
Michaelmas Term 2008, Mathematical Tripos Part III Hugh Osborn

Symmetry and Particle Physics, 3

1. Define σµ = (1,σ) and σ̄µ = (1,−σ), with both four independent 2× 2 matrices. Show

σµσ̄ν + σν σ̄µ = 2gµν1 , (σ̄µ)α̇α = εαβεα̇β̇σββ̇ .

Without assuming any explicit expression for the Pauli matrices σ show that we must then have
1
2 tr(σµxµ σ̄νxν) = det(σµxµ) = gµνxµxν .

For a matrix A = [Aαα̇] explain why A = σµ
1
2 tr(σ̄µA). For B = [Bα

β ] verify that

B = 1 1
2 tr

(
B

)
− σ[µσ̄ν]

1
8 tr

(
σ[µσ̄ν]B

)
.

2. A Lie group has group elements g(a) depending on group parameters ar, with g(0) = e, the
identity, and under group multiplication g(a)g(b) = g(ϕ(a, b)) for some ϕr(a, b). Let g(a)−1 = g(ā)
where ϕ(ā, a) = 0. Why must ϕr(a, 0) = ar, ϕr(0, b) = br? Assume ϕr(a, b) is expanded near the
origin according to

ϕa(a, b) = aa + ba + ca
bca

bbc + O(a2b, ab2) .

Use this to find ā(a) for a small. Let g(d) = g(a)−1g(b)−1g(a)g(b) and show that for a, b small
da = fa

bca
bbc where fa

bc = ca
bc − ca

cb. Using an expansion to one higher order show that the
associativity condition ϕ(ϕ(a, b), c) = ϕ(a, ϕ(b, c)) leads to the Jacobi identity.

Assume the Lie group has generators Ta satisfying [Ta, Tb] = fa
bcTc. For an element of the

Lie algebra aaTa there is an associated group element given by g(a) = exp(aaTa). Use the
Baker-Campbell-Hausdorff formula for expC = expA expB in the form C = A + B + 1

2 [A,B] +
1
12 ([A, [A,B]] + [B, [B,A]]) + . . . to obtain ϕ(a, b) for a, b small and verify that this is compatible
with the general expansion of ϕ.

3. Using the same notation as the previous question, where cr = ϕr(a, b), obtain

∂cr

∂bs
= λs

a(b) µa
r(c) , µa

r(c) =
∂

∂ba
ϕr(c, b)

∣∣∣∣
b=0

, µa
r(c)λr

b(c) = δa
b .

Show that the equation for the structure constants fa
bc may also be expressed as

∂

∂br
λs

a(b)− ∂

∂bs
λr

a(b) = −fa
bcλr

b(b)λs
c(b) .

For those familiar with differential forms.
Defining the differential form ωa(b) = dbrλr

a(b) verify that the above equation is equivalent, if d
is the exterior derivative, to dωa(b) = − 1

2fa
bc ωb(b) ∧ ωc(b). Show that the Jacobi identity for fa

bc

is entailed by d2ωa(b) = 0. If g are matrices forming a representation, g(c) = g(a)g(b), show that
g(b)−1dg(b) = ωa(b)ta where {ta} are matrix generators satisfying [ta, tb] = fc

abtc.

4. An SU(2) matrix may be represented by

A =
(

α β
−β̄ ᾱ

)
, |α|2 + |β|2 = 1 .

Let α = |α| eiλ where |α|2 = 1 − |β|2 so that A is regarded as depending on the real parameter λ
and the complex parameter β. Determine dλ, dβ, dβ̄ in terms of infinitesimal φ, θ, θ̄ where(

α + dα β + dβ
−β̄ − dβ̄ ᾱ + dᾱ

)
=

(
α β
−β̄ ᾱ

) (
1 + iφ θ
−θ̄ 1− iφ

)
.

Hence show that the invariant measure for SU(2) with these parameters is dλ d2β. What are the
ranges of λ and β? Calculate

∫
dλ d2β. (For dβ = dβ1 + idβ2, d2β = dβ1dβ2.)



