
Part III Lecture Notes on
The Standard Model

by H. Osborn

0



Part I

PCT - Conventions and Results

1 Dirac Equation and γ-Matrices

The γ-matrices are defined by

{γµ, γν} = 2gµνI , (1.1)

where

gµν =











1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1











, (1.2)

and if γµ = (γ0, γ) then it is usual to require for the hermitian conjugate matrices

γ0† = γ0 , and γ† = −γ . (1.3)

This condition ensures that the Dirac Hamiltonian HD = −iα.∇ + βm, where
β = γ0, α = γ0γ, is hermitian and (1.3) can alternatively be written as

γ0γµ†γ0 = γµ . (1.4)

The matrix γ5 is defined by

γ5 = iγ0γ1γ2γ3 , (γ5)
2 = I , γ5γ

µ = −γµγ5 , (1.5)

and with (1.3) γ5
† = γ5. The irreducible representations of (1.1) are given by

4 × 4 matrices and the representation is unique in the sense that if γµ, γ′µ both
satisfy (1.1) then γ′µ = SγµS−1 for some S and if γµ = SγµS−1 then S = λI.

The Dirac equation for a spinor field ψ is

(iγµ∂µ −m)ψ(x) = 0 , (1.6)

and with ψ = ψ†γ0

ψ(x)
(

−iγµ←−∂ µ −m
)

= 0 . (1.7)

The expansion of the quantum field which is a solution of eq.(1.6) has the form

ψ(x) =
∑

p,λ

[

a(p, λ)u(p, λ)e−ip.x + b(p, λ)†v(p, λ)eip.x
]

, (1.8)

if u(p, λ) and v(p, λ) are 4 component spinors satisfying (γ.p − m)u(p, λ) = 0
and (γ.p+m)v(p, λ) = 0, with λ = ±1

2
a spin label and pµ = (E,p) where

E =
√
p2 +m2 so that p2 = m2. Thus u(p, λ)e−ip.x and v(p, λ)eip.x are positive
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and negative energy solutions of the Dirac equation eq.(1.6), being eigenfunctions
of HD with eigenvalues E and −E. In the summation

∑

p

means
∫

d3p

(2π)32E
.

We will also use the notation δpp′ for (2π)
32Eδ3(p− p′) so that

∑

p′
δpp′f(p

′) = f(p) . (1.9)

The standard Bjorken-Drell conventions for γ-matrices are

γ0 =

(

I 0
0 −I

)

, γ =

(

0 σ
−σ 0

)

, γ5 =

(

0 I
I 0

)

, (1.10)

although physical results are of course independent of any particular representa-
tion. In the conventions of eq.(1.10) the spinor u(p, λ) can be written as

u(p, λ) =
√
E +m

(

χλ
σ.p
E+m

χλ

)

(1.11)

for χλ a two component spinor and we may also take χ 1
2

=
(

1
0

)

, χ− 1
2

=
(

0
1

)

.

The spinor v(p, λ) is associated with the anti-particles and will be discussed later
when we consider charge conjugation.

2 Parity Inversion

2.1 Boson Fields

The operation of parity inversion, P , is associated with the spatial map x→ xP
where if xµ = (x0,x) then x

µ
P = (x0,−x). If φ(x) is a classical scalar field or the

wave function of an associated spinless particle then the operation of parity on φ
is defined by the transformation

φ(x) −→ ηPφ(xP ) , (1.12)

where ηP is the intrinsic parity of the field or particle. Since repeating the parity
operation leaves x unchanged we would expect to have P 2 = 1. For a classical
real field φ this means that ηP = ±1. However in a quantum theory, since a
complex wave function is arbitrary up to a complex phase, we need only require
that |ηP | = 1.

In the case of a quantum field theory P is represented by a unitary operator
P̂ acting on the Fock space of particle states. For a quantum boson field φ(x)
the parity transformation becomes

P̂ φ(x)P̂−1 = ηPφ(xP ) . (1.13)
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In terms of momentum modes a scalar field φ, representing a spinless charged
particle, has the expansion

φ(x) =
∑

p

[

a(p)e−ip.x + b(p)†eip.x
]

, (1.14)

and eq.(1.13) becomes

∑

p

[

P̂ a(p)P̂−1e−ip.x + P̂ b(p)†P̂−1eip.x
]

=
∑

p

[

ηPa(p)e
−ip.xP + ηP b(p)

†eip.xP
]

.

(1.15)
Now p.xP = pP .x where pµP = (E,−p) and, taking into account the invariance of
the p-summation under parity, we can write the right side of eq.(1.15) as

∑

p

[

ηPa(pP )e
−ip.x + ηP b(pP )

†eip.x
]

.

Equating this with the left side of eq.(1.15) we conclude that

P̂ a(p)P̂−1 = ηPa(pP ) , P̂ b(p)†P̂−1 = ηP b(pP )
† . (1.16)

If we assume also that the vacuum is parity invariant, that is P̂ |0〉 = |0〉, the
effect of parity on a momentum state is therefore

P̂ |p〉 = P̂ a(p)†|0〉 = P̂ a(p)†P̂−1|0〉 = ηP
∗a(pP )

†|0〉 = ηP
∗|pP 〉 , (1.17)

that is P̂ reflects the spatial momentum and multiplies the state by the intrinsic
parity of the boson. If the field φ is hermitian, so that a(p) = b(p), then eq.(1.13)
requires ηP to be real and hence ηP = ±1.

In a general theory P̂ 2 6= 1, so that ηP need not be ±1, but it should be
expressible in terms of other conserved quantities in the theory. For example
P̂ 2 = e2iαQ, where Q is the electric charge, but then we may redefine P̂ e−iαQ → P̂
so that then P̂ 2 = 1 and therefore ηP = ±1.

We normally expect parity to commute with internal symmetry transforma-
tions so the above results remain true for fields with internal symmetry indices.
The isovector pion field πα, α = 1, 2, 3 for example obeys P̂ πα(x)P̂

−1 = −πα(xP )
because the pion has negative intrinsic parity.

2.2 Dirac Field

In determining the parity transformation properties of the Dirac spinor wave-
function we require that the transformed wave-function must also satisfy the
Dirac equation (1.6). It is not enough simply to invert the spatial coordinates x
of the field ψ(x). Instead we have under parity

ψ(x) −→ ηPψ
P (x) , ψP (x) = γ0ψ(xP ) , (1.18)
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where the matrix γ0 is introduced in order to satisfy the requirement that ψP (x)
should satisfy the Dirac equation. To show this we have from (1.6) letting x →
−x, since γµ∂µ = γ0∂t + γ·∇,

(

iγ0∂t − iγ·∇ −m
)

ψ(xP ) = 0 . (1.19)

Now since γ0(γ0, γ)γ0 = (γ0,−γ) and (γ0)2 = I, or (γ0)−1 = γ0, it is straightfor-
ward to see that, with the definition of ψP in (1.18),

(iγµ∂µ −m)ψP (x) = 0 , (1.20)

as required.
The Dirac quantum field is therefore assumed to transform under parity as

P̂ψ(x)P̂−1 = ηPγ
0ψ(xP ) , P̂ψ(x)P̂−1 = ηP

∗ψ(xP )γ
0 . (1.21)

It follows that under P we have

ψ(x)ψ(x) → ψ(xP )ψ(xP ) scalar ,
ψ(x)γ5ψ(x) → −ψ(xP )γ5ψ(xP ) pseudoscalar ,
ψ(x)γ0ψ(x) → ψ(xP )γ

0ψ(xP ) charge density ,
ψ(x)γψ(x) → −ψ(xP )γψ(xP ) current density .

(1.22)

The transformation properties of other bi-linears in ψ and ψ can be worked out
in a similar fashion.

2.3 Transformation of States Under P

Under the parity transformation the positive energy Dirac wave-function of mo-
mentum p transforms as

u(p, λ)e−ip.x → γ0u(p, λ)e−ip.xP = u(pP , λ)e
−ip

P
.x , (1.23)

assuming
γ0u(p, λ) = u(pP , λ) , (1.24)

which is in accord with eq.(1.11). That is the spatial part of the momentum has
been reflected but the spin state has been left unaltered which is just what is
expected from a parity transformation. By following a similar argument as for
the bosonic field and using eq.(1.24) we see that

P̂ a(p, λ)P̂−1 = ηPa(pP , λ) , (1.25)

and (again assuming invariance of the vacuum under parity) we obtain

P̂ |p, λ〉 = ηP
∗|pP , λ〉 , (1.26)
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where |p, λ〉 = a(p, λ)†|0〉, which is what would have been expected on the basis
of the wave-function analysis above. The transformation of b(p, λ) and hence the
anti-particle states is discussed later when the spinor v(p, λ) has been defined in
detail.

For a particle with arbitrary spin we may also assume that the single particle
states transform under parity according to eq.(1.26). Since P̂JP̂−1 = J the phase
factor ηP must be independent of λ.

3 Charge Conjugation

3.1 Scalar Field

A scalar quantum field φ(x) has the decomposition in terms of creation and
annihilation operators

φ(x) =
∑

k

[

a(k)e−ik.x + b(k)†eik.x
]

, (1.27)

where a(k) annihilates particles and b(k) annihilates anti-particles of momentum
k. Charge conjugation C interchanges particles and anti-particles. Acting on the
basic Fock space we require a unitary transformation Ĉ such that for a general
single particle state Ĉ|k, particle〉 = ηC

∗|k, anti-particle〉, where ηC is a phase fac-
tor associated with the particle. This is achieved by requiring Ĉ|0〉 = |0〉 and
Ĉa(k)Ĉ−1 = ηCb(k). Assuming also Ĉb(k)Ĉ−1 = ηC

∗a(k) then

Ĉφ(x)Ĉ−1 = ηCφ(x)
† . (1.28)

We have also
Ĉφ(x)†Ĉ−1 = ηC

∗φ(x) . (1.29)

If φ is hermitian, φ = φ†, then ηC must be real and so ηC = ±1. For non hermitian
φ, ηC in (1.28) is arbitrary since if ηC = e2iβ then we may take e−iβφ→ φ so that
now ηC → 1.

The possibility that a ± sign may be involved in the charge conjugation
properties of neutral fields is non-trivial and of physical significance. The elec-
tromagnetic 4-vector field Aµ(x) obeys

ĈAµ(x)Ĉ
−1 = −Aµ(x) , (1.30)

which is necessary to ensure that electromagnetic interactions are invariant under
C. An N photon state therefore has charge conjugation (−1)N and a π0 can decay
to two photons but not three, assuming charge conjugation is an exact symmetry
of electromagnetic and strong interactions.
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3.2 Dirac Field

In the same way as for the charged scalar field the charge conjugation operation
on the Dirac field interchanges particles and anti-particles. The transformation
therefore involves the hermitian conjugation of the field. The field after charge
conjugation must however satisfy the Dirac equation. We use the following no-
tational conventions:

ψ(x) =











ψ1(x)
ψ2(x)
ψ3(x)
ψ4(x)











, ψ(x)∗ =











ψ1(x)
†

ψ2(x)
†

ψ3(x)
†

ψ4(x)
†











, (1.31)

and
ψ(x)† =

(

ψ1(x)
†, ψ2(x)

†, ψ3(x)
†, ψ4(x)

†
)

. (1.32)

and so ψ(x) = ψ(x)†γ0.
Under charge conjugation we therefore assume

ψ(x) −→ ηCψ
C(x) , ψC(x) = Cψ(x)t , (1.33)

with t denoting transpose. The matrix C is then chosen to ensure ψC(x) satisfies
the Dirac equation. From the transpose of (1.7) we have

(

−i(γt)µ∂µ −m
)

ψ(x)t = 0 , (1.34)

and so
(

−iC(γµ)tC−1∂µ −m
)

ψC(x) = 0 . (1.35)

Assuming C satisfies
C(γµ)tC−1 = −γµ . (1.36)

then from (1.35)
(iγµ∂µ −m)ψC(x) = 0 , (1.37)

as required. The existence of a matrix C such that (1.36) holds is guaranteed
since −(γµ)t also obey the essential definition of gamma matrices in eq.(1.1).
From (1.36) we can further straightforwardly obtain

C[γµ, γν ]tC−1 = −[γµ, γν ] , Cγ5
tC−1 = γ5 , C(γµγ5)

tC−1 = γµγ5 . (1.38)

Taking the transpose of (1.36) and then eliminating (γµ)t gives C−1tγµCt =
C−1γµC or γµCtC−1 = CtC−1γµ which requires CtC−1 ∝ I. Hence we must have
Ct = ±C. The sign is further determined since ΓA = (I, γµ, 1

2
[γµ, γν ], γµγ5, γ5)

form a basis for 4× 4 matrices and in order for ΓAC to give 10 symmetric and 6
antisymmetric matrices we must then require

Ct = −C . (1.39)
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By taking the hermitian conjugate of (1.36) and using the hermeticity conditions
(1.3) we find C−1†(γµ)tC† = −γµ and then using (γµ)t = −C−1γµC from (1.36)
we may find (CC†)−1γµCC† = γµ or CC† commutes with γµ. This requires
that CC† is proportional to the identity and, with a choice of normalisation, we
therefore have

C† = C−1 . (1.40)

In the Bjorken and Drell representation of (1.10) we may find an explicit form
for C by taking

C = iγ0γ2 =
(

0 iσ2
iσ2 0

)

, (1.41)

since for the standard Pauli matrices iσ2σ
tiσ2 = σ and (iσ2)

2 = −I. For this
particular representation it is easy to see that (1.39) and (1.40) are satisfied.

Charge conjugation on the quantum Dirac field is then given by

Ĉψ(x)Ĉ−1 = ηCCψ(x)
t ≡ ηCψ

C(x) ,

Ĉψ(x)Ĉ−1 = ηC
∗ψ(x)∗C†γ0 = −ηC∗ψ(x)tC−1 , (1.42)

applying (1.40). From (1.42), with the assumed definition of ψC , we have

ĈψC(x)Ĉ−1 = −ηC∗C(C−1)tψ(x) = ηC
∗ψ(x) , (1.43)

using (1.39).

3.3 Transformation of Bi-Linears Under C

A particularly important operator is the electric current jµ(x) = ψ(x)γµψ(x). If
ψ is a quantum operator it is convenient to amend the definition as follow:

ψ(x)γµψ(x) = (γµ)αβψα(x)ψβ(x)→ 1
2
(γµ)αβ [ψα(x), ψβ(x)] , (1.44)

where the simple product of operators has been replaced by the anti-symmetrized
product. This definition ensures that jµ has well defined properties under charge
conjugation and may also eliminate spurious infinities. We have then

Ĉjµ(x)Ĉ
−1 = 1

2
(γµ)αβ [Ĉψα(x)Ĉ

−1, Ĉψβ(x)Ĉ
−1] (1.45)

= −1
2
(γµ)αβ[(ψ(x)

tC−1)α, (Cψ(x)
t)β]

= −1
2
(C−1γµC)α′β′[ψα′(x), ψβ′(x)] .

But C−1γµC = −γµt so therefore

Ĉjµ(x)Ĉ
−1 = 1

2
(γµ)β′α′ [ψα′(x), ψβ′(x)] (1.46)

= −jµ(x) .
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The effect of C on other bi-linear expressions in ψ and ψ may be worked out in
a similar way.

Note that, if as indicated above, we assume that the photon is negative under
charge conjugation then the electromagnetic interaction jµ(x)Aµ(x) is invariant
under charge conjugation. It therefore causes transitions only between states
with the same charge conjugation eigenvalues.

3.4 Negative Energy Solutions

In a previous section we left the detailed form for the negative energy solutions,
or equivalently for the spinor v(p, λ) in eq.(1.8), of the Dirac equation unresolved.
We can use the charge conjugation properties of the Dirac field to fill in this gap.
Applying (1.42) to eq.(1.8)

Ĉψ(x)Ĉ−1 = ηC
∑

p,λ

[

b(p, λ)Cv(p, λ)te−ip.x + a(p, λ)†Cu(p, λ)teip.x
]

. (1.47)

However the effect of charge conjugation is just to interchange particles and anti-
particles, leaving momentum and spin unchanged. Therefore we must require

Ĉa(p, λ)Ĉ−1 = ηCb(p, λ) , Ĉb(p, λ)†Ĉ−1 = ηCa(p, λ)
† , (1.48)

and hence

Ĉψ(x)Ĉ−1 = ηCψ
C(x) , ψC(x) =

∑

p,λ

[

b(p, λ)u(p, λ)e−ip.x + a(p, λ)†v(p, λ)eip.x
]

.

(1.49)
Comparing eq.(1.47) and eq.(1.49) we see that the required definition for

v(p, λ) is such that
v(p, λ) = Cu(p, λ)t , (1.50)

which then implies u(p, λ) = Cv(p, λ)t. In the Bjorken and Drell representation
from eq.(1.11) and eq.(1.41),

v(p, λ) =

(

0 iσ2
iσ2 0

)√
E +m

(

χ∗
λ

− σt.p
E+m

χ∗
λ

)

. (1.51)

Using the fact that the Pauli matrices satisfy iσ2σ
tiσ2 = σ we see that

v(p, λ) =
√
E +m

(

σ.p
E+m

χcλ
χcλ

)

, (1.52)

where χcλ = iσ2χ
∗
λ. This completes the construction of the negative energy solu-

tions of the Dirac equation.
If a(p, λ) and b(p, λ) are different, as for a usual quantised Dirac field, then

ηC may be eliminated by redefining the phases of a(p, λ) and/or b(p, λ). A ‘real’
or Majorana fermion field is one where a(p, λ) = b(p, λ) so that

ψ(x) = ψC(x) . (1.53)
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3.5 Charge Conjugation and Parity

If the parity of a Dirac field is ηP then we have shown in eq.(1.21) that

P̂ψ(x)P̂−1 = ηPγ
0ψ(xP ) . (1.54)

The u spinor has the property (1.24) which leads to eq.(1.25). With the definition
for the v spinor in eq.(1.50) we may now obtain

γ0v(p, λ) = −C(u(p, λ)γ0)t (1.55)

= −Cu(pP , λ)t

= −v(pP , λ) .

Hence the parity transformation properties of the Dirac field in eq.(1.21) now
require

P̂ b(p, λ)†P̂−1 = −ηP b(pP , λ)† . (1.56)

Assuming ηP = ±1 we see that the parity of a spin 1
2
anti particle is opposite to

that of the associated particle. Thus if we choose positive parity for the electron
then the positron has negative parity. Similarly quarks have positive parity and
anti-quarks have negative parity.

Equivalently using
P̂ψ(x)P̂−1 = ηP

∗ ψ(xP )γ
0 , (1.57)

we find for conjugate field ψC(x) = Cψ(x)t

P̂ψC(x)P̂−1 = CP̂ψ(x)tP̂−1 , (1.58)

= C(ηP
∗ψ(xP )γ

0)t ,

= −ηP∗γ0Cψ(xP )t ,
= −ηP∗γ0ψC(xP ) ,

since C(γ0)t = −γ0C. This is opposite to eq.(1.21) if ηP is real. If ψ(x) = ψC(x),
as for a Majorana field, then we must take ηP = −ηP∗ or ηP = ±i.

4 Time Reversal

4.1 Classical Theory

Newton’s equation of motion for a particle of mass m subject to a force F(x) is

mẍ = F(x) . (1.59)

It is easy to check that if x(t) is a solution then so is xT (t) = x(−t). This is what
is meant by time reversibility in the classical case, namely that the backwards
running motion is just as good a solution as the original motion. If there is
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a velocity dependent force due to the presence of a magnetic field B then the
equation of motion

mẍ = F(x) + qẋ×B(x) , (1.60)

is only time reversal invariant if we also reverse the magnetic field. That is both
xT (t)|B = x(−t)|−B are solutions of this equation of motion. This is an indication
of how it is necessary to consider the effect of time reversal on all the fields in a
problem in order to exhibit invariance. For electric and magnetic fields in general
we must require E(t,x)→ E(−t,x), B(t,x)→ −B(−t,x).

4.2 Quantum Mechanics

The wave function for a non-relativistic particle satisfies the Schrödinger equation

i~
∂

∂t
ψ(t,x) =

(

− ~
2

2m
∇2 + V (x)

)

ψ(t,x) . (1.61)

A solution corresponding to time-reversed evolution should involve ψ(−t,x).
However this time-reversed wave-function does not satisfy the Schrödinger equa-
tion. To obtain such a solution it is necessary to combine time-reversal with
complex conjugation so that the action of time reversal on a wave function is

ψ(t,x) −→ ηTψ
T (t,x) , ψT (t,x) = ψ(−t,x)∗ , (1.62)

for |ηT | = 1. It is easy to see that ψT does satisfy the Schrödinger equation.
The complete time-reversal transformation therefore is anti-linear. Thus if ψ is
replaced by αψ then under time reversal

αψ(t,x) −→ α∗ηTψ
T (t,x) . (1.63)

Note the effect of anti-linearity on scalar products:

(ψ(t), φ(t)) −→ (ψT (t), φT (t)) =
∫

d3xψT (t,x)∗φT (t,x)

=
∫

d3xφ(−t,x)∗ψ(−t,x)
= (φ(−t), ψ(−t))
= (ψ(−t), φ(−t))∗ . (1.64)

Time reversal therefore complex conjugates scalar products. Probabilities which
depend only on the modulus of scalar products are unaffected by the anti-linearity
of the transformation.
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4.3 Specification of an Anti-Linear Operator

The complete effect of a linear operator can be determined by specifying its action
on a basis set of the vector space of physical states and then extending its appli-
cation by exploiting the linearity of the map. Similarly the complete effect of an
anti-linear map can be determined by specifying its effect on a basis and extending
the result using its anti-linearity. For example according to previous definitions
above time-reversal acting on the momentum state wave-function eip.x/~ is to
produce the complex conjugate wave-function e−ip.x/~. In Dirac notation in this
basis T̂ is defined by

T̂ |p〉 = |−p〉 . (1.65)

A general state |ψ〉 can be represented as

|ψ〉 =
∑

p

ψ̃(p)|p〉 . (1.66)

The effect of time-reversal is then

T̂ |ψ〉 = T̂
∑

p

ψ̃(p)|p〉 =
∑

p

ψ̃∗(p)T̂ |p〉 =
∑

p

ψ̃∗(p)|−p〉 =
∑

p

ψ̃∗(−p)|p〉

= |ψT 〉 . (1.67)

If the state |φ〉 = ∑

p φ̃(p)|p〉 is defined similarly then the scalar product for these

two states 〈φ|ψ〉 = ∑

p φ̃
∗(p)ψ̃(p) so that

〈φ|ψ〉 = 〈φT |ψT 〉∗ . (1.68)

This results holds generally for the action of the anti-unitary operator T̂ and it
is easy to check that this result is essential in accord to be consistent with the
required anti-linear properties of T̂ , when if |ψ〉 = a1|ψ1〉 + a2|ψ2〉 then |ψT 〉 =
a1

∗|ψ1
T 〉+ a2

∗|ψ2
T 〉.

4.4 Time-Reversal for Relativistic Wave-Functions

In line with non-relativistic quantum mechanics the effect of time-reversal on the
complex wave-function φ(x) of a relativistic scalar particle is

φ(x) −→ ηTφ
T (x) , φT (x) = φ(xT )

∗ , (1.69)

where xµT = (−t,x). Using the anti-linear properties of the transformation it is
easy to see, by modifying φ by a suitable complex phase, that we may take ηT = 1
but we keep ηT for later convenience. The transformation under time reversal for
a state of definite momentum, φ(p, x) = e−ip.x, is therefore given by

φT (p, x) =
{

e−ip.xT
}∗

= e−ipT .x = φ(pT , x) , (1.70)
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where pµT = (E,−p).
Dirac wave-functions are dealt with in a similar way but with an additional

linear transformation in order to ensure that the result satisfies the Dirac equa-
tion,

ψ(x) −→ ηTψ
T (x) , ψT (x) = Bψ(xT )

∗ . (1.71)

Hence from the complex conjugate of the Dirac equation for ψ(x) and taking
x0 → −x0 we find

(

iγ0∗∂t − iγ∗·∇ −m
)

ψ(xT )
∗ = 0 . (1.72)

If we assume that the matrix B is defined by the requirement

B(γ0∗,−γ∗)B−1 = (γ0, γ) , (1.73)

then, with the definition of ψT in eq.(1.71),

B
(

iγ0∗∂t − iγ∗·∇ −m
)

ψ(xT )
∗ = (iγµ∂µ −m)ψT (x) (1.74)

so that ψT satisfies the Dirac equation if ψ does. To satisfy eq.(1.73) it is sufficient,
since from the hermeticity condition eq.(1.3) (γ0∗,−γ∗) = (γ0t, γt), to take

B = γ5C , (1.75)

where we use the basic property of C in eq.(1.36) and also the result that γ5
anti-commutes with γµ from (1.5). With the result (1.75) for B we have also

Bt = −Cγ5t = −γ5C = −B , B† = C†γ5 = B−1 ⇒ B∗ = −B−1 , (1.76)

using the hermeticity of γ5 and eqs.(1.39,1.38,1.40).
Acting on spinors u(p, λ) time reversal not only reflects the spatial part of

the momentum but also reverses the spin label since the action on the angular
momentum operator is given by T̂JT̂−1 = −J. Thus the time reversed spinor
which is given by eq.(1.71) has the form

Bu(pP , λ)
∗ = u(p,−λ)ηλ , (1.77)

where ηλ = ±1 depends on the conventions chosen for relating different spin
components. This result may be regarded as giving a definition for u(p,−1

2
) in

terms of u(p, 1
2
). Taking the complex conjugate of (1.77) and using (1.76) we find

u(pP , λ) = −Bu(p,−λ)∗ηλ , (1.78)

so we must require η−ληλ = −1.
From the definition eq.(1.50) for v(p, λ) and using eqs.(1.75,1.76,1.77), so that

B−1∗ = −Cγ5t, then with C∗ = −C−1, γ5
† = γ5 and Cγ5

tC−1 = γ5 we also find
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similar result for the v spinor as for the u spinor in (1.77),

v(p, λ)∗ = C∗u(p, λ)† = −C−1γ0u(p, λ)

= −C−1γ0B−1∗u(pP ,−λ)∗ηλ
= −C−1γ0B−1∗γ0 tu(pP ,−λ)tηλ
= C−1γ0Cγ5

tγ0 tC−1v(pP ,−λ)ηλ
= −C−1γ0γ5γ

0v(pP ,−λ)ηλ
= B−1v(pP ,−λ)ηλ . (1.79)

Explicitly in the Bjorken and Drell representation eq.(1.75) gives, as a result
of eq.(1.10) and eq.(1.41),

B =

(

iσ2 0
0 iσ2

)

. (1.80)

With the form given by eq.(1.11) for the spinor u(p, λ) the effect of time-reversal
is

Bu(p, λ)∗ =
√
E +m

(

iσ2χ
∗
λ

− σ.p
E+m

iσ2χ
∗
λ

)

, (1.81)

since iσ2σ
∗iσ2 = σ. In the standard representation χλ are real and it is easy

to see that iσ2χλ = χ−λ(−1)
1
2
+λ. Hence we see that eq.(1.77) is satisfied with

ηλ = (−1) 1
2
+λ.

4.5 Time-Reversal and Quantum Fields

In order to achieve the same time-reversal properties on the particle states for a
scalar quantum field as is suggested by the previous discussion of wave functions,
we demand T̂ |0〉 = |0〉 and

T̂ a(p)T̂−1 = ηTa(pP ) , (1.82)

which gives for single particle states

T̂ |p〉 = T̂ a(p)†|0〉 = T̂ a(p)†T̂−1T̂ |0〉 = ηT
∗a(pP )

†|0〉 = ηT
∗|pP 〉 . (1.83)

Again the phase ηT has no absolute significance since if ηT = e2iγ we may remove it
from (1.82) by letting eiγa(p)→ a(p), taking account of the anti-linear properties
of T̂ .

The operation of time-reversal on quantum fields can then be found in terms
of its action on the creation and annihilation operators. For a scalar field

φ(x) =
∑

p

[

a(p)e−ip.x + b(p)†eip.x
]

(1.84)
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remembering that T̂ is anti-linear

T̂ φ(x)T̂−1 =
∑

p

[

T̂ a(p)T̂−1eip.x + T̂ b(p)†T̂−1e−ip.x
]

, (1.85)

= ηT
∑

p

[

a(pP )e
ip.x + b(pP )

†e−ip.x
]

,

(1.86)

where we also require
T̂ b(p)†T̂−1 = ηT b(pP )

† . (1.87)

Using the invariance of the range of the p-summation under p→ pP and pP .x =
−p.xT it follows that for a scalar field

T̂φ(x)T̂−1 = ηTφ(xT ) . (1.88)

Analogous reasoning holds for the Dirac spinor field so that

T̂ψ(x)T̂−1 = ηTB
−1ψ(xT ) . (1.89)

We have also
T̂ψ(x)T̂−1 = ηT

∗ψ(xT )B . (1.90)

Using eqs.(1.77,1.79) it is easy to see that

T̂ a(p, λ)T̂−1 = ηT (−1)
1
2
+λa(pP ,−λ) , T̂ b(p, λ)T̂−1 = ηT

∗(−1) 1
2
+λb(pP ,−λ) .

(1.91)
Some important examples of the transformation of bi-linears under T are the

scalar
T̂ ψ(x)ψ(x)T̂−1 = ψ(xT )BB

−1ψ(xT ) = ψ(xT )ψ(xT ) , (1.92)

and the electric current

T̂ jµ(x)T̂−1 = ψ(xT )B(γµ)∗B−1ψ(xT ) (1.93)

so that
T̂ j0(x)T̂−1 = j0(xT ) , (1.94)

and
T̂ j(x)T̂−1 = −j(xT ) . (1.95)

Time-reversal therefore leaves the charge density unchanged but reverses the flow
of the current.
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4.6 Transformation of States Under T

For a general single particle state of spin S the transformation properties under
time-reversal is given by

T̂ |p, λ〉 = ηT
∗(−1)S+λ|pP ,−λ〉 . (1.96)

The dependence of the phase factor on λ is dictated by compatibility with stan-
dard conventions relating spin states. For the particle at rest p̄µ = (m, 0)
we require J±|p̄, λ〉 = NS,±λ|p̄, λ ± 1〉, with NS,λ real, and under time reversal

T̂ J±T̂
−1 = −J∓. Clearly it follows from eq.(1.96) that

T̂ 2|p, λ〉 = ηT (−1)S+λT̂ |pP ,−λ〉 = (−1)2S|p, λ〉 , (1.97)

and hence in general T̂ 2 = (−1)F , where F measures the fermion number.

