. When you
first meet this, it may seem rather arbitrary, ad hoc and perhaps unremarkable, but there is
a deep significance in that this can be carried out consistently to all orders of perturbation
theory. The additional terms added to £ are termed counterterms and have the form

1
Lt = —Aiama“aﬁ — Ve (9), (4.70)
where V.. is a local potential expressible in this theory as
1 1 1
Ver (#) = Bo+ 5B6? + 206 + 57D (4.71)

For each term in L. there are extra vertices which generate additional contributions. For
those corresponding to tree-level diagrams we have

%2(0)(p7 _p)c.t. = - Ap2 - Bv %AEO)(pl’pQ’pk‘)”p‘l)C-t- = _D’
#0(0)er. = — E, #” (192, P3)er. = =C. (4.72)

— - <X

We choose the coefficients to cancel the divergences. At this order,

1 1 1
AW =0, BO=_——_m?+g¢%), WV =_—"139\, DY =_—3)2 O = 2
’ Tom2e N +97), 16727 1672 167227
(4.73)
Then %7(11)(]91, ceyDn)t %7(10) (P1,---+Dn)ect, has no pole in € as € — 0 and we may set € = 0 with

a finite result.
More succinctly, all contributions to the one-loop counterterm potential can be written as

1

W=~y (¢)?. 4.74
Ver @)W = 55 5 V"(9) (1.74)
To check that that is the case
1
V(8) = m? + g6 + A0, (4.75)
1
V7(@)* = m" +2m%g6 + (g7 + Am?)¢? + Ag® + A", (4.76)
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and the coefficients in V. (¢)™") of ¢, %q’)Q, %¢3, i¢4 match with EM, BO ¢ DM above.
The LAGRANGian L + L. ;. then ensures that all one-loop graphs are finite.

Let us make some remarks:

(i) B,C,D and E are arbitrary to the extent that finite pieces can be added, but keeping
just the poles in ¢ gives a unique prescription. This is in a way arbitrary, but sufficient.

(ii) If V(¢) is a polynomial of degree four in ¢, then so is V" (¢)2. As will be apparent later
this is crucial in ensuring renormalisability of this theory.

4.2.2 Dimensional Regularisation for Two-Loop Graphs

To show how divergencies can be consistently removed we need to proceed to higher numbers
of loops, L > 2. The result that Feynman integrals can be regularised in a fashion consistent
with the general requirements of quantum field theory is no longer almost a triviality but
requires a careful analysis of the divergencies and also sub-divergencies in Feynman integrals.
In terms of calculations, one-loop diagrams are fairly easy, sometimes calculating two loops
is also straightforward, but just requires more work. Of course when quantum field theory
calculations were first done in the 1940s, even one loop seemed to be hard, but now we know
many techniques of how to do this.

Consider now %2(2)(}9, —p) with just a ¢* interaction V(¢) = i)@‘l. There are basically two
two-loop diagrams:

The contribution of the first diagram, after WICK rotation, is given by

L@, _ Lo [ d% 1 / | A
72 (P =P)a = A /(27r)d k2+m2)2 ) @mdiZ+m? (477)

The two momentum integrals are independent so we can use

i1 dl T 2 1
/(27rdl2+m2 /ae 7
0

= %r (1 - d> (m2)51, (4.78)

as previously, and also

d'k 1 ) k1
/(%)d (2 +m2?)?~  om? / (2m)d k2 + m2
1 d 2\ -2
“anl (2-3) ot )

Both are expressible in terms of Gamma functions and hence we have the result

d 2
A(2) ,12 1 7@ 7@ 2d73712 1 F(Q_E) 2\d—3
Ta (pa p)a - 4/\ (47T)dr (2 2> r <1 2 (m ) - 4>‘ (471_),1 17g (m )
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Setting d = 4 — ¢ and using T'(§) ~ e~ 2%(2 + O(e)) we obtain

) A2 (42N
72 (p,—pla ~ — mgm17O < - 5) e~ 4]

4(4m)4 2
A2 1 1 1 _ e
= g (g~ plown®) e sy

This has a double pole at € = 0.

Since the initial Lagrangian has been modified by the additional term L. ; which generates
the counterterms necessary to subtract the divergent pole terms for one loop Feynman integrals
we must also consider Feynman graphs involving vertices generated by this. With g = 0 at this
order we need consider only

1 1

-B¢® + —D¢*. 4.82

589"+ 5, D9 (4.82)
For one loop graphs with two external lines and to first order in B, D we have

B

The corresponding integrals are

d d
(1)) _ :lBu)A/dk 1 71D<1>/dk# 4
o (P =P)er. = 5 @ 2 T2 2 e (4.83)

Let us write D) = %D(l) + %D(l) and for the moment keep only the %D(l) term (the re-
maining %D(l) will contribute elsewhere). The one-loop contributions from these counterterms,
with the previously calculated results for B, D) are then

N 1 Am? dek 1 1 A2 k1
T()(p _p)ct a=— 5 A -3
2 T2 16m2e (2m)d (k2 +m?2)2  216n2e | (2m)d k2 4+ m?2

2,2 2\—%
:lx\m (m)d r 2_@ 1 1
216m2%e (47)% 2 1-4

Nm2 /2 1 1 .
~——— S5 4+ — — Zlogm? ) [eV4r]2°. 4.84
(4m)* (52 2 ¢ 8" ) [e™74r] (4.84)
Taking everything together we get
. . A2m? 1 )
72(2)(197 —P)a + 7—2(1)(197 —D)etoa ~ W? + finite terms. (4.85)

In this result there are no %log m? terms - the residue is polynomial in A and m?.

The calculation for the second graph is more complicated, so we will only sketch this:

p—k—1

The corresponding Feynman integral is

.(2) 1., Ak d9l 1
72 (P Pk = A /(Qﬁ)d el 2+ m2)(E+ ) (p—k— 2+ m?) (4.86)
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There are sub-divergences as k — oo for finite [, as | — oo for finite £ and as k — oo for finite

k+1
There are various ways in which we can treat this integral; to work this out in full is pretty

complicated. First consider the ! integral:

M\Q. l\')\&

1

a_
/da a)p”® +m?)? 2 P =p—k.
0

/ 4 1 B
@m)d 2+ m?)((p — D2 + m?)
(4.87)

If this is then inserted into the k-integral the result is a bit messy. We therefore consider the
special case m* = 0, which allows the integrals to be done completely. Then

1
dl 1 re-4) 4 g
= Ko(?)2?, K :/d 1—a))272. 4.88
/ 2m)d 2(p —1)2 (471_)% a(P)277, d a (o a))? ( )
0
Now substitute this into the initial integral to get
d d
~(2) _ lAF(Q_Q)K/dk i k— 2\4_9 4.89
To rewrite this we may use the standard representations
d 1_d
— = /dﬁ2e—52k2 L T2-9)(k-p)?)° /dﬁl 2o Pilp—k)? (4.90)
and then this implies
oo oo d
~(2) () = })\2 1 K /d /d / A’k gk g1=% By (p—k)? 4.91
7 (p, p)b|m2:0 6 (47r)% d b1 B2 (2r)d e By ‘e ) (4.91)
0 0
so that we can complete the square
B152 b1
K2 4 Bi(p — k)2 = (B1 + B2)k"” + 2, K =k- 4.92
B2 Bi(p — k)* = (b1 + B2) Bt ! Bt B (4.92)
It is now easy to carry out the k’-integration:
1 A2 7 7 ﬂl_i
~(2) 2 _ B1B2 p2
B0 = g g Ko [ a8 [ e P SRS (1)
2 |m270 6 (47T)d (ﬁ 62)
0 0
Now substitute 81 + B2 = s, 1 = 8, f2 = (1 — s)5 to obtain
1 )\2 1 o]
(2 _d —d —sB(1—B8)p?
7'2( )(p, *p)b‘mzzo = EW Kcl/d@2 ple /ds ¥ demsPU=PIp
0 0
1
= b K@ - @) ) [ a A - oy
6 (4)d
0
A2 9
= S 4.94
2 (1672)2e b ( )

noting that, with d =4 —¢, I'(3—d) ~ —%, K4 = 1. This can be cancelled with a contribution

A — 1 /\72 (4.95)
12 (1672)%e
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Another special case which is tractable is to consider m? # 0, but p?> = 0. Following the
same approach as before

X 1 .,I(2-4¢ dik 1 ! a_
77(0,0) = gX° ((47r)32> / 2y kz+mz/0 da(a(l—a)k® +m2)$~2. (4.96)

Writing both factors as exponentials, with integrals over f1, 52, allows the k-integration to be

carried out. The f1, B2 integrations can be treated in the same fashion as previously giving

1
(4m)?

1
#2(0,0), = 6/\2(m2)H Ir'(3—d)Js, (4.97)

for
_d
2

1 1
Jy = / da/ B4 (1 - B+ pa(l — o)) (4.98)
0 0

At this point the integral is no longer in the domain of opening theory, if this were chess, for
evaluating Feynman integrals but it can be carried out in terms of hypergeometric functions.
What is required here however is just to determine the poles in € as ¢ — 0. There is a pole
due to the I'(3 — d) factor but there are also poles coming from Jy. It is not difficult to see
that there is a pole arising from the divergence of the S-integration as 8 — 0 but there are also
poles from divergences at 8 ~ 1 and « ~ 0, 1. These correspond to the sub-divergencies present
in the original Feynman integral. To disentangle these it is convenient to introduce into the
integral expression for Jy

1=1-8)+pa+p(1-a). (4.99)

Each of the three terms which arise are identical. This reflects the symmetry of the original
graph under permutation of lines but can also be demonstrated by considering a change of
variables 8/ = fa+ 1 — 8, 8'a’ = Ba so that 5(1 — B+ fa(l — ) =4 (1 -+ 5'd'(1 - )
and BdBda = 3'df3'da’. Hence we can write

1 1
J2:3/ da/ dB B2 (1— B) (1—B+ﬁa(1—a))_%. (4.100)
0 0
This expression now has a divergence only when S ~ 0 so that Js can be decomposed
1 1 } 9
=3 [da [aset =32 41,
0 0 €
1 1 , 4
Jy = 3/ da/ dgpl=—: ((1 -B) (1 — B+ Ba(l — a)) 2 — 1) , (4.101)
0 0

where Jy is finite for d = 4 since there is no divergence at 5 = 0. Hence letting 8 — 1/

, 1 o'} /8_1 1
J. = d d _ =
2"1:4 3/0 04/1 B((ﬂ—l—i—a(l—a))g 5)
1

:3/da(—loga(1—a)—l):3. (4.102)

The expression for J, then becomes
2
Ja=3 (6 + 1> +0(e). (4.103)
With this result for Jy and applying (4.49) for I'(3 — d) = I'(e — 1) we then have in (4.97)

722(2) (07 O)b =

1 A2m?2 2 3
ez ¢

2 2 —y € .
2 (1672)2 -~ Jlogm > [e™74m]® + finite parts. (4.104)

There is also additional corresponding contribution comes from the the counterterms where
we consider the contribution from %D(l) (since we took account of the %D(l) part previously)
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which is given by

R 1 222 k1 122 1 d
#2(0,0)cr. = /( — F<1—> (m?)

wla.

-1

C 21672 ) 2m)d k2 +m2 21672 (47)9 2
A2 2 1 1

where the integral was evaluated before. Adding this to ?2(2) (0,0)p gives
AMm?2 (11
(2 L (2
720,005 + #2(0,0)e.p ~ g (62 - 25) , (4.106)
and again there is no logm? term left.

If we combine both two loop graphs by adding the results in (4.85), (4.94) and (4.106) the
two loop divergent part becomes

L (2) L (2) A2, ¥m? 2 1
T (pa _p) + To (p7 _p)c.t. ~ _E (].67'('2)26 p°+ (16’/T2)2 ? — % . (4107)

This is the general result as contributions to the Feynman integrals which have been neglected
are all finite when d = 4. Hence the divergences which are present in f2(2) (p, —p), after sub-
tracting sub-divergencies as shown above, can now be cancelled by additional contributions to
A and B, which give a contribution to 7 of the form —Ap? — B. The two loop results, ensuring

that %2(2) is finite, are then determined to be

1 A2 AZm? 2 1
A — -~ B®=_~""_ (2 _ — 4.108
12 (1672)2¢e’ (1672)2 \ &2 2¢ )’ ( )

which involve both double and single poles in ¢.

4.3 Renormalisation and the Renormalisation Group

The results of one and two loop calculations can be generalised to the crucial result for pertur-
bative quantum field theory:

Renormalisation Theorem

If all sub-divergences in a FEYNMAN integral are subtracted, then depending on the degree of
divergence D,

(i) if D < 0, then the integral is finite,

(ii) if D > 0, then the divergent part (i.e. the poles in €) is proportional to a polynomial in the
external momenta and the couplings of dimension D.

(iii) the divergences are cancelled by appropriate counterterms which determine L.y, these
counterterms then generate additional Feynman graphs whose corresponding Feynman integrals
then cancel sub-divergences in higher loop integrals.

For the ¢* theory then 74 has D = 0 and the divergent part is a dimensionless constant
depending only on the coupling A\ while 75 has D = 2 and the divergent part is linear in m?
and p? with coefficients depending on \. For a general potential V (¢) which is a polynomial of
degree four,

D<4-F. (4.109)
We then only need counterterms of degree four in ¢. So we may restrict L. to the form
specified by A and V.1 (¢). In fact, we can write

A= az_i(n)\) s Ven(9) =) ginVn(qﬁ)- (4.110)

n>1 n>1

Vi(9) is a polynomial which depends on V" (¢), V"'(¢) and A, and is of degree four in ¢, e.g.
at one loop
AV 0, v = L prg)) (4.111)
’ et 32m2¢
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The basic theorem is true for any quantum field theory. However, for non-renormalisable
theories, D increases with the number of loops and is not restricted by the number of external
lines. In this situation, the counterterm L. ;. becomes arbitrarily complex with many parameters
as the order of the calculation increases. For renormalisable theories, D is bounded; L. . may
be restricted to the same form as the original LAGRANGian.

