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Abstract

Representations of the conformal algebra are constructed in terms of functional
differential operators depending a scalar field. For first order differential operators the
representation corresponds to a theory of generalised free fields. This representation
is extended to second order operators for the scale and special conformal generators.
This form depends on a largely arbitrary cut off function and also a functional of the
scalar field which is determined by second order functional differential equation. For the
generator of scale transformations the result is equivalent to a version of Wilsonian exact
RG equations. The eigenvalues of the generator of scale transformations, subject to
some assumptions of locality, determine the spectrum and scale dimensions of operators
in the theory.
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1 Conformal Symmetry

At any fixed point which is scale invariant the symmetry can usually be enhanced to include
also special conformal transformations so that the fixed point theory is invariant under all
conformal transformations [1]. A sufficient condition is if the energy momentum tensor
at the fixed point can be improved by additional contributions, according to well defined
prescription, so as to have vanishing trace. In this case Tµνvν is conserved a vector for vν
a conformal Killing vector. Although for d > 2 the conformal group is finite dimensional
the additional symmetries, beyond rotations and translations, allow the dependence of two
and three point functions for local conformal primary operators O(x) on their positions x
to be determined in terms of the scale dimensions ∆ and spins of of the operators. There
is also a one to one correspondence between the operator fields and states forming a basis
of the associated Hilbert space. In such conformal field theories there a prescription for
a natural norm in this basis is defined by the overall scale of the two point function for
the corresponding operator fields. This is necessarily positive in unitary theories. In two
dimensional conformal theories this norm played an essential role in the derivation of the
c-theorem by Zamolodchikov [2].

The generators of the conformal group {Mµν ,Pµ,D,Kµ}, which generate rotations,
translations, scale transformations and special conformal translations, have the non zero
commutators[

Mµν ,Mσρ

]
= δµσMνρ − δνσMµρ − δµρMνσ + δνρMµσ ,[

Mµν ,Pσ
]

= δµσ Pν − δνσ Pµ ,
[
Mµν ,Kσ

]
= δµσ Kν − δνσ Kµ ,[

D,Pµ
]

= Pµ ,
[
D,Kµ

]
= −Kµ ,

[
Kµ,Pν

]
= 2δµν D + 2Mµν . (1.1)

The conformal algebra becomes more succinct by rewriting

MAB = −MBA =

Mµν −Kµ −Pµ
Kν 0 2D
Pν −2D 0

 , (1.2)

with A,B (d+ 2)-dimensional indices, so that (1.1) is equivalent to[
MAB,MCD

]
= ηACMBD − ηBCMAD − ηADMBC + ηBDMAC , (1.3)

if

ηAB =

δµν 0 0
0 0 2
0 2 0

 . (1.4)

Assuming MAB
† = −MAB then {MAB} are generators of SO(d + 1, 1) (for a Minkowski

metric when δµν → ηµν the conformal group is then SO(d, 2)). The usual momentum,
angular momentum operators Pµ = −iPµ,Mµν = −iMµν are then hermitian.

A conformal primary operator scalar field O(x) with scale dimension ∆ is required to
satisfy[
Pµ,O

]
= ∂µO ,

[
Mµν ,O

]
= LµνO ,

[
D,O

]
= D(∆)O ,

[
Kµ,O

]
= K(∆)

µO , (1.5)
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where

Lxµν = xµ∂ν − xν∂µ , Dx
(∆) = x · ∂ + ∆ ,

Kx
(∆)

µ = −x2∂µ + 2xµ x · ∂ + 2∆xµ . (1.6)

These action of the generators is straightforwardly extended to fields with spin. For a
tensorial field Oα1...αl(x) then (1.5) is valid with the modifications[

Mµν ,Oα1...αl(x)
]

= Lxµν Oα1...αl(x) + (SµνO)α1...αl(x) ,

(SµνO)α1...αl(x) =
∑l

i=1

(
δµαi Oα1...ν...αl(x)− δναi Oα1...µ...αl(x)

)
(1.7)

and [
Kµ,Oα1...αl(x)

]
= Kx

(∆)
µOα1...αl(x) + 2xν (SµνO)α1...αl(x) . (1.8)

The vacuum state |0〉 belongs to the trivial singlet representation so that MAB|0〉 = 0.
The non trivial unitary representations of physical interest are lowest weight representations
where D has positive real eigenvalues, since for |O〉 = O(0)|0〉 then D|O〉 = ∆|O〉. With
this definition it is easy to see that Mµν |O〉 = Kµ|O〉 = 0.

The two point function for a real conformal primary field O, with scale dimension ∆,〈
O(x)O(y)

〉
in conformal field theories satisfies〈[

MAB,O(x)
]
O(y)

〉
+
〈
O(x)

[
MAB,O(y)

]〉
= 0 . (1.9)

Letting {Lµν , ∂µ, D(∆),K(∆)
µ} →M (∆)

AB, and then requiring[
MAB,O(x)

]
= Mx

(∆)
AB O(x) ,

[
MAB,O(y)

]
= My

(∆)
AB O(y) , (1.10)

ensures that (1.9) becomes a conformal Ward identity determining the functional form of
the two point function. For a scalar field O〈

O(x)O(y)
〉

=
cOO(

(x− y)2
)

∆
. (1.11)

1.1 Inversions and Scalar Product

To obtain a scalar product in which D is hermitian we consider the conformal transformation
obtained from an inversion through x = 0,

x→ x̄ =
1

x2
x . (1.12)

Conformality follows from

dx2 → dx̄2 =
1

(x2)2
dx2 . (1.13)

Corresponding to such a conformal transformation a scalar conformal primary field O trans-
forms as

O(x)→ Ō(x) = (x2)−∆O(x̄) , (1.14)
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and it is easy to check

Dx
(∆)Ō(x) = − (x2)−∆Dx̄

(∆)O(x̄) , ∂xµŌ(x) = −(x2)−∆Kx̄
(∆)

µO(x̄) ,

LxµνŌ(x) = (x2)−∆ Lx̄ µνO(x̄) . (1.15)

For complex fields O → Ō is antilinear.

Acting on Ō we may define[
M̄AB, Ō(x)

]
= Mx

(∆)
AB Ō(x) , (1.16)

This gives, from (1.15),

D̄ = −D , P̄µ = −Kµ , K̄µ = −Pµ , M̄µν =Mµν . (1.17)

In terms of the two point function given by (1.11) we may define(
O(x),O(y)

)
≡
〈
Ō(x)O(y)

〉
=

cOO
(1 + x2 y2 − 2x · y)∆

, (1.18)

so that (
O(0),O(0)

)
= cOO . (1.19)

It is straightforward to verify from (1.18)

Dx
(∆)
(
O(x),O(y)

)
= Dy

(∆)
(
O(x),O(y)

)
,

∂xµ
(
O(x),O(y)

)
= Ky

(∆)
µ

(
O(x),O(y)

)
,

Lxµν
(
O(x),O(y)

)
+ Ly µν

(
O(x),O(y)

)
= 0 . (1.20)

Defining a conjugate operator by

MAB
+ = −M̄AB , (1.21)

then (
O(x),

[
MAB,O(y)

])
=
( [
MAB

+,O(x)
]
,O(y)

)
. (1.22)

Clearly with a scalar product defined by (1.18) D+ = D.

2 Free Field Representations

For generalised free fields it is straightforward to construct corresponding representations
of the conformal generators in terms of functional derivatives and also local conformal
primary fields satisfying (1.6). For such functional representations it is convenient to adopt
the notation such that for ψ, φ functions on Rd then

φ · ψ = ψ · φ =

∫
ddx φ(x)ψ(x) , 1 · φ =

∫
ddx φ(x) . (2.1)
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For any functional F [φ] functional derivatives are here defined so that δF [φ] = δφ · δδφF [φ]
and for any bilocal function G(x, y) then φ · G · ψ is defined as expected from (2.1). It is
convenient to define

I(x, y) = δd(x− y) , Xµ(x, y) = xµ δ
d(x− y) , (2.2)

so that I · φ = φ. Occasionally it is helpful to transform to momentum space by taking
ϕ̃(p) =

∫
ddx eip·xϕ(x) and for any f(x2), f̃(p2) =

∫
ddx eip·xf(x2).

For functional representations of the conformal generators in terms of a scalar field ϕ(x)
on Rd the construction of local conformal primary operators, as in (1.5), reduces to solving
functional differential equations for O[ϕ;x],

PµO[ϕ;x] = ∂xµO[ϕ;x] , Mµν O[ϕ;x] =
(
Lxµν + Sµν

)
O[ϕ;x] , (2.3)

and
DO[ϕ;x] = Dx

(∆)O[ϕ;x] , KµO[ϕ;x] =
(
Kx

(∆)
µ + 2xν Sµν

)
O[ϕ;x] , (2.4)

for appropriate ∆ and spin. Alternatively

DO[ϕ; 0] = ∆O[ϕ; 0] , Mµν O[ϕ; 0] = Sµν O[ϕ; 0] , KµO[ϕ; 0] = 0 , (2.5)

which is equivalent to (2.4) where O[ϕ;x] = exp (x · P)O[ϕ; 0]. For an appropriately re-
stricted class of functionals {O[ϕ;x]} (2.4) or (2.5) are assumed to be eigenvalue equations
determining ∆.

Using the notation in (2.1) the generalised free field representation is given by

Pµ = ∂µϕ ·
δ

δϕ
, Mµν = Lµνϕ ·

δ

δϕ
, (2.6)

as well as

DF = D(δ)ϕ · δ
δϕ

, KFµ = K(δ)
µϕ ·

δ

δϕ
, (2.7)

with definitions in (1.6). It is easy to see that the generators given by (2.6) and (2.7) satisfy
the conformal algebra (1.1). By integration by parts in general

∂µϕ · ψ = − ϕ · ∂µψ , Lµνϕ · ψ = −ϕ · Lµνψ ,
D(δ)ϕ · ψ = − ϕ ·D(d−δ)ψ , K(δ)

µϕ · ψ = −ϕ ·K(d−δ)
µψ . (2.8)

The action of inversions on free fields ϕ is defined, in accord with (1.14), by

ϕ̄(x) = (x2)−δ ϕ(x/x2) ⇒ δ

δϕ̄(x)
= (x2)δ−d

δ

δϕ(x/x2)
. (2.9)

and hence it is easy to show from (2.7)

D(δ)ϕ · δ
δϕ

= −D(δ)ϕ̄ · δ
δϕ̄

, (2.10)
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and also using (2.6)

∂µϕ ·
δ

δϕ
= −K(δ)

µϕ̄ ·
δ

δϕ̄
, K(δ)

µϕ ·
δ

δϕ
= −∂µϕ̄ ·

δ

δϕ̄
, Lµνϕ ·

δ

δϕ
= Lµνϕ̄ ·

δ

δϕ̄
. (2.11)

Hence, with the definitions (2.6) and (2.7), (2.10) and (2.11) are in accord with (1.17).

The equations (2.4) are easy to solve in the free case with the representation given
by (2.6) and (2.7) if strict locality is imposed. For eigen-operators Φn,p[ϕ] = O(ϕn, ∂p)
constructed from ϕ and its derivatives at the same x then

DF Φn,p[ϕ] = D(∆F
n,p) Φn,p[ϕ] , KFµ Φn,p[ϕ] = K(∆F

n,p)
µ Φn,p[ϕ] ,

∆F
n,p = nδ + p , n, p = 0, 1, . . . . (2.12)

Explicitly, for just a single component scalar field, conformal primary scalar operators with
up to two derivatives are given by

Φn,0[ϕ] = ϕn , Φn,2[ϕ] = −∂2ϕϕn−1 +
1

n

δ − δ0

nδ − δ0
∂2ϕn , (2.13)

for
δ0 = 1

2(d− 2) . (2.14)

When δ = δ0, ∂2ϕ is a conformal primary and may be set to zero by imposing dynamical
equations on ϕ, defining the free theory. With δ = δ0, Φ2,2[ϕ] = −∂2ϕϕ is a marginal
operator since then ∆F

2,2 = d.

The simplest primary tensorial fields with two derivatives, satisfying (1.8), are

Φn,2,αβ[ϕ] = −∂α∂βϕϕn−1 +
1

n(nδ + 1)

(
(δ + 1) ∂α∂β −

(n− 1)δ

2(nδ − δ0)
δαβ ∂

2
)
ϕn , (2.15)

where Φn,2,αα = Φn,2. For there to be a conserved traceless energy momentum tensor with
∆ = d it is necessary to identify δ = δ0 and then

Θαβ = Φ2,2,αβ = −∂α∂βϕϕ+
1

4(d− 1)

(
d ∂α∂β − δαβ ∂2

)
ϕ2 , (2.16)

from which it follows that ∂αΘαβ = Θαα = 0 on the equations of motion ∂2ϕ = 0.

In general for the representation of the conformal generators given by the first order
functional operators (2.6) and (2.7) conformal primaries are easily constructed in terms
of products of conformal primaries and their descendants. For two conformal primaries
O,O′ with scale dimensions ∆,∆′ then other scalar conformal primaries with two and four
derivatives are given, using K(∆+2)

µ ∂
2 − ∂2K(∆)

µ = −4(∆− δ0) ∂µ,

O2 = (∆′ − δ0) ∂2OO′ + (∆− δ0)O ∂2O′ − (∆− δ0)(∆′ − δ0)

∆ + ∆′ − δ0
∂2(OO′) ,

O4 = ∂2O ∂2O′ + ∆′ − δ0

2(∆ + 1− δ0)
∂2∂2OO′ + ∆− δ0

2(∆′ + 1− δ0)
O ∂2∂2O′

− 1

∆ + ∆′ + 2− δ0
∂2O2 −

(∆− δ0)(∆′ − δ0)

2(∆ + ∆′ − δ0)(∆ + ∆′ + 1− δ0)
∂2∂2(OO′) , (2.17)
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which have scale dimensions ∆ + ∆′ + 2, ∆ + ∆′ + 4 respectively. This result implies that
Φn,4 has a threefold degeneracy for n ≥ 4. For δ = δ0 and ∂2ϕ → 0 there is just one
conformal primary which can be obtained starting from ∂2ϕ2∂2ϕn−2.