5 Applications of P,C and T

As an example consider the interaction Lagrangian of QED, namely

LI(x) = −eψ(x)γµψ(x)Aµ(x) . (1.98)

The associated interaction Hamiltonian is

V (t) = −
∫

d3xLI(x) , (1.99)

and the S-matrix relating in states to out states is

S = T exp
{

−i
∫ ∞

−∞
dt V (t)

}

. (1.100)

Taking into account the transformation properties of all the fields we see that

P̂LI(x)P̂−1 = LI(xP ) , (1.101)

ĈLI(x)Ĉ−1 = LI(x) , (1.102)

T̂LI(x)T̂−1 = LI(xT ) . (1.103)

These results have the implications

P̂V (t)P̂−1 = V (t) , (1.104)

ĈV (t)Ĉ−1 = V (t) , (1.105)

T̂ V (t)T̂−1 = V (−t) . (1.106)

For the S-matrix we find

P̂SP̂−1 = S , (1.107)

ĈSĈ−1 = S . (1.108)
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The S-matrix therefore commutes with P̂ and Ĉ. This in turn implies that the
parity and charge conjugation properties of the initial and final states in QED
are the same.

Time-reversal is a little more complicated. Expanding the time-ordered ex-
ponential in eq.(1.100) we have

S =
∑

n

(−i)n
∫ ∞

−∞
dt1

∫ t1

−∞
dt2 . . .

∫ tn−1

−∞
dtn V (t1)V (t2) . . . V (tn) . (1.109)

We have then

ST = T̂ ST̂−1 =
∑

n

in
∫ ∞

−∞
dt1

∫ t1

−∞
dt2 . . .

∫ tn−1

−∞
dtn V (−t1)V (−t2) . . . V (−tn) .

(1.110)
If now we set τi = −tn−i+1 we find after a consideration of ranges of integration

ST =
∑

n

in
∫ ∞

−∞
dτ1

∫ τ1

−∞
dτ2 . . .

∫ τn−1

−∞
dτn V (τn)V (τn−1) . . . V (τ1) , (1.111)

with the consequence that
ST = S†. (1.112)

Because T̂ is an anti-linear transformation we have for any states |a〉 and |b〉
(we use the notation |aT 〉 = T̂ |a〉 etc.)

〈aT |ST†|bT 〉 = 〈a|S†|b〉∗, (1.113)

that is
〈b|S|a〉 = 〈aT |ST†|bT 〉 . (1.114)

Time reversal invariance of the theory implies that ST
† = S therefore

〈b|S|a〉 = 〈aT |S|bT 〉 . (1.115)

In turn this implies that the probabilities, rates or cross-sections are equal for
two processes related by time-reversal.

5.1 The CPT Theorem

If a theory is invariant under T, P and C separately then it is invariant under
the combined (anti-linear) transformation CPT . Even if T, P and C are not
separate symmetries it can be shown that for any Lorentz invariant Lagrangian
L(x) formed products of quantum fields at the point x then it is also invariant
under CPT . This is a version of the CPT Theorem. In general the CPT Theorem
implies that any Lorentz invariant local quantum field theory will be invariant
under the combined transformation. The consequence is that if we set Θ = ĈP̂ T̂
then

ΘSΘ−1 = S† . (1.116)
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Invariance under CPT is sufficient to ensure that particles and anti-particles
that are unstable have the same lifetime. Note also it is a consequence of the
theorem that if a theory is time-reversal invariant then it is certainly invariant
under CP , or if it is invariant under any two of the transformations it will be
invariant under the third.

To verify how invariance of L follows we consider first the CPT transformation
on a scalar field φ where our previous results give

Θφ(x)Θ−1 = ηTηPηCφ(−x)† . (1.117)

We now choose phases so that ηTηPηC = 1. For an arbitrary bosonic quantum
tensor field φµ1,...µn we generalise this to

Θφµ1,...µn(x)Θ
−1 = (−1)nφµ1,...µn(−x)† . (1.118)

Note that this result is consistent with forming new fields by taking derivatives,
e.g. φµ = ∂µφ. Acting on Dirac fields it also follows from the previous results for
the action of P,C, T separately that, with a similar choice of phases,

Θψ(x)Θ−1 = −θψ(−x)t , Θψ(x)Θ−1 = ψ(−x)tθ−1 , (1.119)

where the matrix θ = −B−1γ0C. From eqs.(1.21,1.42,1.89) and the result for B
in eq.(1.75) we find θ = γ5

tγ0t. Hence eq.(1.119) can be rewritten as

Θψ(x)Θ−1 = −(ψ(−x)†γ5)t , Θψ(x)Θ−1 = (γ5ψ(−x)†)t . (1.120)

With this result we may find for the transformation of an arbitrary bi-linear
formed from Dirac fields ψ1, ψ2,

Θψ1(x)Mψ2(x)Θ
−1 = −(γ5ψ1(−x)†)tM∗(ψ2(−x)†γ5)t

= ψ2(−x)†γ5M †γ5ψ1(−x)†

=
[

ψ1(−x)γ5Mγ5ψ2(−x)
]†
. (1.121)

It is then straightforward to see that an n rank tensor field constructed from Dirac
fields by choosing an appropriate form for the matrix M has the same trans-
formation properties as in eq.(1.118) (note that from eq.(1.5) γ5γµ1 . . . γµnγ5 =
(−1)nγµ1 . . . γµn).

Thus a Lorentz invariant Lagrangian which is a sum of monomials in the fields,
including possible bi-linears in fermion fields, which are Lorentz scalars formed
from contracting Lorentz indices satisfies under a CPT transformation, assuming
the boson fields and fermion bi-linears transform according to eqs.(1.118,1.121),

L(x) −→ L(−x)∗ = L(−x) . (1.122)

In particular the interaction Lagrangian formed from the operator fields satisfies

ΘLI(x)Θ−1 = LI(−x) , (1.123)
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so that the S-matrix operator given by eqs.(1.99,1.100) obeys eq.(1.116). This
result holds even if Ĉ, P̂ and T̂ are not separately defined in the quantum theory,
such as when the corresponding discrete symmetries are broken and the required
transformed states may not exist, since the operator Θ may always be defined by
its action in eqs.(1.118,1.120). On particle states CPT transforms particles into

anti-particles with opposite spin since Θa(p, λ)Θ−1 = (−1) 1
2
+λb(p,−λ).
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Part II

Broken Symmetries in Field

Theory

1 Symmetry in Quantum Theory

In theoretical physics as a whole and in quantum mechanics in particular the idea
of symmetries which combine to form a symmetry group is of crucial importance.
In a quantum theory the action of symmetry transformations conventionally cor-
respond to unitary (or perhaps anti-unitary) operators acting on the space of
states for the given theory.

In general a transformation g acting on the states belonging to the Hilbert
space for a quantum mechanical system, |ψ〉 →

g
|ψg〉, where |ψg〉 is the state

corresponding to the transformed physical system, is a symmetry if for all states
|ψ〉, |φ〉 transition probabilities are invariant,

|〈φg|ψg〉|2 = |〈φ|ψ〉|2 . (2.1)

A theorem due to Wigner asserts that there are two possibilities, either

|ψ〉 = a1|ψ1〉+ a2|ψ2〉 ⇒ |ψg〉 = a1|ψ1
g〉+ a2|ψ2

g〉 and 〈φg|ψg〉 = 〈φ|ψ〉 , (2.2)

or

|ψ〉 = a1|ψ1〉+ a2|ψ2〉 ⇒ |ψg〉 = a ∗
1 |ψ1

g〉+ a ∗
2 |ψ2

g〉 and 〈φg|ψg〉 = 〈φ|ψ〉∗ , (2.3)

In case (2.2) there is a unitary operator U(g) such that for all |φ〉

U(g)|ψ〉 = |ψg〉 , (2.4)

while for (2.3) the corresponding operator is anti-unitary (if the symmetry trans-
formations are continuously connected to the identity then U(g) can only be
unitary). If the symmetry transformations belong to a symmetry group G then
for any two symmetry transformations g1, g2 ∈ G we may define their product
g1g2 ∈ G and it is natural to suppose

U(g1)U(g2) = U(g1g2) , (2.5)

Actually in quantum mechanics states are only defined up to a complex phase of
modulus 1. This leads to the freedom of introducing complex phase factors on the
right hand sides of (2.5). In many cases such complications can be avoided with
the assumption of standard phase conventions for a suitable basis of states in the
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Hilbert space for the theory. The assumption of the symmetry being invariant
under time evolution of course means that the Hamiltonian itself is invariant

U(g)†HU(g) = H . (2.6)

In this cases the states with a given energy must form a representation space for
G

U(g)|r〉 =
∑

s

|s〉Dsr(g) , (2.7)

where r labels the states and D(g) defines a finite dimensional representation of
the group G. Thus the space of states of given energy may be classified in terms
of the representations of the group G. As well as the usual rotational group
in particle physics the isospin group SU(2)I and its extension SU(3)F are well
known and although they do not define exact symmetries of the Hamiltonian
they classify particle states of nearly degenerate masses. To the extent that
the symmetry is exact the vacuum must be invariant, or form a trivial singlet
representation of the group,

U(g)|0〉 = |0〉 . (2.8)

1.1 Spontaneous Symmetry Breakdown,

Discrete Symmetries

Although the above is the conventional way in which symmetries are realised in
quantum theory it is not the only possibility. The crucial assumption is that
contained in (2.8), namely that the vacuum state is invariant. In classical physics
there are many instances when the ground state does not respect the basic sym-
metry of the Lagrangian or Hamiltonian. To illustrate this in field theory we
consider the simplest case of a Lagrangian density for a single scalar field φ,

L = 1
2
∂µφ ∂µφ− V (φ) , (2.9)

which is invariant under the Z2 symmetry (Z2 is virtually the simplest possible
group with only two elements {1,−1}),

φ↔ −φ . (2.10)

The assumption of symmetry under (2.10) requires

V (φ) = V (−φ) , (2.11)

and as a typical field theory example we may take

V (φ) = 1
2
m2φ2 + 1

4!
gφ4 , g > 0 , (2.12)

with the condition on the coupling g necessary to ensure that V (φ) is bounded
below. For m2 > 0 the conventional picture is realised at least classically since
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the minimum of V occurs at φ = 0 which is invariant under (2.10). In the
quantum theory we would expect that the symmetry should be realised by a
unitary operator U such that U2 = 1, the identity. The assumption of symmetry,
from (2.6) and (2.8), in this case,

U †HU = H , U |0〉 = |0〉 , (2.13)

implies that the energy eigenstates can be written |ψ±〉 where

U |ψ±〉 = ±|ψ±〉 , (2.14)

since there are just two possible representations of this very simple group Z2.
The states |φ+〉 and |ψ−〉 are respectively created by the application of even and
odd numbers of field operators φ in the quantum field theory to the vacuum state
|0〉.

However a very different picture emerges if m2 < 0. In this case by addition
of a constant we might rewrite V (φ) in the form

V (φ) = 1
4!
g(φ2 − v2)2 , (2.15)

which has the form the form of a double well, shown below

Double well potential

In the ground state of minimum energy there are two possibilities classically,
φ = ±v, and in the quantum field theory there are expected to be two vacua |0±〉
such that

〈0±|φ(x)|0±〉 = ±vR , (2.16)

with vR some renormalised value, including quantum corrections, of the constant
v. For the two vacua it is possible to construct two independent Hilbert spaces of
states H± by the application of field operators to |0±〉. These two Hilbert spaces
have no overlap, all states in H+ are entirely distinct from those in H−, but they
define two equivalent quantum field theories. Although there is an exact one to
one mapping between states in the two spaces there is no unitary operator acting
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on the states which realises this as a physical symmetry. To set up a perturbative
expansion for this theory it is necessary to shift the field

φ = v + f , (2.17)

so that the Lagrangian density defined by (2.9) and (2.15) becomes

L = 1
2
∂µf∂µf − 1

6
g(v2f 2 + vf 3 + 1

4
f 4) , (2.18)

so that f is a massive field with cubic and quartic interactions. In perturbation
theory then to lowest order 〈0|f |0〉 = 0 but there are corrections which will make
this non zero resulting from Feynman diagrams with one external line.

It is important to recognise that in H+ there may be states |ψ〉 which are
essentially identical to |0−〉 for some finite region V, i.e.

〈ψ|φ(0,x)|ψ〉 = −vR for x ∈ V , 〈ψ|φ(0,x)|ψ〉 → vR as |x| → ∞ . (2.19)

Such states are similar to a bubble inside which the theory looks like that repre-
sented by the space H−. The state |ψ〉 however has a non zero energy which is at
least proportional to the area of the boundary of the region V so that the region
V cannot expand in time indefinitely. If the symmetry is broken so that |0−〉 has
a lower energy density then it is possible for the bubble to grow indefinitely, since
the gain in energy proportional to the volume of V can compensate the energy
involved in the boundary.

The scenario just described is valid in quantum field theory but it fails in
ordinary quantum mechanics. To illustrate this we may consider the above ex-
ample replacing the field φ by x. The Hamiltonian for this one dimensional model
becomes

H = 1
2
p2 + 1

24
g(x2 − v2)2 . (2.20)

The Z2 symmetry for x↔ −x is then the conventional parity symmetry. It is well
known that in quantum mechanics that parity is always a good quantum number,
if the potential is invariant under reflection, and that the energy eigenstates can
be classified in terms of being even or odd parity. Near the minima of the potential
the Hamiltonian in (2.20) may be approximated by a harmonic oscillator form
1
2
p2 + 1

2
ω2(x ∓ v)2 with ω2 = 1

3
gv2 so that there are two apparent degenerate

ground state wave functions each with energy 1
2
ω,

ψ0(x∓ v) , ψ0(x) =
(

ω

π

) 1
4

e−
1
2
ωx2 . (2.21)

In perturbation theory these states remain degenerate but there are non pertur-
bative effects due to tunnelling through the potential barrier separating the two
minima. The tunnelling amplitude is proportional to

e
−
∫ v

−v
dx
√

2V (x)
= e

− 2

3
√

3

√
gv3

, (2.22)
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and the two low lying states are now non degenerate with approximate wave
functions and energies of the form, if gv6 is large,

ψ±(x) ≈
1√
2

(

ψ0(x−v)±ψ0(x+v)
)

, E± = 1
2
ω∓Ke−

2

3
√

3

√
gv3

, K > 0 . (2.23)

Clearly these are now parity eigenstates with parity ±. This tunnelling between
the two ground states does not happen in quantum field theory. If the theory
were quantised in a finite volume V then there would be a tunnelling amplitude
so that

〈0−|0+〉 ∼ e−CV . (2.24)

This goes to zero, as also does the overlap between any state formed by applying
products of field operators to the state |0+〉 and any similar state formed from
|0−〉, as V →∞.

The above description of spontaneous symmetry breakdown for Z2 generalises
straightforwardly to any discrete symmetry group of order N . Any quantum field
theory has a unique vacuum state chosen fromN equivalent possibilities but there
may be localised regions, bounded by domain walls of non zero energy density,
where the state appears like one of the N − 1 other vacua.

1.2 Spontaneous Symmetry Breakdown,

Continuous Symmetries

We may also consider continuous symmetry group which may undergo spon-
taneous symmetry breakdown. As a simple illustration we first consider an n
component scalar field theory with real fields φ = (φ1, . . . φn). Defining φ2 ≡
φ·φ =

∑

r φrφr we postulate a Lagrangian density.

L = 1
2
∂µφ·∂µφ− V (φ) , V (φ) = 1

8
g(φ2 − v2)2 , g > 0 . (2.25)

For n = 2 the potential has the form shown,
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This Lagrangian is clearly invariant under the symmetry group O(n) which ro-
tates the n-vector φ. It is also evident that the classical ground state correspond-
ing to the minimum of the potential in (2.25) is given by φ = φ0 for any φ0 such
that

φ0
2 = v2 . (2.26)

This defines an n − 1 dimensional sphere, Sn−1, which is not a single point left
invariant by O(n) (for n = 2 the classical ground state is a circle). At any point
on the Sn−1 defined by (2.26) there are directions where the potential energy
remains unchanged. Although this is nearly obvious we can see this explicitly by
expanding φ about a particular point on Sn−1, for example

φ0 = (0, . . . , 0, v) , (2.27)

so that
φ = (φ⊥, v + f) , φ⊥ = (φ1, . . . , φn−1) . (2.28)

The potential now becomes

V (φ) = 1
2
gv2f 2 + 1

2
gv (φ⊥

2 + f 2)f + 1
8
g (φ⊥

2 + f 2)2 . (2.29)

There is only a quadratic piece for the field f , the n−1 fields φ⊥ have no quadratic
contribution so that the frequencies of these modes for small fluctuations around
φ0 are zero. The quadratic terms in Lagrangian, after any linear terms have been
removed by shifting the fields, determine the particle masses in the associated
quantum field theory so that in this example there are n− 1 massless fields after
spontaneous symmetry breakdown and one massive field f . The fields which
are massless are called Goldstone modes. The symmetry group O(n) for this
situation is then reduced to O(n− 1) which may be defined by those elements of
O(n) which leave φ0 invariant, for φ0 as in (2.27) the O(n − 1) group acts only
on the first n− 1 components φ⊥ of φ.

A more general discussion of spontaneous symmetry breakdown can be devel-
oped which is applicable to any field theory in which the Lagrangian is invariant
under a continuous symmetry group G but the ground state is invariant under
a subgroup H . We assume a Lagrangian density with a multi-component scalar
field φ, belonging to a vector space Vφ, on which a representation of the group G
(which for φ having n components must be a subgroup of O(n)) is defined, for
g ∈ G then φ→ gφ. The potential V is assumed to be invariant so that,

V (gφ) = V (φ) for all g ∈ G . (2.30)

Classically spontaneous symmetry breakdown arises when the ground state is not
a single point invariant under G but is a non trivial manifold,

Φ0 = {φ0 : V (φ0) = Vmin} . (2.31)
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For any point φ0 ∈ Φ0 we may define its stability group H ⊂ G by

hφ0 = φ0 for all h ∈ H . (2.32)

It is convenient to assume that G acts transitively on Φ0 (this need not be true,
it is possible to tune the parameters in the potential V so that two or more local
minima, on each of which G acts transitively, both have the same value which is
the global minimum of V , but this is an unstable situation) which means

φ0
′, φ0 ∈ Φ0 ⇒ φ0

′ = gφ0 for some g ∈ G . (2.33)

In this case the stability groups at each point are isomorphic, if H ′ is the stability
group for φ0

′ then H ′ ≃ gHg−1, and we can identify Φ0 with the coset G/H (for
any subgroup H ⊂ G, G/H is defined as the set of equivalence classes under the
equivalence relation g1 ∼ g2 if g1 = g2h for some h ∈ H) since if φ0

′ = g1φ0 = g2φ0

then g2
−1g1φ0 = φ0 so that g2

−1g1 = h for some h ∈ H . Thus,

Φ0 ≃ G/H . (2.34)

In this context there is a crucial theorem, the Goldstone theorem, which
states that in a quantum field theory when spontaneous symmetry breakdown of
a continuous symmetry occurs there are zero mass particles, Goldstone bosons,
whose numbers are determined by the dimensions of G and H . At the classical
level this amounts to counting the number of zero frequency modes for small
oscillations around the classical ground state. To demonstrate this result we first
recast (2.30) in infinitesimal form,

V (φ+ δφ) = V (φ) for δφ = δλaθaφ , a = 1, . . .dimG , (2.35)

where θa are the dimG generators of the Lie algebra of G in the representation
defined by φ. (2.35) can obviously be rewritten as

∂

∂φr
V (φ) (θaφ)r = 0 . (2.36)

Since the kinetic term of the Lagrangian is also required to be invariant the
generators should be antisymmetric or

φ′·(θaφ) = −(θaφ′)·φ . (2.37)

The frequencies of the oscillations of the fluctuations around the ground state are
determined by the eigenvalues of the matrix formed by the second derivatives of
V evaluated at the minimum. Choosing an arbitrary point φ0 ∈ Φ0 this matrix,
which acts linearly on Vφ, is then defined by

Msr =
∂2

∂φs∂φr
V (φ)

∣

∣

∣

∣

φ=φ0

. (2.38)
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Now from (2.36) we have

∂2

∂φs∂φr
V (φ) (θaφ)r +

∂

∂φr
V (φ) (θa)rs = 0 , (2.39)

and since at a minimum the first derivatives of V must be zero we have

Msr(θaφ0)r = 0 . (2.40)

Thus θaφ0 is a zero frequency eigenvector for the matrixM.
To count the number of such zero eigenvectors we first note that from (2.32) if

ti is a basis in the appropriate representation for the generators of the Lie algebra
of H which is the stability group at φ0 ∈ Φ0 then

tiφ0 = 0 , i = 1, . . .dimH . (2.41)

If G is compact and semi-simple (as is the case for most symmetry groups) we
can define a positive definite group invariant scalar product on the Lie algebra of
G. In this case we may then choose a basis for the Lie algebra such that

θa = (ti, θâ) , (2.42)

with θâ orthogonal to ti, which corresponds to tr(tiθâ) = 0. With this result it is
clear from (2.40) and (2.41) that there are dimG − dimH linearly independent
eigenvectors θâφ0 with zero eigenvalues for the matrixM (if fâθâφ0 = 0 for some
linear combination fâθâ then this satisfies (2.41) and so should belong to the Lie
algebra of H which is clearly impossible with the unique decomposition defined
by (2.42)). If we apply this counting to the example given with G = O(n), H =
O(n− 1) then

dimO(n)− dimO(n− 1) = 1
2
n(n− 1)− 1

2
(n− 1)(n− 2) = n− 1 , (2.43)

which is the correct number of Goldstone modes in this case. The group H is the
manifest unbroken symmetry group of the theory after spontaneous symmetry
breakdown. As an illustration we demonstrate that the eigenvectors ofM with
non zero eigenvalues may be classified in terms of the representations of H . To
show this we apply a further derivative to (2.39) and then set φ = φ0 to give,

Msr(θa)rt +Mtr(θa)rs +
∂3

∂φt∂φs∂φr
V (φ)

∣

∣

∣

∣

φ=φ0

(θaφ0)r = 0 , (2.44)

and then take θa → ti using (2.41) and the antisymmetry of ti to give

[ti,M] = 0 . (2.45)

The vector space Vφ may be decomposed into orthogonal irreducible subspaces
under the action of the group H and in such a basis the matrixM takes a block
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diagonal form, each irreducible subspace giving eigenvectors ofM with the same
eigenvalue.

In quantum field theory there are similar features with the spontaneous sym-
metry breakdown of a continuous symmetry as for a discrete symmetry. If we
introduce coordinates ξ for G/H (any group element g ∈ G is specified by g(u, ξ)
where g(u, ξ)h = g(u′, ξ) for any h ∈ H) then the vacuum state can be la-
belled |0ξ〉 and there is a explicit symmetry under which the vacuum is invariant
U(h)|0ξ〉 = |0ξ〉 for h ∈ Hξ, the stability group at the point ξ. Application of
field operators to the vacuum |0ξ〉 defines a Hilbert space Hξ. All Hξ give equiv-
alent quantum field theories. For a continuous symmetry group the essential new
feature when it undergoes spontaneous symmetry breakdown is the appearance
of dimG− dimH Goldstone bosons, exactly massless spinless particles if G was
originally an exact symmetry.

1.3 Proof of the Goldstone Theorem in Quantum Field

Theory

To demonstrate the existence of Goldstone bosons for spontaneous symmetry
breakdown of a continuous symmetry it is possible to extend the previous discus-
sion directly to the effective potential Veff(φ) which is a quantum generalisation of
the classical potential and whose minima determine the vacuum state. However
an alternative proof makes the required assumptions more manifest. We assume
the existence of conserved currents jµa, a = 1, . . .dimG, whose charges induce a
representation of the Lie algebra of G on a set of scalar fields φ

∫

d3x [j0a(x), φ(0)] = −i θaφ(0) . (2.46)

The requirement of spontaneous symmetry breakdown is made by assuming

〈0|φ(0)|0〉 = φ0 , (2.47)

is non zero. To prove the theorem it is necessary to obtain a general expression
for 〈0|[jµa(x), φ(0)]|0〉 so we first define

(2π)3
∑

n

δ4(k − pn)〈0|jµa(0)|n〉〈n|φ(0)|0〉 = ikµθ(k0)ρa(k
2) ,

(2π)3
∑

n

δ4(k − pn)〈0|φ(0)|n〉〈n|jµa(0)|0〉 = −ikµθ(k0)ρ̃a(k2) , (2.48)

where the form of the right hand side is dictated by Lorentz invariance, θ(x) is
the step function, θ(x) = 1, 0 for x ≷ 0, and ρa(σ), ρ̃a(σ) are non zero only for
σ ≥ 0. From these definitions we may obtain, using jµa(x) = eiP ·xjµa(0)e

−iP ·x

with P µ the 4-momentum operator,

〈0|[jµa(x), φ(0)]|0〉 = −∂µ
1

(2π)3

∫

d4k e−ik·x
(

θ(k0)ρa(k
2)− θ(−k0)ρ̃a(k2)

)

.

(2.49)
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The left hand side must vanish if x2 < 0 and from the result

∆(x; σ) ≡ − i

(2π)3

∫

d4k e−ik·xǫ(k0)δ(k2 − σ) = 0 if x2 < 0 , (2.50)

for ǫ(x) = ±1 if x ≷ 0, we must require ρa = ρ̃a which then gives

〈0|[jµa(x), φ(0)]|0〉 = −i∂µ
∫

dσ∆(x; σ) ρa(σ) . (2.51)

Using now
(∂2 + σ)∆(x; σ) = 0 , (2.52)

it is easy to see that

∂µj
µ
a(x) = 0 ⇒ σρa(σ) = 0 , (2.53)

or
ρa(σ) = Naδ(σ) . (2.54)

For a non zero vacuum expectation value in (2.47) Na must be non zero since
given the definition of ∆(x; σ) in (2.50),

∫

d3x∆(x; 0) = −x0 , (2.55)

and therefore (2.46) implies
Na = −θaφ0 . (2.56)

For Na non zero then (2.54) implies that there must be a contribution from zero
mass states in the sum over intermediate states in (2.48). These are identified
with the Goldstone bosons. With spin 0 massless particle states |B, p〉 then we
define

〈0|jµa(0)|B, p〉 = iFa
Bpµ , 〈B, p|φ(0)|0〉 = ZB , (2.57)

with ZB a vector belonging to the space defined by the fields φ. Since

∫

d3p

2|p| δ
4(k − p)

∣

∣

∣

p0=|p|
= θ(k0)δ(k2) , (2.58)

we therefore find from the summation over these massless particle states in (2.48)
and (2.54)

Na =
∑

B

Fa
BZB . (2.59)

If the group G is spontaneously broken to a group H , defined by generators such
that tiφ0 = 0, then there must be dimG − dimH linearly independent Na from
(2.56) which implies in turn that in (2.59) the matrix Fa

B must have rank at least
dimG− dimH and hence that there must be this number of massless Goldstone
bosons. From (2.56) clearly Ni = 0 which is in accord with the result that the
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charges formed from the unbroken symmetry currents annihilate the vacuum,
∫

d3x j0i(x)|0〉 = 0.
We should note that this theorem depends crucially on assuming manifest

Lorentz invariance and also that the space of states has positive definite norm
and for this reason fails in gauge theories when quantisation in general violates
one or other of these assumptions. The theorem about the necessary existence
of massless Goldstone bosons also breaks down for more technical reasons in two
space-time dimensions.

2 Higgs Mechanism

In a gauge field theory spontaneous symmetry breakdown can lead to very dif-
ferent effects, essentially it provides a method of giving gauge fields a mass while
maintaining gauge invariance. Although this effect was essentially first discovered
in the theory of superconductivity and then generalised to relativistic theories by
several different authors it is usually called the Higgs effect or Higgs mechanism.
The essential features can be understood at the classical level although the jus-
tification for the physical relevance of the Higgs mechanism is in the context of
quantum field theory. The exact gauge invariance is crucial in obtaining quantum
field theories describing massive vector particles that can be renormaliseable and
also have a positive norm Hilbert space of physical states. We first consider a
simple example based on a U(1) gauge theory and then analyse the general case
for a relativistic non abelian gauge theory.

2.1 Higgs Mechanism in an Abelian Gauge Theory

The most elementary relativistic gauge field theory is the Maxwell theory of
electromagnetism expressed in terms of the 4-vector gauge field Aµ. Here we
consider its coupling to a complex scalar field φ with the Lagrangian density,

L = −1
4
F µνFµν + (Dµφ)∗Dµφ− V (φ∗φ) , (2.60)

where
Fµν = ∂µAν − ∂νAµ , Dµφ = ∂µφ− ieAµφ . (2.61)

This theory is invariant under local U(1) gauge transformations where

Aµ → Aµ +
1

e
∂µλ , φ→ eiλφ , (2.62)

for arbitrary λ(x). The covariant derivative is so constructed so that under
(2.62) Dµφ → eiλDµφ so that gauge invariance of (2.60) is trivially evident. In
any gauge theory the invariance under gauge transformations implies that there
is a redundancy in the initial Lagrangian, the physical dynamical variables must
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be defined modulo gauge transformations whose time evolution is unconstrained.
In some cases it is possible to reformulate the theory explicitly in terms of gauge
invariant variables but more generally it is necessary to impose some additional
gauge fixing conditions which remove the gauge freedom but it is then necessary
to carefully identify the physical results in a fashion which is independent of the
gauge fixing procedure.

For the theory described by the Lagrangian (2.60) there are two phases with
very different physics for which the natural physical variables are completely
different.

1. The minimum of V (φ∗φ) occurs at φ∗φ = 0, for instance

V (φ∗φ) = m2φ∗φ+ 1
2
g(φ∗φ)2 , m2, g > 0 . (2.63)

In this case in the classical theory in the ground state φ = 0 and in the quan-
tum theory we expect a unique vacuum state |0〉. The gauge field couples to
a conserved current jµ whose corresponding charge Q =

∫

d3x j0 is conserved
and generates a U(1) symmetry with Q|0〉 = 0. In a perturbative expansion the
theory describes spinless charged particles, with to lowest order a mass m~ and
charges ±e~, interacting with massless photons. The physical degrees of freedom
are then 2 for the field Aµ, corresponding to the two photon polarisation states
after removal of gauge degrees of freedom, and 2 for the field φ, corresponding to
the two charge states.

2. The minimum of V (φ∗φ) occurs away from the origin at φ∗φ = 1
2
v2, for instance

we might take
V (φ∗φ) = 1

2
g(φ∗φ− 1

2
v2)2 . (2.64)

In this case the U(1) gauge symmetry is broken by the ground state. To derive
the physical consequences in this situation it is convenient to rewrite the fields if
φ 6= 0 in the form

Aµ = A′
µ +

1

e
∂µθ , φ =

1√
2
(v + f)eiθ , (2.65)

with f, θ real. Under the action of gauge transformations in (2.62) it is easy to
see that

θ → θ + λ , (2.66)

while A′
µ, f are gauge invariant. Using

Dµφ =
1√
2
eiθ
(

∂µf − ie A′
µ(v + f)

)

, (2.67)

we may rewrite the Lagrangian in (2.60) in the form

L = −1
4
F µνFµν +

1
2
e2(v + f)2A′µA′

µ +
1
2
∂µf ∂µf − 1

8
g(2vf + f 2)2 . (2.68)

30



For small fluctuations around the ground state given by f, A′
µ = 0 we may restrict

this to just the quadratic terms giving

Lquadratic = −1
4
F µνFµν +

1
2
e2v2A′µA′

µ +
1
2
∂µf ∂µf − 1

2
gv2f 2 , (2.69)

which results in the linearised equations of motion,

∂µFµν + e2v2A′
ν = 0 ⇒

{

∂νA′
ν = 0

(∂2 + e2v2)A′
ν = 0

, (∂2 + gv2)f = 0 . (2.70)

Thus A′
µ represents a massive vector field describing spin 1 particles with mass

mv, mv
2 = e2v2 at lowest order, which has therefore 3 degrees of freedom, while

the field f describes spinless particles of mass mf , mf
2 = gv2. Unlike the case of

spontaneous symmetry breakdown of a non gauged continuous symmetry there
are no massless modes, in a sense the photon absorbs the Goldstone boson so as
to ensure it has the right degrees of freedom to give a massive spin 1 particle. The
Lagrangian in (2.68) has two basic couplings e, g which determine its interaction
terms, their particular form plays a crucial role in ensuring renormaliseability
of the perturbative expansion starting from the free field theory described by
(2.69). There is of course no longer any conserved charge whose eigenvalues label
the states.