Ultimately the theorem demonstrates that the limit

Z[J)ren, = lim [ d[g] e!(SII+Se.r [BD+i [ d'e J@)o() (4.112)

e—0

exists to any order of perturbation theory so long as S.. is chosen suitably. As a consequence
we have finite renormalised connected 1PI functions 7, (p1, ..., Pn)ren.-

4.3.1 Bare LAGRANGians

Let us now restrict our attention to scalar ¢* theory. We know on the basis of the renormali-
sation theorem, as described above, that adding

Lo = ~A30"00,0 — Voo (9) (4.113)

to the initial Lagrangian £ is sufficient to all orders of perturbation theory, for suitable A and
Ve.t.(¢) which is itself a polynomial of degree four, to ensure that the resulting theory determines
finite correlation functions of arbitrary numbers of scalar fields (¢(z1) ... ¢(x,)). Let us define
a bare Lagrangian by

Lo= L4 Low = 7 50"60,6 — V(6) ~ Ve (6), (4.114)

where
Z=1+A. (4.115)

This can be simplified by a rescaling of ¢ to ensure the coeflicient of the kinetic term is the
same as in the initial theory, thus

¢o=VZo, (4.116)

and hence then )
Lo = —53”¢03u¢0 — V(o) - (4.117)

Since A is given by a formal power series in A then v/Z may also be defined as a power series
in A without ambiguity. It is essential that Z > 0 but this is never an issue in perturbation
theory. We also call ¢g the bare field and Vy(¢g) the bare potential which is again a quartic
polynomial.

Now suppose that g = 0, so that

1 1 1 1
Ver(¢) = 5B + 5 Do s Voldo) = 5midf + 5 0060, (4.118)
where \iD 2,
+ 9 M~ +
)\0 = 77 mgy = 7 . (4119)
From the one-loop results obtained so far
A 3\
2 2 2
= 1 MN=M1+—% Z =1 A%). 4.12
o= < - 1671'%) r 0 < * 167r25> ’ + o) (4.120)

The so-called bare quantities m3 and )\ are expressible in terms of the original parameters as
a power series in A with more and more divergent terms or higher and higher poles in €.

The functional integral may be rewritten in terms of ¢g and Lg:

Solo] = / dhz Lo(dy),  dlé] = Nddo), (4.121)
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where IV is some constant, so that

(F(0)) = Zio/d[aﬁo} el F(gy), (4.122)

with Zy chosen so that (1) = 1.

However, we avoided one slight subtlety which we now have to take into account, related
with a dimensional analysis; in the process of regularisation it is necessary to introduce a mass
scale. A cut-off A introduces an obvious mass scale. In dimensional regularisation however it
has not been perhaps apparent, and is slightly more subtle. We extended L to d # 4. This is
something one should worry about, because dimensions change as you change dimension. Since
an action has dimension zero, £ must have dimension d, so that V(¢) also has dimension d,
whereas ¢ has dimension %d — 1. These are ordinary, everyday dimensions. For a potential

V(g) = %m2¢2 + éggb?’ + 2—14>\¢4, (4.123)

this means that m? has dimension 2 as usual while g has dimension 3 — %d and A has dimension
4 — d. In the end the dimension should be four and the physical couplings ¢ and A, which
parameterise the theory, should have dimension 1 and 0, as they would in other regularisation
schemes. This can be achieved by replacing in V(¢) in dimensions d # 4

g— gut, A=A, (4.124)
where p defines an (arbitrary) mass scale. Hence with d = 4 — ¢ we now write the potential
term as

1o 1 £ 43 1
V(@) = 5m™¢" + pguz¢” + 5o Au¢". (4.125)

Correspondingly in the counterterm potential we let D — pD and C' — /ﬁEC .

4.3.2 The CALLAN-SYMANZIK Equation
For simplicity we consider the case g = 0 when the bare LAGRANGian is
Lo = —20" 008,00 — sm36E — o= oo (4.126)
2 " 27070 9y ' '

This depends on m3, \g and ¢ and clearlyLy is then independent of p.

The bare quantities are functions of the finite A\, m?. With the prescription that the coun-
terterms necessary to ensure finiteness involve contributions which are just poles in € we have
relation of the form

0o - 2
1w Ao = A+ Fa(\e), Fy(\e) = Z fg(n ) , (4.127)
n=1
and also
o b (A
mg=m? (14 F2(\e),  Fp(he) =Y E(n ). (4.128)
n=1
Similarly, we can write that
n(A
Z:1+Za(). (4.129)

The finite physical correlation functions depend then on A\,m? and also p which appears

to be more than the bare theory. In fact u is arbitrary but to show this more precisely it is
necessary to consider the relation between the bare theory results, which are independent of p,
and the corresponding finite quantities obtained by the regularisation procedure. Correlation
functions for the bare fields may be defined formally by a functional integral,

1 /d[%] do(21) ... dolay) 090l

GO (5 X0, mg) := (do(x1) - . Po(wn)) = T d[go] etSolel
(4.130)
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where z = (21,...,7,) and the result depends on the bare parameters \g and m2. Since
bo=V72¢
Gz A\, m?, 1) == (p(z1) ... d(xn)) = Z72 G (3 N0, m) , (4.131)

and crucially G, (z; A\, m?, 1) is a finite function of \,m?, with a non singular limit as ¢ — 0.
The critical observation is that this also depends on p since this is a necessary part of the
regularisation procedure. Because bare quantities do not depend on the mass scale p, it is clear

that p
M@Gg(x; Ao,m2) =0, (4.132)

and it follows that

=0. (4.133)

2
Ag,mo

d n
/U‘@ (ZjGn(‘r‘(% )\7 m2a /.L))

By using the standard chain rule this becomes a linear first order partial differential equation.
First define

. dX d 4 d
= u— = u— Ji=u—VzZ . 4.134
B Hanlh Brm2 Haam ‘m%J\o7 YoV ma Vel (4.134)
Then we obtain
0 A0 1o}
- . a n ;>\7 27 = . 41
(1 + B gy + B s + 170 ) Gl A ) =0 (1.135)

This equation will play an important role; it is called the CALLAN-SYMANZIK?" or renormalisa-
tion group (RG) equation. Since G, is finite, i.e. there are no poles in ¢, the quantities Bx, Bz
and 4 must also be finite and have no poles in €. The RG equation follows from perturbation
theory and essentially the renormalisation theorem stated above. Similar equations are valid
for any renormalisable quantum field theory and are assumed to be an exact property.

Let us illustrate how we can determine the functions appearing in the RG equation. By
considering the relation between A and A we have

= — 8}1,76)\0 = *6()\ + F,\)

0

_ u% (A + F(A\2)

d —€
u@(u Mo)|

s 0 )
= 5>\5(/\ +F(\e)) =B+ Brgy - (4.136)

Ao
If we define 3 by .

Bx = —eX+ Ba, (4.137)

then this can be re-expressed as
6] _*€F*(*€/\+ﬁ)iF =c )\2—1 F—BQF (4.138)

A= A Moy = an A A .

Now since F) is given by an expansion in e =", for n = 1,2,..., and since ) has no poles in ¢

the equation is only consistent if

0

Br(A) = /\a 1) fi(A), (4.139)

and in fact B is then independent of €. Furthermore the pole terms, e~" with n > 0, on the
right hand side must cancel which gives

(A5 = 1) 5 ) = BN 1N (4.140)

This recursive relation enables us to calculate f,, () ultimately in terms of f1(A) and Sx(A)
which is also determined by fi(\).

37Callan, Curtis (1942-); Symanzik, Kurt (1923-1983)
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We can obtain similar results from the relation between m3 and m?, \. Taking derivatives
with respect to u:

_ o d oy _ody
0= u@mo‘mg!h —/Jdu (m (1+Fm2)) .
:(B/\Q—i-ﬁ zi)(mQ(l—i-F 2))25 2(1—|-F 2)+m23>\£F 2. (4.141)
oA " Om?2 m m m ox ™

Defining a new function ,,2(\) by

Bz = M2z (N, (4.142)
this gives
0]
Tm?2 = _(_5)‘ + B)\)ﬁFnﬂ — Ym2Fp2 . (4143)

By the same argument as before, +,,2 is finite and so has to be independent of €. It is determined
just by the simple poles in F},,2

0
T () = A (). (4.144)
and also the higher order poles are iteratively determined by
)\ﬂb \) = N+ ()\)2 bn(A) (4.145)
ox ) = e MAN ) I '
The definition of v4 may be rewritten
1 d
= —Uu— . .1
Zg 2”duZ N (4.146)
Inserting Z = 1 + A, this gives
1 d 1, 0
14+ Ay = —p— = —f[r=-A 4.14
(14 Ao = gngeA| = 5hgra. (1147)
which implies
1 0
Yo = 5(—EA+ Ba) Fr A=A, (4.148)
Looking at the O(e%) coefficients gives
1.0
Yo(A) = —5)\5@10\)» (4.149)
and also to O(e™"™)
0 0
)\aanﬂ(/\) = (ﬁ)‘()\)a)\ - 2'y¢()\)) an(N) . (4.150)

Let us consider what happens for one loop for this scalar theory. The results that we
previously derived were

3\2
—ey 3AT 3
w o = A+ T6n2e +O0(N°), (4.151a)
2 _ 2 2
mg=m <1 + T6n2e +O(A )) ) (4.151Db)
which gives to lowest order
Ba(N\) = 3 +0(\?) (4.152a)
MY T 16m2 ’ '
A 2

and we also have v4(\) = O(\?).
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4.3.3 Evolution of Coupling Constants

We consider here solving the CALLAN-SYMANZIK equation but since this may be derived in any
renormalisable theory we consider this in general without restriction to any particular theory.
For simplicity we consider a single dimensionless coupling g with a corresponding S-function
B(g). If we set any mass m = 0 the equation has the generic form

@jﬂ T ’v(g)) G({p}igom) = 0. (4.153)

dg
for G({p}; g, ) a physical function of a set momenta {p} and also of the coupling g as well as
the regularisation scale .

If G is dimensionless, it can only depend on the quotient % for all momenta:

G({p};g,n) = F <{Z} ;g> ; (4.154)

for some function F. Thus we can regard GG as only a function of g and p. It is always possible
to ensure that G is dimensionless by factoring out suitable momenta. The crucial point is then
that the dependence on p, which is physically interesting, is related to the dependence on the
arbitrary mass scale p. For the moment we drop v and be restored later. The basic equation
is then simply

0 9]
— — |G =0 4.155
(“au +B(9) 3g> (9:1) =0, (4.155)
where the dependence on the momenta is left implicit. There exists a standard procedure, the

method of characteristics, to solve this; define a quantity g(u) (which is called the running
coupling) by the requirement that it is a solution of

d
—g = . 4.156
M Bg) (4.156)
This equation can be solved by
g(p) p
g H
—— =log —. 4.157
B(g) Ho ( )
9(ro)

Then the partial differential equation is reduced to

M%G(Q(M),M) =0, (4.158)

which requires that G(g(u), 1) is independent of p or

| Glg(n), 1) = Glg(po), po) .| (4.159)

This is a reflection of the arbitrariness of u, the direct dependence on p is compensated by the
dependence on g(), so that u, g are replaced by a single parameter.

If there is only one momentum, so that F' = F (sz; g), the solution shows that

f (f;;gw) _F (f;;gwo)) . (4.160)

0

We may choose 1y = p and then

f (f;;gw)) — F(g() . (4.161)

so that the dependence on p is just given by g(p). This allows us to make statements about the
properties of the theory which follow from analysing how it depends on the coupling.

First we consider the qualitative features the solution for the running coupling g(u). If
B(g) > 0 then g increases with u, whereas if §(g) < 0 then g decreases with u. A graph for
B(g) if B(g) > 0 for small g and also if 5(g.) = 0 for some finite g, has the form
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Gx g

For such a functional dependence g(u) — g« as p — co. We can say that g. is an ultraviolet

(UV) fized point. If we assume 5(g) is negative for small g, the picture looks like this:

B(g)

In this case g(u) — 0 as p — oo. (Note that always S(0) = 0.) In this case ¢ = 0 is an

ultraviolet fixed point. This situation is referred to as asymptotic freedom.

Let us now bring « back into the equation and see what modification of the solution is

required. For

(uai + ﬂ(g)a% + 7(9)) G(g,p) =0,

we introduce g(u) as before and the equation becomes

This can be integrated to give

Glg(p), ) = e~ Tho F9D GUg(110), o) -

The exponent may also be rewritten by a change of integration variable as

n g(p)
ds B M
/ © o ots)) = ( / | ag 35

If there is a UV fixed point g, then

/%7(9(8)) — (gx) logp as p— oo.