Simple constructions are also possible for operators constructed from O,O′ which have
maximal spin ` with ` derivatives. If tµ is a null vector, t2 = 0, then

O(`)(t) = Oα1...α` tα1 . . . tα` =
∑̀
n=0

(
`

n

)
(−1)n

(∆)n(∆′)`−n
(t · ∂)nO (t · ∂)`−nO′ , (2.18)

defines a symmetric traceless tensor which is a conformal primary with spin ` and scale
dimension ∆+∆′+`. Of course (t·∂)nO (t·∂)`−nO′ may be expressed as a linear combination
of O(`)(t) and descendants (t · ∂)rO(`−r)(t) for r = 1, . . . , `. For ` = 2 and O,O′ → ϕ Oαβ
is proportional to Φ2,2,αβ in (2.15). For O = O′, ∆ = ∆′, O(`) = 0 for ` odd.

The two point function of a scalar field with scale dimension δ〈
ϕ(x)ϕ(y)

〉
= Gδ(s) , s = (x− y)2 , (2.19)

is determined up to a constant by the conformal identities

Lµν Gδ+Gδ
←−
Lµν = 0 , ∂µ Gδ+Gδ

←−
∂µ = 0 , D(δ)Gδ+Gδ

←−
D (δ) = 0 , K(δ)

µ Gδ+Gδ
←−
K (δ)

µ = 0 .
(2.20)

It is convenient here to take

Gδ(s) =
Γ(δ)

(4π)
1
2
dΓ(1

2d− δ)

(
4

s

)δ
, (2.21)

which satisfies

Gδ · Gδ′ = Gδ+δ′− 1
2
d , −∂2Gδ = Gδ+1 , G 1

2
d = I , Gδ−1 = Gd−δ , (2.22)

and G̃δ(p2) = (p2)δ−
1
2
d. For any local field Φ[ϕ;x] formed from ϕ and its derivatives at x

the corresponding two point function is given by〈
Φ(x) Φ(y)

〉
= e

δ
δϕ
· Gδ· δδϕ′ Φ[ϕ;x] Φ[ϕ′, y]

∣∣∣
ϕ,ϕ′=0

= e
1
2

δ
δϕ
· Gδ· δδϕ NGδΦ[ϕ;x] NGδΦ[ϕ; y]

∣∣∣
ϕ=0

, (2.23)

whereNG denotes normal ordering with respect to a symmetric kernel G(x, y) and is formally
defined by

NGΦ[ϕ;x] = e
− 1

2
δ
δϕ
· G· δ

δϕ Φ[ϕ;x] . (2.24)

The result (2.23) can also be expressed as functional integral〈
Φ(x) Φ(y)

〉
=

∫
d[ϕ] e−

1
2
ϕ· Gδ−1·ϕ NGδΦ[ϕ;x] NGδΦ[ϕ; y] , (2.25)

assuming a normalisation such that
∫

d[ϕ] e−
1
2
ϕ· Gδ−1·ϕ = 1. The normal ordering in (2.25)

for G = Gδ is formal since Gδ(s) is singular as s → 0 but in a diagrammatic expansion it
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removes contractions involving fields at the same point. Conformal invariance is reflected
by

MF
AB ϕ · Gδ−1 · ϕ = 0 , (2.26)

and from (2.22)
ϕ · Gδ0−1 · ϕ = −ϕ · ∂2ϕ . (2.27)

Since δ
δϕ ·Gδ ·

δ
δϕ commutes with the conformal generators (2.6), (2.7) the action on conformal

primaries is unmodified by normal ordering

DF NGδΦn,p[ϕ;x] = D(nδ+p) NGδΦn,p[ϕ;x] ,

KFµNGδΦn,p[ϕ;x] = K(nδ+p)
µ NGδΦn,p[ϕ;x] . (2.28)

Assuming
Φ̄[ϕ;x] = Φ[ϕ̄, x] , (2.29)

then from ϕ · Gδ−1 · ϕ = ϕ̄ · Gδ−1 · ϕ̄, δ
δϕ · Gδ ·

δ
δϕ = δ

δϕ̄ · Gδ ·
δ
δϕ̄ , then from (2.25) and (1.18)

(
Φ(x),Φ(y)

)
=

∫
d[ϕ] e−

1
2
ϕ· Gδ−1·ϕ NGδΦ[ϕ̄;x] NGδΦ[ϕ; y] . (2.30)

In (2.30) we suppose d[ϕ] = d[ϕ̄] so as to ensure symmetry under ϕ↔ ϕ̄, the measure d[ϕ]
then invariant under conformal transformations on ϕ.

3 Extensions to Non Free Theories

For framework of the exact non linear RG equations describing the flow of non polynomial
actions S under a change of scale provides a method of determining non trivial fixed points,
at least for for scalar theories. At the fixed points there is exact scale invariance and
the linearised RG equations in the neighbourhood of the fixed point define a functional
differential operator, depending on the fixed point action S∗, whose eigenvalues determine
the scale dimensions of the fields. It is natural to consider the extension to conformal
symmetry where there are additional functional differential operators satisfying the algebra
of the conformal group. Such a discussion was undertaken some time ago by Schafer [3] in
the context of the original Wilsonian exact RG equations.

With this motivation we therefore consider extensions of the free field representation
to accommodate such non trivial IR fixed points. The expressions for Pµ,Mµν remain the
same as in (2.6) so that rotations and translations are realised by linear action on the fields
in the standard fashion. The results for the generators of scale and special conformal trans-
formations in (2.7) are however extended to second order functional differential operators
of the form

D = D(δ)ϕ · δ
δϕ

+
δ

δϕ
S∗[ϕ] ·G · δ

δϕ
− 1

2

δ

δϕ
·G · δ

δϕ
, (3.1)

and

Kµ = K(δ)
µϕ ·

δ

δϕ
+

δ

δϕ
S∗[ϕ] · Fµ ·

δ

δϕ
− 1

2

δ

δϕ
· Fµ ·

δ

δϕ
, (3.2)
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for G(x, y), Fµ(x, y) symmetric in x, y and S∗[ϕ] an as yet undetermined functional of ϕ
subject to

MµνS∗[ϕ] = PµS∗[ϕ] = 0 . (3.3)

This ensures that [Mµν ,D] = 0 and also [Pµ,D] given in (1.1) so long as

Lµν G+G
←−
Lµν = 0 , ∂µG+G

←−
∂µ = 0 . (3.4)

These conditions are trivially solved by taking

G(x, y)→ G(s) , s = (x− y)2 . (3.5)

By considering [Mµν ,Kσ] and [Pµ,Kν ] we also obtain

Lµν Fσ + Fσ
←−
Lµν = −δµσ Fν + δνσ Fµ , ∂µ Fν + Fν

←−
∂µ = 2δµν G . (3.6)

Here the solution is also straightforward

Fµ(x, y) = (x+ y)µG(s) , (3.7)

or Fµ = Xµ ·G+G ·Xµ. Locality requires

G(s)→ 0 as s→∞ , (3.8)

where it is convenient to assume that the limit is approached faster than any inverse power
of s. To a large extent G,Fµ are arbitrary but their presence is crucial in regularising the
functional Laplacians in (3.1).

The form for (3.1) is of course motivated by similar expressions that arise in exact RG
equations, (3.2) is then essentially determined by imposing [Pµ,Kν ] = −2δµν D − 2Mµν .

The remaining commutators [D,Kµ] = −Kµ and [Kµ,Kν
]

= 0 are non trivial in this
representation. After some calculation[

D,Kµ
]

= −K(δ)
µϕ ·

δ

δϕ

− δ

δϕ
S∗[ϕ] ·

(
D(δ)Fµ + Fµ

←−
D (δ) −K(δ)

µG−G
←−
K (δ)

µ

)
· δ
δϕ

+
1

2

δ

δϕ
·
(
D(δ)Fµ + Fµ

←−
D (δ) −K(δ)

µG−G
←−
K (δ)

µ

)
· δ
δϕ

+
δ

δϕ
E(δ)

S∗ [ϕ] · Fµ ·
δ

δϕ
− δ

δϕ
E(δ)

S∗µ[ϕ] ·G · δ
δϕ

, (3.9)

where we define

E(δ)
S [ϕ] = D(δ)ϕ · δ

δϕ
S[ϕ] +

1

2

δ

δϕ
S[ϕ] ·G · δ

δϕ
S[ϕ]− 1

2

δ

δϕ
·G · δ

δϕ
S[ϕ] , (3.10a)

E(δ)
Sµ[ϕ] = K(δ)

µϕ ·
δ

δϕ
S[ϕ] +

1

2

δ

δϕ
S[ϕ] · Fµ ·

δ

δϕ
S[ϕ]− 1

2

δ

δϕ
· Fµ ·

δ

δϕ
S[ϕ] . (3.10b)
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Using (3.5) and (3.7) it is easy to show that

D(δ)Fµ + Fµ
←−
D (δ) −K(δ)

µG−G
←−
K (δ)

µ = Fµ . (3.11)

Applying this in (3.9) then [D,Kµ] = −Kµ follows so long as we require S∗[ϕ] to satisfy

E(δ)
S∗ [ϕ] = C , E(δ)

S∗µ[ϕ] = Cµ , (3.12)

for C,Cµ independent of ϕ.

In a similar fashion[
Kµ,Kν

]
=− δ

δϕ
S∗[ϕ] ·

(
K(δ)

µ Fν + Fν
←−
K (δ)

µ −K(δ)
ν Fµ − Fµ

←−
K (δ)

ν

)
· δ
δϕ

+
1

2

δ

δϕ
·
(
K(δ)

µ Fν + Fν
←−
K (δ)

µ −K(δ)
ν Fµ − Fµ

←−
K (δ)

ν

)
· δ
δϕ

+
δ

δϕ
E(δ)

S∗µ[ϕ] · Fν ·
δ

δϕ
− δ

δϕ
E(δ)

S∗ν [ϕ] · Fµ ·
δ

δϕ
, (3.13)

so that the conformal algebra requires, as well as (3.12).

K(δ)
µ Fν + Fν

←−
K (δ)

µ = K(δ)
ν Fµ + Fµ

←−
K (δ)

ν . (3.14)

This follows directly from (3.7).

With the definitions (3.10) the equations (3.12) are assumed to determine S∗[ϕ] at a
fixed point with conformal symmetry subject to conditions on the functional form of S∗[ϕ].
If E(δ)

S∗ [ϕ] = C without E(δ)
S∗µ[ϕ] = Cµ at the same time the critical point determined by

S∗ is just scale invariant. Note that from (3.3) PµE(δ)
S∗ [ϕ] =MµνE

(δ)
S∗ [ϕ] = 0 and also

PµE(δ)
S∗ν [ϕ] = −2δµν E

(δ)
S∗ [ϕ] , MµνE

(δ)
S∗σ[ϕ] = δµσ E

(δ)
S∗ν [ϕ]− δνσ E(δ)

S∗µ[ϕ] .
(3.15)

The integrability conditions necessary to consistently solve (3.12) follow from

KµE(δ)
S∗ [ϕ]−DE(δ)

S∗µ[ϕ] = E(δ)
S∗µ[ϕ] , KµE(δ)

S∗ν [ϕ]−KνE(δ)
S∗µ[ϕ] = 0 . (3.16)

The crucial conditions which are presumed to ensure that (3.12) has relevant solutions
are that S∗[ϕ] should be essentially local. This is equivalent to requiring that in a functional
Taylor expansion of S∗[ϕ] the coefficient functions should all fall off rapidly as any mutual
separations become large. The existence of solutions S∗[ϕ] subject to this condition are
only possible for particular choices of δ and are then restricted to a discrete set although in
each case S∗[ϕ] may depend on one or more continuously variable parameters.

At a scale invariant fixed point E(δ)
S∗ [ϕ] = 0. In this case (3.15), (3.16) imply

DE(δ)
S∗µ[ϕ] = −E(δ)

S∗µ[ϕ] , PµE(δ)
S∗ν [ϕ] = 0 . (3.17)

If D does not have non trivial translation invariant eigenfunctionals with eigenvalue −1 then
E(δ)

S∗µ[ϕ] = 0 in which case, as recognised by Delamotte et al [7], the theory is conformally
invariant.
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3.1 Examples of Local Primary Operators

Although finding conformal primary operators and their associated scaling dimensions by
solving, for the representations (3.1) and (3.2), (2.4) becomes a non trivial functional eigen-
value problem assuming O[ϕ;x] is quasi-local in the sense of depending on ϕ at points in
the neighbourhood of x. For a few special cases the operators are simply given in terms of
S∗. From (3.10) it is easy to see that

δ

δϕ
E(δ)

S∗ [ϕ] = D δ

δϕ
S∗[ϕ]−D(d−δ) δ

δϕ
S∗[ϕ] ,

δ

δϕ
E(δ)

S∗µ[ϕ] = Kµ
δ

δϕ
S∗[ϕ]−K(d−δ)

µ
δ

δϕ
S∗[ϕ] , (3.18)

as well as from (3.3)

Mµν
δ

δϕ
S∗[ϕ] = Lµν

δ

δϕ
S∗[ϕ] , Pµ

δ

δϕ
S∗[ϕ] = ∂µ

δ

δϕ
S∗[ϕ] . (3.19)

Hence so long as (3.12) are satisfied

ΦR[ϕ] =
δ

δϕ
S∗[ϕ] , (3.20)

is a quasi-local scalar conformal primary operator which has scaling dimension ∆ = d− δ.