5. Consider two SU(2) algebras, I±, I3 and U±, U3, where [I3, I±] = ±I±, [I+, I−] = 2I3 with
I3
† = I3, I+

† = I−, and also similarly for I → U . Assume

[I−, U+] = 0 , [I3, U+] = − 1
2U+ , [U−, I+] = 0 [U3, I+] = − 1

2I+ .

Define V+ = [I+, U+] and V− = V+
†. Explain why [I+, V+] = [U+, V+] = 0. Evaluate [V+, V−] and

show that V±, V3 = I3 + U3 form a SU(2) algebra. Let U3 = − 1
2I3 + 3

2Y . Work out the various
commutators involving Y .
Explain how the I-spin and U-spin operators with the above relations generate a SU(3) algebra.

6. For a simple Lie algebra L, with elements Xi such that [Xi, Xj ] = ifijkXk where fijk is totally
antisymmetric, let Ti be matrices forming a representation R of L and assume TiTi = CR1. Define

〈Xi, Xj〉 = tr(TiTj)
dimL

CR dim R
.

(a) Evaluate 〈J3, J3〉 in the j-th irreducible representation of SU(2) and show that the result
is independent of j.

(b) For SU(3) show that the representation given by Ti = 1
2λi gives the same value for 〈Xi, Xj〉

as does the adjoint representation (T ad
i )jk = −ifijk.

7. Let {T i
j} be n× n matrices such that T i

j has a 1 in the i’th row and j’th column and is zero
otherwise. Show that they satisfy the Lie algebra

[T i
j , T

k
l] = δk

jT
i
l − δi

lT
k

j .

Define X = T i
jX

j
i with arbitrary components Xj

i. Determine the adjoint matrix (Xad)n
m,kl by

[X, T k
l] = Tm

n(Xad)n
m,kl ,

and show that

κ(X, Y ) = tr
(
XadY ad

)
= 2

(
n

∑
i,jX

j
iY

i
j −

∑
iX

i
i

∑
jY

j
j

)
.

Show that 1 + εX ∈ U(n) for infinitesimal ε if (Xj
i)∗ = −Xi

j . Hence show that in this case

κ(X, X) = −2n
∑

i,j |X̂
j
i|2 , X̂j

i = Xj
i − 1

n δj
i

∑
kXk

k ,

and therefore κ(X, X) = 0 ⇔ Xad = 0. What restrictions must be made for SU(N) and verify
that in this case the generators satisfy κ(X, X) < 0 so the group is semi-simple.

8. For a group with a Lie algebra with a basis {Ta} such that [Ta, Tb] = fc
abTc let gab = 〈Ta, Tb〉

where 〈 , 〉 is an invariant symmetric bilinear form so that 〈[X, Y ], Z〉 = −〈Y, [X, Z]〉. Show that
fabc = gadf

d
bc is totally antisymmetric. If Dµ is an appropriate covariant derivative involving a

gauge field Aa
µ verify

∂µ〈X(x), Y (x)〉 = 〈DµX(x), Y (x)〉+ 〈X(x), DµY (x)〉 .

Let Tµ
ν = 〈Fµσ, Fνσ〉 − 1

4δµ
ν〈Fσρ, Fσρ〉. Show, using the Bianchi identity, ∂µTµ

ν = 〈DµFµσ, Fνσ〉.
For a variation δAa

µ obtain also δ 1
4εµνσρ〈Fµν , Fσρ〉 = ∂µεµνσρ〈δAν , Fσρ〉. By letting Aµ → tAµ and

differentiating with respect to t and then integrating show that

1
4εµνσρ〈Fµν , Fσρ〉 = ∂µεµνσρ

〈
Aν , ∂σAρ + 1

3 [Aσ, Aρ]
〉
.

9. With notation as in the previous question define a three dimensional Lagrangian

L = εµνρ
(
gabA

a
µ∂νAb

ρ + 1
3fabcA

a
µAb

νAc
ρ

)
.

For a a gauge transformation δAa
µ = −∂µλa − fa

bcA
b
µλc show that δL = −∂µ

(
εµνρgabλ

a∂νAb
ρ

)
so

that
∫

d3xL is invariant.