In the example described above it was possible to rewrite the theory just in
terms of gauge invariant variables, so that θ disappeared from the Lagrangian in
(2.68). By a suitable gauge transformation as in (2.66) we could transform θ to
zero. Alternatively we could impose a gauge condition on the fields. Equivalent
results to the above may be obtained by applying the gauge condition,

φ = φ∗ , (2.71)

which makes φ real and hence θ = 0.

2.2 Higgs Mechanism in Non Abelian Gauge Theories

A gauge theory Lagrangian may be defined for any Lie group G. The Lie algebra
LG for G forms a vector space on which can be defined a Lie bracket [ , ] which
maps LG × LG → LG. Assuming a basis Ta, a = 1, . . .dimG, this has the
properties

[Ta, Tb] = −[Tb, Ta] = cabc Tc , (2.72)

and also we require the Jacobi identity

[[Ta, Tb], Tc] + [[Tb, Tc], Ta] + [[Tc, Ta], Tb] = 0 . (2.73)

This can also be written in terms of the structure constants cabc as

cabd cdce + cbcd cdae + ccad cdbe = 0 , (2.74)
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or equivalently in terms of the matrices,

(T ad
a)bc = cacb , (2.75)

then (2.74) becomes
[T ad

a, T
ad
b] = cabc T

ad
c , (2.76)

where [ , ] is here the standard matrix commutator so that the identity (2.73)
is automatic. The matrices T ad define the adjoint representation of the Lie al-
gebra for which the representation space is the Lie algebra itself and so has
dimension dimG (for a general element of the Lie algebra X = XaTa then
[Ta, X ] = (T ad

aX)bTb).
The gauge field Aµa belongs to the adjoint representation space since the

corresponding infinitesimal gauge transformations are given by

δAµa =
1

g
(Dµλ)a , (Dµλ)a = ∂µλa + g cbcaAµb λc , (2.77)

for arbitrary λa(x) and for a coupling g. In (2.77) Dµ = ∂µ + gAµaT
ad
a is the

covariant derivative for the adjoint representation. The associated field strength
is defined by

Fµνa = ∂µAνa − ∂νAµa + g cbcaAµbAνc . (2.78)

Under a gauge transformation as in (2.77) we have

δFµνa = cbca Fµνb λc = −λb(T ad
bFµν)a , (2.79)

which depends crucially on the Jacobi identity (2.74). Using (2.76) we may easily
verify that acting on the gauge fields

[δ1, δ2] = δ3 , λ3a = cabcλ1bλ2c . (2.80)

If we now assume that the structure constants cabc are completely antisymmetric,
which can always be achieved if the group G is compact and semi-simple, then
we can simply define a group invariant scalar product by X.Y ≡ XaYa since
X.(T ad

aY ) = −(T ad
aX).Y . Then the usual gauge field Lagrangian extends to the

non abelian case by taking,

Lgauge = −1
4
F µν .Fµν . (2.81)

It is also straightforward to extend this gauge invariant Lagrangian to include
scalar fields belonging to a vector space Vφ on which a representation of G is
defined, with generators θa, [θa, θb] = cabcθc. Assuming a group invariant scalar
product on Vφ, satisfying (2.37), the Lagrangian for the scalar field in (2.25) may
be extended to be invariant under local gauge transformations if

Lφ = 1
2
(Dµφ)·Dµφ− V (φ) , (2.82)
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since the covariant derivative,

Dµφ = ∂µφ+ g Aµaθaφ , (2.83)

satisfies
δDµφ = −λaθaDµφ if δφ = −λaθaφ , (2.84)

assuming the gauge field transforms as in (2.77). For gauge invariance of course
the potential V must also satisfy (2.30) or infinitesimally (2.36) which can be
equivalently be written as

V ′(φ)·(θaφ) = 0 . (2.85)

In order to discuss the Higgs effect in this theory we now assume that the po-
tential determines a ground state corresponding to spontaneous symmetry break-
down of the group G, i.e. the minimum of the potential occurs for non zero
φ0 ∈ Φ0 as in the discussion of spontaneous symmetry breakdown for continuous
symmetries. Unlike the previous treatment however local gauge transformations
do not represent physical degrees of freedom and to obtain a well defined dy-
namics we impose gauge conditions. With the gauge group G reduced at any
point on Φ0 to invariance under a subgroup H it is often convenient, although
not necessary, first to consider dimG− dimH gauge conditions which maintain
local gauge invariance for H and then treat the resulting gauge field theory in
the same fashion as any other conventional gauge theory. There is no unique nec-
essary gauge fixing condition but a convenient choice which makes the physical
degrees of freedom explicit is the so called unitarity gauge which just restricts
the scalar fields φ,

(θaφ0)·φ = 0 . (2.86)

Since, for ti the generators of H ,

tiφ0 = 0 , (2.87)

we may restrict (2.86) to just (θâφ0)·φ = 0. Any φ can be arranged to satisfy
(2.86) by applying a suitable gauge transformation φ→ gφ. This does not impose
any restriction onH gauge transformations, infinitesimally when δφ = −λitiφ this
is evident from

(θaφ0)·(tiφ) = −(tiθaφ0)·φ = −([ti, θa]φ0)·φ = −ciab(θbφ0)·φ = 0 , (2.88)

using (2.87).
With this gauge condition it is convenient to expand

φ = φ0 + f , (θâφ0)·f = 0 , (2.89)

and to use as before in (2.42) the natural decomposition of the generators, and
hence also for the gauge fields, into those belonging to the Lie algebra of H and
those which are orthogonal,

θa = (ti, θâ) , Aµa = (Aµi, Âµâ) . (2.90)
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With this decomposition and (2.89) the covariant derivative defined in (2.83)
reduces to

Dµφ = Dµf + g Âµâθâ(φ0 + f) , Dµf = ∂µf + gAµitif , (2.91)

where Dµf is the H covariant derivative and Aµ the corresponding gauge field.
From (2.86) the gauge condition becomes

(θâφ0)·f = 0 , (2.92)

which implies by virtue of (2.88)

(θâφ0)·Dh
µf = 0 , (2.93)

and so the Lagrangian in (2.82) is now

Lφ = 1
2
Dµf ·Dµf + 1

2
g2 ÂµâÂµb̂ (θâ(φ0 + f))·(θb̂(φ0 + f))

+ g Âµâ (θâf)·Dµf − V (φ0 + f) . (2.94)

The structure constants for the Lie algebra of G defined by (2.72) can also be
decomposed in this basis as

cabc =







cijk
cib̂ĉ
câb̂ĉ

, (2.95)

with cijk the structure constants for the Lie algebra of the subgroup H , so that
[ti, tj ] = cijktk, and they satisfy the appropriate version of the Jacobi identity in
(2.74). We may now also correspondingly decompose the field strength given by
(2.78) as

Fµνa = (Fµνi + g cib̂ĉ Âµb̂Âνĉ, F̂µνâ) , (2.96)

where

Fµνi = ∂µAνi − ∂νAµi + g cijkAµjAνk ,
F̂µνâ = DµÂνâ −DνÂµâ + g câb̂ĉÂµb̂Âνĉ , (2.97)

with
DµÂνâ = ∂µÂνâ + gAµi(T̂i)âb̂Âνb̂ , (T̂i)âb̂ = −ciâb̂ , (2.98)

the covariant derivative acting on Âν since T̂i are the appropriate generators of
the Lie algebra of H , [T̂i, T̂j] = cijkT̂k by virtue of (2.74) and (2.95). The gauge
field Lagrangian in (2.81) then becomes

Lgauge = −1
4
Fµν .Fµν − 1

4
F̂ µν .F̂µν

− 1
2
g ciâb̂ Â

µ
âÂ

ν
b̂Fµνi − 1

4
g2 ciâb̂ciĉd̂ Â

µ
âÂ

ν
b̂ÂµĉÂνd̂ . (2.99)
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Although the complete theory is described by L = Lgauge+Lφ the physical particle
states are given just by the quadratic terms in the expansion,

Lquadratic = −1
4
Fµν .Fµν − 1

4
(DµÂν −DνÂµ).(DµÂν −DνÂµ)

+ 1
2
Dµf ·Dµf − 1

2
f ·(Mf) + 1

2
M̂âb̂Â

µ
âÂµb̂ , (2.100)

with the matrixM defined as in (2.38) and

M̂âb̂ = g2(θâφ0)·(θb̂φ0) . (2.101)

The matrix M̂ is positive definite since, by (2.101), it is clearly positive and
any eigenvector with zero eigenvalue would have to satisfy fâθâφ0 = 0 which is
impossible since it would then imply fâθâ was a generator of H . The result (2.99)
or (2.100) is expressed in a manifestly gauge invariant form for the gauge group
H , with infinitesimal gauge transformations given by

δAµi =
1

g
(Dµλ)i , δÂµâ = −λi(T̂iÂµ)â , δf = −λitif . (2.102)

The matrices M and M̂ in (2.100) determine the masses of the physical scalar
fields f and vector fields Âµ, apart from theH gauge fields Ahµ which are massless.
By virtue of (2.92) f is orthogonal to θâφ0 which are the eigenvectors ofM with
zero eigenvalue so there are no necessary massless Goldstone bosons in this case.
For each eigenvalue the eigenvectors ofM and M̂ form representation spaces for
H . ForM this follows by virtue of (2.45) and for M̂

[T̂i,M̂]âb̂ = −g2([ti, θâ]φ0)·(θb̂φ0)− g2(θâφ0)·([ti, θb̂]φ0)

= −g2(tiθâφ0)·(θb̂φ0)− g2(θâφ0)·(tiθb̂φ0) = 0 , (2.103)

using the definition of T̂i in (2.98), (2.87) and the invariance of the scalar product
as in (2.37). Since no linear combination of θâ annihilates φ0 the matrix M̂ is
positive definite. To obtain fields of definite mass we may introduce and orthog-
onal transformation Âµâ = R̂âb̂Â

′
µb̂ so that R̂TM̂R̂ is diagonal, and similarly for

the scalar fields f .
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Part III

Weak Decay Processes

1 Weak Decays

The earliest manifestation of weak interactions to be identified was the β-decay of
radioactive atoms which were shown to emit electrons with a continuous spectrum
of energies. The basic process is the decay inside a nucleus of a neutron to a
proton, electron and a neutrino (actually anti-neutrino)

n→ p+ e− + νe .

Since the neutron (939.565 MeV) by itself is heavier by 1.293 MeV than the
proton (938.272 MeV) and the mass of the electron is only 0.511 MeV this decay
can also occur for free neutrons. In the context of a nucleus the binding energies
of the initial and final multi-particle systems can permit the reverse process

p→ n+ e+ + νe

to occur. It was in order to ensure conservation of energy and angular momentum
in β-decay that led Pauli to propose the effectively massless spin-1

2
neutrino as

an essential part of the weak β-decay process.
In fact the neutrino that occurs in the above β-decay processes is specifically

associated with the electron which is why we have given it the suffix e. Subse-
quently (in cosmic ray studies) the muon (105.66 MeV) was identified. This is a
particle like the electron that participates only in weak and electromagnetic in-
teractions. It is entirely similar to the electron except for its much greater mass.
It was later confirmed in neutrino scattering experiments that there is a distinct
neutrino νµ associated with the muon. The muon and the electron together with
their associated neutrinos were the first leptons to be identified. They were joined
by a much heavier third lepton, the τ (1777 MeV) and its associated neutrino ντ .
At the present moment the three neutrinos are thought either to be massless or
have very low masses. The upper bound on the mass of the νe is about 10 eV.
A full discussion of neutrino masses is complicated by the possibility of neutrino
mixing. It appears that there are only these three generations of leptons, at least
associated with relatively light neutrinos.

1.1 Massless Dirac Field

The experimental existence of virtually massless spin-1
2
neutrinos, which interact

solely through weak interactions, is a crucial fact in determining the detailed
structure of the weak interaction. In the absence of mass neutrinos should be
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described by a massless Dirac field. Such a field satisfies the massless Dirac
equation:

γ.∂ψ(x) = 0 . (3.1)

This has the important property that, because γµγ5 = −γ5γµ, γ5ψ(x) also satisfies
the same equation,

γ.∂γ5ψ(x) = 0 . (3.2)

Since γ5
2 = 1 it follows that the fields

ψL(x) =
1
2
(1− γ5)ψ(x) and ψR(x) =

1
2
(1 + γ5)ψ(x) (3.3)

do so as well. These fields are eigenvectors of γ5 with eigenvalues ∓1 and describe
particles of definite helicity. To show this we use the result that the angular
momentum operator acting on Dirac wave functions ψ(x) is J = −ix × ∇ + S

where the spin Si = i1
2
ǫijkγ

jγk. Using γ5 = iγ0γ1γ2γ3 it is straightforward to see
that γ5S = 1

2
γ0γ. We have therefore for a Dirac spinor of momentum p

γ.pu(p, λ) = 0 ⇒ (1− 2S.p̂γ5)u(p, λ) = 0 , (3.4)

where we have used p̂ = p/E (|p| = E for massless particles). The component of
the spin of a particle along the direction of motion, measured by S.p̂, is referred
to as the helicity. Hence for the projections in eq.(3.3)

(1 + 2S.p̂)uL(p, λ) = 0 , (1− 2S.p̂)uR(p, λ) = 0 , (3.5)

so that these describe left handed and right handed particles, with negative and
positive helicity ∓1

2
, respectively. The Dirac quantum field ψL(x) annihilates

massless particles of negative helicity.
Charge conjugation applied to the fields defined in eq.(3.3), which represent

definite helicity, yields ψL,R
C(x) = CψL,R(x)

t. However since γ5
† = γ5

ψL
C(x) = C 1

2
(1 + γ5

t)ψ(x)t

= 1
2
(1 + γ5)ψ

C(x) , (3.6)

using Cγ5
tC−1 = γ5. It follows that the anti-neutrino corresponding to a left

handed neutrino of negative helicity has positive helicity and vice versa.

1.2 Leptonic Processes

The most striking experimental discovery concerning weak interaction processes
is that they are not invariant under parity. The sign that parity is not conserved
is the appearance in experimental results of non-vanishing expectation values
for pseudo-scalar quantities such as the projection of the electron momentum
along the direction of the nuclear spin in β-decay. It turns out that the parity
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breakdown is in a certain sense “maximal”. This can be demonstrated most
directly by the fact that the neutrinos that participate in weak interactions have
only negative helicity, that is they are purely left-handed. Correspondingly the
anti-neutrinos are purely right-handed.

After much detailed analysis of experimental results it was concluded that the
effective interaction Lagrangian controlling (low energy) leptonic weak interac-
tions has the following form:

LW (x) = −GF√
2
Jα(x)†Jα(x) , (3.7)

where GF is the weak coupling constant and

Jα(x) = νe(x)γα(1−γ5)e(x)+νµ(x)γα(1−γ5)µ(x)+ντ (x)γα(1−γ5)τ(x) . (3.8)

The
√
2 in eq.(3.7) is conventional. The operator Jα(x) is referred to as the

weak current and changes the electric charge by ∆Q = 1 while Jα(x)† gives
∆Q = −1. The Lagrangian LW (x) in eq.(3.7) is described as a current-current
interaction. The current Jα(x) can be decomposed into a vector part under parity
transformations that is denoted by Vα(x)

Vα(x) = νe(x)γαe(x) + . . . , (3.9)

and an axial vector part Aα(x)

Aα(x) = νe(x)γαγ5e(x) + . . . , (3.10)

so that
Jα(x) = Vα(x)− Aα(x) . (3.11)

Since only the combination V − A enters in LW (x), which has the consequence
that as indicated above the neutrino field enters only in its left-handed form, the
theory is referred to as V −A theory. Under parity transformation V −A→ V +A
which again is the justification for saying that weak interactions violate parity.
The V,A currents however transform oppositely under charge conjugation so that
LW in (3.7) preserves CP invariance and hence also, by the PCT theorem, time
reversal invariance.

Such an interaction with the leptonic current in eq.(3.8) gives rise to the decay
processes

µ± → e± + νe(νe) + νµ(νµ) (3.12)

and similar decays for the τ -lepton as well as neutrino electron scattering which
has also been observed.
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1.3 µ-Decay Rate and the Value of GF

If LI(x) is the Lagrangian density which gives rise to a coupling between a single
particle state |p〉, of mass m, p2 = m2, which has the relativistically invariant
normalisation 〈p′|p〉 = (2π)32p0δ3(p′ − p), and states |f〉 which have a continuous
mass spectrum then we may calculate the decay rate Γ to first order in LI in terms
of the differential decay rate given by

dΓ =
1

2m
dρf |M|2 , (3.13)

where
M = 〈f |LI(0)|p〉 (3.14)

and dρf , called the phase space element, is defined, if
∑

f |f〉〈f | = 1, by

∑

f

(2π)4δ4(Pf − p)→
∑

spins

∫

momenta

dρf . (3.15)

For |f〉 composed of particles with momenta pr then, with standard normalisa-
tions,

dρf =
∏

r

d3pr
(2π)32p0r

(2π)4δ4(Pf − p) , Pf =
∑

r

pr . (3.16)

The differential decay rate for a particular decay process is then defined by sum-
ming or integrating eq.(3.13) over all unobserved final states, for the total decay
rate Γ all states are summed over. If the decaying particle has spin but experi-
mentally only decays of unpolarised particles are measured then the rate should
be averaged over the initial spin.

In order to discuss the decay of the µ as a consequence of the weak interaction
described by LW in eq.(3.7) we choose the momenta of the particles so that

µ−(p)→ e−(k) + νe(q) + νµ(q
′) (3.17)

corresponding to
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The matrix element for the process, suppressing spin labels, is

M = 〈e−(k) νe(q) νµ(q′)|LW (0)|µ−(p)〉 . (3.18)

In this process the Dirac fields can be regarded as free so that

M = −GF√
2
〈e−(k) νe(q)|eγα(1− γ5)νe|0〉〈νµ(q′)|νµγα(1− γ5)µ|µ−(p)〉

= −GF√
2
ue(k)γ

α(1− γ5)vνe(q) uνµ(q′)γα(1− γ5)uµ(p) . (3.19)

To calculate the transition rate we need to compute the sum over spins of |M|2.
These can be calculated using

∑

λ u(p, λ)u(p, λ) = γ.p + m if p2 = m2 and
∑

λ u(p, λ)Xu(p, λ) = tr(X(γ.p+m)) (for anti-particle spinors v similar formulae
hold but with m→ −m) we find

∑

spins

|M|2 = G 2
F

2
S1
αβS2αβ , (3.20)

where assuming the neutrinos have zero mass

S1
αβ = tr

{

(γ.k +me)γ
α(1− γ5)γ.qγβ(1− γ5)

}

, (3.21)

S2αβ = tr
{

(γ.p+mµ)γα(1− γ5)γ.q′γβ(1− γ5)
}

.

Using the standard rules for traces of γ-matrices (tr(γ5γ
µγνγσγρ) = 4iǫµνσρ with

ǫ0123 = 1) we find

S1
αβ = 8

{

kαqβ + kβqα − k.q gαβ + iǫαβσρkσqρ
}

,

S2αβ = 8
{

pαq
′
β + pβq

′
α − p.q′gαβ − iǫαβλτpλq′τ

}

. (3.22)

Using the fact that the four momenta are linearly dependent (p− k− q− q′ = 0)
we have

S1
αβS2αβ = 256 p.q k.q′ . (3.23)

A consistency check for the result provided by eqs.(3.20,3.23) for |M|2 can
be found by considering the case when all the 3-momenta are along the same
direction ẑ in the limit me → 0. If the initial µ is at rest and assuming the final
electron and µ-neutrino are moving parallel to ẑ then k ∝ q′, for me = 0, so that
|M|2 = 0. This is essential for angular momentum conservation since as the e, νµ
are left handed and the νe, which moves in direction −ẑ, is right handed the total
spin along ẑ is −3

2
which is incompatible with the initial µ having spin 1

2
.
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According to eq.(3.13) the decay rate Γ of the muon is given by

Γ =
1

2mµ

∫

d3k

(2π)32k0
d3q

(2π)32q0
d3q′

(2π)32q′0
(2π)4δ4(p−k−q−q′) 1

2

∑

spins

|M|2 , (3.24)

where we average over the initial muon spin states. We have then

Γ =
G 2
F

8mµπ5

∫

d3k

k0
d3q

q0
d3q′

q′0
δ4(p− k − q − q′) p.q k.q′ . (3.25)

We evaluate this phase space integral by first integrating over the neutrino mo-
menta q, q′ since these are unobserved. If we introduce a momentum Q = q+q′ =
p − k, Q2 = 2q.q′ = σ2 > 0 with also Q0 > 0 then, since for massless neutrinos
q0 = |q|, q′0 = |q′| the essential integral becomes

Iµν(Q) =
∫

d3q

|q|
d3q′

|q′| δ
4(Q− q − q′) qµq′ν . (3.26)

Lorentz invariance requires that this has the form

Iµν(Q) = aQµQν + b gµνQ
2 . (3.27)

To calculate a, b we may contract Iµν(Q) with gµν and also QµQν which then
gives the equations

a + 4b = 1
2
I , a+ b = 1

4
I , I =

∫ d3q

|q|
d3q′

|q′| δ
4(Q− q − q′) . (3.28)

The integral I can be easily evaluated in the centre of mass frame Qµ = (σ, 0)
since it is Lorentz scalar,

I =
∫

d3q

|q|2 δ(σ − 2|q|) = 4π
∫ ∞

0
dq δ(σ − 2q) = 2π , (3.29)

and hence
a = 1

3
π , b = 1

6
π . (3.30)

Using eqs.(3.27,3.30) then eq.(3.25) becomes

Γ =
G 2
F

3mµ(2π)4

∫

d3k

k0

(

2p.(p− k) k.(p− k) + p.k (p− k)2
)

. (3.31)

In the muon rest frame the integral can be reduced to one over the electron
energy E using the result that p.k = mµE and d3k/k0 → 4π|k|dE. At this point
it is also convenient to take advantage of the fact that me/mµ = 0.0048 ≪ 1 to
neglect the electron mass so that eq.(3.31) becomes

Γ =
2G 2

F mµ

3(2π)3

∫

1
2
mµ

0
dE E2(3mµ − 4E) , (3.32)
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which is easily evaluated to give the final result for the muon decay rate

Γµ−→e−+νe+νµ =
G 2
F m

5
µ

192π3
. (3.33)

The muon lifetime is measured to be τµ = 2.1970 × 10−6sec and, as this is the
inverse of the decay rate, therefore Γµ−→e−+νe+νµ = 0.2996 × 10−18GeV since
the muon has virtually only one decay channel (we have used for the conversion
1 GeV−1 = 6.582× 10−25sec). Inserting the experimental numbers in eq.(3.33),
with mµ = 105.658 MeV, we would find GF = 1.1638 × 10−5GeV−2. Including
small radiative corrections the current experimental result is

GF = 1.1664× 10−5GeV−2 . (3.34)

GF is known as the Fermi coupling constant.
On replacing mµ by mτ in eq.(3.33) we obtain the estimate for the purely

leptonic decays of the τ

Γτ−→e−+νe+ντ ∼ Γτ−→µ−+νµ+ντ = 0.405× 10−12GeV , (3.35)

since there are no new parameters to be determined. Experimentally the τ decays
18% of the time into each of these channels. The lifetime of the τ is 0.295 ×
10−12sec so the total decay rate Γτ = 2.23 × 10−12GeV and 18% of this total
decay rate is ∼ 0.402×10−12GeV which is very close to the estimate in eq.(3.35).
This is therefore strong evidence that the same weak coupling constant controls
all leptonic weak interactions.

1.4 Semi-Leptonic Processes

The β-decay of the neutron,

n→ p+ e− + νe , (3.36)

is referred to as a semi-leptonic process because it involves hadrons as well as
leptons. The initial and final state hadrons in general β-decay processes satisfy
the selection rules:

∆B = 0 , ∆S = 0 , ∆Q = ∆I3 = ±1 , |∆I| = 0, 1 , (3.37)

where B = baryon number, S = strangeness and I3 = 3-component of isospin.
These characteristics are shared by π decays such as

π± → e± + νe(νe) , π± → µ± + νµ(νµ) . (3.38)

Such processes can be accommodated in the current-current model for weak in-
teractions by the inclusion of an additional hadronic part in the weak current.
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This term also has a parity breaking V − A structure. The weak interaction
effective Lagrangian density is now extended to the form

LW (x) = −GF√
2
Jα(x)†Jα(x) , Jα(x) = Jα(x)

lept. + Jα(x)
had. , (3.39)

where Jα
lept. is as in eq.(3.8) and

Jα(x)
had. = Vα(x)

had. − Aα(x)had. . (3.40)

Only the cross terms Jαlept.†Jα
had.+h.c. in eq.(3.39) are of course relevant for semi-

leptonic processes. In eq.(3.39) we have made the fundamental assumption that
the same weak coupling governs the semi-leptonic decays as the purely leptonic
ones. However to make this a meaningful restriction we must identify more
precisely the structure of both the V and A parts of the weak hadronic current. At
this point it is useful to employ hind-sight and exploit the modern understanding
of hadronic structure that views the proton p and neutron n as made up of more
fundamental quarks:

p ∼ uud , n ∼ udd . (3.41)

The β-decay of the neutron is regarded as being induced by the β-decay of one
of the d-quarks in the neutron:

d→ u+ e− + νe . (3.42)

If we assumed that the quark contribution to the weak current is analogous to
that of the leptons we would expect

Jα(x)
had. ∼ u(x)γα(1− γ5)d(x) + . . . . (3.43)

However there are also analogous semi-leptonic decay processes in which the
strangeness of the hadrons changes by ±1. A few examples of strangeness chang-
ing semi-leptonic weak interactions are

Λ→ p+ e− + νe , Σ− → n+ e− + νe , Ω− → Ξ0 + e− + νe , (3.44)

and Kℓ3 decays such as

K± → π0 + e± + νe(νe) . (3.45)

In the quark model these particles have the structure Λ ∼ uds, Σ− ∼ dds,
Ω− ∼ sss and Ξ− ∼ dss while K− ∼ us. Such processes can therefore be thought
of as being due to the β-decay of a strange quark,

s→ u+ e− + νe . (3.46)
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The general selection rules for strangeness changing semi-leptonic decays resulting
from s→ u and also its charge conjugate s→ u are

∆B = 0 , ∆S = ∆Q = ±1 , ∆I3 = ±1
2
, |∆I| = 1

2
, (3.47)

Such processes also exhibit a V − A structure. However a key point is that, al-
lowing in the appropriate way for the kinematic differences due to the different
masses of the particles involved, the decay rates for strangeness changing pro-
cesses are much less than for the corresponding ∆S = 0 processes. It turns out
however that the difference in strength is accounted for by modifying effective
weak coupling for ∆S = ±1 decays to GF sin θC while for ∆S = 0 semi-leptonic
processes it is GF cos θC . θC is the Cabbibo angle and experimentally θC = 13◦

or sin θC = 0.22. The factor cos θC = 0.975 is also necessary to explain small
differences between GF measured in µ decay and the corresponding coupling in
β-decays of radioactive nuclei. Actually we see later that this simple picture must
be further elaborated when applied to c, b, t quarks as well. However for weak
decays of low mass hadrons it is sufficient to take instead of eq.(3.43) a current
which leads to u↔ d and u↔ s transitions

Jα(x)
had. = u(x)γα(1− γ5) (cos θC d(x) + sin θC s(x)) + . . . . (3.48)

We have then for the associated vector and axial currents

Vα(x)
had. = u(x)γα (cos θC d(x) + sin θC s(x)) + . . .

Aα(x)
had. = u(x)γαγ5 (cos θC d(x) + sin θC s(x)) + . . . .

Historically the structure of the hadronic weak current was postulated before
quarks were generally accepted in terms of its algebraic properties. If we introduce
the column vector

q =







u
d
s





 , (3.49)

then this forms a triplet of quark fields under the group SU(3). Using the 3× 3
Gell-Mann λ-matrices, which form a basis for the Lie algebra of SU(3), we may
define octets of vector and axial currents

Vαa(x) = q(x)1
2
λaγαq(x) and Aαa(x) = q(x)1

2
λaγαγ5q(x) . (3.50)

Using the canonical equal time anti-commutation relations for the quark fields
and [λa, λb] = 2ifabcλc it is easy to see that they satisfy commutation relations:

[

V 0
a (x), V

0
b (x

′)
]

t=t′
= ifabcV

0
c (x)δ

3(x− x′) ,
[

V 0
a (x), A

0
b(x

′)
]

t=t′
= ifabcA

0
c(x)δ

3(x− x′) ,
[

A0
a(x), A

0
b(x

′)
]

t=t′
= ifabcV

0
c (x)δ

3(x− x′) . (3.51)
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Since these commutation relations are inhomogeneous they fix the normalisa-
tion of the vector and axial currents independently of their detailed form in
terms of quark fields. From the vector and axial currents we may construct
charges QV a(t) =

∫

d3xV 0
a (x) and QAa(t) =

∫

d3xA0
a(x) so that from eq.(3.51)

Q±a(t) =
1
2
(QV a(t)±QAa(t)) obey the algebra of SU(3) × SU(3) which is re-

garded as an approximate symmetry of the strong interaction Hamiltonian (SU(3)×
SU(3) is supposed to be spontaneously broken to SU(3)V generated by QV a(t)).

The generators of isospin I1,2,3 = QV 1,2,3 and QV 8 =
√
3
2
Y , where Y is the hy-

percharge, so that the electric charge for u, d, s quarks is given by Q = I3 +
1
2
Y .