Furthermore if

Φϕ[ϕ] = ϕ+H · δ
δϕ
S∗[ϕ] , (3.21)

then, using (3.18), Φϕ is a conformal primary operator with ∆ = δ,

DΦϕ = D(δ) Φϕ , Kµ Φϕ = K(δ)
µΦϕ , (3.22)

so long as H(x, y) satisfies

D(δ)H+H
←−
D (δ) = G , K(δ)

µH+H
←−
K (δ)

µ = Fµ , (3.23)

and we assume also

Lµν H+H
←−
Lµν = 0 , ∂µH+H

←−
∂µ = 0 . (3.24)

This ensures that (3.3) implies

MµνΦϕ = LµνΦϕ , PµΦϕ = ∂µΦϕ . (3.25)

The rotational and translation invariance constraint (3.24) is trivially satisfied so long
as H(x, y) ≡ H(s), s = (x− y)2, and then (3.23) reduces to just

sH′(s) + δH(s) = 1
2 G(s) . (3.26)
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The requirement that Φϕ is quasi-local then necessitates that the solution H(s), should fall
off rapidly for large s, or H̃(p2) is regular as p2 → 0. This condition may be achieved by
taking

H(s) = − 1

2sδ

∫ ∞
s

du uδ−1G(u) , H̃(p2) = − 1

2(p2)
1
2
d−δ

∫ p2

0
dx x

1
2
d−δ−1G̃(x) . (3.27)

Writing
H(s) = −k Gδ(s) + G(s) , (3.28)

then from the integral representation in (3.27) if G(u) is analytic at u = 0

G(s) ∼
s→0

1

2

∑
n≥0

G(n)(0)

n! (δ + n)
sn , k =

1

2

∫ ∞
0

dx x
1
2
d−δ−1G̃(x) , (3.29)

for G(n) the n’th derivative. Since we assume G(u) > 0 then k > 0. We also assume here
that δ < 1

2d so that the integral in (3.21) is non singular.

In quantum field theories local operators are determined modulo the equations of motion,
operators which vanish subject to the equations of motion of the theory are redundant. In
the framework described here redundant quasi-local operators Oψ(x) are defined in terms
bilocal functionals ψ(x, y) which fall off rapidly for large (x− y)2 and are of the form

Oψ = ψ · δ
δϕ
S∗ − ψ ·

←−
δ

δϕ
, (3.30)

or Oψ e−S∗ = −
(
ψ e−S∗

)
·
←−
δ
δϕ . For operators of the form (3.30)(

Pµ − ∂µ)Oψ = OPµψ−∂µψ−ψ←−∂µ ,
(
Mµν − Lµν)Oψ = OMµνψ−Lµνψ−ψ

←−
Lµν , (3.31)

and also, using the explicit forms in (3.1), (3.2),(
D−D(∆)

)
Oψ = ODψ−D(∆)ψ−ψ

←−
D (δ) ,

(
Kµ−K(∆)

µ

)
Oψ = OKµ ψ−K(∆)

µψ−ψ
←−
K (δ)

µ . (3.32)

By virtue of (3.31), (3.32) the space of redundant operators {Oψ} forms an invariant sub-
space under the action of the conformal generators. If ψ is assumed to satisfy

Pµ ψ(x, y) =
(
∂xµ + ∂y µ

)
ψ(x, y) , Mµν ψ(x, y) =

(
Lxµν + Ly µν

)
ψ(x, y) , (3.33)

then any such Oψ satisfies PµOψ = ∂µOψ,Mµν Oψ = LµνOψ and if(
D −D(∆)

)
ψ − ψ

←−
D (δ) =

(
Kµ −K(∆)

µ

)
ψ − ψ

←−
K (δ)

µ = 0 , (3.34)

for some choice of ∆ then Oψ is a redundant conformal primary local operator with scale
dimension ∆. Redundant conformal primaries do not belong to the spectrum of mutually
local conformal primaries in a CFT.

Quasi-local solutions of (3.34), as well as (3.33) may be obtained for any scalar primary
operator O satisfying (2.4) as well as (2.3) by taking

ψO(x, y) = δd(x− y)O(x) . (3.35)
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In this case

O′(x) = OψO(x) = O(x)
δ

δϕ(x)
S∗[ϕ]− δ

δϕ(x)
O(x) , (3.36)

is a redundant conformal primary with ∆O′ = ∆O + d− δ. To verify this we use

Dx
(∆O+d−δ)ψ(x, y) + ψ(x, y)

←−
Dy

(δ) =
(
Dx

(∆O)O(x)
)
δd(x− y) ,

Kx
(∆Φ+d−δ)

µ ψ(x, y) + ψ(x, y)
←−
Ky

(δ)
µ =

(
Kx

(∆O)
µO(x)

)
δd(x− y) . (3.37)

As particular examples taking O = 1, ∆1 = 0 gives ΦR while

ψZ(x, y) = δd(x− y) Φϕ(x) , (3.38)

generates a redundant marginal operator Z = OψZ as in (3.36)

Z(x) = Φϕ(x)
δ

δϕ(x)
S∗[ϕ]− δ

δϕ(x)

(
Φϕ(x)− ϕ(x)

)
, (3.39)

where ϕ is subtracted from Φδ in the second term to remove the singular δd(0) contribution
otherwise resulting from the functional derivative. Z satisfies

DZ = D(d) Z , Kµ Z = K(d)
µ Z . (3.40)

From (2.4), for any quasi-local primary functional O[ϕ;x] = O(x) the corresponding
functional 1 · O =

∫
ddxO(x) satisfies

D 1 · O = (∆− d) 1 · O , (3.41)

and

Kµ 1 · O = 2(∆− d) 1 ·Xµ · O , 1 ·Xµ · O =

∫
ddx xµO(x) . (3.42)

Hence from (3.40) 1 ·Z is an exact zero mode. In general for marginal operators with ∆ = d
we may let S∗ → S∗ + ε 1 · O for infinitesimal ε. This deformation may in some cases be
integrated so that S∗ depends on a continuous parameter corresponding to a line of fixed
points.

3.2 Energy Momentum Tensor

The energy momentum tensor Θµν is a local conformal primary with ∆ = d and spin two, in
terms of which the conformal generators can be constructed. Nevertheless in a general CFT
there is no general reason for a local energy momentum tensor to be present, as illustrated
by the example of generalised free fields constructed in terms of an elementary free scalar
ϕ with dimension δ 6= 1

2(d − 2). Such mean field theories arise if the elementary theory
has long range interactions which violate the assumptions of a quasi-local underlying S∗.
Recently constructions for the energy momentum tensor in exact RG frameworks have been
described by Rosten [8] and Sonoda [9]. We extend such discussions to the framework of
functional representations for the conformal generators presented here using the redundant
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operator Z as well as a corresponding vector operator Vν . These play a similar role to
equation of motion operators E,Eµ introduced in perturbative treatments [18].

The redundant quasi-local vector operator is defined by

Vν = OψV,ν , ψV,ν(x, y) = δd(x− y) ∂νΦϕ(x) . (3.43)

With this definition of ψV,ν

DψV,ν(x, y) = Dx
(d+1)ψV,ν(x, y) + ψV,ν(x, y)

←−
Dy

(δ) ,

Kµ ψV,ν(x, y) = Kx
(d+1)

µ ψV,ν(x, y) + ψV,ν(x, y)
←−
Ky

(δ)
µ + 2δ δµν ψZ(x, y) , (3.44)

so that
D Vν = D(d+1)Vν , Kµ Vν = K(d+1)

µ Vν + 2δ δµν Z . (3.45)

For Θµν a conformal primary of scale dimension d, so that DΘµν = D(d)Θµν , Kσ Θµν =
K(d)

σΘµν , it follows that

D ∂σΘσν = D(d+1)∂σΘσν , Kµ ∂σΘσν = K(d+1)
µ ∂σΘσν + 2 δµν Θρρ . (3.46)

Comparison with (3.45) suggests the identifications [8, 9]

∂µΘµν = −Vν , Θµµ = −δ Z , (3.47)

although any expression for Θµν has an inherent arbitrariness up to redundant contributions
so that

Θµν ∼ Θµν + b δµν Z , (3.48)

for any b. Assuming (3.47) requires various consistency conditions. First we have∫
ddx Vν =

∫
ddx ∂νϕ(x)

δS∗
δϕ(x)

+

∫
ddx ddy

(
δS∗
δϕ(x)

∂νH(x, y)
δS∗
δϕ(y)

− δ

δϕ(x)
∂νH(x, y)

δ

δϕ(y)
S∗

)
= 0 , (3.49)

which follows from translation invariance of S∗ in (3.3) and also from the antisymmetry of
∂νH(x, y) following from (3.24). In a similar fashion∫

ddx (xµVν − xνVµ) = 0 , (3.50)

since in the corresponding equation to (3.49) ∂νϕ → Lµνϕ, ∂νH → LµνH which vanishes
as a consequence of rotational invariance of S∗, as given by (3.3), and also (3.24) implies
LµνH is antisymmetric. This condition is necessary for

∫
ddxΘµν =

∫
ddxΘνµ. We may

also obtain ∫
ddx xνVν + δ

∫
ddx Z(x) = E(δ)

S∗ → 0 , (3.51)
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using now in (3.49) ∂νϕ → (D(δ) − δ)ϕ, ∂νH → (D(δ) − δ)H and, from (3.23), in (3.49)
D(δ)H → 1

2G. This is consistent with (3.47), since
∫

ddxxν∂µΘµν +
∫

ddxΘµµ = 0. Finally
we have, from (3.10b) and (3.23),∫

ddx
(
− x2 Vν + 2xν xµVµ

)
+ 2δ

∫
ddx xν Z(x) = E(δ)

S∗ν → 0 , (3.52)

which corresponds to the identity
∫

ddx (−x2∂µΘµν + 2xνxµ ∂σΘσµ) + 2
∫

ddxxν Θµµ = 0.

As a consequence of the above

Tµν =

∫
ddx xµVν = Tνµ , (3.53)

is a marginal operator,

Pσ Tµν = D Tµν = 0 , Mσρ Tµν = δσµ Tρν − δρµ Tσν − δρν Tµσ + δσν Tµρ . (3.54)

There is in general no guarantee of the existence of a quasi-local conformal primary Θµν

satisfying (3.47) but if valid, since Vν , Z are redundant operators, this is consistent with the
conservation and tracelessness of the energy momentum tensor in conformal field theories.

3.3 Multi-local Functionals

To extend the discussion of conformal primary operators to a prescription for determining
their correlation functions it is necessary to consider functionals depending on two or more
points.This is non trivial since the exact RG equation is second order in functional deriva-
tives. A related discussion is given in [10]. For the two point case (2.4) is extended for two
spinless operators to

Pµ E12[ϕ;x, y] =
(
∂xµ + ∂y µ

)
E12[ϕ;x, y] ,

Mµν E12[ϕ;x, y] =
(
Lxµν + Ly µν

)
E12[ϕ;x, y] ,

DE12[ϕ;x, y] =
(
Dx

(∆1) +Dy
(∆2)

)
E12[ϕ;x, y] ,

Kµ E12[ϕ;x, y] =
(
Kx

(∆1)
µ +Ky

(∆2)
µ

)
E12[ϕ;x, y] , (3.55)

with obvious generalisations for three or more points. Since D,Kµ involve second order
functional derivatives with the representation (3.1), (3.2) E12[ϕ;x, y] 6= O1[ϕ, x]O2[ϕ, y] but
locality is imposed by requiring E12 factorises for large separations so that

E12[ϕ;x, y] = O1[ϕ;x]O2[ϕ; y] + o
(
s−max(∆1,∆2)

)
as s = (x− y)2 →∞ , (3.56)

assuming O1,O2 are here conformal primary operators with scale dimensions ∆1,∆2. This
boundary conditions excludes the freedom to add trivial homogeneous solutions of (3.55)
for ∆1 = ∆2 and zero left hand side. However, if ∆1 = ∆2, at short distances E12 has a
leading ϕ-independent contribution such that we may define the correlator of O1,O2 by

E12[ϕ;x, y] ∼ c12

s∆1
δ∆1∆2 =

〈
O1(x)O2(y)

〉
, x ∼ y . (3.57)
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where the explicit form is determined by conformal identities (3.55) and of course the
restriction to ∆1 = ∆2 in (3.57) depends on the special conformal identity arising from
Kµ E12. The normalisation of E12 is determined by the large distance form in (3.56) although
of course the normalisation of O1,O2 may be chosen at will. The short distance form in
(3.57) is extended in appendix B to a form equivalent to the operator product expansion so
that E12 in principle determines the coefficients which determine the overall scale of three
point functions 〈O1O2O〉. It is of course crucial that for physical operators two point
functions are positive although this does not apply if they are redundant.