Ho

For the function of a single momentum F' these results give

»* P dsa(g(s)) (1.
F(Zio) = e 0O (1:g(0)

Asymptotically, when there is an ultraviolet fixed point, as p — oo,

f i v(9+) F(1:
lﬂ,g(u) ~p (1;94) -
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When g is small we may use perturbative results. As an example suppose

Blg) = —bg*. (4.169)

If b > 0 there is asymptotic freedom and as g(u) — 0 for large u the small g perturbative results
become a valid approximation. The running coupling is then given by the following integral,

g(p)
1 dg I 1 1 I
Z —~Z =log— = = 2blog — . 4.170
b g g3 1o 9(1)?  g(po)? Ho ( )
g{Ko

Now the right-hand side goes to infinity as u — oo, and so g(u)? — 0 if b > 0. We can rewrite
this as

12
=blog —, (4.171)
9(p)? A?
for some constant A. Alternatively the constant A, which appears as a constant of integration,
is given by

A=pe T (4.172)

Let us suppose that v(g) = cg? as well; then the integral in the solution of the RG equation
gives

9(p)
W) _ e o)
(f%@‘bl%w' (4.173)
The solution for F(p?/u?; g) becomes
P (PO T
f (lﬂ,g(u)> = (QZ(M)) F(1;9(p)) . (4.174)

As p — oo, g(p) — 0, with asymptotic freedom, so that perturbative results for 8(g), v(g)
and also F(p?/u?; g) can be used to give a precise, well justified, prediction for this limit. This
illustrates how asymptotic freedom can be use to find out about the behaviour of quantum field
theories such as QCD for large momenta when perturbative results show 3(g) < 0.

As a final consideration, let us now introduce a mass term, assuming that we have an
equation (here for a single coupling g)

0 0 0
(uau () gg + Y (9)m® 5+ 7(9)) G(g,m? ) = 0. (4.175)

As before we solve this by introducing a running coupling g(u) and also a running mass m(u),
which is determined by the analogous equation

pem? = e (g (4.176)

This can be solved by
L ds N
m? () = m® (o) elto <m0, (4.177)
constant g. The solution of the RG equation now becomes

Gg()sm? (), ) = e o 7D G (g(110), m*(10), o) (4.178)

which reduces to the previous solution when m? = 0. For a function of a single momentum p
we let G — F(p?/p?,m?/u?, g) and the solution becomes

2 2 P ds (s m?
f (; /Fg(u)) = elu SR (1, pgp),g(p)) : (4.179)
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Now again consider the situation where we take the limit p — oo and we have an ultraviolet
fixed point g., so that g(p) — g. for p — oo. In this case

ds
[ S mtae) — malen) logn as e (4.180)

Ho

So long as ¥,,2(g«) < 2 then the dependence on m? can be neglected in the asymptotic limit.

For asymptotically free theories 7,,2(g) = O(g?) and the masses can also be neglected in the
UV limit.

4.4 Effective Potentials

In classical dynamics, if there is a potential V(¢), then the ground state is determined by the
minimum of V. If V(¢p) = Vinin. then in the ground state ¢ = ¢o. This may be degenerate or
there may be several minima of V(¢) each of which define potential stable ground states. Since
in a quantum field theory the classical potential requires additional counterterms it is necessary
to reconsider how the ground state is determined.

In quantum field theory, what we mean by the ground state is the vacuum |0), which is
required to be the state of zero energy. The quantum ground state is determined by a modified
effective potential Veg.(¢), which we show here how to define and also how to calculate in
perturbative quantum field theory. The essential definition is through the generating functional
I'[¢] for connected one-particle irreducible graphs. We have

I'l¢] =VVer(p), V= /d%, (4.181)
(p=const.

where V is the volume of spacetime (for this to be well defined it is necessary to consider a finite

region and then take the limit as the volume becomes large). Veg.(¢) is equal to the minimum

energy density subject (0,]¢|0,) = ¢. The quantum vacuum is then |0,,) with ¢o determined

by the global minimum of Vg (¢).

In perturbation theory Veg (¢) may be calculated as an expansion with the first term the
classical potential V(¢); we will explain in outline how we can do that, at least in the simplest
case, and also show how divergencies are treated in this case. We discuss only the lowest
approximation beyond the classical potential, but this can be extended to higher orders. The
basic definitions are

W — /d[¢] piSlel+i [ dlx MOLON Ie] = -W[J]+ /ddx J(x)p(x), (4.182)
where J—
o = (o) = (Gl (1.183)

Here { . ); denotes that it is calculated with the action S;[¢] = S[¢] + [d%x J(x)¢p(x). The
perturbation expansion is derived by first taking ¢(z) = ¢ + f(x), with ¢ here a constant and
is sometimes referred to as the background field. The action is then expanded in terms of f(x)
to obtain

_ a.. 0S[pl 1 d
St = Slel + [ d'a 2@ 5 [alr jwar@ cou). sy
For the simple scalar field theory with the action
Sl = [ ata (~300-00- V(o)) (4.185)
we have
gj([;j]) =—J,=0%—V'(p)=-V'(¢), for ¢ const., (4.186)
and

— /dd;v f(@)Af(x) = /ddx (=0f-0f =V"(0)f?), A=-=-0>+V"(p). (4.187)
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Taking J(z) = J,, to cancel the O(f) terms and neglecting the O(f?) terms in the expansion
of the action and using d[¢] = d[f] gives

GiWIIo) oy QiS4 [ d'a Jpp / d[f] =% S df @A) (4.188)
and it is evident that
(fha, = [df) et Ta=I@0 _0 = (o), =, (4.189)
Hence we recover the relation )
=0, (4.190)
6J(z) J=J,
and also we have
e—iTlel — iSTe) / d[f] e=3 S 2" f@A1@) (4.191)

The GAussian functional integral is evaluated as usual giving
/ d[f] =3 S 2 F@AF@) Z (det A)F (det Ag)? (4.192)

where the normalisation is chosen so that when V' = 0 the integral will be one, which requires
Ay = —0%. (4.193)

We may now take the logarithm to obtain
T[] := / dz Veg (@) = / dz V(p) — % (log det A —log det A .) (4.194)

The additional term involving det A/ det A is then the first quantum correction to the classical
potential.

To calculate the determinants we use the relation log det A = trlog A. The trace is obtained
by summing over the eigenvalues of the operator A. Since V(i) is a constant the eigenfunctions
are given by ¢”*®_ with corresponding eigenvalues k? + V(). If the system is in a large box
of size L then, with suitable boundary conditions, k = O(L~!) and is discrete. As in statistical
mechanics as L — oo we may replace the sum over k by

Ak
Zk: — V/W, (4.195)

for V = O(L?) the volume of the box. This gives the result, factoring off V,
i ddk 2 " . 2 .
Verr.(0) = V(0) — 5 (@n) (log(k® + V" () — ic) — log(k® —ic)) , (4.196)

where the singularities are treated just as in FEYNMAN propagators. Performing a WICK
rotation by analytically continuing the contour of kg:

d
Vi (9) = Vo) + 5 [ gy (o8l + V" () ~log 1) (1.197)

where now k2 > 0.

To carry out the integral, we use an integral representation for a,b > 0:

Td
- 1og% = / Ea (ea% — 7ty (4.198)
0
and then, for a > 0,
d?k &2 1
e W = . 4.199
/ (2m)? (47a)% ( )
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Hence we may compute

1 ddk Ooda —a(k? 7 —ak?
0

1 1 "
=V(p) — = - /da a 81 (e_o‘v (@) 1) . (4.200)
2 (4m)2
0
This is convergent for 0 < d < 2. With an integration by parts and the standard Gamma
function integral

(4m)%
_ 11—‘(1 — %) " 4 _ - F(_%) 17 d
=Vip) + 5 (an)? V()2 =Vip) 2m) V' ()2 . (4.201)

Note that this makes sense only when V" (¢) > 0.

The result is valid for general d but F(—g) has poles at d = 0,2 and d = 4 reflecting
divergencies. In particular

d 1 1 3
)~ Ze27¢ e =4 —
I ( 2) - e 2 <1 + 5) ) d=4—-¢. (4.202)

This pole is removed by adding the counterterm potential

Ver(p) = Snga V" (@)?. (4.203)

where the arbitrary mass p has been introduced to ensure dimensional consistency since V()
has dimension d and V" (y) has dimension 2. Since V" ()% ~ V" (¢)? (1 — elog V" (¢)) then

V:aff.,ren.(@) = (‘/;H(SD) + cht(so)) ’5_>0

1
sz V(@) (log

"
Vﬂ(f) - ;’) . pE=dme vl (4.204)

=Vi(p) +

It is important to recognise that Veg. ren.(¢) IS, as a consequence of the necessity of adding
counterterms to ensure finiteness, arbitrary up to the addition of a finite quartic polynomial in
¢. Thus in this result the coefficient of V"'()?2, as opposed to that for V()2 In V" (), has no
physical significance. This freedom can be removed by specifying the derivatives V;(f?)’ren. (0),n =
1,2, 3,4, as the parameters on which the theory depends (if the theory has a ¢ <+ —¢ symmetry,
only n = 2,4 are relevant). Note that, from the relation to I'[¢], we have %&?mn'(O) =
—70(0, ..., 0)ren. -

It is the effective potential whose minima determine the ground state for a quantum field
theory. These may be different from those for the classical theory, even if the parameters
describing each are matched in some way. The finite Veg. ren. (¢) depends on the arbitrary scale
1 which is introduced through regularisation of the Feynman integrals for vacuum diagrams
that are used to calculate it. In consequence it satisfies an RG equation which has the typical
form, if there is one coupling g,

B B B
(“w + /a’(g)a—g —7¢(9) w&p) Vett.ren. () = 0. (4.205)
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5 Gauge Theories

Up to now we have mainly used scalar field theory as an example of a quantum field theory;
the point is that realistic theories involve gauge fields and fermions. Associated with each
gauge field is a gauge group, which is usually a continuous LIE®® group. In the most important
examples?, these are

Theory: QED WEINBERG-SALAM model  QCD,
Gauge Group: U(1) SU(2) x U(1) SU(3).

The gauge fields are vector fields, so they have a LORENTZ index A, (z), and they belong to
the LIE algebra g of the LIE group G. Denoting the set of all vector fields taking values in g
by A, we can write this as

A, €A, (5.1)

In a formal sense, the gauge group G is defined by
g~ ® G, (5.2)

i.e. an element of G is a map from spacetime points to elements of the LIE group G (this
becomes precise when spacetime is approximated by a lattice).

5.1 Brief Summary of LIE Algebras and Gauge Fields

For a continuous LIE group G the elements ¢g(f) depend on parameters 6,., r = 1,...,dim G,
where everything is continuous and differentiable with respect to 6. (When considering gauge
groups, the parameters § are taken to be functions of the spacetime points x.) The group
structure of G means that for any given 6, 6,

9(0)g(6") = 9(8"), (5:3)

for some 0”. Generally g(0) = e, the identity. A LIE algebra g is a vector space equipped with
a LIE bracket [, -], so that
X, Yeg = [X,Y]eg. (5.4)

The LIE bracket is antisymmetric and satisfies a JACOBI identity.
X.Y]= -V, X], [[X,Y]. 2]+ [[Z X].Y] +[IY; 2}, X] = 0. (5.5)

We can conjugate elements of the Lie algebra by group elements,
g ' Xgeg, geQq. (5.6)

For a small change in g
g ldgeg, (5.7)

and there is also an exponentiation map from the LIE algebra to a one parameter subgroup of
L1E group:
exp:g—G; X — g =exp(tX). (5.8)

We can take a basis {t,}, a = 1,...,dim G, for g, so that any X € g can be written as
X = X,tq, and define structure constants fup. by

[ta; tb] = fabctc ’ (59)
where the basis may be chosen so that fu;. is totally antisymmetric. With a basis we have

9(0)"dg () = talar(0)df, (5.10)

38Lie, Sophus (1842-1899)
39Weinberg, Steven (1933-), Salam, Abdus (1926-1996), Nobel Prizes 1979
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and we may choose l,-(0) = d,,. It is easy to see that
909(0) =g(0") = 14(0)d0, = 14,(0")db, (5.11)

for fixed go. Under the change of variables § — ', the JAcOBIan det[06’/00] = det 1(6)/ det 1(6")
and we may define invariant integration over the group by

dn(g) = det1(9) [[dor = / dyu(g) £(g) = / dn(9) £ (909) (5.12)

For compact groups [, du(g) is finite.
With a basis then for any X € g there is a corresponding matrix defined by

[ta, X] = Tup(X)ts - (5.13)
Clearly
tab(tc> = facb . (514)

The matrices T(X) = {T,»(X)} form a representation of the Lie algebra since, as a consequence
of the Jacobi identity, [T(X),T(Y)] = T([X,Y]), where we use standard matrix multiplica-

tion. This is called the adjoint representation of the LIE algebra, the matrices have dimension
dim G xdim G where the parameters 6 have dimension dim G (note that dim SU(2) = 3, whereas
dim SU(3) = 8). The adjoint representation can be extended to G' by g~ t,g = Das(g)ts.

There is also an quadratic form X - Y which is invariant under a conjugation
X.Y=g1Xg-g'Yg. (5.15)
An equivalent relation for the Lie algebra, obtained for ¢ — g, = exp(tZ) and letting ¢t — 0, is
(X, Z]- Y+ X -[Y,Z]=0. (5.16)

If G is compact the scalar product is positive definite. By a suitable change of basis one can
then arrange
tg -ty = Ogp - (5.17)

For simple Lie groups, those not of the form G x G’, the scalar product is unique.

A gauge transformation of a gauge field A, () by an element of the gauge group g(z), i.e.
g(z) € G for each z, is defined by

Au(@) = Af () = g(x) " Au(@)g() + g(2) " Dug(x). (5.18)

In the case of G = U(1), we can write g(x) = ¢*®), so that

A (z) = Ap(z) + 0\ () - (5.19)
The gauge field may be expanded
Au = Au,ata ) (5.20)
for a = 1,...,dim G, and plays the role of a connection similar to general relativity; the
corresponding curvature is
fuw = 0,4, — 0, A, + AL A (5.21)

Under a gauge transformation,
fun(@) = F, () = g(a) " Flu(2)g(2) , (5.22)

where FJ, () is the curvature formed from the transformed connection Af(z). Unlike A, F,,
transforms homogeneously under gauge transformations.