Without assuming their construction in terms of quark fields the hadronic weak
current given by eq.(3.48) can also be written as

Jα
had. = cos θC (Vα1+i2 −Aα1+i2) + sin θC (Vα4+i5 − Aα4+i5) + . . . , (3.52)

since

1
2
(λ1 + iλ2) =







0 1 0
0 0 0
0 0 0





 , 1
2
(λ4 + iλ5) =







0 0 1
0 0 0
0 0 0





 . (3.53)

The structure of the hadronic weak current in (3.48) or (3.52) provides strong
constraints on allowed semi-leptonic decays. In particular it forbids ∆S = −∆Q
processes, such as Σ+ → ne+νe, where Σ+ is a suu baryon and n is formed from
udd quarks, and K+ → π+π+e−νe, where K

+ and π+ are us̄ and ud̄ states. Such
decays have never reliably been seen although closely related ∆S = ∆Q decays,
such as Σ− → ne−νe and K

+ → π+π−e+νe, are well known.

1.5 Decay of Pseudoscalars to Two Leptons

Much of the evidence for the picture we are describing, especially in relation
to the vector part of the weak current, lies in the detailed analysis of baryonic
weak interactions, in particular the decays of strange baryons. Additional useful
information on the axial vector part of the weak Hamiltonian comes from the
study of the two particle semi-leptonic weak decay of pseudo-scalar mesons which
involves the axial current alone. This decay process is also technically much
simpler to describe.

We consider then πℓ2 decays

π±(p)→ e±(k) + νe(νe)(q) and π±(p)→ µ±(k) + νµ(νµ)(q) . (3.54)
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To lowest order the leptons can be taken as non interacting so the basic matrix
element for the first of these processes is

M = 〈e−(k) νe(q)|LW (0)|π−(p)〉

= −GF√
2
〈e−(k) νe(q)|eγα(1− γ5)νe|0〉 〈0|Jα(0)had.|π−(p)〉

=
GF√
2
cos θC ue(k)γ

α(1− γ5)vνe(q) 〈0|Aα1+i2(0)|π−(p)〉 , (3.55)

where we have used the form eq.(3.52) for the weak hadronic current and also,
because of parity and isospin, only Aα1+i2(0) has a non zero matrix element
between the negative intrinsic parity or pseudoscalar π− (P̂ |π−(p)〉 = −|π−(pP )〉)
and the vacuum. Since the pion is spinless this matrix element can only have the
form

〈0|Aα1+i2(0)|π−(p)〉 = i
√
2Fπpα , (3.56)

and under parity pα transforms as a vector so the negative parity of the pion must
be counterbalanced by the additional minus sign in the parity transformation of
an axial current. This equation defines the pion weak decay constant Fπ which has
the dimensions of mass (the

√
2 is again conventional but sometimes fπ =

√
2Fπ

is used instead). From eqs.(3.55) and (3.56) we find

M = iGFFπ cos θC ue(k)γ.p(1− γ5)vνe(q) . (3.57)

If we take into account the fact that p = k + q and make use of the results
ue(k)γ.k = ue(k)me and γ.qvνe(q) = 0 for massless neutrinos we find

M = GFFπme cos θC ue(k)(1− γ5)vνe(q) , (3.58)

so that the matrix element vanishes if me = 0. This is a consequence of angular
momentum conservation since in this limit the electron has negative helicity while
the anti-neutrino has positive helicity which, in their centre of mass frame, add
up to a component of spin or angular momentum −1 along the electron direction
of motion which is incompatible with an initial spinless pion.
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If we sum the modulus squared of the matrix element over the final electron,
neutrino spins we get

∑

spins

|M|2 = (GFFπme cos θC)
2 tr {(γ.k +me)(1− γ5)γ.q} , (3.59)

where
tr {(γ.k +me)(1− γ5)γ.q} = 4k.q = 2(m2

π −m2
e) . (3.60)

From the general formula eq.(3.13) the decay rate

Γ =
1

2mπ

∫

d3k

(2π)32k0
d3q

(2π)32q0
(2π)4δ4(p− k − q)

∑

spins

|M|2 , (3.61)

Therefore from eqs.(3.59,3.60)

Γ = (GFFπme cos θC)
2 1

mπ
(m2

π −m2
e)

1

(4π)2

∫

d3k

k0|k| δ(mπ − k0 − |k|) , (3.62)

where k0 = (m2
e + k2)

1
2 and we have restricted the integral to the π− rest frame.

The remaining integral may be easily evaluated giving

Γπ−→e−+νe =
mπ

4π
m2
e

(

1− m2
e

m2
π

)2

G 2
F F

2
π cos

2 θC . (3.63)

If we were to do the calculation for muons we would find

Γπ−→µ−+νµ =
mπ

4π
m2
µ

(

1− m2
µ

m2
π

)2

G 2
F F

2
π cos

2 θC . (3.64)

Although we are not in a position to predict Fπ and hence the absolute values of
these decay rates we do have a prediction from our V −A theory for the ratio of
the rates

R0 =
Γ(π− → e− + νe)

Γ(π− → µ− + νµ)
=
m2
e

m2
µ

(m2
π −m2

e)
2

(m2
π −m2

µ)
2
. (3.65)

Inserting the appropriate masses we find R0 = 1.28 × 10−4 which should be
compared with the experimental result Rexpt. = 1.23 × 10−4. This very small
number is a direct consequence of the V −A theory. While there is a reasonably
good comparison between theory and experiment it can be improved considerably
by including appropriate radiative corrections (i.e. loop corrections due to virtual
photons). If we accept this evidence then it goes to support the idea that the
same hadronic axial current matrix element controls the two decay processes and
hence supports the V −A theory. There are many other decay processes that can
be estimated with results that support the theory.
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1.6 Non-Leptonic Processes

Many of the decays of strange particles involve no leptons at all. Such processes
may in principle arise from the effective Lagrangian density in eq.(3.39), from the
term Jαhad.†Jα

had.. Also the strangeness conserving part may induce small parity
violating effects in nuclear physics which are potentially observable. However
there is no completely well defined procedure for calculating theoretically such
processes directly from LW since the hadronic currents are not simply expressed in
terms of free fields. They couple to strongly interacting particles which cannot be
treated in any perturbative fashion such as was used for leptons. In the product
of hadronic currents in LW it would be necessary to introduce a complete set
of intermediate states rather than just write it as a factorised product of single
current matrix elements which was all that was necessary in the calculation of
matrix elements for purely leptonic and semi-leptonic decays. In consequence the
theory of non-leptonic weak decays is primarily phenomenological and does not
determine much about the structure of weak interactions themselves.

2 CP Violation

A crucial non leptonic decay is that of neutral K’s since in these it is possible to
observe CP -violation. The K0 and its anti-particle K̄0 are pseudoscalar mesons
with quark structure s̄d and d̄s, having strangeness 1 and −1 respectively. Under
combined charge conjugation and parity the K0, K̄0 states (at rest with zero
3-momentum) may be chosen so as to transform as

ĈP̂ |K0〉 = |K̄0〉 , ĈP̂ |K̄0〉 = |K0〉 , (3.66)

so that we may define CP = +1 and −1 eigenstates by

|K1
0〉 = 1√

2

(

|K0〉+ |K̄0〉
)

, |K2
0〉 = 1√

2

(

|K0〉 − |K̄0〉
)

. (3.67)

Assuming that weak interactions conserve CP the possible decays of K1
0 and K2

0

are very different. K1
0 is allowed to decay to ππ whereas K2

0 is not. Under C
π+ ↔ π− while π0 → π0 and, in the centre of mass frame for two pions, P in-
terchanges the two particles and hence ĈP̂ |π+π−〉 = (−1)ℓ|π+π−〉, ĈP̂ |π0π0〉 =
(−1)ℓ|π0π0〉 where ℓ is the orbital angular momentum. In K decay we must take
ℓ = 0 as the K is spinless. In consequence, with CP conservation, K2

0 is not
allowed to decay to ππ states and only CP = −1 πππ non leptonic final states
are possible, as well as semi-leptonic decays. This is in apparent accord with ex-
periment where neutral kaons have two characteristic lifetimes, the short lifetime
KS

0s are observed to decay almost entirely according to KS
0 → π+π−, π0π0, with

a lifetime 0.89× 10−10sec, while KL
0s have a much longer lifetime 5.18× 10−8sec,

with a variety of decay modes including non leptonic 3π states. If neutral kaons
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are produced then beyond a few KS
0 lifetimes only KL

0s remain. The observation
of KL

0 → ππ decays shows, with the definitions,

η+− =
〈π+π−|HW |KL

0〉
〈π+π−|HW |KS

0〉 , η00 =
〈π0π0|HW |KL

0〉
〈π0π0|HW |KS

0〉 , (3.68)

that |η+−|, |η00| are non zero. Experimentally |η+−| ≈ |η00| ≈ 2.28× 10−3.
Since this demonstrates that CP is not conserved we cannot identify KS

0, KL
0

with the K1
0, K2

0 CP eigenstates defined in eq.(3.67). Instead

|KS
0〉 = 1

(1 + |ǫ1|2)
1
2

(

|K1
0〉+ ǫ1|K2

0〉
)

, |KL
0〉 = 1

(1 + |ǫ2|2)
1
2

(

|K2
0〉+ ǫ2|K1

0〉
)

,

(3.69)
with ǫ1, ǫ2 complex. These states are determined by diagonalisation of the 2× 2
matrix

R =M − 1
2
iΓ =

( 〈K0|H ′|K0〉 〈K0|H ′|K̄0〉
〈K̄0|H ′|K0〉 〈K̄0|H ′|K̄0〉

)

=
(

R11 R12

R21 R22

)

, (3.70)

where H ′ is the effective Hamiltonian describing processes to second order in the
weak interaction HW ,

H ′ = HW −
∑

f

HW |f〉〈f |HW

Ef −mW − iǫ
, (3.71)

and we restrict to the subspace formed by K0, K̄0 states at rest. In eq.(3.71) the
states |f〉 satsfying Ef = mW are possible states to which K0, K̄0 may decay,
these give i(H ′ −H ′†) = 2π

∑

f δ(Ef −mW )HW |f〉〈f |HW . As a consequence H ′

and hence R in (3.70) are not hermitian, which is a reflection of the decay of
K0, K̄0. The eigenvectors of the non hermitian matrix R = M − 1

2
iΓ determine

the appropriate linear combinations appearing in (3.69) with (3.67). The corre-
sponding complex eigenvalues may be written as mS − i12γS, mL − i12γL respec-

tively. Under time evolution we then have |KS
0(t)〉 = e−i(mS−i 12γS)t|KS

0(0)〉, |KL
0(t)〉 =

e−i(mL−i 12γL)t|KL
0(0)〉 and hence, since |e−i(m−i 1

2
γ)t|2 = e−γt, γS, γL are the decay

rates for the observed KS
0, KL

0 neutral kaons while mS, mL are their masses.
Even without any CP violation second order ∆S = ±2 weak interactions lead
to non diagonal contributions to the matrix and give rise to a mass difference
between the KS

0 and KL
0 states.

Assuming CPT invariance requires ΘH ′Θ−1 = H ′† with Θ = ĈP̂ T̂ . Since we
may take Θ|K0〉 = |K̄0〉, Θ|K̄0〉 = |K0〉, then from the antilinear property of Θ
we have 〈K0|H ′|K0〉 = 〈K̄0|H ′†|K̄0〉∗ = 〈K̄0|H ′|K̄0〉, or in 3.70 R11 = R22, while
〈K0|H ′|K̄0〉 = 〈K̄0|H ′†|K0〉∗ is unconstrained. Conversely, assuming T invari-
ance, T̂H ′T̂−1 = H ′† and T̂ |K0〉 = |K0〉, T̂ |K̄0〉 = |K̄0〉, leads to 〈K0|H ′|K̄0〉 =
〈K̄0|H ′|K0〉, or R12 = R21. The unnormalised eigenvector of the matrix R given
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by eq.(3.70) for KS
0 is of the form

(

1 + ǫ1
1− ǫ1

)

and for KL
0,
(

1 + ǫ2
−1 + ǫ2

)

. Assuming

CPT so that R11 = R22 leads to

ǫ1 = ǫ2 =

√
R12 −

√
R21√

R12 +
√
R21

. (3.72)

Conversely T invariance alone and hence R12 = R21 requires ǫ1 = −ǫ2. Ex-
perimentally these quantities may be measured and, within errors, CPT is con-
served. If the only source of CP violation is through the mixing in eq.(3.69) then
η+− = η00 = ǫ2. Experimentally |η+−/η00|2−1 ≈ 2×10−2 which is small but non
zero.

3 Intermediate Vector Bosons

The effective Lagrangian in (3.39) summarises a very large amount of experimen-
tal information concerning low energy weak interaction processes. Nevertheless it
is theoretically unsatisfactory. Treated to first order weak processes rise rapidly
with energy and violate general bounds. Regarded as an interaction in a quantum
field theory then the perturbative expansion is unrenormaliseable and presents
severe difficulties, essentially because the product of two currents has dimension
6. An amelioration of these problems is obtained if we replace the current-current
interaction with an interaction between the weak current and an elementary com-
plex vector field Wα,

LI = gW
(

JαWα + Jα†Wα
†
)

. (3.73)

The free field Lagrangian density for Wα is taken to be

L0 = −1
2
F αβ†Fαβ +m2

WW
α†Wα , Fαβ = ∂αWβ − ∂βWα , (3.74)

which is an extension of the Lagrangian density for the electromagnetic field to
include a mass term. From this form it is easy to derive the classical equation of
motion

∂αFαβ +m2
WWβ = 0 , (3.75)

which in turn requires

(∂2 +m2
W )Wβ = 0 , ∂αWα = 0 , (3.76)

so that Wα is a free field of mass mW with zero divergence. The field may be
quantised by decomposing it into plane wave modes

Wα(x) =
∑

p,λ

(

a(p, λ)ǫα(p, λ)e
−ip.x + b(p, λ)†ǫα(p, λ)

∗eip.x
)

, (3.77)
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where the summation is over all 4-momenta that satisfy the mass-shell condi-
tion p2 = m2

W and the λ summation is over labels identifying the three allowed
polarization vectors that satisfy

p.ǫ(p, λ) = 0 and ǫ(p, λ)∗.ǫ(p, λ′) = −δλλ′ . (3.78)

In the rest frame when p = (mW , 0, 0, 0) then ǫα(p, λ) has the form (0, ǫ(λ))
where {ǫ(λ)} are three orthonormal 3-vectors. By contracting both sides with
the linearly independent set {p, ǫ(p, λ)} we can verify the completeness identity

∑

λ

ǫα(p, λ)ǫβ(p, λ)
∗ = −gαβ +

pαpβ
m2
W

. (3.79)

On quantisation a, b, a†, b† become annihilation and creation operators which sat-
isfy the commutation relations

[a(p, λ), a(p′, λ′)†] = δpp′δλλ′ , [b(p, λ), b(p′, λ′)†] = δpp′δλλ′ , (3.80)

where a(p, λ)†, b(p, λ)† create massive spin 1 particle states. In the usual way
from the quantised free fields we may construct the Feynman propagator

〈0|T {Wα(x)
†Wβ(0)}|0〉 = iDαβ(x)

=
1

(2π)4

∫

d4p e−ip.x
i

p2 −m2
W + iǫ

(

−gαβ +
pαpβ
m2
W

)

.(3.81)

There is some subtlety in determining the propagator for the W field since using
the mode expansion eq.(3.77) in the time ordered product in (3.81) leads to an
extra non covariant piece when α = β = 0. However a more careful treatment of
the quantisation for the field theory arising from (3.74) shows that it is consistent
to just take the form given by iDαβ(x) in eq.(3.81) for the W propagator. For
application to weak interactions the crucial result is that as mW → ∞, or more
physically if in any process the components of the momenta for virtualW ’s satisfy
|pα| ≪ mW , then

Dαβ(x) ∼
1

m2
W

gαβ δ
4(x) . (3.82)

In the quantum field theory with the interaction in eq.(3.73) the corresponding
S operator is as usual given by

S = T
{

ei
∫

d4xLI(x)
}

, (3.83)

where the W field has the propagator in eq.(3.81). For processes in which no
massive particles described by the W field are created or destroyed then, effec-
tively by normal ordering S and dropping all terms involving the annihilation
operators a, b and also the corresponding creation operators, we find

S −→ T
{

e−ig
2
W

∫ ∫

d4x d4x′ Jα(x)†Dαβ(x−x′)Jβ(x′)
}

. (3.84)
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For low energy processes in which it is appropriate to take the limit given by
eq.(3.82) then it is easy to see that the S operator takes the form corresponding
to the weak interaction given by eq.(3.39) if

GF√
2
=

g2W
m2
W

. (3.85)

Clearly the coupling constant gW , which is defined by the interaction eq.(3.73),
is dimensionless which is necessary for this interaction to be at least potentially
renormaliseable. However this theory of interacting massive vector fields is still
not satisfactory since the large momentum behaviour of the vector propagator,
which is exhibited in (3.81), contains the pαpβ/m

2
W terms which lead to unrenor-

maliseable divergences. Such terms do not appear in quantum electrodynamics
essentially as a consequence of gauge invariance. A renormaliseable quantum field
theory describing weak interactions requires the construction of a suitable spon-
taneously broken non abelian gauge field theory. The first, and also the finally
experimentally consistent such theory, is the Weinberg-Salam model.
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Part IV

Weinberg-Salam Gauge Field

Theory

1 Electro-Weak Theory

The electro-weak gauge theory is an illustration of the theoretical unification of
physical phenomena which initially appeared very different. It brings together
the theories of QED and weak interactions. In virtually its present form the
theory was described S Weinberg in 1967 although it was also put forward by
A Salam in the following year and earlier S Glashow had discussed many of the
essential features of the final theory. In conjunction with J Iliopoulos and L
Maiani, Glashow also showed how with the introduction of the charm quark, in
addition to the already established u, d, s quarks, the theory could be successfully
extended to hadrons.

1.1 Electro-Weak Theory for Leptons

Some of the essential experimental and theoretical ingredients used in construct-
ing a unified theory of weak and electromagnetic interactions for leptons are:

a) Leptons have only electromagnetic and weak interactions.

b) QED is a gauge theory - a fact that is important for its renormalizability
which allows for calculations of higher order corrections.

c) Weak interactions - like QED - involve vector-like currents which have a
V − A structure, giving rise to parity violation, while the electromagnetic
current is pure V .

d) The current-current interaction, although very successful to first order as
a phenomenological description of low energy weak interactions, does not
allow higher order corrections to be calculated. It is not as it stands a
renormalizable field theory and at energies of order 1/

√
GF weak processes

are no longer weak and the first order predictions of the current-current
interaction must be drastically modified.

In order both to unify the forces governing weak interactions and to render the
theory potentially renormalizable it is therefore natural to postulate that there
should exist gauge bosons related to the weak currents in a manner similar to the
way that the electromagnetic field is related to the electric current. However it is
obvious that there are nomassless vector particles that are partners to the photon.
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It was shown by Higgs and others that this problem can be overcome by exploiting
the ideas of spontaneous symmetry breaking which allows for massive vector
particles in gauge theories. Using gauge theories with spontaneous symmetry
breakdown, when some scalar field gains a non zero vacuum expectation value,
also provides a mechanism for generating lepton masses when mass terms are
forbidden by the gauge symmetry.

1.2 Chiral Structure of the Dirac Spinor Field

As a preliminary to describing the gauge theory we examine the chiral structure
of the Dirac field. Such a field, for the electron say, satisfies the Dirac equation,

(iγ.∂ −me) e(x) = 0 . (4.1)

This equation is obtained from the Lagrangian

L(x) = e(x) (iγ.∂ −me) e(x) . (4.2)

Now split e(x) into left and right chiral components

e(x) = eR(x) + eL(x) , (4.3)

where
eR(x) =

1
2
(1 + γ5) e(x) and eL(x) =

1
2
(1− γ5) e(x) . (4.4)

The conjugate fields are

eR(x) = eR(x)
†γ0 = e(x)† 1

2
(1 + γ5) γ

0 = e(x)1
2
(1− γ5) , (4.5)

and similarly
eL(x) = e(x)1

2
(1 + γ5) . (4.6)

It follows that
eR(x)eR(x) = eL(x)eL(x) = 0 , (4.7)

and
eR(x)γ

αeL(x) = eL(x)γ
αeR(x) = 0 . (4.8)

The electron Lagrangian given by eq.(4.2) can then be rewritten as

L(x) = eR(x)iγ.∂eR(x)+eL(x)iγ.∂eL(x)−me [eR(x)eL(x) + eL(x)eR(x)] . (4.9)

The ‘kinetic’ part of the Lagrangian is therefore a sum of two terms involving the
right and left chiral components separately, while the mass term couples right to
left and left to right. From this point of view that the electron mass arises from
an interaction that transforms left handed, or negative helicity, electrons into
right handed, or positive helicity, electrons and vice versa. A massless neutrino
has no interaction inducing such a L − R flip so that it can therefore remain
purely lefthanded
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1.3 Weak Iso-Spin and Hypercharge

The starting point for the construction of a unified Electro-Weak gauge theory is
to identify the appropriate gauge group G and also the corresponding represen-
tations under which the fields transform. For simplicity we initially restrict the
theory solely to the electron and its associated neutrino which may be assumed
to be massless and purely left-handed. Since the weak interactions violate parity
the left handed and right handed fields are treated separately and may therefore
belong to different representations of the gauge group. For the electromagnetic
and weak interactions to be treated on a unified basis there has to be a close
connection between the neutrino and the electron. The standard method for
achieving such a relationship in quantum field theory is to combine the fields for
the related particles into a multiplet that forms a representation of the appro-
priate symmetry group. In the present case the neutrino and the left handed
electron form a doublet

L(x) =

(

νe(x)
eL(x)

)

, (4.10)

which is supposed to form a two dimensional representation of an SU(2) group
called weak iso-spin. The members of a symmetry multiplet must have the same
numbers of degrees of freedom so only the left chiral component of the electron
field is linked to the naturally left-handed neutrino field. The right chiral com-
ponent of the electron field is taken as a weak iso-singlet which can be written
as

R(x) = eR(x) . (4.11)

It is easily checked that the kinetic part of the electron-neutrino Lagrangian can
be expressed as

Lkin.(x) = L̄(x)iγ.∂L(x) + R̄(x)iγ.∂R(x) . (4.12)

Clearly Lkin.(x) is invariant under weak iso-spin transformations when

L(x)→ e
1
2
iα.τL(x) , L̄(x)→ L̄(x)e−

1
2
iα.τ , (4.13)

where τ are the usual 2× 2 Pauli matrices, and R(x) is invariant

R(x)→ R(x) , R̄(x)→ R̄(x) . (4.14)

The Lagrangian is also invariant under two independent U(1) groups, or phase
transformations, when L and R transform separately by multiplication by dif-
ferent complex numbers of modulus one. In constructing a gauge theory then
classically any global symmetry of Lkin. may be made into a local symmetry by
introducing suitable gauge fields and replacing the derivatives in eq.(4.12) by the
appropriate covariant derivative. In order to accommodate electromagnetism it
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is essential that the gauge group G should contain the local U(1)Q electromag-
netic gauge group generated by the electric charge Q. Acting on the left-handed
doublet and right-handed singlet fields defined in eq.(4.10) and eq.(4.11) it is easy
to see since the neutrino has no charge and the electron charge −1 that

QL(x) =
(

0 0
0 −1

)

L(x) , QR(x) = −R(x) . (4.15)

Acting on L clearly
Q = 1

2
τ3 − 1

2
1 , (4.16)

which implies that a U(1)Q gauge transformation generated by Q is a product
of an element belonging to a U(1) subgroup of the weak SU(2) and an element
belonging to an independent commuting U(1) group. If we denote the generators
of the weak SU(2) group in general by Ti, i = 1, 2, 3, [Ti, Tj ] = iǫijkTk and the
commuting U(1) group by Y then eq.(4.16) is generalised to

Q = T3 + Y . (4.17)

The minimal gauge group that is consistent with the requirements for an electro-
weak theory involving just e, νe may be therefore taken to be G = SU(2)T×U(1)Y
where the factor SU(2)T refers to weak iso-spin, with generators T, and the
factor U(1)Y has as its generator the weak hypercharge Y . The generators of
SU(2)T × U(1)Y then have the form T × 1, 1 × Y . A typical element g of this
group can be written

g(α, β) = exp(iα.T) exp(iβY ) . (4.18)

Acting on the T = 1
2
representation defined by L we take T → 1

2
τ while for

the T = 0 singlet representation provided by R then T → 0. The irreducible
representations of U(1)Y are one-dimensional and are determined by assigning
a particular value to Y , acting on L as in eq.(4.16) Y → −1

2
while for R from

eq.(4.15) Y → −1. In general the value of the weak hypercharge Y for an
arbitrary multiplet is dictated by eq.(4.17) where Q takes equal values for the left
and right handed chiral components of any charged field since the electromagnetic
current is purely V .

1.4 SU(2)× U(1) Covariant Derivatives

If ψ(x) is a field multiplet with weak hyper-charge Y then it transforms under a
local or space dependent SU(2)T × U(1)Y gauge transformation according to

ψ(x)→ eiα(x).T+iβ(x)Y ψ(x) , (4.19)

where T belongs to the appropriate representation. For compatibility with the
required form for weak interaction all left handed lepton and also quark fields
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belong to T = 1
2
doublet representations while the right handed fermion fields

are all singlets. The covariant derivative for ψ(x) depends on gauge fields Aµ, Bµ

and has the form

Dµψ(x) = (∂µ − igAµ(x).T− ig′Bµ(x)Y )ψ(x) , (4.20)

where the non abelian SU(2)T vector gauge fields transform as

Aµ(x).T→ eiα(x).TAµ(x).Te−iα(x).T +
1

g
eiα(x).Ti∂µe

−iα(x).T , (4.21)

while the abelian U(1)Y gauge field transforms as

Bµ(x)→ Bµ(x) +
1

g′
∂µβ(x) . (4.22)

With these transformation properties for the vector fields the covariant derivatives
transform in the same way as the multiplet itself in eq.(4.19). Thus

Dµψ(x)→ eiα(x).T+iβ(x)YDµψ(x) , (4.23)

Note that because of the direct product structure of the gauge group it is nec-
essary to introduce two coupling constants g and g′, one for each factor in the
gauge group. The existence of two coupling parameters is crucial to the structure
of electro-weak theory although it is an indication that the theory is not really
fully unified.

Using the hyper-charge assignments for the various multiplets we see that the
covariant derivatives for the lepton fields are then

DµL(x) =
(

∂µ − ig 1
2
Aµ(x).τ + ig′ 1

2
Bµ(x)

)

L(x) ,

DµR(x) = (∂µ + ig′Bµ(x))R(x) . (4.24)

We can also define the field strengths for the gauge fields themselves by

Fµν(x) = ∂µAν(x)− ∂νAµ(x)− gAµ(x)×Aν(x) , (4.25)

where under a gauge transformation there is no inhomogeneous term as in eq.(4.21)
Fµν(x).T→ eiα(x).TFµν(x).Te

−iα(x).T, and

Gµν(x) = ∂µBν(x)− ∂νBµ(x) , (4.26)

which is invariant, just as the usual Maxwellian electromagnetic field strength is
under gauge transformations.

The kinetic term for the lepton fields given by eq.(4.12) can now be extended
to the local gauge invariant form as

Llept.(x) = L̄(x)iγµDµL(x) + R̄(x)iγµDµR(x) , (4.27)
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with covariant derivatives defines as in eq.(4.24), while the gauge fields are de-
scribed by the usual generalisation of the Lagrangian for the electromagnetic
field

Lgauge(x) = −1
4
Fµν(x).Fµν(x)− 1

4
Bµν(x)Bµν(x) . (4.28)

Since the left handed and right handed lepton fields transform differently under
both SU(2)T and U(1)Y there is no possibility of adding any mass terms to
eq.(4.27) which is compatible with invariance under the gauge group.

1.5 Spontaneous Symmetry Breakdown

The gauge fields for the field theory described by the Lagrangian in eq.(4.28)
correspond to massless vector, or spin 1, particles after quantisation, at least
when treated in perturbation theory. For a theory of electro-weak interactions
the only allowed massless vector particle is the photon corresponding to the usual
Maxwell gauge field. The remaining vector fields must be given a mass. In order
to ensure that the theory is renormaliseable this must be done in a way which
preserves gauge invariance under the gauge group G = SU(2)T×U(1)Y . This can
be achieved by using the mechanism of spontaneous symmetry breaking when the
Lagrangian remains invariant under the symmetry group but the vacuum state
of the theory does not. The simplest way of achieving the required spontaneous
symmetry breakdown is to introduce an elementary scalar Higgs field φ whose
potential V (φ) is invariant under gauge transformations on φ but is such that its
minimum is obtained for non zero values of the field. In the ground state of the
field theory the Higgs field is restricted to a subset Vmin on which G acts in a
non trivial fashion. In the quantum field theory the vacuum is defined, to lowest
order in perturbation theory, by choosing a particular point φ0 belonging Vmin

and then expanding about it. In general φ0 is not invariant under the action of
group transformations belonging to G but those elements of G which leave φ0

invariant, hφ0 = φ0, define a subgroup H ⊂ G which is then the unbroken gauge
group. The gauge fields linked to the generators of the Lie algebra of H remain
massless while those corresponding to the coset G/H gain a mass. In the present
case it is necessary to preserve a residual U(1) invariance to ensure that there
remains a massless photon. This is ensured by choosing the Higgs field to be a
T = 1

2
weak iso-spin doublet which also carries weak hypercharge Y = 1

2
. Hence

φ(x) =

(

φ1(x)
φ2(x)

)

, (4.29)

when the covariant derivative is

Dµφ(x) =
(

∂µ − ig 1
2
Aµ(x).τ − ig′ 12Bµ(x)

)

φ(x) . (4.30)

A Lagrangian for φ that is invariant under the local gauge group SU(2)T × U(1)Y
is then

LHiggs(x) = (Dµφ(x))†Dµφ(x)− V (φ(x)) , (4.31)
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if the potential V (φ) has the form

V (φ) = F (φ†φ) . (4.32)

The Lagrangian defined by eqs.(4.31,4.32) is invariant under SU(2)T × U(1)Y for
any value of the weak hyper-charge of φ but choosing Y = 1

2
is crucial later to

allow for coupling of φ to the lepton fields. For spontaneous symmetry breakdown
the potential V , or F , is assumed to have a minimum at a point where φ†φ = 1

2
v2.

For renormaliseability V (φ) should be at most quartic in the field φ so, if we
choose Vmin = 0, we may take

V (φ) = 1
2
λ
(

φ†φ− 1
2
v2
)2

. (4.33)

As a particular ground state which realises the minimum of V (φ) we choose

φ0 =
1√
2

(

0
v

)

, (4.34)

where v is real and v > 0. All other solutions of the minima condition φ†φ = 1
2
v2

can be obtained from φ0 by an application of suitable transformations belonging
to the symmetry group of V , SU(2)T × U(1)Y . In the quantum field theory of
course φ0 is the vacuum expectation value of the Higgs doublet. With the choice
in eq.(4.34) it is easy to see that

(1
2
τ3 +

1
2
1)φ0 = Qφ0 = 0 , (4.35)

where the charge Q is defined in general by eq.(4.17). Thus the unbroken sub-
group under which the ground state or vacuum is invariant is U(1)Q generated
by Q. The coupling to the Higgs field, as in eq.(4.31) then gives masses to all
gauge fields other than that corresponding to the photon.