Exact results are also possible for any bilocal functional containing Φϕ since the confor-
mal identities are satisfied, using (3.59), by

EΦϕO(x, y) = Φϕ(x)O(y)−H(x) · δ
δϕ
O(y) , (3.58)

defining H(x) · δδϕ =
∫

ddu H((x−u)2) δ
δϕ(u) with H given by (3.27). To verify (3.58) we use[

D, δ

δϕ

]
= D(d−δ) δ

δϕ
− S∗(2) ·G · δ

δϕ
,[

Kµ,
δ

δϕ

]
= K(d−δ)

µ
δ

δϕ
− S∗(2) · Fµ ·

δ

δϕ
, (3.59)

to evaluate the action of the conformal generators on δ
δϕO. Here the bilocal functional S∗

(2)

is defined by

S∗
(2)[ϕ;x, y] =

δ2

δϕ(x) δϕ(y)
S∗[ϕ] . (3.60)

From (3.18) this satisfies the identities

D S∗(2) = D(d−δ) S∗
(2) + S∗

(2)←−D (d−δ) − S∗(2) ·G · S∗(2) ,

Kµ S∗(2) = K(d−δ)
µ S∗

(2) + S∗
(2)←−K (d−δ)

µ − S∗(2) · Fµ · S∗(2) , (3.61)

and since S∗ is quasi-local then for large or small separations, when the G,Fµ terms in
(3.61) can be neglected,

S∗
(2)[ϕ;x, y] ∼ 0 as s→∞ , S∗

(2)[ϕ;x, y] ∼ cGδ−1(s) as s→ 0 . (3.62)

Multi-local operators are redundant if they can be expressed in the form (3.30). In this
case for two points the bilocal functional E12 is determined in terms of ψ12(x, y; z) and has
the form, with Eψ12 [ϕ;x, y] = Eψ12(x, y),

Eψ12(x, y) =

∫
ddz

(
ψ12(x, y; z)

δS∗
δϕ(z)

− ψ12(x, y; z)

←−
δ

δϕ(z)

)
. (3.63)

For this to satisfy (3.55) there are corresponding equations for ψ12 analogous to (3.33),
(3.34), (

D −Dx
(∆1) −Dy

(∆2)
)
ψ12(x, y; z) = ψ12(x, y; z)

←−
Dz

(δ) ,(
Kµ −Kx

(∆1)
µ −Ky

(∆2)
µ

)
ψ12(x, y; z) = ψ12(x, y; z)

←−
K z

(δ)
µ . (3.64)
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For O1 → ΦR with ∆1 → d− δ and O2 → O, ∆2 → ∆ it is sufficient to take just

ψΦRO(x, y; z) = δd(x− z)O(y) ⇒ EΦRO(x, y) = ΦR(x)O(y)− δ

δϕ(x)
O(y) . (3.65)

Taking O1 → Z,∆1 → d as well as O2 → O, ∆2 → ∆ the equations (3.64) for ψZO are
solved using (3.59), extending (3.38), if

ψZO(x, y; z) = δd(x− z)
(

Φϕ(x)O(y)−H(x) · δ
δϕ
O(y)

)
. (3.66)

In a similar fashion to (3.66) for the redundant vector operator defined in (3.43)

ψVO,ν(x, y; z) = δd(x− z)
(
∂νΦϕ(x)O(y)− ∂νH(x) · δ

δϕ
O(y)

)
. (3.67)

(3.66) and (3.67) determine

EZO(x, y) = Z(x)O(y)−N (x)O(y) ,

EVO,ν(x, y) = Vν(x)O(y)− Vν(x)O(y) , (3.68)

where N ,Vν are local functional differential operators defined by

N (x) = ϕ(x)
δ

δϕ(x)
+

δS∗
δϕ(x)

H(x) · δ
δϕ

+H(x) · δS∗
δϕ

δ

δϕ(x)
− δ

δϕ(x)
H(x) · δ

δϕ
,

Vν(x) = ∂νϕ(x)
δ

δϕ(x)
+

δS∗
δϕ(x)

∂νH(x) · δ
δϕ

+ ∂νH(x) · δS∗
δϕ

δ

δϕ(x)
− δ

δϕ(x)
∂νH(x) · δ

δϕ
.

(3.69)

With the same arguments as used to obtain (3.49), (3.50), (3.51), (3.52)∫
ddx

(
xµVν(x)− xνVµ(x)

)
=Mµν ,

∫
ddx

(
xνVν(x) + δN (x)

)
= D ,∫

ddx Vµ(x) = Pµ ,
∫

ddx
(
− x2Vµ(x) + 2xµxνVν(x) + 2δ xµN (x)

)
= Kµ . (3.70)

(3.68) has no direct interpretation for arbitrary x but from (3.70), for O conformal primary
with scale dimension ∆, then using (3.70) as well as (3.49), (3.50), (3.51), (3.52)∫

ddx EVO,ν(x, y) = − ∂y νO(y) ,∫
ddx

(
xµEVO,ν(x, y)− xνEVO,µ(x, y)

)
= − Ly µνO(y) ,∫

ddx
(
xνEVO,ν(x, y) + δ EZO(x, y)

)
= −Dy

(∆)O(y) ,∫
ddx

(
− x2EVO,µ(x, y) + 2xµxνEVO,ν(x, y) + 2δ xµEZO(x, y)

)
= −Ky

(∆)
µO(y) . (3.71)
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The results in (3.71) are as expected from conformal Ward identities with the identifications
(3.47). Implicitly in (3.71) O is spinless but the result extends easily to non zero spin. Up
to terms which vanish on integration on (3.71)

EVO,ν(x, y) ∼ − Vν(x)O(y) ∼ ∂νδd(x− y)O(y) ,

δ EZO(x, y) ∼ − δN (x)O(y) ∼ −(∆− d) δd(x− y)O(y) . (3.72)

If an energy momentum tensor satisfying (3.47) exists then EΘO,µν(x, y) of course requires
non contact contributions but, with the prescription (3.57), correlation functions involving
Vν , Z are just given by〈

Vν(x) . . .Oi(yi) . . .
〉

=
∑

i ∂νδ
d(x− yi)

〈
. . .Oi(yi) . . .

〉
,

δ
〈
Z(x) . . .Oi(yi) . . .

〉
= −

∑
i (d−∆i) δ

d(x− yi)
〈
. . .Oi(yi) . . .

〉
. (3.73)

Using (3.58) as well as (3.63), (3.65) we may obtain

EΦϕΦϕ = Φϕ Φϕ
T −H · S∗(2) · H −H ,

EΦRΦϕ = ΦR Φϕ
T − S∗(2) · H − ck I ,

EΦRΦR = ΦR ΦR
T − S∗(2) , (3.74)

vhere we take Φϕ(x) Φϕ(y) → Φϕ Φϕ
T . In the result for ERφ conformal identities allow an

arbitrary additional term proportional to I since D(d−δ) I+I
←−
D (δ) = 0, K(d−δ)

µ I+I
←−
K (δ)

µ =
0. The resulting freedom in the expression for EΦRΦϕ [ϕ;x, y] can be used to ensure that
any δd(x− y) contributions are absent. The coefficient of I in (3.74) ensures this by virtue
of (3.29), (3.62). In the absence of such singular contributions there is a well defined limit
y → x giving

Z[ϕ;x] = EΦRΦϕ [ϕ;x, x] , (3.75)

which is identical with (3.39). Using (3.29) and (3.62) as s→ 0

EΦϕΦϕ(x, y) ∼ k(1− ck)Gδ(s) =
〈
Φϕ(x) Φϕ(y)

〉
,

EΦRφR(x, y) ∼ − cGδ−1(s) =
〈
ΦR(x) ΦR(y)

〉
, (3.76)

with the correlation functions defined according to (3.57).

3.4 Variations in G, δ

The function G, which plays the role of a cut off, introduced in the expressions for the
conformal generators D,Kµ (3.1), (3.2) with (3.5), (3.7) is to a large extent arbitrary. It
is crucial that physical results should be independent of the detailed form of G (previous
discussions may be found in [11] and more recently in [6]). However δ which also appears
in the conformal generators D,Kµ plays the role of a physical scaling dimension and should
not be freely variable.
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To discuss the freedom in G we first determine an expression for the variation in S∗,
dGS∗, due to an infinitesimal change dG with δ fixed. By considering the change in
E(δ)

S∗ , E
(δ)
S∗µ given by (3.10a), (3.10b) this is determined by

D dGS∗ + 1 ·Oψ = 0 , Kµ dGS∗ + 1 ·Oψµ = 0 , (3.77)

where Oψ is given by (3.30) with here, since dFµ is given by (3.7),

ψ(x, y) =
1

2

δS∗
δϕ(x)

dG(s) , ψµ(x, y) =
1

2

δS∗
δϕ(x)

(x+ y)µ dG(s) . (3.78)

To solve (3.77) it is sufficient by virtue of (3.32) to find a quasi-local λ(x, y) such that

(D −D(d))λ− λ
←−
D (δ) + ψ = 0 and (Kµ −K(d)

µ)λ− λ
←−
K (δ)

µ + ψµ = 0. Making use of

Dx
(∆O+δ)

(
O(x) f(s)

)
+
(
O(x) f(s)

)←−
Dy

(δ) −
(
Dx

(∆O)O(x)
)
f(s)

= − 2O(x)
(
sf ′(s) + δ f(s)

)
,

Kx
(∆O+δ)

µ

(
O(x) f(s)

)
+
(
O(x) f(s)

)←−
Ky

(δ)
µ −

(
Kx

(∆O)
µO(x)

)
f(s)

= − 2(x+ y)µO(x)
(
sf ′(s) + δ f(s)

)
. (3.79)

and taking λ(x, y) = δS∗
δϕ(x) f(s) the equations for λ then reduce to just a single equation for

f(s) in terms of dG(s) so that, for Oλ the redundant operator given by λ,

dGS∗ = 1 ·Oλ =
1

2

(
δS∗
δϕ
·dH· δS∗

δϕ
− δ

δϕ
·dH· δ

δϕ
S∗

)
, λ(x, y) =

1

2

δS∗
δϕ(x)

dH(s) , (3.80)

with dH determined in terms of dG by (3.27).

To show that the spectrum of non redundant quasi-local operators is invariant under
smooth changes in G we consider the variation of the eigenvalue equations for a quasi-local
conformal primary scalar operator O∆ of scale dimension ∆,1(

D −D(∆)
)
O∆ = 0 ,

(
Kµ −K(∆)

µ

)
O∆ = 0 . (3.81)

Under a variation dG then D → D + dGD, Kµ → Kµ + dGKµ which are determined in the
representations (3.1), (3.2) by using (3.80) and (3.7). To verify that ∆ is invariant we first
show that taking

d1O∆ =
1

2
O∆

←−
δ

δϕ
· dH · δ

δϕ
S∗ . (3.82)

then(
D −D(∆)

)
d1O∆ + dGDO∆ = Oχ ,

(
Kµ −K(∆)

µ

)
d1O∆ + dGKµO∆ = Oχµ . (3.83)

for Oχ, Oχµ redundant operators determined by χ(x, y), χµ(x, y) linear in dG. The action

of D −D(∆), Kµ − K(∆)
µ on d1O∆ may be calculated using (3.81) and (3.59) with S∗

(2) as
in (3.60). This is sufficient to show that (3.83) are satisfied for

χ =
1

2
O∆

←−
δ

δϕ
·
(
dG+G · S∗(2) · dH

)
, χµ =

1

2
O∆

←−
δ

δϕ
·
(
dFµ + Fµ · S∗(2) · dH

)
. (3.84)

1This discussion is an adaptation of that given in appendix A of [12].
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Using (3.59) we may solve(
D −D(∆)

)
ξ − ξ

←−
D (δ) = −χ ,

(
Kµ −K(∆)

µ

)
ξ − ξ

←−
K (δ)

µ = −χµ , (3.85)

by

ξ =
1

2
O∆

←−
δ

δϕ
· dH , (3.86)

and hence

dGO∆ = d1O∆ +Oξ = D̃ O∆ , D̃ =
δS∗
δϕ
· dH · δ

δϕ
− 1

2

δ

δϕ
· dH · δ

δϕ
, (3.87)

ensures that O∆ + dGO∆ solves the eigenvalue equations (3.81) perturbed to first order in
dG for fixed ∆. This shows that ∆ is invariant under small changes in G. However we need
to restrict the variations in G to satisfy∫ ∞

0
du uδ−1dG(u) = 0 , (3.88)

so that, from (3.27), dH(s) is not singular as s→ 0. This ensures in (3.28) dGk = 0.

For an infinitesimal change in δ, dδ, then S∗[ϕ] → S∗[ϕ] + dδS∗[ϕ] is determined from
(3.12) by

dδ ϕ · δ
δϕ
S∗[ϕ] +D dδS∗[ϕ] = 0 , dδ ϕ ·Xµ ·

δ

δϕ
S∗[ϕ] +Kµ dδS∗[ϕ] = 0 . (3.89)

Assuming {O∆[ϕ;x]} form a basis of quasi-local functionals then D,Kµ have non trivial
cokernels spanned by 1 · Z, 1 ·Xµ · Z as a consequence of (3.41), (3.42). Hence (3.89) are
not soluble in general.2

4 Transformation to First Order Generators

With the representation of the conformal generators provided by (3.1) and (3.2) the con-
struction of quasi-local conformal primary operators O[ϕ;x] satisfying (2.4) becomes a non
trivial eigenvalue problem determining the spectrum of conformal primary operators and
their scale dimensions ∆. Here we describe how to obtain the conformally covariant con-
formal correlation functions for these operators.