With the connection we can define a covariant derivative acting on fields ¢ belonging to a
representation space V, for the Lie algebra

o = 0 + A, (5.23)
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where
A, =A4,.T,, (5.24)

forming 7T, form a representation of the LIE algebra, i.e. they are matrices acting on Vy
satisfying [T,, Tp] = favcTe- Under a gauge transformation ¢ — ¢9 = R(g)¢, where R(g) is the
matrix corresponding to g in the representation defined on V. The gauge transformations are
defined so that (D,¢)? = D9,¢9. It is straightforward to see that we can write

[Dy; Du] = F,uz/,aTa . (525)

The gauge fields belong to the representation space for the adjoint representation so that the
covariant derivative becomes

(D)\Ful/)a = a)\FuV,a + [A/\7 Fp,l/]a = aAEW,a + Tab(AA)FuV,b . (526)
Also for an infinitesimal gauge transformation
0A, =Dy, (5.27)
for D,, the adjoint covariant derivative and A belongs to the Lie algebra for G, formed by fields
Aa(2) with Ay (2)t, € g.
The curvature satisfies the crucial BiaNcHI*? identity, which may be obtained by using the
Jacosl identity for [Dy,[D,,, D,]],
DAFpV+DvFAp+DpFuA :07 (528)

for D,, the adjoint covariant derivative as above.

5.2 Gauge Fields in Quantum Field Theory

The simplest gauge invariant scalar which forms a LAGRANGian is

1 v
L= _@Fﬂ “F, (5.29)
where g is introduced as a overall coefficient and is the coupling for the gauge theory. The
corresponding action is then

S[A] = / s £(z). (5.30)

Clearly S[A] = S[AY]. There is no constraint on the dimension. The variational equations

0S5 = 0 give the equations of motion
o

These equations do not depend on g which is irrelevant classically.

Let us suppose that A,(z) is a solution to these equations, then, as a consequence of
gauge invariance, AZ(Q?) is also a solution for any element g(z) of the gauge group. Since
g(x) is unconstrained the dynamical equations do not have unique solutions given some initial
conditions on A, (z) and its time derivative at some initial time. It follows that gauge theories
have redundant degrees of freedom which do not have any dynamical role. At the classical level
this is not too important (for abelian electrodynamics F),, is gauge invariant), but it leads to
potential problems in quantisation. The dynamical variables in this gauge theory really belong
to the equivalence class of gauge fields modulo gauge transformations

AJG={A,~A%: A e A geg}. (5.32)

The set {A9} for all g € G forms the orbit of A under the action of G. The space of gauge fields
A is a linear space, if A,, A’, € A then so is a4, + a’A’,, and so is topologically trivial but
the space of orbits or A/G is nontrivial in a topological sense. The dynamical variables in a

40Bianchi, Luigi (1856-1928)
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gauge theory are coordinates on A4/G so that there is a well defined initial value problem and
quantisation can be achieved.

To exhibit the potential difficulties in quantising we first consider a canonical approach.
When quantising a classical theory given by a LAGRANGian L(¢%,¢"), one first defines the
conjugate momenta by

Pi= 5o (5.33)

§i’
which gives p;(q, ¢). It is crucial that this should be invertible so that we can write ¢*(q, p). For
a gauge theory we let ¢ — A, (7). Then the conjugate momenta are given by

oL _ 1 oL

— = , —= =0. 5.34
OA; g* A (5:34)

L does not depend on Ay, but if we vary Ag, we get from §5 = 0,
diFY =0, (5.35)

which is a non dynamical equation, without ¢ derivatives, similar to V- E = 0 in vacuum
electrodynamics. There is no momentum conjugate to Ay, it is not a dynamical variable, but i
acts as a LAGRANGE multiplier enforcing a constraint.

Another related problem arises when expanding S[A], which contains quadratic, cubic and
quartic terms in A. Consider just the quadratic terms then

S[A] = %/d% (—AY - (AA), + O(A%) | (5.36)
where
(AA), = —9%A, + 0,0"A,, . (5.37)

In quantum field theory then, for a perturbation approach in terms of FEYNMAN diagrams, we

need to invert A to define the FEYNMAN propagator. But it is easy to see that for any function
A
(AON), =0, (5.38)

which is a consequence of S[A9] = S[A]. We cannot then invert A in a straightforward fashion
so that there is no direct perturbative expansion with the cubic and higher order terms defining
the interaction.

These issues no longer arise if the dynamical variables are regarded as belonging to 4/G
instead of A. In a functional integral approach this requires that the quantum field theory is
defined by

dulA] ST (5.39)
A/G

where is some measure on A/G that we need to define. In general we require that

/ dlA] = / dulg) [ dulA), (5.40)
A g A/G

where the integration over the gauge group G is required to satisfy
/ dulg) Flg] = / dulg) Flgog] for any go€G. (5.41)
g g

There is a standard prescription for constructing the required measure on A/G which is to
consider an integration over all fields d[A] and impose a gauge fixing condition F'(A4) = 0, where
F(A) depends locally on A, (x) and its derivatives and for each x F(A) € g. We assume that

F(A9) =0, forall Ae A for some unique g € G. (5.42)

With these requirements the gauge condition F'(A) = 0 selects a unique gauge field A,, on each
gauge orbit. Actually this is not possible in general for any A, because .4/G is topologically
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non trivial, but it is feasible for small A, and this is sufficient in perturbation theory. It is also
essential for the functional integral to be just on .4/G that the results are independent of the
particular choice of the gauge fixing function F'(A).

To achieve these requirements we suppose that
[ duta= [ aiay-sipcay)- ), (5.43)
A/G A

where we have included a functional delta function imposing the gauge fixing condition and
also have introduced the function M[A], defined for A satisfying F'(A) = 0, which compensates
for the choice of F'. This is achieved by requiring

/g dulg) S[F(A%)] - M[4] = 1 (5.44)

for any given A. Using invariance of the group integration M (A%) = M[A]. By assumption
(5.42) there exists a unique go such that F'(A9%) = 0 so that the only contribution to the integral
is for g = gg. It is easy to see by letting A — A% it is sufficient to assume gy = e, the identity.
We then note that, since then A9, = A, + D, A where D, is the adjoint covariant derivative,

FIA|=0 = F[A9) = F'(A)"D,\ = A, (5.45)

where we define
Agyh = F'(A)"D,, . (5.46)

In the neighbourhood of the identity, with a suitable normalisation dpug] |g~e = d[A], where d[}]

denotes the functional integration measure over fields A(z) € g which is a linear space. Hence
we have

/g dplg) SF(A%)] = / dIN] S[AgA] = (det Agy) ", (5.47)

so that the integration has been reduced to one over fields belonging to the LIE algebra g of
the gauge group G. Agy is called the ghost operator, for reasons which will become apparent
later on and in (5.44) we must take

M[A] = det Ay, . (5.48)

It is important to note that if AgyA = 0 for some A then this is a signal that the gauge
fixing condition does not fix the gauge uniquely as in (5.42).

The functional integral over the gauge fields may now be written as

(iS4l g iS4l g (iSIA]
/A d[A] /A d[4] /g dylg) 6[F(A9)|M[A] /g dulg /,4 d[A] §[F(A%)]M[A]

= /du[g]/ d[A9] 5[F(A9)|M[A9] ¢'S14)
/d,u /d M[A] 514 519

where we use that d[A], M[A], S[A] are invariant under A — A9. Hence finally we may identify
/ dulA] 51l = / d[A] 6[F(A)] det Agy, eS| (5.50)
A/G A

with Agn determined by the choice of gauge fixing function F(A).

5.3 Example: Ordinary Finite Integral

To illustrate how this works we discuss an example for an ordinary finite integral which realises
the same issues as for a functional integral over gauge fields. For a vector x € R™ we consider
the following integral:

/d”m f(z). (5.51)
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We assume f(z) is invariant under the symmetry group SO(n), so that
f(z)=f(2') forall 2’=Rz, ReSO(n). (5.52)

Since for
z—z =

(=]

z, d"z' =d"z, (5.53)

as det R = 1 the integral is invariant. SO(n) here plays the role of a gauge group and the orbit
of x under the action of SO(n) is a sphere of radius |z|.

For this example we know how to evaluate the integral since

f@)=Ffr), r=lal, (5.54)
we may integrate over angles giving
/d”x flz) = Sn/dr i (5.55)
0

27"
I'(%)

We now approach this integral in the same fashion as the gauge field functional integral
by using a gauge fixing condition. In this case it is clear that by a rotation R we can always
arrange

where S, = is the area of an (n — 1)-dimensional unit sphere.

z — xy:=7(0,0,...,0,1). (5.56)
This gauge fixing condition is then to set £ = x, which can be realised by introducing

n—1

§(F(z)) := 0(zn) [ ] 6(i) (5.57)

i=1

into the integral. To ensure complete fixing of the gauge freedom for z we also require x,, > 0.
Just as before, we also introduce a function M (z) by the requirement

/ du(R) S(F(Rz)) M(z) = 1, (5.58)
SO(n)

where du(R) is the invariant measure for integration over SO(n). In this example the gauge
fixing condition does not determine R uniquely since there is a subgroup SO(n — 1) C SO(n),
acting on the first (n — 1)-components, such that for R € SO(n — 1) then R'z, = z,. For
the Lie algebra then if {t,} a = 1,2,...,3n(n — 1), are antisymmetric matrices forming the
generators of SO(n) then we may decompose {t,} = {f;,t} so that

tizg =0, i=1,...,3(n-1)(n—-2), (5.59)

with #; the generators for the SO(n — 1) subgroup, while the remaining generators ¢, then
satisfy

tszyg=7r(0,..., 1 ,...,0), s=1,....n—1. (5.60)
s’th place

To calculate M (z) we need only consider rotations R of the form

R=(1+04,)R neglecting O(0:0,). (5.61)
For such R
Rxy=7r(01,...,0,_1,1)+ O(0:05), (5.62)
and therefore .
§(F(Rzy)) = [ 6(r6s). (5.63)
i=1
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The integration measure may be defined so that

n—1

dp(R) = du(R') T] d6.(1+ O(6s) . (5.64)

s=1

The required integral then becomes

_ _ Vsom-1
/S du(R) §(F(Rzy)) —/SOn i /Hd9 3(rf,) = 22 (5.65)

O(n)
where Vso(n—1) = [du(R') is the volume of the group SO(n—1). Hence we choose the function
M to be
rn—l
m(z) = —. (5.66)
Vsom—-1)

Note that M(Rz) = M ().

Following the same procedure as used for the gauge invariant case the SO(n) invariant
integral can be rewritten as

/ & f(o / i /S o (B 5(F(R2) M (@) /@)

—_— d"x (5 (Rz))r" ! f(z
VSO(n—l) /SO(n / )7 (o)

I / du(R) / A"z 0(,) 10 () 7 fzp)

Vsom-1) Jsom)

v

SO(n / P fzg) (5.67)
VSO(n 1)

where the final integration is just over x,, = r > 0. This is equal to the result obtained by
integrating over angles if we use

Vsom
S, = ﬁi_i) . (5.68)
5.4 Introduction of Ghost Fields
Returning to the functional integral of a gauge field theory we consider then
/A d[A] S[F(A)] det Agn(A) &SI (5.69)
where
Sl =~ 45 [ d'e () Fue). (5.70)

and we note that in general the ghost operator depends on the gauge field A. If it does not
the corresponding determinant can be factored out of the functional integral and absorbed in
the overall arbitrary normalisation constant. It remains to show how the expansion of this
functional integral can be expressed in term of appropriate Feynman rules. To achieve this we
seek a representation in which all factors are present in an exponential

First of all, rewrite
i d_.
A)] = /d[b] eo? J 4w ) F(A) (5.71)

where b(z) is a BOSonic field, which like F),,, and F(A), belongs to the LiE algebra. This
functional integral is the functional analogue of the usual formula for the d-function. The
prefactor of 712 has been introduced for later convenience. Also let us rewrite the determinant
as a function integral over GRASSMANN fields, as shown section 2.3,

det Agy(A) = / dlddld] eiSsrleel (5.72)
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where

Synle, e, A] = / d'e &) - Agn(A)e(a) (5.73)

¢ and c¢ are here FERMIon scalar fields, whlch also belong to the LIE algebra, and are treated as
independent fields. They are called ghost fields since they are unphysical because they do not
correspond to physical particles, having the wrong statistics.

The function integral then becomes

/ A d[Ed]d] eiSelAbed (5.74)

where the quantum action is given by

Sq[A, b, e, ¢ = g—t/ddaz (—iF“”(m) - F(z) +b(x) - F(A) +¢(x) - Agh(A)c(x)> . (5.75)

The additional auxiliary field b adds an additional degree of freedom while the GRASSMANN
ghost fields ¢, ¢ subtract two degrees of freedom so that the net degrees of freedom correspond
to that for gauge fields modulo gauge transformations.