1.6 The Electro-Weak Lagrangian and the Physical De-

grees of Freedom

The physical fields after spontaneous symmetry breakdown may be identified
most easily by using a gauge transformation to ensure that the Higgs field is or-
thogonal to the massless Goldstone boson fields. These Goldstone modes can be
regarded as belonging to the coset space SU(2)T × U(1)Y /U(1)Q and are effec-
tively absorbed into the gauge fields by the gauge transformation. The resulting
form for the Higgs field is equivalent to writing in this case

φ(x) =
1√
2
(v + ρ(x))

(

0
1

)

, (4.36)
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where ρ is a real scalar field which represents the fluctuations of the Higgs field
around the ground state value. The choice in eq.(4.36) is equivalent to imposing
three gauge conditions on the Higgs field of the form

φ(x)†τφ0 − φ0
†τφ(x) = 0 , φ(x)†φ0 − φ0

†φ(x) = 0 , (4.37)

where φ0 is given by eq.(4.34). Although (4.37) contains apparently four lin-
ear conditions on φ because of eq.(4.35) one is redundant so there remains one
real degree of freedom represented by ρ in eq.(4.36). With the definition of the
covariant derivative in eq.(4.30) we then find

Dµφ =
1√
2

( −i 1
2
g(v + ρ)(Aµ1 − iAµ2)

∂µρ+ i 1
2
(v + ρ)(gAµ3 − g′Bµ)

)

=
1√
2

(

∂µρ+ i
g

2 cos θW
(v + ρ)Zµ

)

(

0
1

)

− i 1
2
g(v + ρ)Wµ

(

1
0

)

, (4.38)

where the Weinberg angle θW is defined by

tan θW =
g′

g
, cos θW =

g

(g2 + g′2)
1
2

, (4.39)

and we introduce the linear combinations

Wµ = 1√
2
(A1µ − iA2µ) ,

Zµ = cos θWA3µ − sin θWBµ . (4.40)

The Higgs Lagrangian which is given by eqs.(4.31,4.33) then becomes

LHiggs =
1
2
∂µρ∂µρ+

1
4
g2(v+ρ)2

( 1

cos2 θW
1
2
ZµZµ+W

µ†Wµ

)

− 1
8
λ(ρ2+2vρ)2 . (4.41)

The field ρ(x) represents the degrees of freedom associated with the Higgs boson
whose mass satisfies mρ

2 = λv2. Actually the corresponding Higgs particle has
not been observed experimentally. Its mass is considered to be very large lying
between 100 and 200 GeV. The most important aspect of eq.(4.41) for the con-
struction of a viable electro-weak theory is that it generates a mass term for the
vector fields Wµ, Zµ when ρ→ 0

m 2
WW

µ†Wµ +
1
2
m 2
ZZ

µZµ , (4.42)

where

m 2
W = 1

4
g2v2 , m 2

Z = 1
4
(g2 + g′2)v2 =

m 2
W

cos2 θW
. (4.43)

The orthogonal combination to Zµ in eq.(4.40) given by

Aµ = sin θWA3µ + cos θWBµ , (4.44)

60



has no mass term, i.e. there is no term of the form 1
2
AµAµ, and is the gauge

field for the unbroken U(1)Q gauge symmetry. The result in eq.(4.41) is in fact
independent of the particular weak hypercharge assignment to the Higgs field φ
although the definition of the Weinberg angle θW would have to be modified from
eq.(4.39).

Using the definitions in eqs.(4.40,4.44) we may now decompose the gauge field
Lagrangian in eq.(4.28) in terms of the physical gauge fields Wµ, Zµ, Aµ selected
by the mass terms generated by the Higgs field. It is convenient to define

FA
µν = ∂µAν − ∂νAµ , FZ

µν = ∂µZν − ∂νZµ , (4.45)

and we may write for Fµν

Fµν3 = sin θW FA
µν + cos θW FZ

µν − ig(WµWν
† −WνWµ

†) ,

FW
µν = 1√

2
(Fµν1 − iFµν2) = dµWν − dνWµ ,

dµ = ∂µ − igAµ3 = ∂µ − ieAµ − ig cos θW Zµ , (4.46)

where we define
e = g sin θW . (4.47)

We may now rewrite eq.(4.28) in the form

Lgauge = −1
2
FWµν†FW

µν − 1
4
FAµνFA

µν − 1
4
FZµνFZ

µν

+ iW µW ν†
(

e FA
µν + g cos θWF

Z
µν

)

+ 1
2
g2
(

W 2W †2 − (W.W †)2
)

. (4.48)

Since the relations given in eqs.(4.40,4.44) between the gauge fields Aµ3, Bµ and
the physical fields Aµ, Zµ, which are the natural basis for the mass terms so that
they take the form in eq.(4.42), is just an orthogonal rotation

(

A3µ

Bµ

)

=

(

cos θW sin θW
− sin θW cos θW

)(

Zµ
Aµ

)

, (4.49)

the quadratic terms in Lgauge remain diagonal. Clearly the piece −1
4
FAµνFA

µν

in Lgauge represents the usual Lagrangian for the electromagnetic field. There is
no coupling between Aµ and Zµ reflecting that the massive Z particle is neutral,
with electric charge zero, like the photon. The complex vector field Wµ is coupled
to the electromagnetic gauge field with a coupling e, defined in eq.(4.47), so that
the corresponding spin-1 particles in the quantised theory have charge ±e.

To complete the construction of the Lagrangian for the electro-weak theory
of the electron and its neutrino it remains only to consider the coupling of the
leptons to the Higgs field. If the T = 1

2
doublet φ has weak hypercharge Y = 1

2

then there is an invariant Yukawa like coupling

Llept,φ(x) = −
√
2Ge

[

L̄(x)φ(x)R(x) + R̄(x)φ(x)†L(x)
]

. (4.50)
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With the choice of gauge when the Higgs field takes the form in eq.(4.36) this
becomes

Llept,φ = −Ge(v + ρ) [eLeR + eReL] = −Ge(v + ρ) ee . (4.51)

In the ground state when ρ→ 0 the lepton Lagrangian acquires an effective mass
term so that

me = Gev . (4.52)

The mass of the electron is thus determined by the coupling of the Higgs field to
the lepton fields and by the vacuum expectation value v of the Higgs field which
sets the basic mass scale of the theory. It is important to recognise that the full
Lagrangian

L = Lgauge + Llept + Llept,φ + LHiggs , (4.53)

as given by eqs.(4.28,4.27,4.50,4.31,4.33), contains all terms allowed by renor-
maliseability and SU(2)T × U(1)Y gauge invariance so it is the most general
renormaliseable gauge invariant Lagrangian for the fields e, νe, φ with the as-
sumed representations of SU(2)T and assignments of weak hypercharge Y .

1.7 Massive Vector Bosons

Neglecting its interactions with the other fields the field Zµ has a Lagrangian

LZ = −1
4
FZµνFZ

µν +
1
2
m 2
ZZ

µZµ . (4.54)

The Lagrangian in eq.(4.54) gives rise to the equation of motion

∂µFZ
µν +m 2

ZZν = ∂2Zν − ∂ν∂.Z +m 2
ZZν = 0 . (4.55)

Taking the divergence we find at once that

m 2
Z ∂.Z = 0 . (4.56)

In turn this implies that
(∂2 +m 2

Z)Zν = 0 . (4.57)

When expressed in terms of annihilation and creation operators for states of
definite momentum the vector field becomes

Zµ(x) =
∑

p,λ

(

a(p, λ)ǫµ(p, λ)e
−ip.x + a(p, λ)†ǫµ(p, λ)

∗eip.x
)

, (4.58)

where the summation is over 4-momenta that satisfy the mass-shell condition

p2 = m 2
Z , (4.59)

and the λ summation is over labels identifying the three allowed polarization
vectors that satisfy

p.ǫ(p, λ) = 0 and ǫ(p, λ)∗.ǫ(p, λ′) = −δλλ′ . (4.60)
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If we look at the particle state in its rest frame then p = (mZ , 0, 0, 0) and ǫ(p, λ)
has the form (0, ǫ(λ)) where {ǫ(λ)} are three orthonormal 3-vectors. By con-
tracting both sides with the linearly independent set {p, ǫ(p, λ)} we can verify
the useful identity

∑

λ

ǫµ(p, λ)ǫν(p, λ)
∗ = −gµν +

pµpν
m 2
Z

. (4.61)

After quantisation the annihilation and creation operators satisfy the commuta-
tion relations

[a(p, λ), a(p′, λ′)†] = δpp′δλλ′ . (4.62)

The field Zµ(x) therefore is associated with a vector particle.
To perform perturbative calculations in which the vector particle appears on

internal lines of a Feynman graph it is necessary to determine its propagator
Dµν(x− y). This can be defined by introducing an extra coupling to an exter-
nal current jµ(x)Zµ(x) in the the Lagrangian LZ(x). The classical equations of
motion then become

∂2Zν(x)− ∂ν∂.Z(x) +m 2
ZZ

ν(x) = −jν(x) , (4.63)

with the consequence this time that

m 2
Z∂.Z(x) = ∂.j(x) , (∂2 +m 2

Z)Zµ(x) = −
(

gµν +
∂µ∂ν
m 2
Z

)

jν(x) . (4.64)

The solution is then written as

Zµ(x) =
∫

d4y Dµν(x− y)jν(y) . (4.65)

If we use Fourier transforms with Feynman boundary conditions the differential
operator is easily inverted giving find

Dµν(x−y) =
∫

d4p

(2π)4
e−ip.(x−y)D̃µν(p) , D̃µν(p) =

1

p2 −m 2
Z + iǫ

(

−gµν+
pµpν
m 2
Z

)

.

(4.66)
In Feynman diagrams the propagator for each internal line corresponding to a
virtual neutral vector boson Zµ is iDµν(x− y) or in momentum space iD̃µν(p).

The charged vector boson field Wµ(x) can be treated in the same way. The
propagator is exactly the same with the mass mZ replaced by the mass mW .

For low energy processes, as for weak decays, the mass of the vector boson
mZ or mW is very large relative to the momentum components {pµ} and it is
appropriate to make the approximation in which the momentum is neglected. In
the neutral Z boson case for example

D̃µν(p) ∼
gµν
m 2
Z

, Dµν(x− y) ∼
1

m 2
Z

gµνδ
4(x− y) . (4.67)
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1.8 Interactions between Fields

The most important interactions from the viewpoint of an experimentally suc-
cessful electro-weak theory are:

i) the charged gauge fields Wµ(x),Wµ(x)
† with the leptonic weak currents,

ii) the electromagnetic field Aµ(x) with the electric current,

iii) the massive neutral vector boson Zµ(x) current with the new neutral weak
current.

All these couplings arise from the gauge invariant extension of the kinetic part
of the leptonic Lagrangian as given in eq.(4.27),

Llept. = Lkin. + gL̄γµ 1
2
τL.Aµ − g′(12L̄γ

µL+ R̄γµR)Bµ

= Lkin. +
g

2
√
2
(JµWµ + Jµ†Wµ

†) + ejµe.m.Aµ +
g

2 cos θW
JµnZµ .(4.68)

The couplings of the charged vector mesons arise from the terms involving A1µ

and A2µ. Using the definition of Wµ in eq.(4.40) it is easy to see that

Jµ = 2L̄γµτ+L = νeγ
µ(1− γ5)e , (4.69)

using the definition of the lepton doublet L in eq.(4.10) and

τ+ = 1
2
(τ1 + iτ2) =

(

0 1
0 0

)

. (4.70)

Hence Wµ couples to the ∆Q = 1 weak current for the electron and its associated
neutrino with an effective coupling is g/2

√
2. Later this result will be used to

relate g to the weak coupling constant GF .
Using the results in eq.(4.49) for Aµ3, Bµ in terms of the electromagnetic gauge

field Aµ and the massive neutral vector field Zµ, and also the definition of e in
eq.(4.47), we may find expressions for the electromagnetic current jµe.m. and also
the neutral current Jµn. For the former it is easy to obtain

jµe.m. = L̄γµ 1
2
(τ3 − 1)L− R̄γµR = −eγµe , (4.71)

which is of course the required form for the contribution to the electromagnetic
current arising from the electron Dirac field. For the neutral current we can
similarly read off the required contributions from the electron, neutrino fields,
using eq.(4.39) to eliminate g′,

Jµn = L̄γµ(cos2 θW τ3 + sin2 θW1)L− 2 sin2 θW R̄γ
µR

= 1
2

[

νeγ
µ(1− γ5)νe − eγµ(1− γ5 − 4 sin2 θW )e

]

. (4.72)
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The neutral current allows the Z to decay into νeνe or e+e−. Of course the
weak neutral current receives similar contributions from muons, τ ’s and their
associated neutrinos which also provide decay channels for the Z.

The Weinberg Salam electro-weak theory predicts the existence of a neutral
vector boson with a mass mZ as well as a charged vector boson with mass mW .
Well after the theory was well established by relatively low energy experiments
these particles were discovered experimentally and the latest values for their
masses are mW = 80.4 ± 0.2 GeV and mZ = 91.187 ± 0.007 GeV. The ratio
mW/mZ = 0.8798± 0.0028 which yields from eq.(4.43) an estimate of the Wein-
berg angle sin2 θW = 0.232, although at this level of accuracy it is necessary to
consider higher order corrections and specify precisely the exact definition of θW .

To analyse the theory at low energies we may expand the S operator for the
interaction of the W,Z fields with the charged, neutral currents to second order
when there is a contribution due to virtual W,Z’s with propagators iDW

µν , iD
Z
µν

respectively,

S = T
{

exp i
∫

d4x
( g

2
√
2
(JµWµ + Jµ†Wµ

†) +
g

2 cos θW
JµnZµ

)

}

= T
{

1− i1
8
g2
∫

d4xd4x′
(

Jµ(x)†DW
µν(x− x′)Jν(x′)

+
1

cos2 θW
Jµn(x)D

Z
µν(x− x′)Jνn(x′)

)

+ . . .
}

, (4.73)

neglecting terms which involve operators which create or destroy W,Z particles.
For low energy processes the momenta of the virtual W,Z is small compared
with their masses mW , mZ and so it is valid to use the approximate form given
in eq.(4.67) and correspondingly for DW

µν . Hence we find a low energy effective
current-current interaction given by

LW eff = − g2

8m 2
W

(

Jµ†Jµ + ρ JµnJnµ
)

, ρ =
m 2
W

cos2 θWm
2
Z

. (4.74)

From the expressions for the W,Z masses and the Weinberg angle in eq.(4.43)

ρ = 1 . (4.75)

This result is a direct consequence of the choice of the SU(2)T and weak hyper-
charge quantum numbers of the Higgs field φ which gives rise to spontaneous
symmetry breakdown. Comparing eq.(4.74) with the phemenonological form for
the weak interaction deduced from an analysis of weak decays we find

GF√
2
=

g2

8m 2
W

. (4.76)

From the formula eq.(4.43) for mW the essential energy scale v set by the vacuum
expectation value of the Higgs field in eq.(4.34) can be determined

v =
(√

2GF

)− 1
2 ≈ 250 GeV. (4.77)

65



The electro-weak theory is defined by three parameters, the energy scale v and
the two couplings g, g′ or at low energies the electric charge e, the Fermi constant
GF and the Weinberg angle θW . To determine the latter requires experimental
investigation of neutral current processes. With the extension to quarks these
were found to be in accord with the predictions of the Weinberg Salam model
and to give a value for θW agreeing with the values of the masses of the W,Z
which were later discovered directly.

1.9 Coupling to Quarks

The electro-weak coupling of gauge fields to hadrons is similar to that for leptons
when it is assumed that it is sufficient to use a Lagrangian involving the funda-
mental quark fields although some of the details are more intricate due to the
need to incorporate a non zero Cabibbo angle. For the moment we consider a
multi-component fermion field ψ which forms a representation of SU(2)T×U(1)Y .
The gauge invariant coupling to the gauge fields Aµ, Bµ is given by

Lψ = ψiγµDµψ , Dµψ = (∂µ − igAµ.T− ig′BµY )ψ , (4.78)

where the covariant derivative, as in eq.(4.20), is determined by the matrix gener-
atorsT of SU(2)T and also the hypercharge Y . If we assume that only left-handed
fermion fields have non trivial representations of SU(2)T then we can write

T = TL
1
2
(1− γ5) , (4.79)

while the hypercharge is determined by eq.(4.17)

Y = Q− T3 = YL
1
2
(1− γ5) + YR

1
2
(1 + γ5) , YL = Q− TL3 , YR = Q , (4.80)

since Q is purely vector, not involving γ5. Writing as in eq.(4.68)

Lψ = ψiγµ∂µψ +
g

2
√
2

(

JµWµ + Jµ†Wµ
†
)

+ e jµe.m.Aµ +
g

2 cos θW
JµnZµ , (4.81)

we may determine the contribution in general for the fermion field ψ to the weak
currents. Essentially by construction we have

jµe.m. = ψγµQψ , (4.82)

while for the charged current

Jµ = ψγµ(1− γ5)TL+ψ , TL+ = TL1 + iTL2 . (4.83)

Using eq.(4.49) the neutral current then has the general form

Jµn = 2Jµ3 − 2 sin2 θW j
µ
e.m. = ψγµ

(

(1− γ5)TL3 − 2 sin2 θW Q
)

ψ . (4.84)
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In order to reproduce the observed low energy weak interactions of hadrons it
would be necessary to assume the left-handed quarks with low mass, u, d, s, form
a T = 1

2
weak doublet of the form

(

uL
cos θC dL + sin θC sL

)

, (4.85)

where θC is the Cabibbo angle. The right handed quarks are singlets as usual and,
in the absence of any other quarks, so must also be the orthogonal combination
− sin θCdL + cos θCsL. While this gives the accepted form for the charged weak
current

Jµ = uγµ(1− γ5)(cos θCd+ sin θCs) , (4.86)

it leads to an immediate problem with the neutral current since now

Jµ3 =
1
2
uLγ

µuL − 1
2

(

cos θCdL + sin θCsL
)

γµ
(

cos θCdL + sin θCsL
)

. (4.87)

This contains terms which, for θC 6= 0, give rise to the ‘flavour changing’ transition
d ↔ s which are strictly forbidden by experiment for neutral current processes.
They would lead to decays like K0 → µµ which would easily have been observed.
The resolution of this paradox is the so called GIM mechanism, after Glashow,
Iliopoulos and Maiani, which involves the charge 2

3
charm quark (undiscovered at

the time the idea was put forward). The essential assumption is that there are
two left handed quark T = 1

2
doublets

(

uL
cos θC dL + sin θC sL

)

,

(

cL
− sin θC dL + cos θC sL

)

. (4.88)

The charged weak current can then be written as

Jµ =
(

u c
)

γµ(1− γ5)
(

cos θC sin θC
− sin θC cos θC

)(

d
s

)

. (4.89)

It is easy to see that for processes without any charm quarks that this is identical
to the experimentally successful form in eq.(4.86). Since sin θC is small it is also
clear that hadrons containing the charm quark, with non zero charm quantum
numbers, decay predominantly to strange hadrons. With two T = 1

2
doublets as

in eq.(4.88) we may also see that

Jµ3 = 1
2

(

uL cL
)

γµ
(

uL
cL

)

−1
2

(

dL sL
)

(

cos θC sin θC
− sin θC cos θC

)−1

γµ
(

cos θC sin θC
− sin θC cos θC

)(

dL
sL

)

,(4.90)

where it is now evident that the unwanted d↔ s terms cancel so that the neutral
current is diagonal (the part given by the electromagnetic current is diagonal by
construction).
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The contribution of the u, d, s, c quarks to the weak neutral current Jµn =
2Jµ3 − 2 sin2 θW j

µ
e.m. is then clear from eq.(4.90) since the electric current is

straightforwardly given by

jµe.m. =
2
3

(

uγµu+ cγµc
)

− tr
(

dγµd+ sγµs
)

. (4.91)

These results imply that the Z boson can decay into hadrons through its coupling
to the weak neutral current. The decay rate can be estimated by treating the
quarks as free particles even though free quarks do not appear in the final state.
The introduction of further generations of quarks requires a more systematic
treatment which also shows how the GIM mechanism becomes more natural.

The distinction between the different charge 2
3
quarks u, c, t and also between

the different −tr charge quarks d, s, b is due to the fact that they have different
masses, all other interactions are essentially identical. If the d, s quarks had the
same mass then the Cabibbo angle would be without significance since there
would be no independent distinction between these quarks. In fact the physical
significance of the Cabibbo angle in the weak current depends on assuming that
the quark fields are defined so that the mass terms are of the conventional form
Lm = −∑qmqqq with mq all different. Hovever, just as for leptons, there are
no possible SU(2)T or U(1)Y invariant mass terms so these can only arise from
the coupling to the Higgs field through the mechanism of spontaneous symmetry
breakdown when the Higgs field gains a vacuum expectation value.

Without further input we can only assume the most general form for the
coupling of the T = 1

2
, Y = 1

2
Higgs field φ to the quark fields. It is important to

recognise that from φ it is possible to form a conjugate field φc which transforms
under SU(2)T ×U(1)Y as a weak iso-doublet with a weak hyper-charge Y = −1

2
.

This is defined by

φc = iτ2φ
∗ =

(

0 1
−1 0

)(

φ1
†

φ2
†

)

=

(

φ2
†

−φ1
†

)

. (4.92)

The hyper-charge Y of φc is obvious and the SU(2) transformation properties
follow from the fact that complex conjugation leads to an equivalent T = 1

2

representation which is given by φc. This can be seen by using

iτ2 τ
∗ iτ2 = τ , (4.93)

with the result that
iτ2
[

e
i
2
α.τ
]∗

= e
i
2
α.τ iτ2 . (4.94)

Note that the vacuum expectation value of φc, taking v to be real, from eq.(4.34)
is,

φ0
c =

1√
2

(

v
0

)

. (4.95)
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For many flavours of quarks we assume that all quark fields are assembled in a
multi-component column vector ψ. We assume that ψL forms a reducible T = 1

2

representation of SU(2)T while the components of ψR are all T = 0 singlets. It
is convenient to write

ψ =

(

q+
q−

)

, q± =









q1±
...

qN±









, (4.96)

for N T = 1
2
multiplets. In this basis, for τ the 2 × 2 Pauli matrices and 1 the

N ×N , unit matrix
TL = 1

2
τ × 1 . (4.97)

In this basis we also take

YL = 1
6

(

1 0
0 1

)

× 1 , YR =

(

2
3

0
0 −tr

)

× 1 , (4.98)

so that, since Q = T3+Y as in eq.(4.17), after spontaneous symmetry breakdown
leaving just the massless photon q− are the charge −tr quark fields while q+ are
the 2

3
charge quark fields. It is easy to see that ψLq−R and vψLq+R transform as

T = 1
2
representations with Y = −1

2
and Y = 1

2
respectively. Hence the general

gauge invariant expression for the coupling of the Higgs field to the quark fields
is of the form

Lψ,φ = −
√
2
(

ψLΓ−q−R φ+ ψLΓ+q+R φ
c + hermitian conjugate

)

, (4.99)

where Γ−,Γ+ are complex matrices acting on q−, q+. When the Higgs field is
replaced by its vacuum expectation values in eqs.(4.34, 4.95) (when the generator
of the unbroken U(1)Q gauge group is given by eq.(4.17)) then this becomes a
mass term

Lψ,m = −
(

ψLm−q−R + ψLm+q+R + hermitian conjugate
)

, (4.100)

wherem− = Γ−v andm+ = Γ+v are potentially arbitrary complex mass matrices.
Of course there can be no term mixing q− and q+ since this would violate charge
conservation and U(1)Q is an unbroken gauge symmetry. In the absence of the
mass terms the basis chosen for q− and q+ is arbitrary. To select the basis of
physical quark fields with definite mass it is necessary to diagonalise the mass
matrices. For the physical case of N = 3 the eigenvalues of m−

†m− are taken
to be m 2

d , m
2
s , m

2
b while the eigenvalues of m+

†m+ are m 2
u , m

2
c , m

2
t , assuming

three generations of quarks. It is a theorem on matrices that m− can be brought
to diagonal form using two unitary matrices L−, R−, and similarly for m+, (to
prove this use the result that a hermitian matrix can always be diagonalised by
a unitary transformation R to write Rm†mR−1 = D2, where D is diagonal with
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real positive entries, and then define mR−1D−1 = L† which ensures LL† = 1 so
that L is unitary and LmR−1 = D)

L−m−R−
−1 =







md 0 0
0 ms 0
0 0 mb





 , L+m+R+
−1 =







mu 0 0
0 mc 0
0 0 mt





 , (4.101)

where we may require the masses md, ms, mb, mu, mc, mt to be all positive. We
now make a change of basis of the −1

3
and 2

3
charged quarks through separate

unitary transformations on the left and right handed quark fields,







d
s
b







L

= L−q−L ,







d
s
b







R

= R−q−R ,







u
c
t







L

= L+q+L ,







u
c
t







R

= R+q+R ,

(4.102)
so that the mass terms in eq.(4.100) are diagonal,

Lψ,m = −
∑

q=d,s,b,u,c,t

mq qq . (4.103)

It is also easy to see that the kinetic term also remains diagonal

Lψ,K = ψiγ.∂ψ =
∑

q=d,s,b,u,c,t

qiγ.∂q . (4.104)

Thus md, ms, mb, mu, mc, mt are the physical masses of the quark fields. Clearly
the coupling to the Higgs field can generate arbitrary masses for each quark so
there is no understanding of the bizarre mass ratios required for agreement with
experiment. However the charged weak current now contains a matrix V in the
basis of the physical quark fields which is a generalisation of the orthogonal matrix
specified by the Cabibbo angle appearing in eq.(4.89)

Jµ = q+γ
µ(1−γ5)q− =

(

u c t
)

γµ(1−γ5)V







d
s
b





 , V = L+L−
−1 . (4.105)

As required experimentally the neutral current also becomes a sum of terms
diagonal in the quark fields where, from eq.(4.84),

Jµn = ψLγ
µτ3ψL − 2 sin2 θWψγ

µQψ

= q+γ
µ 1
2

(

1− 8
3
sin2 θW − γ5

)

q+ − q−γµ 1
2

(

1− 4
3
sin2 θW − γ5

)

q−

=
∑

q=u,c,t

qγµ 1
2

(

1− 8
3
sin2 θW − γ5

)

q −
∑

q=d,s,b

qγµ 1
2

(

1− 4
3
sin2 θW − γ5

)

q .(4.106)

The above formalism can be applied to a theory with any number of genera-
tions. For N generations the unitary matrices L±, R±, and hence V , are N ×N
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so V contains N2 parameters. However the N charge −tr quarks and the N
charge 2

3
quark fields contain 2N unobservable complex phases but the current

Jµ is invariant under a common phase transformation on all the −tr and 2
3
charge

quark fields, so that q± → eiθq±. Thus 2N − 1 complex phases in the matrix V
are physically irrelevant leaving N2−2N+1 parameters in general. If we consider
the GIM two generation model then the unitary matrix V can be restricted to a
real orthogonal 2 × 2 matrix depending solely on an angle θC when it takes the
form

V =

(

cos θC sin θC
− sin θC cos θC

)

. (4.107)

Of course θC is the Cabibbo angle which on phemenonological grounds is not
zero.

In the realistic case of a three generation model then V has 4 relevant param-
eters. A real orthogonal 3 × 3 matrix is determined by 3 angles so in general V
must contain a complex phase. There are many ways of choosing the 4 parame-
ters. The first people to construct such a parameterisation were Kobayashi and
Maskawa. A version of the CKM matrix is

V ≡







Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb





 =







c1 s1c3 s1s3
−s1c2 c1c2c3 + s2s3e

iδ c1c2s3 − s2c3eiδ
−s1s2 c1s2c3 − c2s3eiδ c1s2s3 + c2c3e

iδ





 ,

(4.108)
using the convention that ci = cos θi and si = sin θi i = 1, 2, 3. The 4 parameters
are then the three angles θ1, θ2, θ3 and one complex phase δ. The presence of
the phase δ 6= 0 in the matrix shows that in general it cannot be reduced to
purely real form for three generations of quarks. This lack of reality corresponds
to a breakdown of CP invariance or equivalently of T invariance. In this picture
clearly three generations are necessary in order to have CP violation. Assuming
that all the angles are small we can identify θ1 with θC . To verify the unitarity of
the CKM matrix it is easiest to note that it can be written as a product of three
obviously unitary matrices, thus







1 0 0
0 c2 −s2
0 s2 c2













c1 s1 0
−s1 c1 0
0 0 eiδ













1 0 0
0 c3 s3
0 −s3 c3





 . (4.109)

Independent of any specific parameterisation it is a major experimental challenge
to determine the elements of the matrix V , up to the phase arbitrariness Vrs ∼
ei(θr−φs)Vrs. At present only |Vud|, |Vus|, |Vcd| are reasonably well known. Note
that from the unitarity of V , V †V = I, there is a condition on the elements in
the first and third columns of V of the form

VubVud
∗ + VcbVcd

∗ + VtbVtd
∗ = 0 . (4.110)
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The three complex numbers in eq.(4.110) form a closed triangle whose area is
1
2
|J | where

J = Im(VcbVcd
∗Vub

∗Vud) , (4.111)

which is a parameterisation independent measure of the CP violation arising from
V , with the form in eq.(4.108) J = c1c2c3s1

2s2s3 sin δ. Note that the triangles
defined from other pairs or columns of V have the same area.

A similar discussion is possible for the leptons so that in general we may expect
a mixing matrix Vlept as well as Vquark. However if no right handed neutrinos are
contained within the lepton sector of the standard model, so that the coupling
to the Higgs field has no piece corresponding to the φc term in eq.(4.99), then
the neutrinos are massless. In this case the electron neutrino νe can be defined
by its coupling to the electron in the charged weak current, and similarly for
νµ, ντ . When right handed neutrino fields are incorporated into the theory there
can be non zero neutrino masses and also mixing angles. The weak interaction
eigenstates νe, νµ, ντ are no longer mass eigenstates and so after they have been
formed in weak decays of hadrons we may expect neutrino oscillations in which
there are transitions such as νe ↔ νµ.
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Part V

QCD, perturbative aspects

1 QCD as a non abelian gauge theory

Hadrons, which are particles that undergo strong interactions, can be regarded
as composite bound states whose constituents are fractionally charged quarks,
u, d, s, . . ., just like nuclei are formed from protons and neutrons. Historically,
when quarks were first introduced, they were regarded by many as a conve-
nient fiction which motivated the appearance of particular representations of the
approximate symmetry group SU(3)F with appropriate values of the quantum
numbers for P,C and dynamical problems such as the non appearance of free
quarks were neglected. The advent of QCD showed how quarks could be de-
scribed as interacting particles by a fundamental quantum field theory. QCD
is a non abelian gauge field theory based on the gauge group SU(3)colour and
the particles corresponding to the gauge field are referred to as gluons, reflecting
their role in binding hadrons together. As far as the basic quantum field theory
is concerned quarks in QCD appear in a very similar fashion to electrons in QED,
quantum electrodynamics, while gluons are analogous to the photon. Neverthe-
less there are of course very real differences since, unlike electrons and photons,
quarks and gluons never appear as physical particles. This phenomenon is re-
solved by the dogma of confinement which asserts that the dynamics of QCD are
such that only SU(3)colour singlet states are present in the space of finite energy
physical states which provides a representation space for the associated quantum
field theory. Furthermore there are no massless states except perhaps the pions
and associated pseudoscalar particles if the quark masses vanish. These features
cannot be described in conventional perturbation theory since the starting point
is then a theory of free quarks and free massless gluons with no restrictions on
allowed colour quantum numbers but depends on understanding how the non
perturbative dynamics of QCD require a new confinement phase which is very
different from previous quantum field theories. However in perturbation theory
we may show that non abelian gauge theories uniquely, in four space-time dimen-
sions, have the property of asymptotic freedom which justifies the application of
perturbation theory calculations to predict quantitatively some measurable as-
pects of scattering cross sections in suitable contexts, usually some high energy
limit. Thus many perturbative calculations in QCD have been carried out, at
two or more loops, which allow detailed comparison with experiment so that
now QCD has been tested to a high precision. The detailed hadron mass spec-
trum is outside perturbation theory, since it cannot incorporate confinement,
although careful analysis of QCD as a renormaliseable field theory shows how a
mass scale can be generated even if no mass parameter is present in the original
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lagrangian. Any discussion of QCD, after introduction of the basic lagrangian,
should therefore start by a consideration of its properties after renormalisation
and its dependence on mass scales.