The form of the conformal generators can be reduced to first order functional differential
operators by considering a non invertible transformation O[ϕ]→ P[ϕ]. For this purpose we
require a symmetric kernel G(x, y) such that[

D(δ)ϕ · δ
δϕ
,
δ

δϕ
· G · δ

δϕ

]
=− δ

δϕ
·G · δ

δϕ
,[

K(δ)
µϕ ·

δ

δϕ
,
δ

δϕ
· G · δ

δϕ

]
=− δ

δϕ
· Fµ ·

δ

δϕ
, (4.1)

2A similar argument is given in [13].
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as well as
[
∂µϕ · δδϕ ,

δ
δϕ · G ·

δ
δϕ

]
=
[
Lµνϕ · δδϕ ,

δ
δϕ · G ·

δ
δϕ

]
= 0. (4.1) requires

D(δ)G + G
←−
D (δ) = G , K(δ)

µ G + G
←−
K (δ)

µ = Fµ , (4.2)

which are identical to (3.23). For G(x, y) = G(s), s = (x − y)2 then both equations (4.2)
are satisfied, for Fµ given by (3.7), if G(s) is determined by an identical equation to (3.26).
However we now require that G has a form which is regularised at short distances, x → y,
so that the necessary solution becomes

G(s) =
1

2sδ

∫ s

0
du uδ−1G(u) , G̃(p2) =

1

2(p2)
1
2
d−δ

∫ ∞
p2

dx x
1
2
d−δ−1G̃(x) . (4.3)

G(s),H(s) are related as in (3.28) which demonstrates that G(s) is regular as s → 0. For
applications below we make extensive use of exp

(
1
2
δ
δϕ · G ·

δ
δϕ) so that G is required to define

a positive definite kernel, or that G̃(p2) > 0.

It follows from (4.1) that exp
(
δ
δϕ · G ·

δ
δϕ

)
satisfies

D(δ)ϕ · δ
δϕ

e
1
2

δ
δϕ
· G· δ

δϕ = e
1
2

δ
δϕ
· G· δ

δϕ

(
D(δ)ϕ · δ

δϕ
− 1

2

δ

δϕ
· G · δ

δϕ

)
,

K(δ)
µϕ ·

δ

δϕ
e

1
2

δ
δϕ
· G· δ

δϕ = e
1
2

δ
δϕ
· G· δ

δϕ

(
K(δ)

µϕ ·
δ

δϕ
− 1

2

δ

δϕ
· Fµ ·

δ

δϕ

)
(4.4)

In consequence, with D,Kµ given (3.1) and (3.2),

DF e
1
2

δ
δϕ
· G· δ

δϕ

(
e−S∗[ϕ]O[ϕ]

)
= e

1
2

δ
δϕ
·G· δ

δϕ

(
e−S∗[ϕ]

(
− E(δ)

S∗ [ϕ]O[ϕ] +DO[ϕ]
))
,

KFµ e
1
2

δ
δϕ
· G· δ

δϕ

(
e−S∗[ϕ]O[ϕ]

)
= e

1
2

δ
δϕ
· G· δ

δϕ

(
e−S∗[ϕ]

(
− E(δ)

S∗µ[ϕ]O[ϕ] +KµO[ϕ]
))
. (4.5)

Assuming (3.12) with C,Cµ = 0 and for O = 1 defining

eT [ϕ] = e
1
2

δ
δϕ
· G· δ

δϕ e−S∗[ϕ] , (4.6)

then we must have
DF T [ϕ] = KFµ T [ϕ] = 0 . (4.7)

For any primary operator O we then determine the transformation O → PO by

PO[ϕ] = e−T [ϕ] e
1
2

δ
δϕ
· G· δ

δϕ
(
e−S∗[ϕ]O[ϕ]

)
. (4.8)

By construction 1→ 1. As a consequence of this definition, assuming (2.4),

DF PO[ϕ;x] = D(∆)PO[ϕ;x] , KFµ PO[ϕ;x] = K(∆)
µPO[ϕ;x] . (4.9)

The scale invariance equations can be integrated for PO to give

PO[ϕλ, λx] = λ∆ PO[ϕ;x] , ϕλ(x) = λδ ϕ(λ−1x) , (4.10)

and inversions acting on PO can be defined by

P̄O[ϕ;x] = (x2)−∆ PO[ϕ;x/x2] = PO[ϕ̄, x] , ϕ̄(x) = (x2)−δϕ(x/x2) . (4.11)
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For any redundant operator Oψ of the form (3.30)

POψ = −Pψ ·
δ

δϕ
T − Pψ ·

←−
δ

δϕ
. (4.12)

Unlike (2.4), subject to O[ϕ;x] being constructed from ϕ an essentially local form,
equations (4.9) no longer determine ∆, since the locality constraint is hidden in PO[ϕ;x].

The functional operator e
1
2

δ
δϕ
· G· δ

δϕ acting on e−S∗ has a perturbative expansion that is
expressible in terms of Feynman graphs with vertices determined by the expansion of S∗
lines represented by G. For this to generate finite Feynman integrals G is required to be
such that no short distance singularities are generated. This requires that G(s) should not
be singular as s → 0, or the Fourier transform G̃(p2) should vanish rapidly for large p2.

This is satisfied by the solution given in (4.3). It is also crucial that e
1
2

δ
δϕ
· G· δ

δϕ , for positive
definite G, acting on general non polynomial functionals is not invertible. The definition
(4.8) shows that PO[ϕ;x] is not a quasi-local functional depending on ϕ restricted to the
neighbourhood of x.

In the subsequent treatment T [ϕ] given by (4.6) and also PO[ϕ;x] given by (4.8) are
assumed to be analytic functionals of ϕ in the vicinity of ϕ = 0 in the sense that they
are expressible in terms of an expansion in terms of multinomials in ϕ. Hence with the
definition Gδ(x) · δδϕ =

∫
ddu Gδ((x− u)2) δ

δϕ(u) .

〈
ϕ(x1) . . . ϕ(xn)

〉
=

n∏
r=1

Gδ(xr) ·
δ

δϕ
T [ϕ]

∣∣∣
ϕ=0

, (4.13)

defines a conformally covariant correlation function.

Using in (4.8)

ϕ e
1
2

δ
δϕ
· G· δ

δϕ = e
1
2

δ
δϕ
· G· δ

δϕ

(
ϕ− G · δ

δϕ

)
, (4.14)

and also (3.28) we may obtain from (3.20), (3.21)

PΦR [ϕ] = − δ

δϕ
T [ϕ] , PΦϕ [ϕ] = ϕ+ k Gδ ·

δ

δϕ
T [ϕ] . (4.15)

Using now (4.12) for ψZ , ψV,ν given by (3.38), (3.43)

PZ(x) = PΦϕ(x)PΦR(x)− δ

δϕ(x)
PΦϕ(x) ,

PV,ν(x) = ∂νPΦϕ(x)PΦR(x)− δ

δϕ(x)
∂νPΦϕ(x) . (4.16)

If an energy momentum tensor exists then (3.47) extends to PZ ,PV,ν and PΘ,µν .

The transformation defined by (4.8) may be extended to the bilocal functional E12[ϕ;x, y]
by writing

e−T [ϕ] e
1
2

δ
δϕ
· G· δ

δϕ

(
e−S∗[ϕ] E12[ϕ;x, y]

)
= P1[ϕ;x]P2[ϕ; y] + F12[ϕ;x, y] , (4.17)
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where Pi ≡ POi , i = 1, 2. The conformal generators after the transformation O → PO are
now first order functional differential operators as in (2.6), (2.7). In consequence P1 P2 and
F12, which represent disconnected and connected two point functionals, separately satisfy
homogeneous conformal identities so in particular

DF F12[ϕ;x, y] =
(
Dx

(∆1) +Dy
(∆2)

)
F12[ϕ;x, y] ,

KFµF12[ϕ;x, y] =
(
Kx

(∆1)
µ +Ky

(∆2)
µ

)
F12[ϕ;x, y] . (4.18)

As a consequence, for general operators O1,O2, we may therefore define for arbitrary x, y〈
O1(x)O2(y)

〉
= F12[0;x, y] , (4.19)

since (4.18) ensures that this is conformally covariant. Since G(s) is regular for small s this
matches (3.57). In a similar fashion the corresponding one point functions〈

O(x)
〉

= P[0;x] = 0 if ∆ > 0 , (4.20)

necessarily vanish except for the identity operator.

As particular examples from (3.58)

FΦϕO(x, y) = k Gδ(x) · δ
δϕ
PO(y) , (4.21)

and from (3.66), (3.67)

FZO(x, y) = −N̂ (x)PO(y) , FVO,ν(x, y) = −V̂ν(x)PO(y) , (4.22)

where N̂ , V̂ν are the functional differential operators

N̂ (x) = ϕ(x)
δ

δϕ(x)

+
δT

δϕ(x)
k Gδ(x) · δ

δϕ
+ k Gδ(x) · δT

δϕ

δ

δϕ(x)
− δ

δϕ(x)
k Gδ(x) · δ

δϕ
,

V̂ν(x) = ∂νϕ(x)
δ

δϕ(x)

+
δT

δϕ(x)
k ∂νGδ(x) · δ

δϕ
+ k ∂νGδ(x) · δT

δϕ

δ

δϕ(x)
− δ

δϕ(x)
k ∂νGδ(x) · δ

δϕ
. (4.23)

Just as in (3.70) V̂ν , N̂ can be integrated using (2.20) to give the conformal generators in
the representation (2.6), (2.7) and (3.71) holds for E → F .

Applying the transformation (4.17) to (3.74), and using (4.14), we may also obtain

FΦϕΦϕ = k2 Gδ · T (2) · Gδ + k Gδ , FΦRΦφ = k T (2) · Gδ − ck I , FΦRΦR = T (2) , (4.24)

for

T (2)[ϕ;x, y] =
δ2

δϕ(x) δϕ(y)
T [ϕ] . (4.25)

From (3.62)
T (2)[0;x, y] = −cGδ−1(s) , (4.26)

so that (4.19) with (4.24) give identical results to (3.76).
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5 Functional Integrals

Determining T [ϕ] as in (4.6) is tantamount to a full solution of the theory. Equivalently it
may be written as a functional integral [5, 6]

eT [ϕ] =

∫
d[f ] e−

1
2
f · G−1· f −S∗[ϕ+f ] . (5.1)

Correspondingly from (4.8)

PO[ϕ] = e−T [ϕ]

∫
d[f ]O[ϕ+ f ] e−

1
2
f · G−1· f −S∗[ϕ+f ] . (5.2)

Although S∗[ϕ] and O[ϕ] are required to be quasi-local ϕ · G−1 · ϕ is not for δ 6= δ0.

The prescription (4.19) with (4.17) and (4.20) is therefore equivalent to the functional
integral representation〈

O1(x)O2(y)
〉

=

∫
d[ϕ] e−

1
2
ϕ · G−1·ϕ−S∗[ϕ] E12[ϕ;x, y] , (5.3)

assuming the normalisation of d[ϕ] is chosen so that T [0] = 0 and 〈1〉 = 1. The conformal
Ward identities for the two point function may also be obtained directly from the functional
integral expression (5.3).

To this end we note that, with the representation (3.1) and (3.2) for the generators of
scale and special conformal transformations D,Kµ, by functional integration by parts, for
any functional O[ϕ],∫

d[ϕ] e−
1
2
ϕ · G−1·ϕ−S∗[ϕ]DO[ϕ] =

∫
d[ϕ] e−

1
2
ϕ · G−1·ϕ−S∗[ϕ] e[ϕ]O[ϕ] ,∫

d[ϕ] e−
1
2
ϕ · G−1·ϕ−S∗[ϕ]KµO[ϕ] =

∫
d[ϕ] e−

1
2
ϕ · G−1·ϕ−S∗[ϕ] eµ[ϕ]O[ϕ] , (5.4)

where

e[ϕ] = −1
2 ϕ ·

(
G−1 ·G · G−1 −D(d−δ)G−1 − G−1←−D (d−δ)) · ϕ+ E(δ)

S∗ [ϕ] + 1
2 tr(G−1 ·G) ,

eµ[ϕ] = −1
2 ϕ ·

(
G−1 · Fµ · G−1 −K(d−δ)

µG−1 − G−1←−K (d−δ)
µ

)
· ϕ

+ E(δ)
S∗µ[ϕ] + 1

2 tr(G−1 · Fµ) , (5.5)

with E(δ)
S∗ , E

(δ)
S∗µ[ϕ] given in (3.10). Crucially

e[ϕ] = eµ[ϕ] = 0 , (5.6)

by virtue of

D(d−δ)G−1 + G−1←−D (d−δ) =− G−1 ·G · G−1 ,

K(d−δ)
µ G−1 + G−1←−K (d−δ)

µ =− G−1 · Fµ · G−1 , (5.7)
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which follow from (4.2), and assuming S∗ is constrained by (3.12) with C = −1
2 tr(G−1 ·G),

Cµ = −1
2 tr(G−1 · Fµ).

Using (5.4) with (5.6) for O → E12 ensures that applying (3.55) to (5.3) leads directly
to the conformal identities (

Dx
(∆1) +Dy

(∆2)
)〈
O1(x)O2(y)

〉
= 0 ,(

Kx
(∆1)

µ +Ky
(∆2)

µ

)〈
O1(x)O2(y)

〉
= 0 . (5.8)

As x→ y the ϕ-independent boundary condition (3.57) ensures that the two point function
given by the functional integral (5.3) is identical with the result in (3.57).