There is a further generalisation which extends the notion of gauge fixing introduced above.
It is sufficient, in order to produce a well defined theory, to have a family of gauge fixing
conditions which are then summed or integrated over. Thus we consider a gauge fixing condition
F(A) = f where f(z) € Lg and we integrate with GAussian weight function

| = / 1 e_%L Jdz f(z) f(z) e — 53¢ [ d'x F(A)F(4)

_ / d[] e77 I 4 oG@)F A 3E0(@) b)) (5.76)

where in the last line the same expression is obtained by extending the b-functional integral by
a quadratic term. This is easily evaluated, up to an irrelevant overall constant, by completing
the square, assuming a convenient choice of scale for the b functional integral. The choice of
gauge now depends on F(A) and £. To go back to the previous case when F(A) = 0 requires
taking the limit £ — 0.

In consequence the quantum action has been extended to

SqlA, b, ¢, /dd ( —F*(x) - Fu(z) +b(x) - F(A) + %5 b(z) - b(x) + &(z) ~Agh(A)c(m)> .

(5.77)

For many calculations it is sufficient to consider a very simple choice, the linear covariant
gauge

f(A)=0"A,. (5.78)

This maintains LORENTZ invariance. In this case F'(A)* = 9" and

Agh =0"D,, . (5.79)

5.5 FEYNMAN Rules for Gauge Theories
Let us try and set up a perturbative expansion; although it can be considered as an independent

field it is simplest to eliminate b essentially by completing the square. We can then write the
action as

S,[A, ¢, /dd ( —FHv. %amu -OVA, — ote- Dﬂc) : (5.80)

This allows the FEYNMAN rules to be derived in an essentially straightforward fashion, with
diagrams involving lines and vertices for the fields A, c and c.
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Look first of all at the quadratic (free) part of the action:

B 1 1., . 1 , B
SylA, ¢, quaa = 7 /ddx (—25%4 (DA, — D, A,) — iamﬂ LV A, — dMe- @Lc)
fi d 1 A H2ppr _1#” .02
_gz/dx<2AH (o8 = (1= oo ) s + -0
= —/ddx (;AM-A’“’AV —0-820) , (5.81)
where
NG (1 - 1)aﬂa”, (5.82)
3

and in the last step we removed the overall factor 1/g? by redefining

A, = gA,, c¢c— gege. (5.83)

From this we may obtain the two-point functions

(Apa(x) Ap()),  {cal®) G(y))- (5.84)

As was shown in the case of scalar fields the propagators are just the Green functions for the
differential operators that appear in the quadratic part of the action except there are now
LORENTZ and group indices to take account of

IR (Axa(2) Aup(y)) = dapdtid®(z — y) (5.85)
—i02(ca(®)e(y)) = 6apd%(z — y). (5.86)

The standard procedure to solve these equations is by considering FOURIER transformations:

/ e (A () Aup(0)) = i6as A (1) (5.87)
/ dla e= P (e (2) 5 (0)) = i0ap A (p), (5.88)
so that we have to solve
- (an‘“ - (1 - é)p“pk> Ap(p) = o, (5.89a)
—p*Ar(p) =1. (5.89b)
These are pretty straightforward to invert:
Braw(p) = = 52+ (1= "0
AF(Z?) = - 2 1—2‘6 :

We therefore get the following propagators:

e For a gauge field propagator, introduce a wavy line:
M, a/'\./'p\../'\./ v, b

It corresponds to

i0ab <p2’7’i”i€ +(1-¢) (pf“_p;)Q> : (5.90)

We can see that the propagator gets simplified by choosing £ = 1 (the FEYNMAN gauge).

However, one can leave the parameter £ free in any calculation to check if the final results
for physical quantities are independent of &.
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e For a ghost propagator, introduce a dashed line:

c p c
a
which corresponds to
Gy (5.91)
10ab p2 e . .
Note that R ~
P*Apuw(p) = EpuAr(p) - (5.92)

In order to get the Feynman rules for vertices, we require cubic and higher order terms in
Sg, which, after rescaling of the fields, are given by

Sq [A7 c, E]int = /ddx( - gfabc AgAza,uAuc - 92%fabefcde AgAZAucAud - gfabc &JEaAZCc) 5
(5.93)
where we used [X,Y], = fapeXpYe and Dyc = 0,c + [A,,¢]. For an interaction involving
a derivative of a field, such as 0,¢(z), then in the Feynman rules for the associated vertex
0u — ip, where p,, is the ingoing momentum to a vertex at 2.*1 The first term in the interaction
part of the action describes an interaction of the form

TN

v,b /!

We have a cyclic symmetry (r,w,c — p, u,a — q,v,b), and the vertex is given by

Gfabc (Tp,nuw — "uw + PoNwp — Pwlvn + quMuv — Q,unwl/) 3 (597)

where we have 6 = 3! terms because of the cyclic symmetry. The second term in the interaction
part gives

1y AN N A d
e

N
v,b /! w,c

Note that the interaction term is symmetric under the exchange A% <+ Ay and A,. < A,q,
which cancels the factor of four. The vertex is

- iQZ (fabefcde (nuwnv)\ - nywnp)\) + feaefode (nwu'r]p)\ - nuvnw)\) + focefade (nu,unu»\ - nw/LnVA)) .

(5.98)
We also have an interaction involving ghost fields and a gauge field:
41Supposing we had
Lr= f%& , (5.94)
the interaction vertex would be
P q
—ig, p+qg+r=20
q
Supposing we had the following
g
- §¢>28u¢, (5.95)

in this case we would get for such a vertex
i(—ig)(p+q+r)u =0, (5.96)

because the interaction is a total derivative.
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|

— ig(ipy)fabd . (5.99)

It is important to note that the sign of the c¢¢ propagator and the Acé vertex is not significant
but their relative sign is.

In the Feynman rules cubic vertices are then proportional to a momentum, while the quartic
vertices are independent of any momenta. Taking this into account the calculation of the overall
degree of divergence D for a Feynman integral proceeds in essentially the same fashion as that
followed before for a scalar theory. The formula is

d=4—FE,—E,,. (5.100)

Note that in the FEYNMAN rules there is a minus sign for ghost loops, which is because they
are fermionic, anticommuting fields.

Now one can in principle use these rules to calculate FEYNMAN amplitudes, but the indices
make life more difficult; calculations become more difficult practically.

5.6 Canonical Approach

Although the functional integral is fine for deriving FEYNMAN rules for gauge theories it is
necessary, in order to construct operators and the associated HILBERT space, to consider the
canonical approach to quantisation involving dynamical variables and their associated conjugate
momenta which are then promoted to operators. As a digression we outline how this proceeds.

With the linear covariant gauge the full quantum Lagrangian density can be expressed just
in terms of the fields and their first derivatives in the form

1 1
Lq=—7F"  Fu—9"b- Ay + 5€b-b—9"c- Dyc. (5.101)

In this case if we were to consider this as a starting point for canonical approach to quantisation,
we would find
oL, i oL, 0 0L,

— = 7.—714, 7_:805:75,
0A; ob oc

oL, 0

)

Hence A;, Fy; and b, Ag and ¢, —0y€ form conjugate pairs like ¢°, p; so that we may impose on
the associated operators canonical commutation, or anti-commutation, relations at equal times,

[Ai(z), FO0)], = —i0" (%), [b(x), A°(0)]_, = —id" " (x),
{D%(x),e(0)}_, =i6" " (x), {0%(x),e(0)}, , =—id"(x). (5.103)

For simplicity if we consider the free theory, when F),, — 0,4, — 0, A,, D,,c — 0,c, which
is a starting point for a perturbative treatment. The associated FOCK space of states is also
the space on which operator fields are initially defined. In this case the equations of motion
require

OFy —0b=0,  O"A,+&b=0, d*=0, 9’c=0. (5.104)

These also require

PA,=(1-8db, =0, (5.105)

which have plane wave solutions of the form

b(z) = itk A, (x) =€, etk 4 (1—¢&)i0,Bk(x),
PBp(x) =e*, k=0, e k=-1. (5.106)
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A particular choice is to take

Br(z) =i ﬁ et (5.107)

The operator fields can be expanded in terms of these plane waves and the commutation
relations then ensure

[A,(2), A, (0)] = —inuD(@)1+i(1—€)9,0,E(x)1,

[A,(2),b(0)] = —i9,D(x)1, [b(z),b(0)] =0,  {e(x),&(0)} = —iD(z)1. (5.108)

Here

_ L ﬂ eik~:1: 767ik»m . 2 ) = .
Pl = (27T)3/ 2|k| ( Mg, 9°E(z) = D(x). (5.109)

Since 92D () = 0 the commutation relations are compatible with the free equations of motion
and also, since 9;D(x)|;—o = 6% 1(F), with the equal time commutation relations.

5.7 BRS Symmetry

The quantisation process has introduced additional fields into the theory, so that the space
of states necessary after quantisation is now larger than would correspond to the expected
physical degrees of freedom. The larger space contains negative norm states and ghost states
which violate the spin-statistics theorem. It is vital that we can identify what are the physical
states within this space and that these form a HILBERT space with positive norm so that
ordinary quantum mechanics is valid.

This is possible because of an additional symmetry, the so-called BRS symmetry*2, which
is related to gauge invariance. BRS symmetry is an extension of the gauge symmetry for the
classical action to the quantum action including additional fields. The LAGRANGE density,
choosing a linear gauge fixing F(A) = F*A,, for simplicity becomes

L, = —iF“”(m) Fp(2) 4+ b(x) - FP A () + %fb(x) b(a)+e(z) - F*Dye(z).  (5.110)

Clearly only the first term is gauge invariant, where for an infinitesimal gauge transformation
0A, =D\ = O0F, =[Fu,\ = 0F"- -F,)=0. (5.111)

Although the additional terms present in £, are not gauge invariant, there is a residual sym-
metry: Lg is invariant under BRS symmetry. To exhibit this we define an operator s acting on
the fields A,,c, ¢ and b, that relates Bosons and FERMIons*:

sA, =Dyc=0,c+[A,, ],

sc= — %[c,c],

where [c,c]la = fabeChCe is non-zero because cpc. = —c.cp. What is non trivial is that s is
nilpotent s> = 0. The action of s anti-commutes with FERMIon fields so that

s(cX) = (se) X —esX (5.113)
and similarly for ¢. To prove s2 = 0 we verify first
s°A, = —D,i[c,c]+ [Dyc,c =0, (5.114)

as a consequence of
D,[X,Y] = [D,X,Y]+[X,D,Y], (5.115)

42Named after Carlo M. Becchi, Alain Rouet, Raymond Stora, who came up with it; sometimes referred to as
BRST symmetry because of a Russian, Igor Viktorovich Tyutin (1940-), who was supposed to have also developed
the concept, but his paper was never published, an English version has now appeared in arXiv:0812.0580.

4330 it is reminiscent of supersymmetry, which was discovered slightly earlier, although that relates physical
particles.
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and furthermore

[Ca DHC] = [Dﬂca C] 9 (5116)
since [¢, Dycla = faveCo(Duc)e = facr(Dpc)ecy = [Dyec, clq for anticommuting fields (whereas for
BOsonic fields [X,Y] = —[Y, X], of course). Secondly

s2c = %[[c, c,c] — i[q [e,c]] = —%[c, [e,c]] =0, (5.117)
because
[Cv [Cv C]]e = fcdecc[ca C]d = fcdefabdcccacb = fcdefabdc[ccacb] =0, (5.118)

by the JACOBI identity
fde[cfab]d =0. (5119)
We can extend s to the other fields by defining

sc=—b, sb=0, (5.120)

and acting on these fields it is trivial to see that s = 0. Thus we have defined the action of s
on the basic fields (A4,, ¢, ¢, b) so that in general

s2=0. (5.121)

With this choice the quantum LAGRANGE density in linear gauges can then be written in
the form

Ly = —iF’“’(m) cFu(x)—sU(x), ¥(r)=2¢(z) FFA,.(z)+ %f c(x) - b(x), (5.122)
as is easy to see:
s¥(z) = —b(x) - F*Au(x) —e(x) - F*Dye(x) — %gb(x) -b(z), (5.123)

using that s anticommutes with c,é. The first classical term in £, is gauge invariant since
sA, = D,c is just a infinitesimal gauge transformation, albeit with ¢ a Grassmann element of
the LIE algebra. Since s?> = 0 we have the important property

sLy=0. (5.124)

In mathematics with an operation s acting on some vector space, or ring (where elements
can be multiplied as well as added), such that s> = 0 then one sets up the cohomology of s
on this space by considering all elements {X} such that sX = 0. These elements are called
closed. If X = sY then X is trivially closed and elements of this form are exact. There is an
equivalence relation for closed elements such that X ~ X’ if X — X’ is exact, i.e. X — X' =sY
for some Y. The cohomology class defined by s is defined by {X : sX =0, X ~ X 4+ sY}. Thus
L, is exact under the BRS transformation s and belongs to the same equivalence class as the
classical L.

The BRS transformation can be used to construct a symmetry under which £ is invariant
by defining
Oc (A,“ ¢, b, E) = es(AM, ¢, b, E) , (5.125)
where € is a GRASSMANN parameter. It is easy to see that §.£, = 0 and also 62 = 0. Another
relevant symmetry of £, is obtained by the transformations

dpc=10c, dpc=—0¢c, (5.126)

since ¢ occurs only in association with ¢ and where we take into account that ¢, ¢ are regarded
as real fields. These transformations on the ghost fields generate a one dimensional symmetry
group which leads to conservation of ghost number.