1.1 Basic Lagrangian

A gauge field theory for the non abelian gauge group SU(3) has eight gauge fields
Aµa, a = 1, . . . 8, and a corresponding field strength

Fµνa = ∂µAνa − ∂νAµa + g fabcAµbAνc , (5.1)

where g is the coupling and fabc are the totally antisymmetric structure constants
of SU(3). For λa the Gell-Mann λ-matrices, 3 × 3 generalisations of the Pauli
matrices, we have [1

2
λa,

1
2
λb] = ifabc

1
2
λc. The quark fields belong to the complex

3-dimensional representation of SU(3) defined by the λ-matrices so that the basic
QCD lagrangian is simply

LQCD = −1
4
F µν

aFµνa +
∑

f

qf(iγ
µDµ −mf )qf , (5.2)

where the covariant derivative is defined by

Dµqf = ∂µqf − igAµa 12λaqf , (5.3)

and colour indices, as well as spinor indices, for the quark fields are suppressed.
The sum over f is over the different quark flavours, so that qf = u, d, s, . . ., which
are distinguished by their differing masses mf . This lagrangian is easily seen to
be invariant under local SU(3) gauge transformations when infinitesimally

δAµa =
1

g
(∂µξa + gfabcAµbξc) , δqf = iξa

1
2
λaqf . (5.4)

The quantisation of non abelian gauge theories, such as described by (5.2), is
nowadays standard. It is necessary to add extra gauge fixing terms which break
the gauge invariance to LQCD in order to set up a perturbative expansion starting
from a zeroth order free field theory of quarks and gluons. In order to ensure this is
done consistently it is necessary also to introduce ghost fields and then amplitudes
for physical processes, or matrix elements involving gauge invariant operators,
are independent of any gauge fixing parameters and the theory defines a space of
physical states, with positive definite norm, invariant under time evolution. The
Feynman rules involve quark and gluon propagators, three and four gluon vertices,
which are proportional to g and g2 respectively, and also an O(g) vertex when a
gluon couples to a quark. Furthermore there are ghost propagators which, with
standard choices of gauge fixing, couple to other lines in a Feynman graph through
a single gluon vertex ∝ g. The perturbative expansion defines a renormaliseable
quantum field theory so that no new parameters, beyond those present in the
initial classical lagrangian and gauge fixing terms need be introduced.
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1.2 General Features of Renormalisation

QCD is a renormaliseable quantum field theory with a single coupling g. For
simplicity we here neglect the quark masses mf although the treatment can be
extended to include them. In practice mu, md are very small compared with
typical hadronic scales and naively one would expect that mass terms would be
irrelevant in high energy limits when all components of the momenta become
large. In general setting mass terms to zero may generate additional infra red
divergences in Feynman amplitudes but with appropriate prescriptions, and due
caveats to be made clearer later, these can be avoided and the massless limit of
perturbative QCD exists. Because of short distance ultra-violet divergences it is
necessary to introduce some regularisation for the loop integrals which appear
in the perturbative expansion of physical amplitudes. Ideally a convenient reg-
ularisation should preserve as many as possible of the general requirements of
quantum field theory and also the symmetries of a particular theory (it cannot
preserve them all since if that were possible the regularised quantum field the-
ory would itself be a bona fide quantum field theory). Without specifying any
details we suppose there is a cut off M which renders Feynman integrals finite
and preserves Lorentz invariance, unitarity, etc for energy scales ≪M . Any reg-
ularisation introduces a mass scale like M even if the original theory has no mass
parameters such as QCD in the massless limit (for QCD dimensional regulari-
sation is virtually universally used since this preserves gauge invariance, in this
case the regularisation mass scale is more subtle but is present since the coupling
g is no longer dimensionless if d 6= 4).

Let us now consider some physical amplitude f , which we take to be charac-
terised by a set of momenta pi, and which has a perturbative expansion so that
we may write f(g,M ; pi) where we display explicitly the necessary dependence
on the cut offM . The fundamental requirement of renormaliseability, which may
be proven order by order in the perturbative expansion, asserts that if we let
g → g0(M) and, if the overall normalisation of f(g,M ; pi) is not constrained
by some identity we also introduce a suitable overall rescaling Z(M) which is
independent of the momenta, then we may take the limit M →∞ so that

Zf(g0,M ; pi) −→ F (g, µ; pi) as M →∞ , (5.5)

where F (g, µ; pi) is finite and obeys the general axioms of quantum field theory
(more generally Z becomes a matrix corresponding to a set of physical amplitudes
such that Zabfb(g0,M ; pi) → Fa(g, µ; pi)). The statement (5.5) is valid order by
order in a perturbative expansion in the finite coupling parameter g so that

g0
(

g,
M

µ

)

= g +O(g3) , Z
(

g,
M

µ

)

= 1 + O(g2) , (5.6)

are also given as an expansion in g. In (5.5) and (5.6) we have introduced a
finite mass scale µ which is essential in order to consistently define g0, Z and also
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the renormalised amplitude F . Its appearance is tied up the precise definition
of g which is essentially arbitrary other than being required to satisfy (5.6).
Any precise definition of g compatible with this is permissible, in dimensional
regularisation the standard prescription is termed minimal subtraction when only
the poles in 4 − d are subtracted to define the finite physical amplitude in the
limit d → 4. In the present context we may alternatively choose some physical
amplitude fg which has a perturbative expansion

fg(g,M ; pi) = g + . . . , (5.7)

and where we require that fg does not need any overall factor such as Z in (5.5)
in order to obtain a sensible limit for M →∞. Then we may define

g = lim
M→∞

fg(g0,M ; p̊i) , (5.8)

where p̊i are an arbitrarily chosen set of momenta specified in terms the arbitrary
scale µ, which therefore becomes a variable on which g depends. We may sim-
ilarly precisely determine Z in (5.5) if F (g, µ; pi) is prescribed in some fashion
compatible with the lowest order perturbative result for some convenient choice
of the momenta pi in terms of µ. In older discussions the scale µ was usually
not introduced explicitly but was essentially replaced by some physical mass, in
QCD this could be some quark mass, but then it is impossible to take the zero
mass limit. In zero mass QCD the presence of µ is essential to avoid infra red
divergences.

Although µ plays an essential role in the definition of finite physical amplitudes
its particular value is unimportant. This is reflected in F (g, µ; pi) obeying a so
called renormalisation group equation reflecting its invariance under any rescaling
µ → etµ. Initially this appears an almost trivial identity but it is in fact a
deep consequence of the fundamental property of renormaliseability and leads to
significant physical consequences. To derive this we note that, for fixed g0,M ,
f(g0,M ; pi) is independent of µ or

µ
d

dµ
f(g0,M ; pi) = 0 . (5.9)

Using (5.5) this becomes

µ
d

dµ
F (g, µ; pi) =

(

µ
∂

∂µ
+ β(g)

∂

∂g

)

F (g, µ; pi) = −γ(g)F (g, µ; pi) , (5.10)

where, since the total µ derivative is defined for fixed g0,

β(g) = µ
d

dµ
g

∣

∣

∣

∣

g0

, γ(g) = −µ d

dµ
Z

∣

∣

∣

∣

g0

Z−1 . (5.11)

Since F is independent of the cut off M , β(g), γ(g) must also be independent
of M and hence µ, and depend only on g (the definition of γ(g) extends to the
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case when Z and hence γ(g) are matrices). The result (5.10) is a version of the
renormalisation group equation and is essentially similar in form to the so called
Callan-Symanzik equation which has a very similar content (a more systematic
derivation entails that the momenta pi should be restricted so that all linear
combinations pi1 + . . .+ pin are non zero and also that there are no singularities
present in any Lorentz scalar combination).

In a perturbative treatment we expect that g0(g,M/µ) has an expansion of
the form, dropping any inverse powers of M ,

g0 = g + g3
(

b ln
M

µ
+ a

)

+ g5
(

3
2
b2
(

ln
M

µ

)2
+ . . .

)

+O(g7) . (5.12)

Differentiating with respect to µ we find from the definition of the β-function in
(5.11)

0 = β(g)
(

1 + 3g2
(

b ln
M

µ
+ a

)

+ . . .
)

− g3b− 3g5b2 ln
M

µ
+ . . . (5.13)

giving
β(g) = g3b+O(g5) . (5.14)

It is important to note that consistency determines the g5(ln(M/µ))2 term in
(5.12). This property extends to higher orders, all powers of ln(M/µ) beyond
first order, which determine β(g), are fixed by the renormalisation group equation.
Similarly we expect to lowest order in the perturbative expansion

Z = 1 + g2
(

c ln
M

µ
+ d

)

+ O(g4) , (5.15)

which in (5.11) gives
γ(g) = g2c+O(g4) . (5.16)

The coefficients b, c in (5.12,5.15) are determined by the short distance divergences
while a, d depend on the precise definition of g and the conditions which specify
the finite part of Z. In general beyond lowest order β(g), γ(g) are not unique but
depend on the choice of renormalisation scheme, different schemes correspond
to couplings which are related by a reparameterisation, g → g′(g) = g + O(g3).
It is important to use the same scheme for calculations of different processes,
such as consistently using dimensional regularisation with minimal subtraction,
or to take account of the appropriate redefinition when comparing calculations
according to differing regularisation schemes.

1.3 Solution of Renormalisation Group Equation and its

Physical Consequences

The renormalisation group equation (5.10) reflects the fact that the overall scale
for µ is immaterial. This becomes evident from its explicit solution. To obtain
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this we first recast (5.10) in the form

d

dt
F (gt, e

tµ; pi) = −γ(gt)F (gt, etµ; pi) , (5.17)

where gt is defined by

d

dt
gt = β(gt) , gt = g for t = 0 . (5.18)

Eq. (5.17) is an ordinary differential equation which is readily integrated to give

F (gt, e
tµ; pi) = e−ρ(t)F (g, µ; pi) for

d

dt
ρ(t) = γ(gt) , ρ(0) = 0 . (5.19)

The solution for gt in (5.18) and ρ(t) in (5.19) may alternatively be given by

∫ gt

g
dx

1

β(x)
= t , ρ(t) =

∫ t

0
ds γ(gs) =

∫ gt

g
dx

γ(x)

β(x)
. (5.20)

These equations have physical content if we assume the dimensional scaling
rule, since apart from the momenta µ provides the only scale,

F (g, µ; etpi) = eptF (g, e−tµ; pi) , (5.21)

where p is the scaling dimension of F (in mass units). Combining (5.21) with
(5.19) for µ→ e−tµ we find

F (g, µ; etpi) = ept+ρ(t)F (gt, µ; pi) . (5.22)

This result makes clear that the behaviour of F (g, µ; pi) when all momenta be-
come large simultaneously and the neglect of mass terms is justified, or in (5.22)
t → ∞, is controlled by the properties of gt and also ρ(t), which are defined by
the solutions to (5.18) or (5.20), as t → ∞. Conversely for a massless quantum
field theory the behaviour in the infra red limit of small momenta is given in
terms of the limit t→ −∞.

The main features of these limits depends only on the qualitative form of
β(g). Although analysis of the infra red limit in terms of the renormalisation
group equation is also of vital theoretical importance, especially in the context of
statistical physics, we here concentrate on the high energy ultra violet limit. The
justification of the renormalisation group equations depend on perturbation the-
ory, at least for equations of the form (5.10), but they are assumed to transcend
such limitations so that β(g), and also γ(g), are presumed to be general functions
of g with only the first few terms in an expansion at g = 0 known (the pertur-
bative expansion is at best asymptotic and there may well be non perturbative
contributions).

The possibilities for the behaviour of gt as t increases is shown below
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Beta functions and renormalisation flow for non zero fixed point and

also for asymptotically free theories

In the first case the β-function has a zero such that

β(g∗) = 0 , β ′(g∗) < 0 . (5.23)

Then if g is in some neighbourhood of g∗, so that for g > g∗, β(g) < 0 and for
g < g∗, β(g) > 0, then it is easy to see that solution of (5.18) requires

gt −→ g∗ as t→∞ . (5.24)

In this situation g∗ is referred to as an ultra-violet fixed point. From (5.20) we
may expect

ρ(t) ∼ γ(g∗)t , (5.25)

assuming that γ(g∗) 6= 0. Hence from (5.22) we then have

F (g, µ;λpi) ∼ λp+γ(g∗)F (g∗, µ; pi) as λ→∞ , (5.26)

with F (g∗, µ;λpi) = λp+γ(g∗)F (g∗, µ; pi). This result represents an exact scaling
relation with γ(g∗) corresponding to an anomalous dimension.

Such ultra-violet fixed points, while theoretically feasible, are beyond the
scope of any perturbative analysis. Another relevant possibility is if

β(0) = 0 , β(g) < 0 for g in some neighbourhood of g = 0 . (5.27)

For an initial g in this region we then have

gt −→ 0 as t→∞ , (5.28)

so that the origin is an ultra-violet fixed point. Such a circumstance is called
asymptotic freedom and it provides a justification for the validity of using per-
turbation theory for high energy processes. Whether the behaviour in (5.27)
holds may readily be found from perturbative calculations, in (5.14) it just cor-
responds to b < 0. If the O(g5) terms in (5.14) are neglected, as is appropriate
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if g is small, then the differential equation in (5.18) may be written explicitly in
the form

d

dt

1

gt2
= −2b , (5.29)

which can easily be solved to give

1

gt2
− 1

g2
= −2bt . (5.30)

With b < 0 then clearly gt
2 ∼ 1/(2|b|t)→ 0 as t→∞.

If we take the lowest order result for γ(g) in (5.16) in conjunction with that
for β(g) then from (5.20) we may easily find

ρ(t) = −c
b
ln
g

gt
. (5.31)

To apply this we may also assume that to lowest order in perturbation theory
the amplitude F (g, µ; pi) has the form

F (g, µ; pi) ∼ gNF0(pi) , (5.32)

where from (5.21) F0(λpi) = λpF0(pi). Using this, as well as (5.31), in (5.22) we
find

F (g, µ; etpi) ∼ gt
N
(

gt
g

)c
b

F0(e
tpi) . (5.33)

This result, which depends only on lowest order perturbative calculations, be-
comes asymptotically exact as t→∞ in the asymptotic freedom case, i.e. b < 0,
so that the form of F (g, µ; pi) when all components of all momenta become large
simultaneously is thereby determined.

The general solution of (5.18) gt ≡ g(etµ) defines a running coupling constant
which no longer has a fixed value, g(µ) depends on the arbitrary scale µ. The
lowest order solution (5.30) may be rewritten as

1

g(µ)2
− 1

g(µ′)2
= −b ln µ2

µ′2 . (5.34)

Any measurable physical amplitude must be independent of µ but the detailed
form of g(µ) may be exploited to justify and extend the scope of a perturbative
analysis beyond its initially apparent region of validity.

1.4 β-function in Non Abelian Gauge Theories

In any renormaliseable quantum field theory it is straightforward to calculate the
β-function to one or two, or sometimes more, loops. For a non abelian gauge
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theory, with a simple gauge group so that there is a single gauge coupling g, the
corresponding β-function may be writtens as

β(g) = −β0
g3

16π2
+O(g5) . (5.35)

We suppose that, as in QCD, the gauge field is only coupled to fermion fields
ψi through covariant derivatives Dµψi = ∂µψi − igAµatiaψi, where tia are matrix
generators of the Lie algebra of the gauge group for the irreducible representation
defined by ψi, [tia, tib] = ifabctic. In this case the general formula for β0 (this
assumes that the gauge field coupling does not distinguish between left and right
handed fermions, there is no γ5 involved) is

β0 =
11
3
C − 4

3

∑

f

Tf , (5.36)

where C, Tf are group theory factors defined by

facdfbcd = Cδab , tr(tfatfb) = Tfδab . (5.37)

For gauge group SU(N) then C = N while if the fermions are in the fundamental
representation, as are the quark fields for SU(3)colour, then Tf = 1

2
. For QCD the

formula therefore becomes
β0 = 11− 2

3
Nfl , (5.38)

where Nfl is the number of quark flavours which contribute to the β-function,
Nfl = 3 for the light u, d, s quarks while Nfl = 4 if the c quark is added as well
(in determining the running coupling g(µ) those quarks with masses & µ should
not contribute to the β-function). Clearly from (5.38) β0 > 0, so that we have
asymptotic freedom, since the total number of flavours is just Nfl = 6.

It is convenient to define for the QCD coupling, like in QED,

αs =
g2

4π
, (5.39)

and then the lowest order solution (5.30) of (5.18), which may alternatively be
written as

µ
d

dµ
g = β(g) , (5.40)

for the running coupling g(µ) can be equivalently expressed as

1

αs(µ2)
=
β0
4π

ln
µ2

Λ2
, (5.41)

where Λ, which may be regarded as a constant of integration in the solution
of (5.40), provides a basic QCD mass scale even in the absence of any quark
masses. Λ is in essence the fundamental strong interaction mass scale which
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replaces the coupling g or αs as a free parameter. The result (5.41) shows clearly
how αs(µ

2) → 0 as µ → ∞, although Λ cannot really be determined precisely
from (5.41) since any rescaling of Λ modifies the result by terms O((lnµ2/Λ2)−2)
which are of the same order as contributions from higher orders in β(g). Such
rescalings of Λ result from redefinitions of the coupling corresponding to different
regularisation schemes, so that the precise value of Λ has significance only in
the context of a particular scheme. In a modified minimal subtraction scheme
Λ ≈ 200− 250 MeV, although the uncertainty is quite large.

2 e−e+ → hadrons

In many ways the cleanest application of asymptotic freedom in QCD is to the
total cross section for e−(p1) + e+(p2) → hadrons. To lowest order in the elec-
tromagnetic coupling e the e−e+ annihilate to produce a virtual photon, with
momentum q = p1 + p2, which then forms physical hadron states.

As a precursor to discussion of this we consider e−(p1)+e
+(p2)→ q(k1)+q(k2)

for q, q free quarks, anti-quarks with charges ±Q, in units of e, and k1 + k2 = q.

e

�

e

+

q

�q

p

1

p

2

k

1

k

2

p

1

p

2

k

1

k

2

�

Electron positron annihilation to quark, antiquark

The amplitude is then simply

iM = (−ie)2Qu(k1)γµv(k2) i
−gµν
q2

v(p2)γ
νu(p1) . (5.42)

The sum over e∓ and q, q spins in |M|2 can be converted to Dirac traces in the
conventional fashion, neglecting electron and quark masses, so that p1

2 = p2
2 =

k1
2 = k2

2 = 0, we get

∑

spins

|M|2 = e4
Q2

(q2)2
tr(γ·k1 γµ γ·k2 γν) tr(γ·p1 γµ γ·p2 γν)

= 16 e4
Q2

(q2)2
(k1

µk2
ν + k1

νk2
µ − gµνk1·k2) (p1µp2ν + p1νp2µ − gµνp1·p2)

= 32 e4
Q2

(q2)2
(p1·k1 p2·k2 + p2·k1 p1·k2) . (5.43)

In the centre of mass frame p1
µ = (|p|,p), p2µ = (|p|,−p) so that qµ = (

√
q2, 0)

with
√
q2 = 2|p|. The quark momenta k1, k2 may be represented similarly in
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terms of k with |k| = |p|. Assuming a scattering angle θ, so that k·p = 1
4
q2 cos θ,

we have

p1·k1 = p2·k2 = 1
4
q2(1− cos θ) , p2·k1 = p1·k2 = 1

4
q2(1 + cos θ) , (5.44)

and hence
∑

spins

|M|2 = 4e4Q2(1 + cos2 θ) . (5.45)

The formula for the differential cross section in this case becomes

dσ =
1

F

d3k1
(2π)32k10

d3k2
(2π)32k20

(2π)4δ4(q − k1 − k2)
1

4

∑

spins

|M|2 , (5.46)

where F is the flux factor for the initial states and the factor of 1
4
is for averaging

over the initial spins. With standard normalisations consistent withM in (5.42)
we have

F = 4p1
0p2

0v = 2q2 , v = |v1 − v2| , (5.47)

since the relative speed v = 2 in the C.M. frame neglecting electron masses.
Substituting this and (5.45) into the cross section formula (5.46) we have

dσ =
e4Q2

2(2π)2(q2)2
d3k δ

(√
q2 − 2|k|

)

(1 + cos2 θ) . (5.48)

Since d3k = |k|2d|k| dΩ, where dΩ is the solid angle element for the direction k̂,
we have finally for the differential cross section

dσ

dΩ
=

α2

4q2
Q2 (1 + cos2 θ) , (5.49)

where α = e2/4π. It is easy to integrate this to find the total cross section

σtot, e−e+→qq =
4πα2

3q2
Q2 , (5.50)

which would be valid for
√
q2 ≫ mq.

It is not immediately obvious how the above calculation, which assumes free
quarks, applies to the experimental observed process e−e+ −→ hadrons. To show
the relevance of the result (5.50) to the total cross section for e−e+ −→ hadrons
we first derive a general formula for this, to lowest order in e. For a final hadronic
state X the amplitude is

MX = e2
1

q2
〈X|Jµh |0〉 v(p2)γµu(p1) , (5.51)

where Jµh is the hadronic contribution to the electromagnetic current which may
be expressed in term of quark fields by

Jµh = qγµQq , (5.52)
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for Q the diagonal matrix of quark charges. Extending (5.46) to this case gives,
for q = p1 + p2,

σtot, e−e+→hadrons =
1

F

∑

X

1

4

∑

spins

(2π)4δ4(q − pX) |MX|2 . (5.53)

The sum over hadronic states X may be subsumed in a single function of q2 by
virtue of

ρνµh (q) ≡ (2π)3
∑

X

δ4(q − pX)〈0|Jνh |X〉 〈X|Jµh |0〉

= (−gνµq2 + qνqµ) θ(q0) ρh(q
2) , (5.54)

using Lorentz invariance and current conservation, ∂µJ
µ
h = 0. In consequence,

neglecting the electron mass,

∑

X

∑

spins

(2π)4δ4(q − pX) |MX|2 =
8πe4

(q2)2
(q2 p1·p2 + 2q·p1 q·p2)ρh(q2) = 8πe4 ρh(q

2) ,

(5.55)
and hence, with the result (5.47) for the flux factor F ,

σtot, e−e+→hadrons = πe4
1

q2
ρh(q

2) . (5.56)

It remains to understand ρh(q
2) which for general q2 > 0 is potentially very

non trivial. If we once again consider the quark fields composing Jµh in (5.52) to
be free, and restrict

∑

X to a sum over q, q states, then

ρνµh (q) =
∑

f

Q2
f

∫

d3k

(2π)32k0
d3k′

(2π)32k′0
(2π)4δ4(q − k − k′)

× tr
(

(γ·k +mf )γ
µ(γ·k′ −mf )γ

ν
)

∣

∣

∣

∣

k2=k′2=m2
f

. (5.57)

The phase space integral can be evaluated with the aid of

∫ d3k

k0
d3k′

k′0
δ4(q − k − k′) kµk′ν

∣

∣

∣

∣

k2=k′2=m2
f

= θ(q0)θ(q2 − 4m2
f ) π

(

1− 4m2
f

q2

)1
2
{q2 + 2m2

f

3q2
(−gνµq2 + qνqµ) + 1

2
gνµq2

}

.(5.58)

Hence (5.54) and (5.57) give

ρh(q
2) =

1

12π2

∑

f

Q2
f θ(q

2 − 4m2
f )
q2 + 2m2

f

q2

(

1− 4m2
f

q2

)
1
2

. (5.59)
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It is easy to see that for q2 ≫ m2
f (5.56) and (5.59) are compatible with (5.50).

The application of QCD is based implicitly on the postulate, whose justifica-
tion is essentially beyond the scope of perturbation theory, that

∑

X=hadrons

|X〉〈X| =
∑

X=q,q,g states

|X〉〈X| , (5.60)

at least in application to high energy processes. If we restrict
∑

f to those quarks
such that q2 ≫ m2

f then the assumption (5.60) leads to

ρh(q
2) =

1

12π2

(

Ncol

∑

f

Q2
f R

( q2

µ2
, αs

)

+
(

∑

f

Qf

)2
S
( q2

µ2
, αs

)

)

, (5.61)

or, with Ncol the number of colours (3 for QCD),

σtot, e−e+→hadrons =
4πα2

3q2

(

Ncol

∑

f

Q2
f R

( q2

µ2
, αs

)

+
(

∑

f

Qf

)2
S
( q2

µ2
, αs

)

)

, (5.62)

where we have set the quark masses to zero, mf = 0, in which case each quark
contributes identically and and the result depends only on two functions of q2/µ2

and αs which may be calculated in terms of a Feynman diagram expansion. The
zero mass limit is well defined in perturbation theory so long as we introduce the
arbitrary scale µ and then in (5.61) and (5.62) αs → αs(µ

2), the QCD running
coupling. Since we have factored off explicitly the number of colours Ncol it is
evident from the above results for free quarks that

R(x, 0) = 1 . (5.63)

Furthermore by drawing Feynman diagrams (or considering states such that X =
3 gluons) we also have

S(x, αs) = O(αs
3) . (5.64)

In calculating R and also S no overall factor like Z in (5.5) is necessary to remove
divergences when the limit M →∞ for the cut off is taken, since the conserved
current Jµh does not require independent renormalisation. Assuming R satisfies
a renormalisation group equation of the form (5.22), reflecting the arbitrariness
in the scale µ, we then have

R
( q2

µ2
, αs(µ

2)
)

= R
(

1, αs(q
2)
)

∼ 1 +
αs(q

2)

π
as q2 →∞ , (5.65)

where the first QCD correction to (5.63) has been exhibited. From (5.64) it is
similarly clear that S is asymptotically unimportant in the large q2 limit.

In principle the result (5.65) allows the coupling αs to be determined by
comparing with experimental results for σtot, e−e+→hadrons at high energies although
in practice this is difficult to achieve accurately.
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2.1 Space-like and Time-like Asymptotic Limits

Theoretically the application of the renormalisation group to ρh(q
2) and neglect

of mass terms, which was assumed in obtaining (5.61) and (5.62), is not really
justified. ρh(q

2) is not analytic and has potential discontinuities in q2 whenever
the threshold for producing new states X in (5.54) is achieved and also has peaks
when resonances with the appropriate energy are present. To overcome such
difficulties we consider first the Feynman amplitude

i
∫

d4x eiq·x〈0|Jνh (x)Jµh (0)|0〉 = (−gνµq2 + qνqµ) Πh(q
2) , (5.66)

which can be calculated in terms of the contributions of Feynman graphs. Πh(q
2)

is related to ρh(q
2) by the Lehmann representation

Πh(q
2) =

∫ ∞

0
ds

ρh(s)

s− q2 − iǫ , (5.67)

so Πh(s) may be extended to an analytic function of s throughout the complex
s-plane except for a cut along the positive real axis. For s real and negative the
zero mass limit may be justified order by order in the perturbation expansion
and we may apply renormalisation group methods to the limit −s → ∞. From
(5.67) ρh(s) for s > 0, which is directly measureable in e−e+-scattering, can be
related to Πh(s) by

ρh(s) =
1

2πi

(

Πh(s+ iǫ)− Πh(s− iǫ)
)

= − 1

2πi

∫

C
dx

d

dx
Πh(x) , (5.68)

where C is a contour from s + iǫ to s− iǫ around the branch point at x = 0. It
is convenient to define

D(−s) = −s d

ds
Πh(s) , (5.69)

and then (5.68) becomes

ρh(s) =
1

2πi

∫

C

dx

x
D(−x) = 1

2π

∫ π−ǫ

−π+ǫ
dθ D(seiθ) , (5.70)

choosing for C the circular contour x = −seiθ, −π + ǫ < θ < π − ǫ.
The result (5.70) allows the asymptotic result for D(s) in the space-like limit

s → ∞ where D(s) is analytic, assuming it to be also valid for |s| → ∞ with
−π + ǫ < arg(s) < π − ǫ (which need not be true as ǫ → 0 reflecting the fact
that ρh(s) need not be a smooth function), to be applied to derive the asymptotic
behaviour of ρh(s). From the renormalisation group we get

D(s) ∼ D0

(

1 +
αs(s)

π
+ d2 αs(s)

2 + . . .
)

. (5.71)
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From the leading behaviour (5.41) of the running coupling the relevant integral
in (5.70) is of the form

1

2π

∫ π

−π
dθ

1

ln seiθ

Λ2

=
1

π
tan−1 π

ln s
Λ2

∼ 1

ln s
Λ2

− π2

3
(

ln s
Λ2

)3 + . . . . (5.72)

Hence the asymptotic expansion of ρh(s) differs from D(s), as in (5.71), at order
αs

3.

3 Deep Inelastic Scattering

The most detailed results which are described by perturbative QCD are found in
deep inelastic scattering for proton or neutron targets. Historically experimental
results for deep inelastic scattering were interpretated in terms of point-like free
constituents or partons. The parton model predicted Bjorken scaling, at high
energies cross sections depended on functions of particular dimensionless vari-
ables, and led to many relations which agreed with experiment if the partons
were identified with fractionally charged quarks. Subsequently QCD provided a
justification for the assumptions made in the parton model, which was essentially
a zeroth approximation to the full QCD result, and gave calculable corrections
to Bjorken scaling.