6 Gaussian Solution

Although essentially trivial and corresponding to free fields considering a Gaussian SG∗ ,
quadratic in ϕ, provides an illustration of the general formalism. For this case

SG∗ [ϕ] = 1
2 ϕ · Z · ϕ+ αV , (6.1)

where α is independent of ϕ and, for a spatial cut off, V is the overall volume. For our
purposes the constant term can be neglected. Rotational and translation invariance, (3.3),
are satisfied if Z(x, y)→ Z(s) for s = (x− y)2. Imposing (3.12) leads to the conditions on
Z

D(d−δ)Z + Z
←−
D (d−δ) = Z ·G · Z ,

K(d−δ)
µZ + Z

←−
K (d−δ)

µ = Z · Fµ · Z . (6.2)

These equations can be rewritten as

D(δ)Z−1 + Z−1←−D (δ) = −G , K(δ)
µZ−1 + Z−1←−K (δ)

µ = −Fµ , (6.3)

which are the same, up to a sign, as (3.23) or (4.2). In this case we have a general solution,
arbitrary up to solutions of the homogeneous equation (2.20),

Z−1 = z Gδ −H = ẑ Gδ − G , ẑ = z + k . (6.4)

z 6= 0 is restricted so that SG∗ [ϕ] is a positive definite quadratic form without singularities.
Otherwise z is arbitrary and parameterises a line of equivalent Gaussian fixed points. At
large distances (6.4) gives

Z ∼ 1

z
Gδ−1 , (6.5)

so that it is necessary that z > 0. Requiring SG∗ to be quasi-local restricts Gδ−1 to be
proportional to I up to derivatives. This determines δ = δ0 as in (2.14) (other choices
[14] are possible but these lead to non physical theories) and then, with the conventions in
(2.22),

Gδ0−1 = −∂2I . (6.6)
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The short distance form of S∗
(2) = Z is compatible with (3.62) with c = 1/ẑ.

For the Gaussian action (6.1), (3.20) and (3.21) give

ΦR[ϕ] = Z · ϕ , Φϕ[ϕ] = z Gδ · ΦR[ϕ] . (6.7)

When δ = δ0 this gives −∂2Φϕ = zΦR. From (3.39), (3.43)

Z =
1

z
Φϕ Φϕ · Gδ−1 →

δ=δ0
−1

z
Φϕ ∂

2Φϕ , Vν =
1

z
∂νΦϕ Φϕ · Gδ−1 →

δ=δ0
−1

z
∂νΦϕ ∂

2Φϕ . (6.8)

For δ = δ0 (3.47) can be ‘solved’ [8] giving

Θµν =
1

z

(
∂µΦϕ ∂νΦϕ −

1

2
δµν ∂λΦϕ ∂λΦϕ −

d− 2

4(d− 1)

(
∂µ∂ν − δµν ∂2

)
Φ2
ϕ

)
=

1

z

(
− Φϕ ∂µ∂νΦϕ +

1

4(d− 1)

(
d ∂µ∂ν − δµν ∂2

)
Φ2
ϕ

)
+

1

2
δµν Z , (6.9)

which is equivalent to (2.16) by virtue of (3.48).

The bilocal functionals EΦϕΦϕ , EΦRΦϕ , EΦRΦR are also simply obtained from (3.74)

EΦϕΦϕ = Φϕ Φϕ
T − z2 Gδ · Z · Gδ + z Gδ ,

EΦRΦϕ = ΦR Φϕ
T − zZ · Gδ + zẑ−1 I ,

EΦRΦR = ΦR ΦR
T −Z , (6.10)

since in (3.62) S∗
(2) = Z. In the short distance limit (3.28) and (6.4) give, as in (3.76),

EΦϕΦϕ(x, y) ∼ zkẑ−1 Gδ(s) , ERR(x, y) ∼ −ẑ−1 Gδ−1(s) . (6.11)

With (6.10) the functional integral (5.3) for 〈Φϕ(x) Φϕ(y)〉 and 〈ΦR(x) ΦR(y)〉 is easily
evaluated in the Gaussian case assuming (6.1). With (6.7), (6.10) and using G−1 + Z =
ẑ G−1 · Gδ · Z then〈

Φϕ Φϕ
T
〉

=

∫
d[ϕ] e−

1
2
ϕ · (G−1+Z)·ϕ EΦϕΦϕ

= z2 Gδ · Z · (G−1 + Z)−1 · Z · Gδ − z2 Gδ · Z · Gδ + z Gδ =
zk

ẑ
Gδ ,〈

ΦR ΦR
T
〉

=

∫
d[ϕ] e−

1
2
ϕ · (G−1+Z)·ϕ EΦRΦR = Z · (G−1 + Z)−1 · Z − Z = −1

ẑ
Gδ−1 . (6.12)

These results are identical to (3.76) although locality here requires δ = δ0.

Applying the definition (4.6) to (6.1), with (6.4) and using (3.28), or evaluating the
functional integral in (5.1) by completing the square, gives, up to an additive constant,

TG[ϕ] = −1
2 ϕ · (G + Z−1)−1 · ϕ = −1

ẑ
1
2 ϕ · Gδ

−1 · ϕ . (6.13)
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This is conformally invariant. The transformation O → P given by (4.8), or the functional
integral (5.2), becomes in the Gaussian case [12]

PO[ϕ] = e
1
2

δ
δϕ′ · (G

−1+Z)−1· δ
δϕ′ O

[
φ′]
∣∣
φ′=Z−1·Gδ−1·ϕ/ẑ

= e
1
2

δ
δϕ
· Ĝ· δ

δϕ O
[
Z−1 · Gδ−1 · ϕ/ẑ

]
, (6.14)

for
Ĝ = −ẑ Gδ + ẑ2 Gδ · Z · Gδ . (6.15)

At short distances Z ∼ Gδ−1/ẑ so that Ĝ(s) is not singular as s→ 0 and

Ĝ(s) ∼ ẑk

z
Gδ(s) as s→∞ . (6.16)

Hence in (6.14) the action of exp(1
2

δ
δϕ · Ĝ ·

δ
δϕ) does not generate short distance divergencies.

For O → ΦR,Φϕ, as in (6.7), then (6.14) gives PΦR [ϕ] = Gδ−1 · ϕ/z and PΦϕ [ϕ] = ϕ.

For the Gaussian SG∗ in (6.1) a basis of quasi-local scaling operators OGn,p, with scale
dimension ∆n,p = ∆F

n,p given by (2.12), is given in terms of Φn,p, constructed from ϕ and
its derivatives at the same point and given in part in (2.13), (2.15), by inverting (6.14)

OGn,p[ϕ] = NĜΦn,p[ẑ Gδ · Z · ϕ] , NĜΦn,p[ϕ] = e
− 1

2
δ
δϕ
· Ĝ· δ

δϕ Φn,p[ϕ] . (6.17)

In general exp(−1
2

δ
δϕ · Ĝ ·

δ
δϕ) does not have a well defined action on functionals of ϕ

for positive Ĝ but in (6.17) there is no problem since Φn,p[ϕ] are polynomial in ϕ and
the expansion of the exponential truncates. In this case determining quasi-local OGn,p is
equivalent to determining local Φn,p so long as δ = δ0. In this case

ẑ2 d

dẑ
SG∗ = −1

2 1 · OG2,2 . (6.18)

7 Perturbative Expansion

Perturbative calculations around the Gaussian or free theory is the time honoured method
of deriving results for quantum field theories for weak coupling. For perturbations of a
free CFT it is necessary that there should be a small parameter such that the perturbed
theory remains conformal. For theories involving just scalar fields this is provided by the
ε-expansion which depends on the presence of non trivial RG fixed points for dimensions d
below the critical dimension above which mean field theory is valid. For a single scalar field
and taking d = 4− ε there is just the Wilson Fisher fixed point. Results for scaling dimen-
sions or critical exponents were derived in the 1970’s using Wilsonian exact RG equations.
To first order in ε extensive results using conformal symmetry were obtained in [15] and
much more recently the ε-expansion was discussed in a CFT framework in [16]. Here we
describe how the ε-expansion can be rederived using the functional respresentation of the
conformal generators discussed here. The final results are not new but we emphasise the
role of conformal symmetry and restrict to the theory at a CFT fixed point.
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To obtain a perturbative expansion it is convenient to recast the equations for S∗ (3.12)
with (3.10) by expanding about the Gaussian solution (6.1) in the form

S∗[ϕ] = S∗
G[ϕ] + S̊[Y · ϕ] . (7.1)

Assuming Y satisfies

D(δ) Y + Y
←−
D (d−δ) = Y ·G · Z ,

K(δ)
µ Y + Y

←−
K (d−δ)

µ = Y · Fµ · Z , (7.2)

then (3.12) becomes
E̊(δ)̊

S = C̊ , E̊(δ)̊
Sµ[ϕ] = C̊µ , (7.3)

with E̊(δ)̊
S, E̊(δ)̊

Sµ as in (3.10) with G→ G̊, Fµ → F̊µ, S → S̊ where

G̊ = Y ·G · Y T , F̊µ = Y · Fµ · Y T , (7.4)

and C̊, C̊µ independent of ϕ and (7.2) ensures that G̊, F̊µ satisfy (3.11). (3.14). Also

requiring Lµν Y +Y
←−
Lµν = 0, ∂µ Y +Y

←−
∂µ = 0 ensures the corresponding equations to (3.4),

(3.6). To solve (7.2) as well as the other constraints we may take

Y = λ Gδ · Z , (7.5)

for arbitrary λ which gives using (6.2)

G̊ = λ2 Gδ · Z ·G · Z · Gδ , F̊µ = λ2 Gδ · Z · Fµ · Z · Gδ . (7.6)

Under variations in G, dGS̊[ϕ] is given by (3.80) with dH → dH̊ = Y · dH · Y T .

Writing
O[ϕ;x] = O̊[Y · ϕ;x] , (7.7)

the eigenvalue equations for conformal primary operators (2.4) have an identical form for
O̊[ϕ;x]

D̊ O̊[ϕ;x] = D(∆)O̊[ϕ;x] , K̊µ O̊[ϕ;x] = K(∆)
µO̊[ϕ;x] , (7.8)

where D̊, K̊µ which are identical in form to (3.1), (3.2) for S∗ → S̊ and G→ G̊, Fµ → F̊µ.

For any V [ϕ] such that
DFV [ϕ] = KFµV [ϕ] = 0 , (7.9)

with DF , KFµ the free field generators given in (2.7), (7.3) may be solved iteratively giving
a perturbation expansion for S̊ of the form

S̊[ϕ] = V̊ [ϕ]− 1
2 V̊ [ϕ]

(
e
−
←−
δ
δϕ
·H̊· δ

δϕ − 1
)
V̊ [ϕ]

+ 1
2 V̊ [ϕ]

(
e
−
←−
δ
δϕ
·H̊· δ

δϕ − 1
)
V̊ [ϕ]

(
e
−
←−
δ
δϕ
·H̊· δ

δϕ − 1
)
V̊ [ϕ]

+ 1
6 tr
( (
e
−
←−
δ
δϕ
·H̊· δ

δϕ − 1
)
V̊ [ϕ]

(
e
−
←−
δ
δϕ
·H̊· δ

δϕ − 1
)
V̊ [ϕ]

(
e
−
←−
δ
δϕ
·H̊· δ

δϕ − 1
)
V̊ [ϕ]

)
+ O(V 4) , (7.10)
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for
V̊ [ϕ] = NG̊V [ϕ] = e

− 1
2

δ
δϕ
· G̊· δ

δϕ V [ϕ] . (7.11)

Here H̊, G̊ are defined as solutions of

D(δ) H̊+ H̊
←−
D (δ) = G̊ , K(δ)

µ H̊+ H̊
←−
K (δ)

µ = F̊µ ,

D(δ) G̊ + G̊
←−
D (δ) = G̊ , K(δ)

µ G̊ + G̊
←−
K (δ)

µ = F̊µ . (7.12)

Although the equations are identical the solutions are different since H̊(s) is required to fall
off for large s, to ensure S̊ is quasi-local, while G̊(s) is regular as s→ 0, which is necessary
for V̊ [ϕ] to be well defined. It is useful to note that(

D(δ)ϕ · δ
δϕ
− 1

2

δ

δϕ
· G̊ · δ

δϕ

)
V̊ [φ] = e

− 1
2

δ
δϕ
· G̊· δ

δϕ
(
DFV [φ]

)
,(

K(δ)
µϕ ·

δ

δϕ
− 1

2

δ

δϕ
· F̊µ ·

δ

δϕ

)
V̊ [φ] = e

− 1
2

δ
δϕ
· G̊· δ

δϕ
(
KFµV [φ]

)
. (7.13)

Expanding the exponentials in (7.10) the functional derivatives
←−
δ
δϕ ,

δ
δϕ act to the left,

right just on the adjacent V̊ [ϕ] and of course the trace is invariant under cyclic permuta-
tion. This generates the usual perturbative expansion for −S̊ in terms of connected graphs
with vertices determined by V [ϕ]. The result given in (7.10) and (7.11) corresponds to
summing over all lines linking different vertices with propagator −H̊ and the same vertex
with propagator −G̊.