We apply NOETHER’s theorem for the BRS transformations . and also for the the dy
transformations on ¢, €. For simplicity we assume here the linear covariant gauge and write £,
in a form where there are only first derivatives of the fields

1 1
Lq=— " Fu = 0"b- Ay —9"c-Dyc+ 5€b . (5.127)
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For e(x) depending on z the terms involving derivatives come from
§eDyc=—0uetlc,c],  6.0,6=—0ueb—€dyb, (5.128)

and
0¢F,, =D,6.A, — D0 A, =0ueDyc— 0yeDyc+ €[F, . (5.129)

In calculating 0.L, the e terms without derivatives sum up to zero so the relevant answer
becomes

deLy = (‘3M6( — F" .D,c+b-Dte—0"c- %[c, C]) . (5.130)
This gives the BRS current
Jhrs = F" - Dyc—b-D'e+ ote- %[c, q. (5.131)
In a similar fashion letting 6(x) depend on z
6gLy = —0,0 (0"c-c—c- Dtc), (5.132)
so the corresponding ghost current is
Jap =0"¢-c—¢-D'e. (5.133)

These results lead to a conserved quantities, the BRS charge and the ghost charge
Qons = [¢ 0 us(e). Qu= [ ¢ ). (5.134)

In the quantum field theory the fields become operators acting on a HILBERT space H
which can be generated by the action of the fields on the vacuum |0). We require that A,wT =

Apa, Cq = &4, Cal = —¢Cq (note that with Apa = ALt ca = 4", Ca = —Co*, by = b" then
L, = L) and then there are HERMITian BRS and ghost charges

Qprs = Qurs Qgh = QghT' (5.135)
We must then have A A
[Qen, 2] =i, [Qgh? ¢ =—ic, (5.136)
and, for € anti-commuting, R
[e QsRrs» X] =i0:X. (5.137)

It is crucial that the BRS charge satisfies
Qprs’ =0, (5.138)

corresponding to s? = 0 and, since QBRS increases the ghost charge by one,

[ng QBRS} =i Qpgs - (5.139)
Since these are conserved we must have
|:13I7 C)BRS] =0 ) [ﬂa Qgh:l =0. (5140)

The aim now is to define the physical space of states. The initial HILBERT space H has
negative and zero norm states, otherwise nilpotent operators like QBRS would be trivial. If you
quantise a gauge theory in a LORENTZ invariant fashion negative norm states are essentially
inevitable. The essential assumption is that physical states correspond to the cohomology
classes defined by Qpgs-

First define the subspace Hy C H by

Qgrsl¥) =0 ¥ [¥) € Ho. (5.141)
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Clearly this is a subspace because H, is the kernel of QBRS. Since QBRS is conserved the
space Hg is invariant under time evolution. The essential assumption is that Hg is positive
semi-definite or

W) >0 YV [p) € Ho. (5.142)

For any positive semi-definite space a proper HILBERT space can be defined by considering
equivalence classes

) ~ [47) i [9) =) =19}, {(4lé) =0. (5.143)

By this construction if (¢|¢)) = 0 then |¢) ~ 0. Note that if the space is positive semi-definite
then if |¢) is a zero norm state and |¢) is any state we must have (¢|1)) = 0, otherwise |¢) +a|¢)
has negative norm for some «. Hence the zero norm states form a subspace and furthermore it
is then easy to verify that

(Vulpa) = (Wilwa) i [91) ~ (1), [9hg) ~ [iha) . (5.144)

So the identification of equivalent states is a well-defined operation which preserves scalar
products. This then gives a prescription for defining the space of physical states Hpnys = Ho/ ~
which satisfies the usual requirements of quantum mechanics. A further assumption is that the
zero norm states are BRS exact, i.e.

(66) =0 = |9) = Qurs|A) for some |3). (5.145)
This ensures that Hphys is formed by the cohomology classes of QBRS acting on the original
space H.

A further restriction is to consider just states with zero ghost number i.e.

Qul¥) =0, (5.146)
since physical states should satisfy this condition. Generally states with non zero ghost number
are BRS exact so they do not belong to Hpnys.

We now verify how this works for the subspace of single particle states. The field b can
always be eliminated, so we do not have to consider a corresponding single particle state since
|b(k)) o< k*|A,(k)). The set of single particle states is spanned by

[Au(R)),  le(k)) s [e(k)) - (5.147)

The action of Q BRrs on these states is determined by the linear terms in the corresponding
action on the fields and must be of the form

QprslAu(k)) = akyle(k)) (5.148)
Qprsle(k)) =0, (5.148b)
Qprsle(k)) = BE*[Au(k)), (5.148¢)

for some « and 3, using that QBRS increases the ghost charge by one, requiring LORENTZ
invariance and furthermore assuming that QBRS maps single particle states to single particle
states. Clearly

Qprélék) =0 = k2=0. (5.149)

The action of the ghost number operator Q
also given by

oh» Which counts the number of ghost fields, is

Qaulea(k)) = ilca(k)) Quulea(k)) = —ilea(k)) (5.150a)
(ca(B)| Qg = —ifealk)], (Ca (k)| Qg = i(ca (k)] - (5.150b)

It is a interesting exercise to verify that Q although it has imaginary eigenvalues, is an

gh>
HErMITian operator. The ghost number may be defined as the integer eigenvalue of iQy,.

The scalar products which are determined by the propagators for the fields and must be
consistent with Qggrg, @y, being hermitian. We assume a LORENTZ invariant formalism as
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appropriate for a linear covariant gauge, which requires that these single particle states have
the normalisation

(Ao (B)| A (B)) = Dyt G0k Bk o= (2m)312K05% 1 (F — ) (5.151)
which yields negative norm for timelike components since 199 = —1, and, for the ghost fields,
(Ca(K")lcv(k)) = bab Ok - (5.152)

All other single particle scalar products are zero, in particular
(ca(k")|cs(k)) =0, (5.153)

50 |cq(k)) is a zero norm state. By considering (¢*(k)|Qprs|A, (k) we must have § = a*.

To obtain a consistent physical theory it is necessary to reduce the theory from one defined
on space of states including those with negative norm # to a space of physical states which have
positive norm. Hpnys, the physical HILBERT** space, must contain only positive norm states
and it must also be invariant under time evolution. Since Hppys has to be defined in terms of
‘H then this definition must not depend on how it is set up at any initial time.

The subspace of H, formed by single particle states that are annihilated by Qg is then
determined by the basis

e*lA k), e- k=0, le(k)) . (5.154)
With the equivalence .
) ~ [¥) + Qprslo) (5.155)
we must have
|Au(k)) ~ (e + Ak)[Au(k)), ) ~0. (5.156)

Hence Hpnys just consists of all states e/'|A,,(k)), subject to
e-k=0, e~ et + AEF . (5.157)

Note that in d-dimensions, both of these conditions remove one degree of freedom, so that e
has just d — 2 degrees of freedom. The physical states here just have zero ghost number.

Let us check the norm of these states:
e (A, (k) A, (K))e" =€ € O s (5.158)

where 61 is the standard KRONECKER?® delta, as far as the momentum is concerned. Note
that

€ e =—|eg|* + |12, (5.159)
and also . . .
O=¢-k=kg+¢ k=—lk|+¢ k, (5.160)
so that 1
* 2 - 72
€ e=|€*— —=|€- k| >0. 5.161
o = e (5.161)

This is zero only for € k and then e* o k*, and for these states the equivalence implies

A, (k) ~ 0. (5.162)

44Hilbert, David (1862-1943)
45Kronecker, Leopold (1823-1891)
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5.8 Renormalisation of Gauge Theories

Gauge theories are renormalisable, with the degree of divergence given by
d=4—-FE - Egy, (5.163)

where E4 and Egy, denotes the number of external gauge and ghost lines, respectively. Any
FEYNMAN diagram with D > 0 is expected to generate divergences that have to be cancelled.
The requirement of renormalisability is that

(. Au(@) . ely)...e(z). . b(w) ... ), (5.164)

can be made finite, for arbitrary numbers of field, by adding counterterms to the original
LAGRANGIan,
L—>L+ Loy, (5.165)

in a fashion similar to previously. What counterterms are necessary is determined by D and
also by the form chosen for the gauge fixing term. For the LORENTZ invariant linear gauge
F(A) = 0"A, and using dimensional regularisation L. contains all contributions formed
from local functions of the fields and their derivatives of dimension four, with the following
requirements:

(i) LORENTZ invariance,
(ii) BRS invariance,

(iii) conservation of ghost number.

Because of requirement (iii) each diagram has a ¢ external line for every external c line so
that Eg, must be event. The crucial cases for which D > 0 are then for E4 = 2,3,4, Egn =0
(EFa = 1 is absent because of LORENTZ invariance), which require counterterms involving
A%, A3, A* and Eg, = 2 and E4 = 0,1, for which the counterterms involve c¢, c¢A. For the
linear covariant gauge the cases Fg, = E4 = 2 and Eg, = 4 do not require corresponding
counterterms as when there are ghost lines D is reduced by one and the associated FEYNMAN
integrals do not diverge. This is because the FEYNMAN rules for this simple gauge fixing require
that for each ccA vertex the contribution contains just the momentum for the ¢ line at this
vertex. For two such vertices which are part of a loop only one of the momentum factors is
involved in the loop integration rather than two which would be expected according to the naive
power counting rules so the degree of divergence for the loop integral is reduced by one.

It is possible to consider non-LORENTZ invariant or non linear gauge fixing conditions, but
in general this makes the renormalisation analysis more complicated. Requirement (i) ensures
that all counterterms are LORENTZ scalars.

With d = 4 — ¢ the starting theory is written as

1 1., _
Lo=p s (=7 F™(94) - Fu(9A) — s W(gA, ge,gb) ), (5.166)
where we define
1
Fu(A)=0,A, —0,A, + AL A, V(A b)=¢c-0"A, + 556 - b, (5.167)

and now, because of the rescaling of the fields by g,

sA, = D,(gA)c = 0uc+ g[Au,c], sc= —%g[c, c, sc=-b, sb=0. (5.168)

The overall factor y~¢, involving an arbitrary mass scale ji, has been introduced to ensure £, has

dimension d while A,,, ¢, ¢ have dimension 1, b dimension 2 while g is dimensionless. Furthermore
the fields have been rescaled by ¢ to ensure that the quadratic terms are independent of g. As
has been discussed this is invariant under BRS transformations s£, = 0i.

The counterterms also have to be compatible with BRS symmetry. This is fundamental since
the whole definition of the physical theory in terms of states with positive norm depends on
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the conserved BRS charge Q s as a nilpotent operator. Dimensional regularisation preserves
BRS symmetry since it is valid for any d. To see the implications we define

Lgo=Lq+ Les., (5.169)

where we must require
sLg0=0. (5.170)

However although we must have s> = 0 the action of s on the fields may be modified. L,
contains various divergent constants, corresponding to poles in £, which are traditionally labelled
Z. When Z =1 in each case L, o reduces to £,. In general for each Z there is an expansion

n=1

where the € poles generate the necessary counterterms. The claim is that it is sufficient in order
to get a finite result for Feynman integrals to any order to take

Z 1
Loo=p° ( =15 F0Z0A)  Fl9Zad) + Z5 e 9 DylgZaA)e b 0" Ay 4 56D b) ,
(5.172)

for suitable Z,4, Z,, Zz. In this expression for £, we have assumed there are no divergences
associated with the b field, it only contributes to one-particle reducible diagrams which do not
require separate counterterms to ensure finiteness; hence there are no Z factors in the terms b2
and bOA. The action of s is modified to ensure sL, ¢ = 0 and also s*> = 0,

1
sA, = D,(9Z.A)c, sc= —igZa [e, ], sc=——1>0, sb=0. (5.173)

In consequence BRS symmetry remains valid for the finite theory obtained after regularisation
since

z
Loo=p"¢ ( _ ﬁ FI(gZoA) - Fu(9ZaA) — Zs s U(A, G, b)) . (5.174)

In £40 b can be eliminated by setting b = —0"A4,,/¢. It is important to note that there just
three Z’s present in £, o which can be used to cancel divergencies whereas there are five different
cases for different numbers of external A and ghost lines for which there are divergent graphs.
Also the form of the counterterms which are contained in £, o are not the most general Lorentz
invariant expressions either. Thus BRS invariance must constrain the different divergencies in
order for them to be cancelled by the allowed counterterms. Now let us illustrate, without
doing any calculations of Feynman integrals, how this works out at one loop. The results are
expressed in terms of the group theory constant C defined by

facdfbcd - C15aba (5175)

where for SU(N) C = N.

For EF4 = 2 and no external ghosts
Lgo044= —M_E%(ZQZO? OrAY - (0,A, — 0,A,) +0OMA, - (’“)”A,,/{). The one loop graphs are
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ANA A
N
We obtain the result 20 /5 1 2
2 _ g 41— =
ZyZs =1+ - (3 +5(1 5)) g (5.176)

where C' is some group constant, which is equal to N for SU(N).
For B4 =3 L0444 =—p" ¢ ZgZ,f orAY - [A,, A)). The one loop graphs are

~
-

These give

2
Z,Zs3 =1+ 165 (3 Z( 5)) (5.177)

For Eq =4 L0444 = —p~° 22,2, [A*, A”]-[A,,, A,] and we have the one loop diagrams

S

These contribute

2
4 _ gC (1 _ 2
ZyZst =1+ 1 ( s+ 5)) - (5.178)

For two external ghost lines Fg, =2, E4 =0 Ly 0ec =p °ZgcC- 0%c. We get
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2
g°C (1 1 2
Zg=14+4"=— |-+ -(1—- —. 1

Finally for Eg, =2, Ea =1 Ly 0,604 = p % ZgZa - O"[Ay, c]. We get in this case

g’C 1 1 2

pe FS (b a)? 130

These give five independent results for three quantities, one can use this to check for con-
sistency and obtain the result

2
B g°C 1 2
Zo =1+ 6.2 ( 1+ 4(1 E)) o (5.181)
and also
2
B g°C 11 2
Zg=1+ 6.2 3 2 (5.182)

This is a very important result; Z; is independent of &.