3.1 Kinematics

The essential process for deep inelastic electron scattering on a hadron H , of mass
M , is

e(p) +H(P ) −→ e(p′) +X , (5.73)

where X is an unobserved final state. To lowest order in e the electron couples
to the hadron through a virtual photon,

e
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Deep inelastic electron, neutrino scattering on a hadron

The amplitude is

iM = (ie)2u(p′)γµu(p) i
−gµν
q2
〈X|Jνh |H,P 〉 , q = p− p′ . (5.74)
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In the hadron rest frame P µ = (M, 0), pµ = (E,p) and p′µ = (E ′,p′) and the
basic dynamical variables are

ν ≡ P ·q =M(E −E ′) , Q2 ≡ −q2 = 2p·p′ = 2EE ′(1− cos θ) , (5.75)

where we have neglected the electron mass, so that E = |p|, E ′ = |p′|, and θ is
the electron scattering angle. Clearly Q2 ≥ 0 and also

M 2
X = (P + q)2 ≥M2 ⇒ Q2 ≤ 2ν . (5.76)

The standard expression for the differential cross section gives

dσ =
1

F

d3p′

(2π)32p′0
∑

X

(2π)4δ4(q + P − pX) 1
2

∑

e spins

|M|2 , (5.77)

where F is the flux factor

F = 4p0P 0|ve − vH | → 4EM , (5.78)

in the hadron rest frame. It is easy to see from (5.74) that

∑

e spins

|M|2 = e4

(q2)2
Lνµ 〈H,P |Jνh |X〉 〈X|Jµh |H,P 〉 , (5.79)

where, setting me = 0,

Lνµ =
∑

e spins

u(p)γνu(p
′) u(p′)γµu(p) = tr(γ·p γν γ·p′ γµ)

= 4(pνp
′
µ + pµp

′
ν − gνµ p·p′) . (5.80)

If we define

W νµ
H (q, P ) =

1

4π

∑

X

(2π)4δ4(q + P − pX) 〈H,P |Jνh |X〉 〈X|Jµh |H,P 〉 , (5.81)

then the cross section formula (5.77) becomes

E ′ dσ

d3p′
=

e2

8(2π)2EM

1

(q2)2
LνµW

νµ
H (q, P ) . (5.82)

If the hadron H has spin, as in the realistic case of a proton or most nuclei, then
in (5.81) the spin should be averaged over.

By virtue of current conservation (pX − P )µ〈X|Jµh |H,P 〉 = 0 which implies
qµW

νµ
H (q, P ) = qνW

νµ
H (q, P ) = 0 and hence

W νµ
H (q, P ) =

(

− gνµ + qνqµ

q2

)

W1 +
(

P ν − P ·q
q2

qν
)(

P µ − P ·q
q2

qµ
)

W2 , (5.83)
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withW1,2 Lorentz scalars, called structure functions for the hadron H , and which
depend on the two variables Q2 and ν. In writing (5.83) we have neglected a
possible term involving the ǫ-tensor but this can be excluded by using parity
invariance. To calculate the contraction in (5.82) we may use Lνµq

ν = Lνµq
µ = 0

so that from (5.80) and (5.83) we have,

LνµW
νµ
H (q, P ) = 8p′·pW1 + 4(2p·P p′·P −M2p′·p)W2

= 4Q2W1 + 2M2(4EE ′ −Q2)W2

∼ 8EM
(

xyW1 +
1− y
y

νW2

)

, (5.84)

where in the second line we have used p·p′ = −1
2
q2, ifme = 0, together with p·P =

ME, p′·P = ME ′ and in last line we have assumed the limit Q2 = O(ν) → ∞
with x, y dimensionless variables (in this limit Q2 ≪ EE ′),

x =
Q2

2ν
, y =

ν

ME
= 1− E ′

E
, (5.85)

which stay fixed. It is easy to see that

0 ≤ x ≤ 1 , 0 ≤ y ≤ 1 . (5.86)

Since
d3p′ → 2π E ′2d(cos θ) dE ′ = πE ′ dQ2 dy = 2πE ′ν dx dy , (5.87)

we have in the high energy limit from (5.82), (5.84) and (5.85)

dσ

dxdy
=

4πα2

Q4
2ME

(

(1− y)F2(x,Q
2) + xy2F1(x,Q

2)
)

, (5.88)

where as usual α = e2/4π and

F2(x,Q
2) = νW2 , F1(x,Q

2) = W1 , (5.89)

are dimensionless quantities. Clearly comparison of cross section measurements
with (5.88) allows W1,2 or F1,2 to be disentangled.

In the basic process (5.73) the electron e may be replaced by a muon without
changing any of the subsequent results. A very similar analysis also holds for
inelastic scattering of neutrinos, or anti-neutrinos, when

νµ(p) +H(P ) −→ µ−(p′) +X or νµ(p) +H(P ) −→ µ+(p′) +X . (5.90)

For such processes the incoming neutrinos or anti-neutrinos are produced by weak
decay of pions, so they are almost entirely νµ or νµ, and their energies have to be
inferred from the total energy of the final state. The scattering is now mediated
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by a virtual W+ or W− instead of a virtual γ so that to first order in the weak
interaction the amplitude is similar to (5.74) but

−e
2

q2
−→ 1

8

g2

m 2
W − q2

=
GF√
2

m 2
W

m 2
W +Q2

. (5.91)

If we assume Q2 ≪ m 2
W then instead of (5.82) we have

E ′dσνH,νH
d3p′

=
G 2
F

2

1

4(2π)2EM
L∓
νµW

±,νµ
H (q, P ) , (5.92)

since for neutrino, anti-neutrino beams no spin averaging is necessary as they
have definite helicity. Neglecting mµ we have

L−
νµ =

∑

e spins

u(p)γν(1− γ5)u(p′) u(p′)γµ(1− γ5)u(p)

= tr(γ·p(1− γ5) γν γ·p′(1− γ5) γµ)
= 8(pνp

′
µ + pµp

′
ν − gνµ p·p′ + iǫνµαβp

αp′β) , (5.93)

where ǫ1230 = 1. Similarly

L+
νµ =

∑

e spins

v(p′)γν(1− γ5)v(p) v(p)γµ(1− γ5)v(p′) = L−
µν . (5.94)

With mµ = 0, qνL±
νµ = 0. Instead of (5.81) and (5.83) we now have, if J±µ

h are

the hadronic ∆Q = ±1 weak currents, (J+µ
h )† = J−µ

h ,

W±νµ
H (q, P ) =

1

4π

∑

X

(2π)4δ4(q + P − pX) 〈H,P |J∓ν
h |X〉 〈X|J±µ

h |H,P 〉

=
(

− gνµ + qνqµ

q2

)

W±
1 +

(

P ν − P ·q
q2

qν
)(

P µ − P ·q
q2

qµ
)

W±
2 − 1

2
i ǫνµαβqαPβW

±
3

+ asymptotically unimportant terms . (5.95)

The neglected terms in the last line of (5.95) are present since ∂µJ
±µ
h ∝ mq is

non zero but such contributions are expected to be small and to fall off faster
as Q2, ν → ∞. The additional term, beyond those which appear in (5.81),
proportional to W±

3 is present since the weak current contains both vector and
axial pieces so that the ǫ-tensor is not ruled out by parity. By its definition in
(5.95) W±νµ

H (q, P )† = W±µν
H (q, P ) so that W±

1,2,3 are real. Using 1
2
ǫνµαβǫνµγδ =

−δγαδδβ + δγ
βδδ

α we find, instead of (5.84),

L∓
νµW

±νµ
H (q, P ) = 16p·p′W±

1 + 8(2P ·p′ P ·p−M2p·p′)W±
2 ± 8p·p′ P ·(p+ p′)W±

3

= 8Q2W±
1 + 4M2(4EE ′ −Q2)W±

2 ± 4Q2M(E + E ′)W±
3

∼ 16EM
(

xyW±
1 +

1− y
y

νW±
2 ± x(1− 1

2
y) νW±

3

)

. (5.96)
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Combining (5.96) with (5.92) and following similar steps which led to (5.88) we
find in the limit Q2, ν →∞,

dσνH,νH
dxdy

=
G 2
F

2π
2ME

(

(1− y)F±
2 (x,Q2) + xy2F±

1 (x,Q2)± xy(1− 1
2
y)F±

3 (x,Q2)
)

,

(5.97)
where now

F±
2 (x,Q2) = νW±

2 , F±
1 (x,Q2) =W±

1 , F±
3 (x,Q2) = νW±

3 . (5.98)

More generally (5.97) should contain a factor (1 +Q2/m 2
W )−2.

3.2 Light Cone Variables

In order to analyse the behaviour of W νµ
H (q, P ) defined in (5.81), or W±νµ

H (q, P )
given in (5.95), in the deep inelastic limit, Q2, ν →∞ with x = Q2/2ν = O(1), it
is very convenient to introduce an alternative basis for 4-vectors which give what
are termed light cone variables. For an arbitrary 4-vector V µ we define

V ± = V 0 ± V 3 , V⊥ = (V 1, V 2) , (5.99)

and then the Lorentz invariant scalar product for two 4-vectors V µ and Uµ be-
comes

V ·U = 1
2
(V +U− + V −U+)−V⊥·U⊥ . (5.100)

In this basis therefore g+− = g−+ = 1
2
, g++ = g−− = 0 and gij = −δij for

i, j = 1, 2. Under Lorentz boosts along the 3-direction V ± → e±θV ± while V⊥ is
unchanged.

To discuss W νµ
H (q, P ) and W±νµ

H (q, P ) we choose a frame such that

P⊥ = q⊥ = 0 , (5.101)

(note that P± > 0) and then

Q2 = −q+q− , ν = 1
2
(q+P− + q−P+) . (5.102)

The deep inelastic limit is realised by letting q− →∞ with q+ = O(P+) so that
ν ∼ 1

2
q−P+ and therefore

x ∼ − q
+

P+
, ν ∼ 1

2
q−P+ . (5.103)

In this frame from (5.83)

W+−
H (q, P ) = −W1 +

(

P − P ·q
q2

q
)2

W2

= −W1 +
(

M2 +
ν2

Q2

)

W2 ≡ FL(x,Q
2) . (5.104)
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The other ‘longitudinal’ components are determined by current conservation,

W++
H (q, P ) =

(q+)2

Q2
FL(x,Q

2) , W−−
H (q, P ) =

(q−)2

Q2
FL(x,Q

2) . (5.105)

Since ǫ12+− = 2 and V± = 1
2
V ∓ the ‘transverse’ components of (5.95) are given

by

W±ji
H (q, P ) = δjiW±

1 − i ǫjiF W±
3 , F = 1

2
(q−P+ − q+P−) , (5.106)

where ǫji is the two-dimensional antisymmetric symbol, ǫ12 = 1, and it is easy to
see with (5.102) that

F 2 = ν2 +M2Q2 . (5.107)

In the deep inelastic limit (5.104) becomes

FL(x,Q
2) ∼ −F1(x,Q

2) +
1

2x
F2(x,Q

2) , (5.108)

while (5.106) simplifies to

W±ji
H (q, P ) ∼ δjiF±

1 (x,Q2)− i ǫjiF±
3 (x,Q2) . (5.109)

3.3 Parton Model

As mentioned earlier the parton model was developed prior to the advent of
QCD and depends only on taking seriously the idea that hadrons have point-like
constituents with a wave function which falls off for large momenta as expected
on the basis of non-relativistic intuition for bound states. The leading term in the
deep inelastic limit is then given in (5.81) by letting, in accord with the general
philosophy expressed by (5.60), |X〉 → |qf , k̃〉|X ′〉 where |qf , k̃〉 denotes a single
quark state with flavour index f and 4-momentum k̃.

H

X

q

P

H

q

X

0

P

k

k + q

Parton model for deep inelastic scattering

In this case we may write, neglecting any quark masses,

∑

X

≃
∑

f

∑

X′

1

(2π)3

∫

d4k̃ θ(k̃0)δ(k̃2)
∑

q spins

. (5.110)
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If we rewrite (5.52) as sum over quark flavours,

Jµh =
∑

f

Qf qfγ
µqf , (5.111)

then with the assumptions implied by (5.110), summing over both quarks and
anti-quarks, in (5.81)

W νµ
H (q, P ) ∼

∑

f

∫

d4k tr
(

W νµ
f (q, k)ΓH,f(P, k) +W νµ

f (q, k)ΓH,f(P, k)
)

, (5.112)

where W νµ
f (q, k), W νµ

f (q, k), denotes the relevant contributions when the virtual
photon with momentum q couples to a quark, anti-quark, with flavour f and
momentum k, as given by (5.111),

W νµ
f (q, k) = W µν

f (q, k) = 1
2
Q 2
f γ

νγ·(k + q) γµ δ((k + q)2) , (5.113)

and we define

ΓH,f(P, k)βα =
∑

X′
δ4(P − k − pX′) 〈H,P |qfα|X ′〉 〈X ′|qfβ|H,P 〉 ,

ΓH,f(P, k)βα =
∑

X′
δ4(P − k − pX′) 〈H,P |qfβ|X ′〉 〈X ′|qfα|H,P 〉 , (5.114)

for α, β Dirac spinor indices. If appropriate then the definition of ΓH,f(P, k)
and ΓH,f(P, k) in (5.114) should be averaged over the hadron spins. The expres-
sion (5.112) obtained by applying (5.110) for W νµ

H (q, P ) tacitly assumes that the
quark, or anti-quark, does not interact with the stateX ′ after it couples to the vir-
tual photon and so this is not, by any means, the sole contribution to W νµ

H (q, P ).
Nevertheless, subject to suitable assumptions, (5.112) is the dominant term in
the deep inelastic limit, other contributions being suppressed by inverse powers
of Q2. The critical requirement is that ΓH,f(P, k), and also ΓH,f(P, k), which
depend on the invariants k2, P ·k, fall off sufficiently rapidly so that, assuming
light cone variables with (5.101), the limit q− → ∞, with q+, P± fixed, can be
taken inside the integral. Thus, using (5.103),

(k + q)2 ∼ q−(k+ + q+) ∼ 2ν
(

k+

P+
− x

)

, (5.115)

and hence in (5.113)

δ((k + q)2) ∼ 1

2ν
δ
(

k+

P+
− x

)

. (5.116)

In (5.114) since X ′ is a state with positive energy, with mass2 (P − k)2, we must
have k+/P+ ≤ 1. The Dirac matrices in (5.113) may be simplified with the aid
of

γνγλγµ = sνµλκγκ + iǫνµλκγκγ5 , sνµλκ = gνλgµκ + gνκgµλ − gµνgλκ , (5.117)
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which applied in the present context, since γ·(k + q) ∼ 1
2
q−γ+, leads to

γjγ+γi = γ+(δji + i ǫjiγ5) . (5.118)

Hence, defining

1

2

∫

d4k δ
(

k+

P+
− x

)

tr
(

γ+ΓH,f(P, k)
)

= P+ qf(x) ,

1

2

∫

d4k δ
(

k+

P+
− x

)

tr
(

γ+ΓH,f(P, k)
)

= P+ qf (x) , (5.119)

and applying the version of (5.109) appropriate to deep inelastic electron scat-
tering gives

F1(x,Q
2) ∼ 1

2

∑

f

Q 2
f

(

qf (x) + qf (x)
)

, (5.120)

since replacing γ+ → γ+γ5 in (5.119) gives zero due to parity invariance after
averaging over spins. The result (5.120) demonstrates that F1 depends only
on the dimensionless variable x = Q2/2ν in the deep inelastic limit, which is
known as Bjorken scaling. The quark distribution functions qf (x), qf (x) defined
by (5.119) for x ≥ 0 are positive and may be interpretated as representing a
one-dimensional momentum distribution for quarks, anti-quarks inside a hadron
H . Using crossing symmetry they may be extended to x < 0 since

ΓH,f(P, k) = −ΓH,f (P,−k) ⇒ qf (x) = −qf(−x) . (5.121)

If we apply a similar limit to the ‘longitudinal’ components of W νµ
H (q, P ), as

given by (5.112), then using γ−γ+γ− = 4γ− we may see from (5.113) and (5.116)
that W−−

f (q, k) = O(1) and comparing with (5.104,5.105) and (5.108),

FL(x,Q
2) ∼ 0 ⇒ F2(x,Q

2) ∼ 2xF1(x,Q
2) ∼ x

∑

f

Q 2
f

(

qf (x)+qf (x)
)

. (5.122)

The +− and ++ components of (5.112) are also compatible with the asymp-
totic vanishing of FL(x,Q

2), as required by current conservation, using (γ−)2 =
(γ+)2 = 0 and (k + q)+ ∼ 0 since k+/P+ ∼ x as a consequence of the delta
function in (5.116).

Applying these results to deep inelastic scattering on a proton target, and
restricting to just the u, d, s quarks, which should be valid to a very good ap-
proximation, leads, with an evident notation qu(x) = u(x), qu(x) = u(x) etc,
to

F2,proton(x,Q
2) ∼ x

(

4
9
(u(x) + u(x)) + 1

9
(d(x) + d(x) + s(x) + s(x))

)

. (5.123)

For a neutron target, by isospin rotation u↔ d so that

F2,neutron(x,Q
2) ∼ x

(

4
9
(d(x) + d(x)) + 1

9
(u(x) + u(x) + s(x) + s(x))

)

. (5.124)
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For deep inelastic neutrino, or anti-neutrino, scattering for simplicity we set
the Cabibbo angle to zero and neglect terms involving charm quarks so that
we may restrict the weak currents appearing in (5.95) to just the u, d quark
contributions so that

J+µ
h = uγµ(1− γ5)d , J−µ

h = dγµ(1− γ5)u . (5.125)

With the same assumptions as led to (5.112)

W+νµ
H (q, P ) ∼

∫

d4k tr
(

W νµ
d (q, k)ΓH,d(P, k) +W νµ

u (q, k)ΓH,u(P, k)
)

, (5.126)

where now

W νµ
d (q, k) = W µν

u (q, k) = 1
2
γν(1− γ5) γ·(k + q) γµ(1− γ5) δ((k + q)2) . (5.127)

For the transverse components inside the integral in (5.126) we may write from
(5.118)

γj(1− γ5)γ·(k + q) γi(1− γ5) ∼ q−γ+(δji − i ǫji)(1− γ5) , (5.128)

and hence from (5.109) with identical notation as previously, since also the lon-
gitudinal components give F+

L (x,Q
2) ∼ 0,

1

2x
F+
2 (x,Q2) ∼ F+

1 (x,Q2) ∼ d(x) + u(x) , F+
3 (x,Q2) ∼ 2(d(x)− u(x)) .

(5.129)
Similarly

1

2x
F−
2 (x,Q2) ∼ F−

1 (x,Q2) ∼ u(x) + d(x) , F−
3 (x,Q2) ∼ 2(u(x)− d(x)) .

(5.130)
If we apply (5.129) in the result (5.97) for neutrino scattering we find

dσνH
dxdy

=
G 2
F

π
2ME x

(

d(x) + (1− y)2u(x)
)

, (5.131)

while for anti-neutrino scattering

dσνH
dxdy

=
G 2
F

π
2ME x

(

d(x) + (1− y)2u(x)
)

. (5.132)

To the extent that Q2 ≪M 2
W the total cross sections formed by integrating over

x, y rise linearly with the energy E. On a nuclear target N with equal numbers
of protons and protons then u = d, u = d and σtot, νN/σtot, νN ≥ 1

3
, with equality

if u = d = 0.
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The parton model leads to various relations. For instance, from (5.123,5.124)
and (5.129) for proton, neutron targets in the Bjorken scaling limit

F2,proton(x) + F2,neutron(x) ≥ 5
18

(

F+
2,proton(x) + F+

2,neutron(x)
)

, (5.133)

with equality if s = s = 0 (this is nearly satisfied and is a test of fractionally
charged quarks), and also the exact relation

F2,proton(x)− F2,neutron(x) =
1
6
x(F+

3,neutron(x)− F+
3,proton(x)

)

. (5.134)

3.4 Sum Rules

The quark distribution functions defined in (5.119) obey important sum rules.
With the definition (5.114) and (5.121) it is straightforward to see that

1

2

∫

k+>0
d4k tr

(

γµ(ΓH,f(P, k)− ΓH,f(P, k))
)

= 1
2
〈H,P |qfγµqf |H,P 〉 = P µNH,f ,

(5.135)
where NH,f is the net number of f quarks in the hadron H . If Qf =

∫

d3x qfγ
0qf

then Qf |H,P 〉 = NH,f |H,P 〉. Applying (5.135) for µ = + with (5.119) gives

∫ 1

0
dx
(

qf(x)− qf (x)
)

= NH,f . (5.136)

This gives rise to various sum rules for the measured structure functions in the
Bjorken scaling limit. For instance the Gross-Llewellyn-Smith sum rule is

∫ 1

0
dx
(

F+
3,proton(x,Q

2)+F−
3,proton(x,Q

2)
)

→
Q2→∞

2
∫ 1

0
dx
(

u(x)−u(x)+d(x)−d(x)
)

= 6 .

(5.137)
Since F−

2,proton(x,Q
2) − F+

2,proton(x,Q
2) ∼ 2x(u(x) + d(x) − d(x) − u(x)) we may

derive also the Adler sum rule,

∫ 1

0
dx

1

x

(

F−
2,proton(x,Q

2)− F+
2,proton(x,Q

2)
)

= 2 . (5.138)

This is in fact valid for all Q2, not just as Q2 →∞.

3.5 QCD Corrections

In the derivation of the parton model the quark interacts with the virtual γ, or
virtual W , for large Q2 with a pointlike coupling, not including any corrections
due to strong interactions. In a field theory approach the quark fields in the cur-
rents (5.111) or (5.125) are treated as if they were effectively free, disregarding
QCD effects. This is ultimately justified by asymptotic freedom but a detailed
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analysis shows that there are calculable corrections to Bjorken scaling. The ap-
plication of asymptotic freedom to deep inelastic scattering is not immediately
straightforward since not all momenta are becoming large, the target hadron mo-
mentum P satisfies P 2 =M2 which is fixed and the hadron wave function, which
determines the quark structure functions in the parton model, intrinsically de-
pend on low energy scales (these determine the fall off of Γ(P, k) and Γ(P, k) for
large −k2). It is necessary to introduce a further factorisation assumption, which
can be derived to all orders in the perturbation expansion, in order to justify
using the ideas of asymptotic freedom.

To simplify the discussion we drop spinor and vector indices in a schematic
treatment which can be extended without difficulty to realistic cases. We anal-
yse a generic structure function F (x,Q2), such as might be measured in deep
inelastic scattering. The dominant contributions for Q2 →∞ arise from the ele-
mentary particles of perturbative QCD, quarks and gluons, but QCD corrections
are no longer ignored and F (x,Q2) cannot any more be represented in terms of
solely pointlike couplings to the quarks, as in (5.112) and (5.126). Instead we
assume that the pointlike vertex is replaced by Ci(q, k), where i = qf , qf , G for
a quark, anti-quark, gluon with 4-momentum k coupling to a current J carrying
4-momentum q, q2 = −Q2, and which includes all QCD corrections.

H

X

0

X

00

q

P

H

q

X

0

X

00

P

k

k







quark

gluon

Deep Inelastic Scattering in QCD, quarks and gluons

In the relevant limit Q2 = −q2 →∞, x = Q2/2ν (ν = P ·q), fixed, F (x,Q2) is
assumed to have the form of a sum over contributions for different i = qf , qf , G,

F (x,Q2) ∼
∑

i=qf ,qf ,G

∫

d4k Ci(q, k) Γi(P, k) . (5.139)

Replacing (5.110) in this case

∑

X

=
∑

i=qf ,qf ,G

∑

X′

∑

X′′
, (5.140)

and Ci(q, k) represents the sum over states X ′′ for J(q) + i(k) → X ′′. Since
Ci(q, k) is taken to be a Lorentz scalar it can depend on k·q, Q2 and also k2.
Assuming also that Ci(q, k) is dimensionless then if we consider the limit k2 → 0
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and neglect any quark masses we may write

Ci(q, k)
∣

∣

∣

k2=0
= Ci

( Q2

2k·q ,
Q2

µ2
;αs

)

, (5.141)

where setting k2 = 0 is possible without introducing infra red singularities if
we introduce an arbitrary renormalisation mass scale µ. In (5.141) we have
also displayed the QCD coupling αs, as in (5.39), since Ci may be calculated
perturbatively. To zeroth order X ′′ is just a single quark or gluon, (k + q)2 = 0,
and there is no dependence on µ so that we may take

Cqf
(

x,
Q2

µ2
; 0
)

= Jfδ(1− x) , Cqf

(

x,
Q2

µ2
; 0
)

= J̄fδ(1− x) , (5.142)

where Jf , J̄f are given by the coupling of the the current J to the quark, anti-
quark with flavour f . When q− →∞ for fixed k, using (5.103),

Q2

2k·q ∼ −
q+

k+
∼ x

y
, y =

k+

P+
. (5.143)

In general X ′′ is a positive energy state, with mass2 (k + q)2 > 0, and hence in
(5.141) for Ci to be non zero we must have

(k + q)+ ≥ 0 ⇒ y =
k+

P+
≥ x . (5.144)

If we consider the deep inelastic limit by taking q− →∞, with q, P constrained
by (5.101), in (5.139) then, since in the integral there is a fall off for large −k2,
we can take from (5.141)

Ci(q, k) ∼ Ci
( Q2

2k·q ,
Q2

µ2
;αs

)

. (5.145)

Hence (5.139) reduces to a single variable integral

F (x,Q2) ∼
∑

i=qf ,qf ,G

∫ 1

x

dy

y
Ci
(x

y
,
Q2

µ2
;αs

)

fi(y, µ
2) , (5.146)

where

fi(y, µ
2) = y

∫

d4k δ
(

k+

P+
− y

)

Γi(P, k) , (5.147)

which may be decomposed in terms of quark, anti-quark and gluon contributions
by

fi(y, µ
2) =

(

qf(y, µ
2), qf(y, µ

2), G(y, µ2)
)

, i = qf , qf , G . (5.148)

In obtaining (5.139) and hence (5.146) the dependence on the large momentum
q, and also the particular current J , has been factorised from the details of the
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hadron wave function contained implicitly in Γi(P, k) and fi(y, µ
2), which is non

zero if y ≤ 1. This factorisation, which allows use of the limit (5.145), is only
possible at the expense of introducing a dependence on the renormalisation scale
µ, as shown explicitly in (5.141) and (5.147). If we use just the lowest order
result (5.142) for Cq then we recover the naive parton model result which entails
Bjorken scaling,
∫ 1

x

dy

y
δ
(

1− x
y

)

qf(y) = qf(x) ⇒ F (x,Q2) ∼
∑

f

(

Jfqf (x)+ J̄fqf (x)
)

, (5.149)

since qf must also be supposed to be then independent of µ.
It is important to recognise that F (x,Q2) as a potentially measurable physical

quantity must be independent of µ. In general for vectors Ai, Bi

µ
d

dµ

(

AiBi

)

= 0 ⇒ µ
d

dµ
Ai = −AjPji , µ

d

dµ
Bi = PijBj . (5.150)

The integral convolution in (5.146) can be regarded similarly as a form of ma-
trix multiplication for two µ-dependent factors. The analogous version of the
equations for A,B in (5.150) become integral relations

µ
d

dµ
Ci
(

x,
Q2

µ2
;αs

)

= −
∑

j=qf ,qf ,G

∫ 1

x

dy

y
Cj
(

y,
Q2

µ2
;αs

)

Pji
(x

y
;αs

)

, (5.151)

µ
d

dµ
fi(y, µ

2) =
∑

j=qf ,qf ,G

∫ 1

y

dz

z
Pij
(y

z
;αs

)

fj(z, µ
2) , (5.152)

where Pij(y;αs) is independent of Q2, the particular current J and the hadron
H , and may be determined as an expansion in αs from (5.151). In general all
components of Pij(y;αs) are non zero. The equations (5.151,5.152), referred to
as the Altarelli-Parisi equations, are an extension of the renormalisation group
equations to this case. In (5.151)

µ
d

dµ
= µ

∂

∂µ
+ β(g)

∂

∂g
, (5.153)

or equivalently in (5.151,5.152) we should take αs → αs(µ
2) the running coupling,

which is explicitly given by (5.41) to lowest order. Since µ is arbitrary we may
set µ2 = Q2 so that (5.146) becomes

F (x,Q2) ∼
∑

i=qf ,qf ,G

∫ 1

x

dy

y
Ci
(x

y
, 1;αs(Q

2)
)

fi(y,Q
2) , (5.154)

where from (5.152)

Q
d

dQ
fi(y,Q

2) =
∑

j=qf ,qf ,G

∫ 1

y

dz

z
Pij
(y

z
;αs(Q

2)
)

fj(z, Q
2) . (5.155)
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The results (5.154) and (5.155) then provide the justification for the claim that
asymptotic freedom allows the Q2 dependence of F (x,Q2) to be calculated per-
turbatively in the deep inelastic limit.

The integrals in (5.154) and (5.155) can be disentangled by using moments.
If f(x) is defined on 0 ≤ x ≤ 1 then its moments fN are defined by

∫ 1

0
dxxN−1f(x) = fN , N = 0, 1, 2, . . . . (5.156)

For f(x) = δ(1 − x) then fN = 1 for all N . If g(x) is similarly defined, so
that f(x), g(x) → fN , gN , then, similarly to the usual convolution theorem, the
essential integral becomes a product of moments,

∫ 1

0
dxxN−1

∫ 1

x

dy

y
f(x/y) g(y) =

∫ 1

0

dy

y
g(y)

∫ y

0
dxxN−1 f(x/y) = fNgN . (5.157)

If we therefore let

F (x,Q2)→MN (Q2) , fi(x,Q
2)→ fNi (Q2) , Pij(x;αs(Q

2))→ PN
ij (αs(Q

2)) ,
(5.158)

then (5.154) and (5.155) are equivalent to

MN (Q2) ∼
∑

i=qf ,qf ,G

CN
i (αs(Q

2))ON
i (Q

2) , (5.159)

Q
d

dQ
ON
i (Q

2) =
∑

j=qf ,qf ,G

PN
ij (αs(Q

2))ON
j (Q

2) . (5.160)

(5.160) is basically straightforward to solve for ON
i (Q

2) in terms of ON
i (Q

2
0).