Using (6.2) and (7.4) solutions of (7.12) with the relevant boundary conditions are given
by

H̊ = λ2
(
Gδ · Z · Gδ − Gδ/z

)
, G̊ = λ2

(
Gδ · Z · Gδ − Gδ/ẑ

)
. (7.14)

Defining, as in (4.6),

eT̊ [ϕ] = e
1
2

δ
δϕ
· G̊· δ

δϕ e−S̊[ϕ] , (7.15)

then T̊ has an expansion3

T̊ [ϕ] = − V [ϕ] + 1
2 V [ϕ]

(
e
←−
δ
δϕ
· G̊δ· δδϕ − 1

)
V [ϕ]

− 1
2 V [ϕ]

(
e
←−
δ
δϕ
· G̊δ· δδϕ − 1

)
V [ϕ]

(
e
←−
δ
δϕ
· G̊δ· δδϕ − 1

)
V [ϕ]

− 1
6 tr
( (
e
←−
δ
δϕ
· G̊δ· δδϕ − 1

)
V [ϕ]

(
e
←−
δ
δϕ
· G̊δ· δδϕ − 1

)
V [ϕ]

(
e
←−
δ
δϕ
· G̊δ· δδϕ − 1

)
V [ϕ]

)
+ O(V 4) , (7.16)

3Note that

e−S̊[ϕ] = 1 − V̊ [ϕ] + 1
2
V̊ [ϕ] e

−
←−
δ
δϕ
·H̊· δ

δϕ V̊ [ϕ]

− 1
6

tr
(
e
−
←−
δ
δϕ
·H̊· δ

δϕ V̊ [ϕ] e
−
←−
δ
δϕ
·H̊· δ

δϕ V̊ [ϕ] e
−
←−
δ
δϕ
·H̊· δ

δϕ V̊ [ϕ]
)

+ O(V 4) ,

and if d is a differential operator obeying the usual Leibnitz rules then e
1
2

d2

(f g) = f̂ e
←−
d d ĝ and also

e
1
2

d2

(f g h) = tr
(
e
←−
d d f̂ e

←−
d d ĝ e

←−
d d ĥ

)
for f̂ = e

1
2

d2

f and similarly for ĝ, ĥ.
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for

G̊δ = G̊ − H̊ = k̊ Gδ , k̊ =
λ2k

zẑ
. (7.17)

It is easy to verify that T̊ satisfies the conformal identities (4.7) assuming (7.9). Of course,
since G̊δ(s) ∝ s−δ, T [ϕ] is a very non local functional.

A similar formal perturbative expansion gives solutions of (7.8) for ∆ = ∆F
n,p starting

from solutions of (2.12),

O̊n,p[ϕ] = Φ̊n,p[ϕ]− V̊ [ϕ]
(
e
−
←−
δ
δϕ
·H̊· δ

δϕ − 1
)

Φ̊n,p[ϕ]

+ V̊ [ϕ]
(
e
−
←−
δ
δϕ
·H̊· δ

δϕ − 1
)
V̊ [ϕ]

(
e
−
←−
δ
δϕ
·H̊· δ

δϕ − 1
)

Φ̊n,p[ϕ]

+ 1
2 V̊ [ϕ]

(
e
−
←−
δ
δϕ
·H̊· δ

δϕ − 1
)

Φ̊n,p[ϕ]
(
e
−
←−
δ
δϕ
·H̊· δ

δϕ − 1
)
V̊ [ϕ]

+ 1
2 tr
( (
e
−
←−
δ
δϕ
·H̊· δ

δϕ − 1
)
V̊ [ϕ]

(
e
−
←−
δ
δϕ
·H̊· δ

δϕ − 1
)
V̊ [ϕ]

(
e
−
←−
δ
δϕ
·H̊· δ

δϕ − 1
)

Φ̊n,p[ϕ]
)

+ O(V 3) . (7.18)

However this discussion is of course over simplified. The Gaussian solution dictates
δ = δ0. In the perturbative expansion we then take

δ = δ0 + 1
2 η = 1

2(d− 2 + η) , (7.19)

so that η plays the role of an anomalous dimension. Assuming now Y satisfies (7.2) for
δ = δ0 then (7.3) is modified to

E̊(δ0 )̊
S − C̊ = − 1

2η ϕ ·
δ

δϕ
S̊[ϕ]− 1

2η
1

λ2
∂2ϕ · Z−1 · ∂2ϕ ,

E̊(δ0 )̊
Sµ[ϕ]− C̊µ = − η ϕ · X̊µ ·

δ

δϕ
S̊[ϕ]− 1

2η
1

λ2
∂2ϕ ·

(
Xµ · Z−1 + Z−1 ·Xµ

)
· ∂2ϕ , (7.20)

for
X̊µ = Y ·Xµ · Y −1 . (7.21)

From (7.4) and (3.7) F̊µ = X̊µ · G̊+ G̊ · X̊µ
T . We also have from (7.8)

(
D̊ −D(∆n,p)

)
O̊n,p[ϕ;x] = − 1

2η ϕ ·
δ

δϕ
O̊n,p[ϕ;x] ,(

K̊µ −K(∆n,p)
µ

)
O̊n,p[ϕ;x] = − η ϕ · X̊µ ·

δ

δϕ
O̊n,p[ϕ;x] , (7.22)

with δ = δ0 in D̊, K̊µ.

It is also essential to adapt the discussion above to take account that the perturbation
is slightly relevant rather than exactly marginal as in (7.9) which was assumed in obtaining
the solution (7.10). In d = 4− ε dimensions we take

V [ϕ] = g 1 · Φ4,0 + 1
2η ∂

2ϕ · K · ∂2ϕ , Φ4,0 = ϕ4 , (7.23)
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so that, from (3.41), (3.42), with δ = δ0,

DFV [ϕ] = − ε g 1 · Φ4,0 − 1
2η ∂

2ϕ ·
(
D(δ0) κ+ κ

←−
D (δ0)

)
· ∂2ϕ ,

KFµV [ϕ] = − 2ε g 1 ·Xµ · Φ4,0 − 1
2η ∂

2ϕ ·
(
K(δ0)

µ κ+ κ
←−
K (δ0)

µ

)
· ∂2ϕ . (7.24)

The resulting additional terms in the equations for S̊ are then cancelled against contributions
resulting from the need to regularise short distance singularities arising from the singular
behaviour of products of H̊(s) as s → 0, which would otherwise generate poles in ε in
(7.10). The cancellation determines g, η as an expansion in positive powers of ε, and also
κ, so as to solve (7.20) order by order in ε where, to leading order, g = O(ε), η = O(g2) =
O(ε2). Similarly in (7.22) the corresponding contributions generate corrections to the scale
dimension so that ∆n,p = ∆F

n,p + O(ε).

To lowest order the short distance singularities for d = 4 − ε are reflected by simple
poles in ε and arise from

Gδ0n ∼
1

ε
σn (∂2)n−2I , σn =

1

(16π2)n−1

2

(n− 1)!2
, n ≥ 2 . (7.25)

Although H̊(s) falls off rapidly for large s for small s it is proportional to Gδ0(s) it may be
expressed in the same form as (3.28) for k → k̊, G → G̊ with G̊(s) having a similar expansion
to (3.29). Regularised products of H̊(s) may then be defined by

R
(
− H̊

)n
=
(
− H̊

)n − 1

ε

n∑
r=2

(
n

r

)
k̊rσr(−G̊)n−r (∂2)r−2I , n = 2, 3, . . . , (7.26)

which cancels all poles in ε due to short distance singularities. Using

D(rδ0)(∂2)r−2I + (∂2)r−2I
←−
D (rδ0) = − ε (r − 1)(∂2)r−2I ,

K(rδ0)
µ (∂2)r−2I + (∂2)r−2I

←−
K (rδ0)

µ = − ε (r − 1)
(
Xµ · (∂2)r−2I + (∂2)r−2I ·Xµ

)
, (7.27)

and (7.12)

D(nδ0)R
(
− H̊

)n
+R

(
− H̊

)n←−
D (nδ0) + nR

(
− H̊

)n−1
G̊

=
n∑
r=2

(r − 1)

(
n

r

)
k̊rσr(−G̊)n−r (∂2)r−2I =

n−2∑
r=0

ρn,r (∂2)rI ,

K(nδ0)
µR
(
− H̊

)n
+R

(
− H̊

)n←−
K (nδ0)

µ + nR
(
− H̊

)n−1
F̊µ

=
n∑
r=2

(r − 1)

(
n

r

)
k̊rσr(−G̊)n−r

(
Xµ · (∂2)r−2I + (∂2)r−2I ·Xµ

)
=

n−2∑
r=0

ρn,r
(
Xµ · (∂2)rI + (∂2)rI ·Xµ

)
. (7.28)

Using the expansion (3.29) for G → G̊, G → G̊ the coefficients ρn,r are determined from
sp(∂2)qδd ∝ (∂2)q−pδd for p ≤ q, sp(∂2)qδd = 0 for p > q. Hence

ρn,n−2 = k̊n (n− 1)σn , ρn,n−3 = −k̊n−1n(n− 2)σn−1 G̊(0) ,

ρn,n−4 = k̊n−2 1
2n(n− 1)(n− 3)σn−2 G̊(0)2

− k̊n−12n(n− 2)(n− 3)(2(n− 4) + d)σn−1 G̊′(0) . (7.29)
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To lowest order we extend (7.23) by following (7.10) to

S̊[ϕ] = g 1 · Φ̊4,0 + 1
2 η ∂

2ϕ · κ · ∂2ϕ− 1
2 g

2 1 · Φ̊4,0R
(
e
−
←−
δ
δϕ
·H̊· δ

δϕ − 1
)

1 · Φ̊4,0

+ O(V 3) + const. , (7.30)

with

Φ̊4,0 = e
− 1

2
G̊(0) ∂2

∂ϕ2 ϕ4 = ϕ4 − 6 G̊(0)ϕ2 + 3 G̊(0)2 . (7.31)

In (7.30) R is necessary, and is defined according to (7.26), after the action of the functional
derivatives on 1 · Φ̊4,0 since this is a purely local functional of ϕ. Only the first four terms
in the expansion of the exponential are now relevant. Using (7.28) for n = 2, 3 with (7.30)

E̊(δ0 )̊
S = − ε g 1 · Φ̊4,0 − 1

2η ∂
2ϕ ·

(
D(δ0) κ+ κ

←−
D (δ0)

)
· ∂2ϕ

+ 1
2 g

2
(

1
2 ρ2,0 Φ̊4,0

′′ · Φ̊4,0
′′ + 1

6 ρ3,0 Φ4,0
′′′ · Φ4,0

′′′ + 1
6 ρ3,1 Φ4,0

′′′ · ∂2Φ4,0
′′′)

+ ε g2 1 · Φ̊4,0R
(
e
−
←−
δ
δϕ
·H̊· δ

δϕ − 1
)
1 · Φ̊4,0 + O(V 3) + const. ,

E̊(δ0 )̊
S µ = − 2ε g 1 ·Xµ · Φ̊4,0 − 1

2η ∂
2ϕ ·

(
K(δ0)

µ κ+ κ
←−
K (δ0)

µ

)
· ∂2ϕ

+ g2
(

1
2 ρ2,0 Φ̊4,0

′′ ·Xµ · Φ̊4,0
′′ + 1

6 ρ3,0 Φ4,0
′′′ ·Xµ · Φ4,0

′′′

+ 1
6 ρ3,1 Φ4,0

′′′ ·Xµ · ∂2Φ4,0
′′′)

+ 2ε g2 1 ·Xµ · Φ̊4,0R
(
e
−
←−
δ
δϕ
·H̊· δ

δϕ − 1
)
1 · Φ̊4,0 + O(V 3) + const. . (7.32)

For cancellation of the non derivative terms to O(ε2) we must take

ε g Φ̊4,0 = 1
2

(
1
2 ρ2,0 (Φ̊4,0

′′)2 + 1
6 ρ3,0 (Φ4,0

′′′)2
)

+ const. ⇒ 36 ρ2,0 g = ε , (7.33)

where, since ρ3,0 = −3G̊(0) ρ2,0, this also ensures cancellation of G̊(0)ϕ2 terms.

For the derivative terms

η
(
D(δ0) κ+ κ

←−
D (δ0)

)
+ 96 ρ3,1 g

2 Gδ0 = η
1

λ2
Z−1 . (7.34)

η = 96
k̊ ρ3,1

ρ2,0
2

(ρ2,0 g)2 = 24 (ρ2,0 g)2 =
ε2

54
. (7.35)

To determine corrections to the scale dimensions ∆n,0 we extend (7.18) for the non
derivative local operators O̊n,0[ϕ;x] at this order to

O̊n,0 = Φ̊n,0 + τ Φ̊n−2,2 − g 1 · Φ̊4,0R
(
e
−
←−
δ
δϕ
·H̊· δ

δϕ − 1
)
Φ̊n,0 + O(g2) , (7.36)

where, with definitions in (2.13),

Φ̊n,0 = e
− 1

2
G̊(0) ∂2

∂ϕ2 ϕn , Φ̊n,2 = e
− 1

2
δ
δϕ
·G̊· δ

δϕΦn,2 = −∂2ϕ Φ̊n−1,0 + 2d G̊′(0) Φ̊n−2,0 . (7.37)

With these expressions and using (7.29)(
D̊ −D(∆F

n,0)
)
O̊n,0 − ε τ Φ̊n−2,2

= g
(

1
2 ρ2,0 Φ̊4,0

′′ Φ̊n,0
′′ + 1

6 ρ3,0 Φ4,0
′′′ Φ̊n,0

′′′ + 1
24 ρ4,0 Φ4,0

′′′′Φ̊n,0
′′′′ + 1

6 ρ3,1 ∂
2Φ4,0

′′′ Φ̊n,0
′′′)

= 1
2 ρ2,0 g e

− 1
2
G̊(0) ∂2

∂ϕ2
(
Φ4,0

′′Φn,0
′′)+ 4 ρ3,1 g

(
∂2ϕ Φ̊n,0

′′′ − 2d G̊′(0) Φ̊′′′′n,0
)

= 6n(n− 1) ρ2,0 g Φ̊n,0 − 4n(n− 1)(n− 2) ρ3,1 g Φ̊n−2,2 . (7.38)
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Hence we must have to first order in ε

∆1
n,0 = 6n(n− 1) ρ2,0 g = 1

6n(n− 1) ε , (7.39)

and also τ is determined to cancel the Φ̊n−2,2 terms.