The LAGRANGian L, including counterterms is the bare LAGRANGian and can be written
in terms of bare fields and couplings in the form

1 1
,Cq,O = _4792 F“”(gvo) . F#V(gO.AO) + 50 . 8“D#(90A0)00 + bo . aMAON + 550 bo . bo s (5183)
0

where we define

9(2) = /1'6 5 50 = ZgZ,i 57 (5184)

g
Zyg
and also for the bare fields

Aozﬂig V ZgZaAy o=

o

£ ZB £ ].
2o Z0 e, Go=p 2 ¢, bo=p F——o-b.
g&a 0 o /fZgZa 0 H /fZgZa
(5.185)

The definition of ¢y, ¢y is somewhat arbitrary since we may have ¢ — Aco while ¢ — &/ A.
With the above choice then the action of s in terms of the bare fields becomes
1

sco =—590co.col,  sdou = Dulgodo)co,  sco=—bo,  sbo=0, (5.186)

which is the essentially the same as before, and

1
Lgo= T2 F" (goAo)-Fuu(g0Ao) —s0¥o (Ao, Co,bo),  Wo(Ao, Co,bo) = 5()'8“A()ﬂ+%§0 Co-bo .

90
(5.187)

From the one loop result for Z,

| /1 Cc 11 2
= = L= D). 5.188
2 — K <92 + 1672 3 E) ( )

Now if you follow the procedures described earlier the g-function is defined by

g

1
Ml = -9+ B(9) - (5.189)

90 2

Differentiating go~2 with respect to u then gives

(1 c 11 2
6 P—

01
ERRTE 8) = (=39 +89) 5 = (5.190)
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which implies that to this order

11 ¢3C

/B(g) = _E 1672

(5.191)

The minus sign indicates asymptotic freedom.

Now of course to calculate these things can be a mess, because the number of indices floating
around is quite large, one has to do a lot of contractions, and it is quite a non trivial exercise
unless one has previous experience. According to some historical recollections there were some
initial confusions as to signs by those who first published a clear result for this calculation of
the B-function, GROSS and WILCZEK and separately POLITZER.*6

5.8.1 Calculation of §5(g) at One Loop

We now describe a more simplified calculation which leads to the same result for 5(g) at one
loop. The crucial step is to find a way of calculation Z, directly without it being in combination
with other renormalisation constants which require a separate calculation.

To achieve this the quantum gauge field A, is expanded about a fixed classical background
A, so that
A, =A,+ga,, (5.192)

where the functional integral is reduced to one over a,. In general to obtain a perturbation
expansion it is not necessary to expand around zero field; in general relativity, for example, it
is usual to expand around the non zero metric for flat space. Note that for the field strength

J_"/Lu = /LV(A) = F‘,ul/ + Q(D;Lay - Dya“) + 92 [a/“ a/y} , (5193)
for F},, = F,,,(A) and we have defined
D,a, = 0,0, + [Au,a.], (5.194)

which is the covariant derivative for the background gauge field A,,.
The initial LAGRANGian is 1
r— _@]:/w - Fow s (5.195)
which is invariant under gauge transformations on A,,,
A, = A =g A9+ 97009, Fu > Fluw =9 '"Fuy. (5.196)
Because of the split into A, and a, this also implies invariance under

Ay =g Aug+97 00, au— g laug, (5.197)

which is called a background gauge transformation. We claim that it is possible to maintain
background gauge invariance in the full quantum theory although it is still necessary to intro-
duce gauge fixing term. In the functional integral we require

d[A] = d[a], dla] = d[g "ag] . (5.198)

The quantum action, eliminating b, is then given by

1 1
£q:7@]:MV'FW*§F(a)'F(a)+5'FWDucv (5.199)

where we have set ¢ = 1 for convenience. F(a) is the gauge fixing condition and D,c =
D, c+ glay, .

46Gross, David Jonathan (1941-), Wilczek, Frank Anthony (1951-), Politzer, Hugh David (1949-), Nobel Prizes
2004
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That is so far standard, but the crucial idea is that under the background gauge transfor-
mation we may choose F'(a) so that it is covariant, F(¢ tag) = g~ 1 F(a)g, and so F(a) - F(a)
is invariant. To achieve this we take

f(a) = D"a,, . (5.200)

Then £, is invariant under background gauge transformations where the quantum field a,
transforms homogeneously. Nevertheless quantum gauge transformations which act only on the
dynamical field a,, with A,, fixed,

_ _ 1, _
a, —»a% =g 1aug +g 18#9 + E(g 1A#g — A#) , (5.201)
and are a symmetry of the classical Lagrangian, are gauge fixed are not a symmetry of £,. Note

that this expression for the gauge fixing term reduces to the standard linear covariant choice
when A, = 0.

Defining Syla, A, ¢, = [ d%x £, then letting
Z[A] = / dla)d[c]d[] e*FaleAeel (5.202)
we must have Z[A] = Z[A9]. We also define
Z[A] = WL (5.203)
Now in order to get a perturbative expansion, we expand S, in powers of a,; at lowest

order, at one loop, it is sufficient to restrict the expansion to just the quadratic terms in a,, c, c.
Higher loop calculations involve the cubic and quartic terms as interactions. Hence we write

Sqla, e, = giQS[A] + é /ddx D,F" -a, + S, + Sen + O(a®, éca), (5.204)

where S[A4] is just the basic action for the background field, namely

1
S[A] = -4 / dx F* . F,, . (5.205)
For the quadratic terms it is easy to see what the ghost contribution is,

Sen = / diz - D¢, (5.206)

where as before D,, is the background covariant derivative. The result for S, which is quadratic
in a is more involved. Using the expansion of F,,, we get

1
S, = i/ddx (— D"a” - (Dja, — Dyay,) — [a",a"] - Fp,, — D"ay, - D“au)
1
= §/dda@ a’ - (DQaV — D'Dyay + [Fou,a"] + DVD“aM) , (5.207)

integrating by parts and using [a*,a"] - F),, = a” - [F,,,a"]. Noting also [D*, D,]a, = [F*",, a,]
we get

1
S, = i/dd:c a’ - (D2a,, + 2[Fl,#,a“])
1
= — §/ddaz a’ - Ntay, (5.208)
where we defined the operator
A = —D%*5,* —2F, " T, , (5.209)

where T, are the generators of the LIE group in the adjoint representation.
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Let us suppose that D*F),, = 0, so in this case there is no linear term.%” Then the one loop
approximation is obtained by

Z[A] = WAl = 775 /d[a]d[c]d[é] e!(SatSan) (5.211)

where S, Sgn are just the quadratic terms in the expansion given above. The Gaussian func-
tional integrals are readily evaluated in terms of the determinants of the relevant differential
operators, giving

4 5(4) det(—D?) 1

1 1
. WI[A] = — S[A] + - logdet(—D?) — —logdet A. (5.212
(et )} [A] [A] - log (=D7) 5; 108 ( )

Z[Al=e 7

)

It is important to recognise that under background gauge transformations D? — ¢~ 'D?g and
A — g7 'Ag so the determinants are gauge invariant. The determinants may be normalised so
that det(—D?) = det A = 1 when A, = 0 so that W[0] = 0.

The aim is now to calculate the divergent parts, or poles as ¢ = 4 —d — 0, of these two
determinants. The answers are given by

log det(—D?) ~ 12 C 1S[A], logdet A = 202 ¢

—_— -1
3 e 1672
The divergent terms can only involve S[A] since this is the unique gauge invariant quantity of
dimension four. The group constant C' is here defined by

tI‘(TaTb> =—Clyp. (5.214)

Hence the divergent part will then be given by
1 112 C
S[A

WIA] ~ = - —- S[A]. 5.215
(4] ~ 5 S1A] = 5% o 514 (5215)
The € pole can be cancelled by replacing in the first term
1 Zg
= = ==, 5.216
2 (5.216)
and then letting
112 Cg?
Zg=1+ 3 Z 162 (5.217)

This is of course the same as previously, this gives directly the one loop result for 8(g) with the
correct sign for asymptotic freedom.

In order to calculate the divergent parts of the determinants of the differential operators
depending on the background field A, it is possible to use methods which maintain gauge
covariance throughout and are valid for any smooth background. This would require some
digression so instead we do it by brute force, expanding in the background field A, to quadratic
order. This is sufficient to determine the coefficient of the £ poles which are proportional to
S[A] and reduces the calculation to that for one loop FEYNMAN integrals.

First we consider det(—D?). Since D,, = 9, + AT, we may expand
D? = 0% + {0, Ay} To + AT AMTY . (5.218)

In general for determinants of an operator X + Y we may expand in Y by using

log det (X + Y) = logdet X + log det (1 + X_IY) = logdet X + trlog (1 + X_lY)
= logdet X + tr(X'Y) — %tr(X’lYX’lY) +.... (5.219)

47 Alternatively let
eIWIAJ] :/d[a]d[c]d[é] eiSalaAg e+ [ dle I (@)-au(@) (5.210)

and eliminate J by requiring éW A, J|/d6J(z) = 0.
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Applying this to obtain an expansion in A, we get

log det(—D?) = logdet(—9?) — Tr((—=0%) ' ({0", Apa}To + ApaTo AHTY))

1 — — v
- §Tr((—62) YoM, AT, (—0%) 710V, A }Ty) + O(A?). (5.220)
The traces Tr are functional traces but they also include a conventional trace over group indices.

The functional trace can be discussed in various ways, one approach is to introduce bases
|z) and |k) such that

d ddk ik-x
dx |z){z| = W| Wkl =1, (z|k) = €. (5.221)
and
Oulk) = ik, |k) . (5.222)
We then have
(@](=0*)"My) = ks e”“ (@=9) (5.223)
If X, Y are operators satisfying
X|z) = X(z)|x), Yiz) =Y (2)|z), (5.224)
then, since by definition Tr(O) = [ d%z (z|O|z),

Tr((—0%) ! X) :/d% (2](=0%)"V|z) X (z) = (Qi)d/ddkﬁ dle X(z),  (5.225)

and, introducing integrations over |x){z| and also |y){y|,

Te((~0%)~ X(~0 / dz / dty X (2)Y (y) (](~0%) ) (u] (—0%)~|2)
d d dje g gilh—k")-(z—y)
/d /dyX ( ) /dkdkz kaIQ
- (2 )2d /d » X(D)Y (— )/ddk m, (5.226)
for
X(p) = /ddaf errX(x),  Y(p)= /ddx ePTY (z). (5.227)

Applying these results to the calculation of log det(—D?) then since tr(7,) = 0 there is no
linear term in A,,. For the O(A?) term in the first line this approach gives

Tr((—0%) " ApaTa ABT,) = / A (z](=0%) " |z) tr(Apua(2) Ty A¥(2)Th)

d
_ / A tr (A ()T, A% (2)Th) / (‘;r’;d % (5.228)

This result may be represented by the FEYNMAN graph, where A,, and A,, are attached to
the external lines,

N
/ AN
AN /
Ap,a \/ Aub
AVAVAVAVAVAV
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For the remaining contribution we can calculate the trace in a similar fashion as above

B %Tf((*az)’1 {09, Aua}Ta (-0%)71{0", Ay} Th)

— _%/ddx/ddy tr(Apa(2)Ta Ay (y)Th)

x (0" (=0%) 710" |2} (| (=0%) " y) + (y]0" (—0%) " a)(w]0" (=0) " |y)
+(n](=0%) 710" |a) (x|(=0%) 710" y) + (Yl (—0*) 7 |x)(x[0" (=0) 10" |y))

%k [ A (k4 KMk + K)o
/dd /dytr 2) Ty Aup(y)T) /(2 z /( o ((k2 )) ((k;_ Z)ﬁ) ¢ilk=k) @)
(5.229)

adopting now the usual ie prescription in the denominators. The result is a FEYNMAN integral
corresponding to the diagram with two external vector lines

VA
In terms of the FOURIER transform A“a = fddx e?®A,q.(x) we then have, letting
K =k—np,
logdet (—D?)/(=0%)) = (2;)51 /ddp 1" (p) tr(Aua (0)To Aup(—p)Tp) + O(A%),  (5.230)
where
11 (2k — p)u(2k — p), 1 1
Iu(p) = = d’k L — Mo / d’k : 5.231
wp) =3 (27r)di/ (k2 —ie)((k —p)2 —ie) ™ (2m)di k2 — e (5:231)
This has the crucial property p*I,,, (p) = 0 which may be obtained from p-(2k—p) = k?—(k—p)?
and ublng translation invariance of the integration. Furthermore using (2k — p)? = ( p)? +
2k? — p? we have
W Lulp) = 1P 10) (4= 2) o [ (5.232)
a (2m)dq k2 —ie’
where L1 )
I(p) = = d’k . 5.233
() =3 (27r)dz'/ (k2 —ie)((k — p)2 — ie) (5:233)
Using dimensional regularisation the last term in I, (p) is zero*® and hence
1
Lu(p) = == (nuwd® = Pup) I(p) (5.235)

I(p) is a standard FEYNMAN integral which has already been calculated. With m? = 0 this one
loop integral is given just in terms of Gamma functions

(3d-1? A 1 1

I(p)=T(2—-1d ~ - . 5.236
(v) (2=3d) [(d—2) 2(4r)zd & 1672 ( )
48 There are various ways to see that this must be the case; remember the integral
d 1 1
—i/ dk = F(l—g> (m2)%~1 50 asm? -0, (5.234)
2m)® k2 +m2  (4n) 2

assuming d is analytically continued to d > 2.
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From the divergent part of I(p) we find for I, (p)*’

11 1
Luw(p) ~ =2 5 {62 (Muwp” — puby) - (5.239)
With this result and
tT(TaTb) = —C’(Sab (5240)

we get, to O(A?),

log det (—D?/(~8%)) ~ - ¢ /ddp (" p* = p"p”) Aua(p) Ave(—p)
3c 1672 | (2m)d pa /vt

i d N 3
" 6 Ti? / (ng];d (P A"a(p) = " A¥(D) (PpAva(—P) = PvApa(—p))
= 62; 16(/;2 / Az (0" A%, (x) — 8 AP (7)) (0pAva (@) — Dy Apa(z))
(5.241)

where the FOURIER transform has been inverted back to position space. This result has a
unique gauge invariant completion giving

log det (—D2/(—0°)) / e FY (2) Fyya(2) = — 22 iS1A]. (5.242)

68 1672 3e 1672

The divergent part determinant of the operator A acting on vector fields can be found in a
similar fashion. With the expansion

A == (0% + {0, AxaTo} + AraTa ANTY)6," — 2F,/ Ta (5.243)
then
logdet (A/(=0*)1) = —d Tr((—0%) " AuaTu ANTY)
S ATH(0) 7 D", AT (~0%)7 (0", A T)
—2Tr((—0%) ' F,"% T, (—0°) "' F,4Ty) + O(A?), (5.244)

where we keep only the terms which are non zero to this order. The factors d arise from a trace
over Lorentz indices. For the final term following the same methods as earlier

1 s i ; o
- 5 Tr((_az) 1F[L aTa(_a2) 1FVHbTb) = W /ddp I(p) tr(FHa(p)Ta F;wb(_p)Tb) )
(5.245)
noting that F,", F,*y = —F"F,,;. The e-pole in I(p) then gives
AnceyEnn o)y EAT) ~—L - [ dte @) Fua(a). (5.246)
2 pnata v blb 6167T2 T L, \T uvall) - .
49A direct calculation of I, (p), using 1/(k? —i€) =i [;° da e*ia(kQ*’ﬁ), is given by
I“V(p) -2 /oodal /ooda2 2(2; /ddk (2]6 *p)M(Qk 7p)y efial(szie)fiaz((kfpﬂfie)
12 2
/ dal/ das e aytag P
dy./ ’ al — a3 ;o Q1 — a3 —i(ay+az)(k'?—ie)
72(270 Z /d k <2k e pﬂ) (2k,, P p,,) e—ilartas 7 (5.237)

with the usual trick of completing the square. Under integration ',k — k’2n,./d while k/,p, — 0. Then
carrying out the k&’ integration and letting a; — —ia1, s — —iag, assuming p? > 0, we have

X129 4,2 1 2 a] — a2
/ da1/ dogy e e1toz” T ( mw+( - 2) pupu)
2(47r) (a1 + ap)2% \01 a2 al +az
1 D(1-3d)I(5d)?
(4m)2? I'(d)

IW(P)

%) 2972 (nuup® — pupy) - (5.238)
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Combining this with the contribution from the first two terms which is the same as that calcu-
lated earlier, apart from the additional factor of d, gives

i 2 C y 0 C
log det (A/(~0%)1) ~ (2 —4) o° / Az FL () Fuva(r) = 5015 iSTA]L (5.247)
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6 Fermion Currents and Anomalies

The assumptions which lead to NOETHER’s theorem and associated WARD-identities as de-
scribed in section 3.2 may be violated in quantum field theories because the process of regular-
isation and renormlisation may violate some of the symmetries of the classical LAGRANGian.
This is the case when the symmetries depend on a particular spacetime dimension so that they
are broken by dimensional regularisation. In this case there may be anomalies when classical
symmetries are not valid in the quantum field theories. In particular such issues arise with
DiraAc fields.

6.1 Example: Symmetries of the DIRAC LAGRANGian

Let us illustrate these issues by considering FERMIons; we have a LAGRANGian

L=—d(y-0+m), (6.1)

where the v matrices satisfy

(" =2 (6.2)
The definition of v* can be extended to any number of dimensions d. The free Lagrangian has
a U(1)y symmetry under the transformation

P — e ) — e, (6.3)

The change in the action for an x dependent «(x) is

SaS[i, 0] = =i [ ' d,a(a) dlahr"v(a). (6.4)
which gives the conserved current
" = iy (6.5)
This is a conserved current under the DIRAC equations
(v-O4+mup=0, (=~ 9+m)=0. (6.6)

We can also consider an axial U(1)4 symmetry under a transformation
Y= Py et (6.7)

where 72 = 1, ’yg =5 and {y*,7v5} = 0 for all v matrices. It is easy to see that in the massless
case m = 0,
0gL=0. (6.8)

If we follow the same procedure as before, we cannot extend 75 to d # 4 dimensions since it
involves the antisymmetric symbol €., the essential relation is the trace formula®

tr(’Yu'Yu’Yo'Yp) =4 €uvop - (611)

So now considering d = 4, the variation of the action is

_ ) 4 _
54516, 9] = i [ da 0,8(2) G150 (6.12)
which gives the conserved axial current
‘lu’ s T
Js =iy i) (6.13)
50For a demonstration of this note that
tr(’YS'Ya’Ya’Yu’YV'YU'Yp) = —tr(’Y5’Ya'Yu"fu’Ya’7p’Ya) s (6'9)
using cyclic symmetry of the trace and v57a¢ = —7a7s5. Using the standard properties of gamma matrices

YaYu Y Yo Yo ¥® = 2(VpYuYv Yo — Yo YuYvYp + Yo YuYo Yo — YuYvYoVp) + Ya Y Yu Y Yo Vp- If ¥*va = d1 the trace
formula gives

dep.uap = —€puvo T €opvp — €vpop + €pvop = 46;1,1/0‘;) 5 (610)
using the antisymmetric properties of the e-symbol.
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6.2 Triangle Graphs

Now let us apply this to calculations and see how far we get in a case where there are potential
anomalies. Consider the non-trivial case for a correlation function for three currents

(1" ()5" ()% (2)) , (6.14)
and since the currents satisfy d,7* = 0 we obtain from the WARD identity
9, (3" ()" (¥)j*(2)) = 0. (6.15)

Taking the FOURIER transform and factoring off a delta function:
T (p,q.r)(2m) "6 (p+ q + 1) = /ddwddyddz e/ PrHavtr S (it () ¥ (y)j*(2)) . (6.16)

For free fields the FEYNMAN diagrams are one loop,

The propagators are given by

vk H
k2 iyt

Let us now assume m = 0 for that makes life slightly easier, then the FEYNMAN rules will
give us

d
< (p,q,r) = (—i)/ (;lﬂ];d k2(k+q)12(kfp)2 tr(v“y - (k+q)7v" v k" v- (k—p))

+ (qv < rw), (6.17)

where there is a — sign associated with a FERMIon loop. In principle we could evaluate this
integral, but that is not what we want. The integral has a degree of divergence D = d — 3, so
that it would apparently not be convergent in four dimensions. However the leading term for
large k has the form

k-k-k
dk ——— =0. 6.18
] T (015
This reduces D by one.
The WARD identity asserts that
P (p.q,7) =0, (6.19)

and there are corresponding identities involving ¢, and r,. To verify this identity we take the
contraction inside the integral and then use

vokypy-(k—p) =v-(k—p)k* —~-k(k—p)? (6.20)
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which allows us to rewrite the integral as

e . dk 1 w v (1 (k—p) -k
pul’ (I%(lﬂ")—(—l)/wmtr (7 v (k+a)y ( (k—p? k2 >)
+ (v e rw). (6.21)

Now consider the shift in the integration so that k + ¢ — k, so that k — p — k + r, in the first
term and this becomes

vw . ddk w’yk V,Y(k—*—/r) w’Y(k—’—q) ,/'Yk
pMFH (pvq7r) = (_Z)/ (27T)dtr (7 12 Y (k’+’l")2 - (k+q)2 v k2

=0, (6.22)

using the cyclic property of the trace to show that the various terms cancel. Hence the WARD
identity is verified. Using dimensional regularisation all manipulations are justified but note
that in d = 4 dimensions, the change k+¢g — k can generate surface terms. Crucially the U(1)y
symmetry is valid for any d so the WARD identity is satisfied for the dimensionally regularised
theory. Requiring the WARD identity to be obeyed ensures a finite result when d = 4 as any
potential divergent terms fail to satisfy the identity.

Now consider a situation where there is one or three j5 currents,

(d5 (2)3" ()5 (2)) or (g ()58 (v)75 (2)) - (6.23)

For the Fourier transform of (j{'(z)j”(y)j*(z)) in a similar fashion to the previous case, but
now setting d = 4 since s is only really defined in four dimensions,

T4 (p,q,r) = (—i)/ (;};4 kg(kJrq)lQ(k_p)Q tr(v - (k+ )7 v ks - (k—p))

+ (v < rw). (6.24)

For (j£'j¥j¥) there are two additional 75 matrices in the trace but they cancel giving the same
result. With the same manipulations as in the previous example:

Pl (p,q,7) = Z/ dk tr <v°ﬂ ' kv’ﬂ : UHT)% — UH(D'Y” : k%)
(2m)4 k2 (k+1r)? (k+q)? k2
+ (q,v & rw)
=0, (6.25)

where in the first term we again shift the integration k + ¢ — ¢ so that there is a similar
cancellation of terms as in the vector case. However the basic unregularised integral we are
dealing with is

o ke
/d k Gy (6.26)

which is divergent for large k, so in the shift & — k&’ = k + ¢ can generate surface terms and
the above result can be modified.

For a well defined calculation, without ambiguity or the necessity of considering surface
terms under shifts of the integration momentum, it is necessary to regularise the integral.
Dimensional regularisation cannot be used so instead we change the propagator to

_ 7]7’6 p(k2) (6.27)

where p(k?) is a function satisfying p(k?) = 1 for low k% and p — 0 for k¥ — oo. This will
remove the large k divergence and the integral will have an additional factor in the integrand

p(E*)p((k + q)*) p((k — p)?). (6.28)
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Hence puf““’“ (p, q,7) now becomes, after the integration shift k + ¢ — k, k —p — k + r in the
first term,

Pl (p,q.r) = Z/ (;lﬁ]; tr (’y‘“ Wk'gkw” v(é(_li j)’;)% p(E)p((k = q)*)p((k +1)?)

L) D e )+ )k~ )

+ (v rw). (6.29)

-

The whole expression can then be written in the form:

(;:;4 {tr <7w Vk'ng" V(k(—k; :);’) 75) () p((k + 1))
x (ol = 0)%) = ol — p)®))

—tr (7“ V(é(_]i Z)E) v ”k'f %) p(*)p((k + q)%)

pufuww(n q, T) = Z/

< (k= p)?) — pl(k — 1)) } (6.30)

For any finite k£ this is zero since then we can then take p = 1. Let us on the other hand
consider what happens for k > p, ¢, r, which gives the only possible non zero contributions to
the integral. For k large we may expand

p((k—q)%) = p((k —p)?) = —p'(k*) 2k - (¢ — p), (6.31)

where p’ is the derivative of p(k?) with respect to k2, of course. We can write by standard
properties of the DIRAC matrices

tr(vy kv v (k+71)ys) =40 €7 Pkor, . (6.32)
With these results the integral becomes

Pl (p, g, 1) = 4/ % (ki)z p(k*)?p (k?) €277 (kory 2k (q—p) — 4ok, 2k-(p—7)) , (6.33)

where it is possible to show that other contributions in the expansion of p((k—q)?) —p((k—p)?)
are unimportant. On integration kokg — inaﬂk2~ Also with WICK rotation d*k — id*k and
then k2 > 0,

purw . wov d4k 1 2\2 2
Pl (p,q,7) = 8ie“7 P qqr, / i p(k*)"p' (k%) , (6.34)
using p = —q — r. Integrating over the angles, we can replace
d*k — 2m2k3dk = m2d(k*)k? (6.35)

so that, letting o = k2, the essential integral we are dealing with becomes

Ooda p(0)*p'(0) = | 5p(0)° T 5 (6.36)
/ ],
0

0

which is independent of the detailed form of p, save that p(0) = 1 and that it vanishes at
infinity. Finally we have obtained the non zero result

Uvw I vwo
pul*(p,qs 1) = — 5= 1€ qory (6.37)

which constitutes an anomaly in that it disagrees with the naive expectation. There is a similar
result for the other identities, obtained under the simultaneous permutations (u — v — w, p —
q — r), since the correlation function is symmetric between all the external lines. Hence also

YW 1 s WO VW I vo
G P ar) = — g 1€ oy, T I (p g 1) = — s 1P pog, (6.38)
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Other regularisation methods give the same answer, so long as the symmetry under interchange
of momenta and Lorentz indices for external lines is maintained, the method used above ensures
this since each Fermion propagator is regularised in the same way.

However in general there is a potential ambiguity in T, which results by letting
LR (p, q,1) + C i (g — 1), (6.39)

where the last term will destroy the symmetry under permutations of the three external lines
although it is symmetric under q,v < r,w. If

then including this extra piece we have

~ ~ ad 1 s VWo
G (pqr) =0, 1 D" (p.q,r) =0, p "< (p,qr)= ~5.3 1€"7Pgor, . (6.41)

This is appropriate for (j£'(x)j"(y)j“(z)) since this need not be fully symmetric and the result
ensures there is no anomaly for the vector currents j¥, j¢.

Only the surface of anomalies have been touched here.

- END -
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