7.1 Higher Order Corrections

At the next order it is necessary to add the contributions to S̊ corresponding to the second
and third lines in (7.10) where, after the action of the functional derivatives, it is crucial
as before to introduce regularised products of H̊’s to avoid poles in ε. For contributions
proportional to ϕ4, not involving derivatives, it is sufficient to use just

R
(
H̊(sxy)

2 H̊(sxz) H̊(syz)
)

= R
(
H̊(sxy)

2
)
H̊(sxz) H̊(syz) +

1

2ε2
(1− 1

2ε) ρ2,0
2 δxy δxz ,

R
(
H̊(sxy)

2
)

= H̊(sxy)
2 − 1

ε
ρ2,0 δxy , (7.40)

along with R
(
H̊(sxy)

p H̊(syz)
q
)

= R
(
H̊(sxy)

p
)
R
(
H̊(syz)

q
)
. In (7.40) and subsequently we

use the notation sxy = (x− y)2, δxy = δd(x− y), etc. The necessary subtractions in (7.40)
may be derived from an analysis of the short distance ε poles present in the products
Gδ0(sxy)

2 Gδ0(sxz)Gδ0(syz).
4

With the regularised expressions in (7.40) we may straightforwardly obtain(
Dx

(3δ0) +Dy
(3δ0) +Dz

(2δ0)
)
R
(
H̊(sxy)

2 H̊(sxz) H̊(syz)
)

− 2 G̊(sxy) H̊(sxy) H̊(sxz) H̊(syz)−R
(
H̊(sxy)

2)
(
G̊(sxz) H̊(syz) + H̊(sxz) G̊(syz)

)
= ρ2,0 δxyR

(
H̊(sxz)

2
)

+ 1
2 ρ2,0

2 δxy δxz , (7.41)

which extends (
Dx

(2δ0) +Dy
(2δ0)

)
R
(
H̊(sxy)

2
)
− 2 G̊(sxy) H̊(sxy) = ρ2,0 δxy ,

used previously. Hence requiring the O(ϕ4) terms in E̊(δ0 )̊
S to satisfy (7.20) now gives to

this order

−ε+ 36 ρ2,0 g − 6 (12 ρ2,0 g)2 = −2 η ⇒ 36 ρ2,0 g = ε+ 17
27 ε

2 . (7.42)

4The relevant result is derived in appendix C of [17].
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A Alternative Representations of Conformal Generators

The form for the generator of scale transformations (3.1) and the corresponding consistency
relation (3.10a) are essentially of the form at a fixed point of the exact RG equations due
to Wilson and later Polchinski. There are various related equations. These are equivalent
by allowing transformations of the form ϕ̃(p) → ef(p2)ϕ̃(p) for some f(p2) analytic near
p2 = 0. Such changes can be absorbed in a change of the cut off function G. There is also a
corresponding change in the D(δ)ϕ term in (3.1), (3.10a). This can be removed by writing
S∗[ϕ] = S∗[ϕ]+ 1

2 ϕ·C ·ϕ and choosing C appropriately. In this case (3.10a) becomes a similar
equation for S∗ but in general has an extra term quadratic in ϕ. Although the equations
given in the text have the virtue of simplicity we describe here some generalisations.

Such modifications may be obtained by adding an extra term to the functional differen-
tial expressions for the conformal generators D,K given by (3.1) and (3.2) of the form

D̂ = D + ϕ · g · δ
δϕ

, K̂µ = Kµ + ϕ · fµ ·
δ

δϕ
. (A.1)

where g, fµ are not required to be symmetric. Commutation relations with Pµ,Mµν dictate

Lµν fσ + fσ
←−
Lµν = −δµσ fν + δνσ fµ , ∂µ fν + fν

←−
∂µ = 2δµν g . (A.2)

Closure of the conformal algebra for
[
D̂, K̂µ

]
now requires instead of just (3.11)

D(d−δ)fµ + fµ
←−
D (δ) −K(d−δ)

µ g − g
←−
K (δ)

µ − g · fµ + fµ · g = fµ , (A.3a)

D(δ)Fµ + Fµ
←−
D (δ) −K(δ)

µG−G
←−
K (δ)

µ + gT · Fµ + Fµ · g − fµT ·G−G · fµ = Fµ . (A.3b)

Imposing
[
K̂µ, K̂ν

]
= 0 also gives more general equations

K(d−δ)
µ fν + fν

←−
K (δ)

µ −K(d−δ)
ν fµ − fµ

←−
K (δ)

ν − fµ · fν + fν · fµ = 0 , (A.4a)

K(δ)
µ Fν + Fν

←−
K (δ)

µ −K(δ)
ν Fµ − Fµ

←−
K (δ)

ν + fµ
T · Fν + Fν · fµ − fνT · Fµ − Fµ · fµ = 0 .

(A.4b)

There are also additional contributions arising from (A.1) so that in (3.12) it is necessary
to take ES∗ [ϕ]→ ÊS∗ [ϕ] and ES∗µ[ϕ]→ ÊS∗µ[ϕ] where

ÊS∗ [ϕ] = ES∗ [ϕ] + ϕ · g · δ
δϕ

S∗[ϕ] , ÊS∗µ[ϕ] = ES∗µ[ϕ] + ϕ · fµ ·
δ

δϕ
S∗[ϕ] , (A.5)

A particular solution for g, fµ is obtained by taking

g = −G−1 ·G , fµ = −G−1 · Fµ , (A.6)

and using (5.7). With the choice (A.6) (A.2) follows from (3.4), (3.6) and the additional
g, fµ terms in (A.3b) and (A.4b) vanish. It is also easy to verify (A.3a), (A.4a). The
solutions for G,Fµ given by (3.5), (3.7) then remain valid while for G−1 it is sufficient just
to solve (4.3). If we let

S∗[ϕ] = S∗[ϕ] + 1
2 ϕ · G

−1 · ϕ , (A.7)
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then D̂ = D, K̂µ = Kµ if in the expressions (3.1) and (3.2) we let S∗ → S∗. Furthermore
using (A.6)

ÊS∗ [ϕ] = ES∗ [ϕ]− 1
2 tr
(
G · G−1

)
, ÊS∗µ[ϕ] = ES∗µ[ϕ]− 1

2 tr
(
Fµ · G−1

)
, (A.8)

so that the conditions on S∗ are the same as those on S∗ without the additional terms in
(A.1).

As a variant we consider restricting δ = δ0 as in (2.14) in which case the solution of
(4.3) is simple in terms of the Fourier transforms G̃(p2), G̃(p2) since

G̃(p2) =
K(p2)

p2
, G̃(p2) = −2K ′(p2) . (A.9)

We may also relax (A.6) by now taking

g = −G−1 ·G+ 1
2η I , fµ = −G−1 · Fµ + η Xµ , (A.10)

for I,Xµ defined in (2.2), and η an arbitrary parameter. The additional terms in (A.10)
involving η satisfy (A.2) and also (A.3a),(A.3b) and (A.4a),(A.4b) still hold as a consequence
of Xµ · G + G · Xµ = Fµ, Xµ · Fν + Fν · Xµ = Xν · Fµ + Fµ · Xν and Xµ · Xν = Xν · Xµ.
Assuming (A.10) and S∗,S∗ related as in (A.7) then D̂ = D, K̂µ = Kµ if now in (3.1) and
(3.2) we let S∗ → S∗ and assume (7.19). Instead of (A.8) there are now additional terms
quadratic in ϕ,

ÊS∗ [ϕ] = ES∗ [ϕ] + 1
2η ϕ · G

−1 · ϕ− 1
2 tr
(
G · G−1

)
,

ÊS∗µ[ϕ] = ES∗µ[ϕ] + 1
2η ϕ · (Xµ · G−1 + G−1 ·Xµ) · ϕ− 1

2 tr
(
Fµ · G−1

)
. (A.11)

If η = 0 a solution is S∗ = 0.

Although the functional forms are somewhat different the functional representation of
the conformal group generators provided by (A.1) with (A.10) is equivalent to that given
in section 3. To demonstrate this it is sufficient in the above to rescale the fields where

ϕ̂ = Gδ0 · G−1 · ϕ , δ

δϕ̂
= Gδ0−1 · G · δ

δϕ
, (A.12)

and correspondingly replace G,Fµ by Ĝ, F̂µ where

Ĝ = Gδ0 · G−1 ·G · G−1 · Gδ0 , F̂µ = Gδ0 · G−1 · Fµ · G−1 · Gδ0 , (A.13)

satisfying (3.4) and (3.6), so that, with (A.9),
˜̂
G(p2) = −2K ′(p2)/K(p2)2. Applying (A.12)

and using D(δ)ϕ̂ · δδϕ̂ = (D(δ)ϕ−G · G−1 · ϕ) · δδϕ , K(δ)
µϕ̂ · δδϕ̂ = (K(δ)

µϕ− Fµ · G−1 · ϕ) · δδϕ
ensures

ES∗ [ϕ̂]
∣∣
G→Ĝ = ES∗ [ϕ] + 1

2η ϕ · G
−1 · ϕ− 1

2 tr
(
G · G−1

)
,

ES∗µ[ϕ̂]
∣∣
Fµ→F̂µ = ES∗µ[ϕ] + 1

2η ϕ · (Xµ · G−1 + G−1 ·Xµ) · ϕ− 1
2 tr
(
Fµ · G−1

)
, (A.14)

for
S∗[ϕ̂] = S∗[ϕ] + 1

2 ϕ · G
−1 · ϕ . (A.15)
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The associated eigenvalue equations determining exponents and local scaling operators are
also equivalent since D,Kµ are identical with the expressions (3.1) and (3.2) for S∗ given
by (A.15) and also for G→ Ĝ.

With the representation (A.1), (A.10) we may also determine exact local scaling oper-
ators ΦR[ϕ], Φϕ[ϕ] with ∆ = d − δ, δ for δ given by (7.19). The results are identical to
those given in (3.20) and (3.21) for ϕ → ϕ̂ and H → Ĥ, satisfying (3.23) for G → Ĝ and
Fµ → F̂µ = Gδ0 · G−1 · Fµ · G−1 · Gδ0 , where

˜̂H(p2) = −(p2)
1
2
η−1

∫ p2

0
dx x−

1
2
η d

dx

1

K(x)
. (A.16)

B Operator Product Expansion

The short distance expression (3.57) for the bilocal functional E12[ϕ;x, y], defined by (3.55)
with the asympotic condition (3.56), can be extended in a form analogous to the operator
product expansion for the product O1(x)O2(y) for x ∼ y. For O a local conformal primary
operator with scale dimension ∆, satisfying (2.3), (2.4),

E12[ϕ;x, y] ∼ c12

s∆1
δ∆1∆2 +

c12O

s
1
2

(∆1+∆2−∆)
C(x− y, ∂y)O[ϕ; y] , (B.1)

solves (3.55) if the differential operator C(x − y, ∂y), which generates the contributions to
E12 of all descendants of O, satisfies the crucial equations

Dx
(0)C(x− y, ∂y) +

[
Dy

(0) , C(x− y, ∂y)
]

= 0 , (B.2)

and

∆(x− y)µC(x− y, ∂y) +
[
Ky

(∆)
µ, C(x− y, ∂y)

]
+Kx

(0)
µC(x− y, ∂y)

= 2yν C(x− y, ∂y)Sµν , (B.3)

with Sµν the appropriate spin matrix acting on O as in (1.7). Choosing a convenient
normalisation for C(x − y, ∂y), E12 then determines c12O/c12 which is independent of the
arbitrary normalisations of O1,O2.

(B.3) gives

(Lxµν + Lr µν)C(x, r) = C(x, r)Sµν , (x · ∂x − r · ∂r)C(x, r) = 0 , (B.4)

with Lµν given by (1.6), as well as the second order equation(
−xνLxµν +xµ (r ·∂r + ∆)− 2(r ·∂r + ∆) ∂r µ + rµ ∂r

2
)
C(x, r) = −2 ∂r νC(x, r)Sµν . (B.5)

(B.4) is equivalent to (B.2) as well as rotational invariance. As an expansion (B.5) with
(B.4) for scalar O gives

C(x, r) = 1 + 1
2 x · r +

∆ + 2

8(∆ + 1)
(x · r)2 − ∆

16(∆ + 1)(∆− 1
2d+ 1)

x2r2 + . . . , (B.6)
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assuming C(0, r) = 1.

Taking O1 = O2 = Φ, ∆1 = ∆2 = ∆Φ the expansion (B.1) can be extended to also
include the energy momentum tensor Θαβ

EΦΦ[ϕ;x, y] ∼ cΦΦ

s∆Φ
+

cΦΦO

s∆Φ− 1
2

∆
C(x− y, ∂y)O[ϕ; y]

+
cΦΦΘ

s∆Φ− 1
2
d+1

(x− y)α(x− y)β Θαβ[ϕ; y] + . . . . (B.7)

The coefficient cΦΦΘ in (B.7) is constrained by Ward identities [4] so that

cΦΦΘ = − d∆Φ

d− 1

cΦΦ

cΘΘ
. (B.8)

As an illustration for Φ = ϕ, ∆Φ = δ0, Oϕϕ[ϕ;x, y] = ϕ(x)ϕ(y) then in (B.7) we
should take O = ϕ2 with ∆ = 2δ0 = d − 2 and cΦΦ = 1/(d − 2), cΘΘ = d/(d − 1). Then
cϕϕO = 1, cϕϕΘ = −1

2 and it is easy to see that Θαβ is in accord with (2.16).
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