The matrix structure in (5.155) or (5.160) may be simplified by making use of
symmetries. For Nfl flavours, since all quark masses are neglected, the symmetry
group SU(Nfl) for quark flavours may be assumed to restrict Ci and Pij. CG
is an SU(Nfl) singlet while Cqf , Cqf both belong to the product representation

Nfl×Nfl which can be decomposed into just the singlet and adjoint, of dimension
N2

fl − 1, irreducible representations. Furthermore under charge conjugation CG
is invariant while Cqf ↔ Cqf . Applying these symmetry conditions gives for Pij
the general structure

PqfG = PqfG = PqG , PGqf = PGqf = PGq ,

Pqfqf ′ = Pqf qf ′ = PNS
qq δff ′ +

1

Nfl

(

P S
qq − PNS

qq

)

,

Pqfqf ′ = Pqfqf ′ = PNS
qq δff ′ +

1

Nfl

(

P S
qq − PNS

qq

)

. (5.161)

If we consider a structure function FNS
± (x,Q2) which involves non singlet

quantum numbers and ± charge conjugation then, including QCD corrections
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Cqf , Cqf have the form

Cqf
(

x,
Q2

µ2
;αs

)

= ±Cqf
(

x,
Q2

µ2
;αs

)

= Jf C
NS
±
(

x,
Q2

µ2
;αs

)

,
∑

f

Jf = 0 , (5.162)

and (5.154) reduces for this case to

FNS
± (x,Q2) ∼

∫ 1

x

dy

y
CNS

±
(x

y
, 1;αs(Q

2)
)

qNS± (y,Q2) , (5.163)

where
qNS± (y,Q2) =

∑

f

Jf
(

qf(x,Q
2)± qf(x,Q2)

)

. (5.164)

The general result (5.155) now becomes a one-component Q2 evolution equation
for qNS± ,

Q
d

dQ
qNS± (y,Q2) =

∫ 1

y

dz

z
PNS

±
(y

z
;αs(Q

2)
)

qNS± (z, Q2) , (5.165)

with, from (5.161), PNS
± = PNS

qq ± PNS
qq. A similar equation may be derived for

the singlet case for qS− =
∑

f (qf − qf ) while for qS+ =
∑

f(qf + qf) there is a two
component coupled equation involving the gluon distribution function G as well,

Q
d

dQ

(

qS+(y,Q
2)

G(y,Q2)

)

=
∫ 1

y

dz

z

(

P S
+(

y
z
;αs(Q

2)) 2NflPqG(
y
z
;αs(Q

2))
PGq(

y
z
;αs(Q

2)) PGG(
y
z
;αs(Q

2))

)(

qS+(z, Q
2)

G(z, Q2)

)

,

(5.166)
where P S

+ = P S
qq + P S

qq.
To first order in αs calculations of Ci give expressions of the same form for

i = qf , qf so that, assuming (5.142), Cqf = JfCq, Cqf = J̄fCq where

Cq
(

x,
Q2

µ2
;αs

)

= δ(1− x) + αs
2π

pq(x) ln
Q2

µ2
. (5.167)

and hence from (5.163)

FNS
± (x,Q2) ∼ qNS± (x,Q2) + O(αs(Q

2)) . (5.168)

From (5.167) we may determine PNS
± for use in (5.165) giving

PNS
±
(

y;αs(Q
2)
)

=
αs(Q

2)

π
pq(y) . (5.169)

If we define moments of pq(y),

∫ 1

0
dxxN−1pq(x) = −1

4
γNq , (5.170)
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then instead of (5.160), if qNS± (x,Q2)→ ON(Q2),

Q
d

dQ
ON(Q2) = −αs(Q

2)

4π
γNq O

N(Q2) , αs(Q
2) =

4π

β0 ln
Q2

Λ2

, (5.171)

where we exhibit from (5.41) the lowest order expression for the running coupling
αs(Q

2). The solution of (5.171) is then

ON(Q2) =
[

αs(Q
2)

αs(Q
2
0)

]

γNq
2β0

ON(Q2
0) . (5.172)

This result illustrates how QCD gives rise to calculable corrections to Bjorken
scaling, as Q2 → ∞ there remains a dependence on lnQ2. γ1q = 0 so that there
is no such factor for the N = 1 moment but sum rules for the number of quarks
of different flavours, such as the Gross-Llewellyn-Smith sum rule in (5.137), have
corrections on the right hand side proportional to αs(Q

2).
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Part VI

QCD, low energy aspects

1 QCD as the theory of Strong Interactions

The remarkable, and hitherto unprecedented, feature of QCD is that the physical
states bear no direct relation to the quarks and gluons which are present in the
standard perturbative treatment. This is a reflection of the dynamical assump-
tion of confinement so that all physical states are singlets under the colour gauge
group. For a gauge group SU(3)colour and assuming that the quarks q are all
triplets belonging to the 3 representation, while anti-quarks belong to the con-
jugate 3∗ representation, the simplest states are then qq mesons as well as qqq
baryons, although states with a more complicated quark content as well as pure
gluon states are possible. In order to understand what hadron states may occur
and also their interactions it is essential to take account of all symmetries, exact
and approximate, of QCD and their implications. A crucial aspect of QCD as
it is manifested in the real world is that there is an approximate chiral symme-
try such that the ground state or vacuum is not invariant in the limit of exact
symmetry. Such a spontaneously broken symmetry leads to Goldstone bosons
which correspond to pions, and also to the other pseudoscalar mesons, which
are much lighter than other hadrons becoming massless in the symmetry limit.
The essential implication of spontaneously broken chiral symmetry is that the
low energy interactions of pions can be described by a relatively simple effective
lagrangian with only a few parameters which are to be determined by experiment
(and might in principle be calculated from QCD).

1.1 Symmetries of QCD

The initial Lagrangian for QCD is simply

LQCD = −1
4
F µν ·Fµν +

∑

f

qf(iγ
µDµ −mf )qf , (6.1)

with f a label for the different flavours of quarks and where colour indices, as
well as spinor indices, are suppressed. For the most part we restrict our attention
to the two lightest u and d quarks and write

q =
(

u
d

)

, q = (u d ) . (6.2)

If mu = md = m in (6.1) then the relevant part of the Lagrangian is

Lu,d = q(iγµDµ −m 1)q , (6.3)
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which is invariant under

q → Uq , q → qU † if U †U = 1 ⇒ U ∈ U(2) , (6.4)

with U(2) the group of unitary 2 × 2 matrices. The group U(2) may be decom-
posed as

U(2) ≃ SU(2)I × U(1)V /Z2 , Z2 = {1,−1} , (6.5)

and associated with such continuous symmetries there are the conserved colour
singlet currents and associated charges

jµI,i = qγµ 1
2
τiq , Ii =

∫

d3x j0I,i , i = 1, 2, 3 , jµ = qγµq , QV =
∫

d3x j0 .

(6.6)
The operators I correspond to the generators of SU(2)I isospin symmetry while
QV counts the net number of u, d quarks and is the generator of a U(1)V sym-
metry. If we include to s quark as well and assume mu = md = ms then
SU(2)I → SU(3)F which is in fact realised as an approximate symmetry group
of strong interactions, so that particle states of given spin form multiplets which
correspond to representations of SU(3). For any number of quarks with arbitrary
masses mf there is a U(1)V symmetry corresponding to qf → eiαqf , qf → e−iαqf
for every flavour. The associated current is then jµ =

∑

f qfγ
µqf and we may

then identify the singlet charge QV = 3B where B is the baryon number, which
is necessarily conserved in QCD.

If mu = md = 0 then (6.3) becomes

Lu,d = qR iγ
µDµqR + qL iγ

µDµqL , (6.7)

which has an additional so called chiral symmetry due to the fact that the right
handed and left handed chiral projections may be transformed independently,

qR → AqR , qL → BqL , A†A = B†B = 1 , (6.8)

so that the symmetry group becomes

(A,B) ∈ U(2)R × U(2)L . (6.9)

This contains SU(2)I as a so called diagonal subgroup composed of elements
(U, U), i.e A = B = U , with also detU = 1. Initially we restrict our attention
to the group SU(2)R × SU(2)L when detA = detB = 1 and we can write

A = e
1
2
iα·τ , B = e

1
2
iβ·τ with τ the usual Pauli matrices. The corresponding

conserved currents and associated charges are then

jµR,i = qRγ
µqR , QR,i =

∫

d3x j0R,i , jµL,i = qLγ
µqL , QL,i =

∫

d3x j0L,i ,

(6.10)
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which satisfy the algebra for the generators of SU(2)R × SU(2)L,

[QR,i, QR,j ] = iǫijkQR,k , [QL,i, QL,j] = iǫijkQL,k , [QR,i, QL,j ] = 0 .
(6.11)

The isospin charges, as given in (6.6), are now

Ii = QR,i +QL,i , (6.12)

and the associated axial charge is

Q5,i = QR,i −QL,i =
∫

d3x j05,i , jµ5,i = qγµγ5
1
2
τiq . (6.13)

The algebra in (6.11) then becomes

[Ii, Ij] = iǫijkIk , [Ii, Q5,j] = iǫijkQ5,k , [Q5,i, Q5,j] = iǫijkIk . (6.14)

Of course this includes the standard algebra for the isospin charges and also shows
that Q5,i transforms as an isovector. The action on the u, d quark fields is given
by

[Ii, q] = −1
2
τiq , [Ii, q] = q 1

2
τi , [Q5,i, q] = −1

2
τiγ5q , [Q5,i, q] = −qγ5 12τi .

(6.15)
For subsequent application it is useful to define the scalar and pseudoscalar

fields
S = qq , P = qτiγ5q . (6.16)

It is easy to see by considering their commutators with I that S is an isoscalar
while P is an isovector. Under commutation with the axial charges we have

[Q5,i, S] = iPi , [Q5,i, Pj] = −1
2
q{τi, τj}q = −iδijS . (6.17)

In consequence S,P form a four dimensional representation of SU(2)R×SU(2)L.
Although SU(2)R × SU(2)L is a symmetry of the QCD Lagrangian it is not

apparent, unlike SU(2)I isospin, in the multiplets of nearly degenerate particles
found in nature. If it were realised in a conventional manner the action of the
axial charges Q5,i would require there to be particles of opposite parity, although
the same spin, in the multiplets contrary to experiment. It is now clear that the
symmetry is realised in a spontaneously broken fashion so that although, in the
symmetry limit, the vacuum is invariant under isospin or

Ii|0〉 = 0 , (6.18)

it does not form a singlet under SU(2)R × SU(2)L, annihilated by Q5,i as well.
Thus we have

〈0|S|0〉 6= 0 , (6.19)

reflecting the breaking SU(2)R × SU(2)L → SU(2)I by the ground state. As
shown later this leads to three pseudoscalar Goldstone bosons which may be
interpreted as the three pions.
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2 U(1)A Symmetry and θ parameter in QCD

Before discussing further the consequences of the spontaneous breaking of chiral
SU(2)R × SU(2)L symmetry we consider the axial current whose corresponding
charge would appear to generate a U(1)A symmetry whenever one or more quarks
are massless. If mu = md = 0 then in addition to the currents given in (6.6) and
(6.13) there is the singlet current

jµ5 = qγµγ5q , (6.20)

which is formally conserved. The apparent symmetry group, as shown by (6.8)
and (6.9), is then U(2)R × U(2)L ≃ SU(2)R × SU(2)L × U(1)V × U(1)A. In
general if any quark is massless then there is an axial current which is formally
conserved and generates a U(1)A symmetry associated with the massless quark
field being multiplied by eiβγ5 . As a conventional symmetry with an invariant
vacuum state the U(1)A group is unacceptable since it again leads to particle
multiplets with opposite parity. It is also unacceptable even if the symmetry is
just spontaneously broken by the vacuum. For mu = md = 0 there would then
be four massless Goldstone bosons whereas experimentally there are three very
light pions but no corresponding fourth I = 0 pseudoscalar particle.

The situation is saved by the conservation of the singlet axial current jµ5 being
anomalous. By one loop calculations, maintaining carefully SU(3)colour gauge
invariance which is necessary for the consistency and renormalisability of QCD,
we have for a general singlet axial current formed from nF flavours of massless
quarks,

∂µj
µ
5 = nF

~g2

32π2
ǫµνσρFµν ·F σρ . (6.21)

Here g is the QCD coupling and in the present case of considering massless u, d
quarks nF = 2. With appropriate careful definitions of both the left and right
hand sides there are no higher order corrections.

If, for the quark fields appearing in the axial current in (6.20), we let q →
eiβγ5q, q → qeiβγ5 then taking β(x) to be infinitesimal and x-dependent then the
change in the QCD action, by a variant of Noether’s theorem is

δSQCD = −
∫

d4x ∂µβ j
µ
5

=
∫

d4x β∂µj
µ
5 = 2nFβ~Q , (6.22)

where in the second line after integrating by parts we have taken β to be constant
and used the anomalous conservation equation (6.21) where

Q =
g2

64π2

∫

d4x ǫµνσρFµν ·F σρ . (6.23)
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As defined in (6.23) Q is a topological invariant since it is invariant under
smooth changes in the gauge fields. To show this we may consider a variation
δAµ which gives for the field strength δFµν = DµδAν −DνδAµ, where DµδAν =
∂µAν + gAµ×Aν is the covariant derivative for the adjoint gauge fields, and then

δ(ǫµνσρFµν ·F σρ) = 4δ(ǫµνσρDµδAν ·F σρ = ∂µ(4ǫ
µνσρAν ·F σρ) , (6.24)

using the Bianchi identity D[µFσρ] = 0 or ǫµνσρDµFσρ = 0. Hence δQ = 0 since
the variation of the integrand is a total derivative and with suitable boundary
conditions any surface terms vanish. By integrating the variation in (6.24) we
may show that

ǫµνσρFµν ·F σρ = ∂µK
µ , Kµ = 4ǫµνσρ(Aν ·∂σAρ + 1

3
gAν ·Aσ ×Aρ) . (6.25)

Nevertheless this does not show that Q is zero since although the integral in
(6.23) may be reduced to a surface term we may assume that on the surface
|x| → ∞ the gauge field becomes a pure gauge, so that gAµ ∼ h−1∂µh, with
h(x) ∈ SU(3)colour for QCD, and hence Fµν → 0 and Kµ ∼ −2

3
gAν ·Aσ ×Aρ.

With the normalisation in (6.23) and smooth gauge field configurations Q takes
integer values or

Q = k , k ∈ Z , (6.26)

with k depending on the topology of h(x) on the surface at infinity. There are
smooth fields called instantons which give all possible values of k. The existence
of such field configurations which give non zero Q justifies the solution to the
U(1)A problem, which was the presence of four rather than three massless bosons
in the chiral symmetry limit of zero mu, md, through the anomalous conservation
equation (6.21).

In general the QCD action can therefore be modified by an extra term pro-
portional to Q

SQCD → SQCD + ~θQ . (6.27)

Under the U(1)A chiral transformation as in (6.22) we therefore have

θ → θ + 2nFβ . (6.28)

In consequence for any massless quark θ can be transformed to zero by a suitable
U(1)A transformation. However if the quark fields have a general mass term of
the form

Lm = −qLMqR − qRM†qL , (6.29)

withM a complex nF × nF times matrix, then if q → eiβγ5q we must require, as
well as (6.28),

M→ e−2iβM . (6.30)

Hence
θ + arg detM (6.31)
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is invariant. The extra term in (6.27) cannot be then set to zero, and will in
general be generated when the quark mass matrixM is diagonalised in terms of
real positive quark masses mf . This θ term, if non zero, violates both P and T
and experimentally it is necessary that θ be very small. Although there are some
theoretical explanations involving additional particles called axions for this they
are not wholly plausible and have not been tested in terms of other predictions.

3 Pions as Goldstone Bosons

In any quantum field theory when a continuous symmetry group G is sponta-
neously broken to a subgroup H by the vaccuum state there are dimG− dimH
massless Goldstone bosons. In the present context we take, for QCD, G =
SU(2)R × SU(2)L and H = SU(2)I so that the general theorem requires three
massless bosons. In the real world the u and d quarks are very light, with masses
a few MeV, ≪ Λ the QCD scale. In this case G = SU(2)R× SU(2)L is not quite
exact but there should remain three nearly massless bosons which are identified
with the pions. With more approximation we may consider the light u, d, s quarks
and take G = SU(3)R × SU(3)L and H = SU(2)F and the eight pseudoscalar
mesons are interpreted as the required nearly massless Goldstone bosons.

Initially at least it is simplest to consider exact chiral symmetry with massless
u, d quarks. The axial current jµ5,i is then conserved and we may write the second
equation in (6.17) in the form

[Q5,i, Pj(0)] =
∫

V
d3x [j05,i(x), Pj(0)] = −iδijS(0) , (6.32)

where V may be restricted to some finite volume since, for large |x|, the commu-
tator [j05,i(x), Pj(0)] = 0 since then x2 < 0 and also, as a result of the conservation
of jµ5,i, the left hand side is independent of x0. Alternatively, neglecting possible
terms involving derivatives of δ3(x) we must have the local equation,

[jµ5,i(x), Pj(0)]|x0=0 = −iδijδ3(x)S(0) . (6.33)

If we now assume, following (6.19),

〈0|S|0〉 = −v 6= 0 , (6.34)

By virtue of the general proof of the Goldstone theorem there must exist three
zero mass bosons |πi(p)〉, p2 = 0, such that

〈0|jµ5,i(0)|πk(p)〉 = iδikFπp
µ , 〈πk(p)|Pj(0)|0〉 = δkjZπ , (6.35)

with
FπZπ = v . (6.36)
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Since jµ5,i is an axial current then |πk(p)〉 must correspond to a pseudoscalar
particle. Thus the zero mass bosons have exactly the properties of pions and the
usual charged particle states are given by

|π±(p)〉 = 1√
2

(

|π1(p)〉 ± i|π2(p)〉
)

, |π0(p)〉 = |π3(p)〉 . (6.37)

The coefficient Fπ appearing in (6.35) is exactly the quantity which determines
the decay rate π± → µν so that it is measured to be Fπ = 92 MeV.

If mu, md 6= 0 then SU(2)R × SU(2)L is non longer an exact symmetry and
the pion Goldstone bosons need no longer be massless but we may determine m2

π

to first order in mu, md. From (5.2) and (6.13), with q, q as in (6.2), we have

∂µj
µ
5,i =

1
2
q{τi,M}iγ5q = 1

2
(mu +md)qτiiγ5q +

1
2
(mu −md)δi3 qiγ5q , (6.38)

where

M =
(

mu 0
0 md

)

= 1
2
(mu +md)1 +

1
2
(mu −md)τ3 . (6.39)

Taking the divergence of the axial current matrix element in (6.35) now gives,
using the definitions in (6.16),

〈0|∂µjµ5,i(0)|πk(p)〉 = δikFπm
2
π = 1

2
(mu +md)〈0|Pi(0)|πk(p)〉 = 1

2
(mu +md)δikZπ ,

(6.40)
where in 〈0|Pi(0)|πk(p)〉 the pion state may be identified with that of the massless
theory and we have used (6.35) as well as 〈0|qiγ5q|πk(p)〉 = 0. Hence, using (6.36),
we have

m2
π = 1

2
(mu +md)

v

F 2
π

. (6.41)

Even though mu/md may not be close to 1 the pion masses for π±, π0 are the
same so long as mu, md are small.

Treating the pion as a Goldstone boson for spontaneously broken chiral sym-
metry leads to predictions for low energy processes involving pions. As an illus-
tration we may consider states |a〉, |b〉 and then, with pb − pa = q, we have for
general q2

〈b|jµ5,i|a〉 = 〈b|a, πi(q)〉
qµ

q2
Fπ +Nµ

b,ai . (6.42)

The first term on the right hand side, involving a pole at q2 = 0 which arises from
the pion propagator i/q2, represents the contribution of the pion produced from
the vacuum, with amplitude Fπ, by the axial current, since according to (6.35)
we have 〈πj(q)|jµ5,i|0〉 = −iδjiFπqµ.

a b a b

j

�

5;i

j

�

5;i

q

�iF

�

q

�

i

q

2

non pole

contributions

Pion pole contribution to axial current matrix elements
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In the chiral symmetry limit the axial current is conserved so that qµ〈b|jµ5,i|a〉 =
0. Hence

〈b|a, πi(q)〉 = −
1

Fπ
qµN

µ
b,ai , (6.43)

which ensures that the amplitude for a + π → b vanishes in the pion low energy
limit, q → 0, unless there are some singularities present in pµN

µ
b,ai. These can

only arise due to known couplings of pions to the external particles.

3.1 Goldberger-Treiman Relation

An important result, which connects Fπ with the pion-nucleon coupling constant,
is called the Golberger-Treiman relation and was derived well before its connec-
tion with spontaneously broken chiral symmetry was understood. It is obtained
by considering the matrix element of the ∆Q = 1 axial current between a neu-
tron and a proton state. Using parity this has the general form (there could also
be a term σµνγ5qνgT (q

2), σµν = 1
4
i[γµ, γν ], on the right hand side but there are

arguments why this should be zero and it is irrelevant in the following discussion)

〈p(p′s′)|(jµ5,1(0) + ijµ5,2(0))|n(ps)〉
= up(p

′s′)
(

γµγ5gA(q
2) + γ5q

µgP (q
2)
)

un(ps) , q = p′ − p . (6.44)

This matrix element is part of the amplitude for the β-decay of a neutron, for
which q2 ≈ 0, and the experimental decay rate determines

gA = gA(0) = 1.27 . (6.45)

If we assume chiral symmetry then imposing conservation of the axial current
requires

qµ〈p(p′s′)|(jµ5,1(0) + ijµ5,2(0))|n(ps)〉 = 0 , (6.46)

which leads to, assuming Mn =Mp =M ,

2MgA(q
2) + q2gP (q

2) = 0 . (6.47)

Given that gA(0) 6= 0 it follows that gP (q
2) must contain a pole at q2 = 0 which is

a reflection of the contribution of the zero mass pion. The residue of the pion pole,
apart from a factor 〈π+(q)|(jµ5,1(0) + ijµ5,2(0))|0〉 = −

√
2iFπq

µ, can be calculated
in terms of the coupling constant for π+ + n → p. The precise definition of the
pion nucleon coupling constant, which can be measured through pion nucleon
scattering, can be summarised in terms of an interaction lagrangian for nucleon
spinor and pion fields given by

LI = gπNNNiγ5τ ·πN =
√
2gπNNpiγ5nπ

+ + . . . , N =
(

p
n

)

. (6.48)
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Using this the pion pole contribution to gP (q
2) may be directly calculated

gP (q
2)
∣

∣

∣

pion pole
= −2gπNN

1

q2
Fπ , (6.49)

and although this is need not be the complete form for gP (q
2) the remaining parts

are non singular at q2 = 0. Combining (6.47) and (6.49) with (6.45), in a similar
fashion to the result (6.43), finally gives the Goldberger-Treiman relation

gAM = gπNNFπ , (6.50)

which is an exact relation in the chiral symmetry limit, with the pion as a gold-
stone boson. Taking gπNN = 12.7, Fπ = 92 MeV and M = 940 MeV as well as
(6.45) in the real world it is accurate to 2-3%.

4 Effective Lagrangians

The most efficient and, in terms of current understanding of quantum field theory,
natural method for deriving the consequences of spontaneously broken chiral
symmetry is in terms of an effective Lagrangian which determines an effective
quantum field theory which is an approximation to a more fundamental theory,
valid for a certain range of energies, from which physical results may be more
readily be calculated. Although QCD may be regarded as a fundamental theory
it does not directly describe the appropriate physical degrees of freedom at low
energies. The idea of an effective field theory is to construct a field theory in terms
of the appropriate degrees of freedom at low energies which for QCD are the pion
fields. Using the symmetries of the underlying fundamental theory (or experiment
if that is unknown) the effective field theory should be determined in terms of just
a few parameters or couplings. A quantum field theory allows the constraints of
locality, unitarity and Lorentz invariance to be easily imposed. Since an effective
field theory is constructed to apply to only a restricted energy range there is
always, at least implicitly, a cut off so they need not be renormalisable but, as will
become more apparent in the case of chiral lagrangians for pions, they still make
sense in terms of an expansion in the energy of the processes described. From this
point of view the original Fermi theory of weak interactions is an effective field
theory where calculations to first order in GF are sufficient at low energies. In this
case the characteristic energy or mass scale is set by mW , mZ which determines
the cut off on the validity of the Fermi theory. For QCD the natural energy scale
is O(1) GeV, so that the low energy effective theory is appropriate for energies
which are small in comparison with this.

Considering again just the case of massless u, d quarks so that QCD is in-
variant under the chiral symmetry G = SU(2)R × SU(2)L then an arbitrary
spontaneous symmetry breakdown by the vacuum may be parameterised by

〈0|qLfqRf |0〉 = −V̊ff , (6.51)
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with notation as in (6.2). By virtue of the action of the chiral symmetry group
in (6.8) any vacua such that

V̊ ′ = AV̊ B−1 , (A,B) ∈ SU(2)R × SU(2)L , (6.52)

define equivalent theories and the unbroken symmetry group H is defined by

V̊ = AV̊ B−1 , (A,B) ∈ H . (6.53)

The set of equivalent vacua V0 is then identified with the coset G/H or

V0 = {V̊ : V̊ ∼ AV̊ B−1} ≃ SU(2)R × SU(2)L/H . (6.54)

In general we have

V̊ ∼
(

v1 0
0 v2

)

, v1, v2 real , v1, v2 > 0 , (6.55)

so that V0 is specified by v1, v2. In order to ensure that H = SU(2)I we must
require

v1 = v2 = v , (6.56)

and assuming this then for the general case V̊ = vŮ , Ů ∈ SU(2). At the
particular point Ů = 1 (6.51) is identical with (6.34).

For any V̊ ∈ V0 there is an associated quantum field theory with a unique
vacuum state |0〉 such that (6.51) holds. Any theories such that the V̊ s belong to
the same coset are physically equivalent. The particle states in the quantum field
theory are obtained by the action of field operators on the vacuum. Classically if
the fluctuations of the field are restricted to ground states associated with points
in the coset G/H then in the long wavelength limit the energy tends to zero.
When these are quantised they correspond to the massless Goldstone bosons.
The full implications of spontaneously broken symmetry for the interactions of
Goldstone bosons are obtained by considering a low energy effective theory with
fields belonging to G/H which is invariant under G. When the fields are constant
they represent a point on the vacuum manifold V0 and the particles present after
quantisation are the Goldstone bosons.

For the case of QCD when G = SU(2)R × SU(2)K and H = SU(2)I , so
that the coset of equivalent vacua V0 is specified just by v, the elements of the
coset may be identified with the unitary matrices Ů . The effective low energy
field theory is then described in terms of pion fields π(x) so that U(π) ∈ SU(2)
represents a parameterisation of an arbitrary SU(2) matrix (or equivalently of the
three dimensional sphere S3). It is convenient to set U(0) = 1 and one particular
choice is,

U(π) = eiπ·τ/F , (6.57)

where, since the pion field π is conventionally assumed to have the dimensions of
energy, F is a suitable energy scale. In any parameterisation then for small π we
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require U(π) ≈ 1 + iπ·τ/F . For any (A,B) ∈ SU(2)R × SU(2)L we may define a
nonlinear realisation acting on the pion fields by

U(π)→ U(π′) = AU(π)B−1 ⇒ π −→
(A,B)

π′ . (6.58)

The construction of a low energy effective lagrangian for QCD becomes straight-
forward by identifying U(π) as the relevant degrees of freedom at low energies and
the consequences of chiral SU(2)R × SU(2)L symmetry are realised by imposing
invariance under (6.58). It is easy to see that there is no possibility of construct-
ing an invariant from U(π) with no derivatives but that there is a unique Lorentz
invariant form with two derivatives

Lπ = 1
4
F 2tr(∂µU(π)†∂µU(π)) =

1
2
gij(π)∂

µπi∂µπj , (6.59)

where the normalisation has been chosen to ensure that the O(π2) term in Lπ
has the conventional form for free massless fields, so that gij(0) = δij . Lπ may
also be regarded as defining a field theory for fields π ∈ S3 with a metric gij(π).

The Lagrangian Lπ given by (6.59) should be regarded as the leading term
in an expansion in derivatives, at the next order there are three possible terms
with four derivatives. However (6.59) is sufficient to determine pionic amplitudes
to O(E2), where E is a typical pion energy, E ≪ 1 GeV. Schematically Lπ
has the form Lπ =

∑

n(∂π)
2(π/F )n. For any Feynman diagram each vertex,

which involves two derivatives contributes terms of O(E2) whilst each internal
line involving a massless propagator gives a contribution which is O(E−2) and
each loop integral d4ℓ over a loop momentum ℓ generates a potential O(E4) factor.
For a Feynman diagram the overall contribution for V vertices, I internal lines
and L loops is then

E2V−2I+4L = E2+2L , using V + L− I = 1 . (6.60)

Considering only tree Feynman diagrams, L = 0, is then sufficient to O(E2).
One loop diagrams, along with the four derivative terms at the next order in
an expansion of the effective action, are necessary to consider O(E4). In any
loop integration a cut off is necessary to ensure finiteness. The effective theory
described by (6.59) is a non renormalisable quantum field theory but this does
not matter when the theory is restricted to be applicable only at low energies.
At one loop, there may be divergent terms which are quadratic or quartic in the
cut off but these can be absorbed in a modification of the coefficient F appearing
in (6.59).

To understand the low energy theory further we consider and infinitesimal
SU(2)R × SU(2)L transformation given by

A = 1 + 1
2
i(δα + δβ)·τ , B = 1 + 1

2
i(δα− δβ)·τ , (6.61)
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so that δα corresponds to an infinitesimal SU(2)I transformation. In QCD, where
the quark fields transform as in (6.2), then if δα, δβ are taken to be x-dependent
we may define the isopin and associated axial currents by

δSQCD = −
∫

d4x
(

∂µδαi j
µ
I,i + ∂µδβi j

µ
5,i

)

. (6.62)

In the corresponding low energy theory applying (6.61) in (6.58) gives

δU = 1
2
i
(

δα·[τ, U ] + δβ·{τ, U}
)

, (6.63)

and, when δα, δβ are x-dependent, we may define vector, axial currents by

δSπ = −
∫

d4x
(

∂µδα·Vµ + ∂µδβ·Aµ
)

, Sπ =
∫

d4xLπ . (6.64)

The currents V µ
i , A

µ
i then directly correspond to the quark currents jµI,i, j

µ
5,i in the

low energy effective theory. By using (6.61) with (6.59) we may calculate their
explicit form,

Vµ = 1
4
iF 2 tr

(

τ(∂µU U † + ∂µU † U)
)

= π × ∂µπ + . . . ,

Aµ = 1
4
iF 2 tr

(

τ(∂µU U † − ∂µU † U)
)

= −F∂µπ + . . . , (6.65)

where we have displayed the lowest order terms in an expansion in the pion fields.
It is crucial to note that Aµ is has a term which is linear in the pion fields unlike
Vµ for which the leading term is quadratic. In the quantum field theory then in
a perturbative treatment we expand about a theory of free massless pions where
the pion states are |πi(p)〉, i = 1, 2, 3, p2 = 0, and the pion field π(x) satisfies

〈0|πi(x)|πj(p)〉 = δije
−ip·x . (6.66)

With the axial current given by (6.65) then, neglecting any loops, only the linear
term in the pion fields contributes to the corresponding matrix element giving

〈0|Aµi (0)|πj(p)〉 = iF δijp
µ . (6.67)

Comparing with (6.35) we must therefore take

F = Fπ (6.68)

so that the single parameter in the lowest order term in a derivative expansion
of the effective action, given by (6.59), is determined.

Besides the currents given by (6.65) the effective theory posesses an additional
topological current

V µ =
1

24π2
ǫµαβγtr(U−1∂αU U

−1∂βU U
−1∂γU) . (6.69)
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This may be seen to be conserved identically, ∂µV
µ = 0, independent of the

equations of motion. Under parity, since the pion is pseudoscalar, we should take

U(π(x)) −→
P

U(π(xP ))
−1 , xP = (x0,−x) , (6.70)

so that V µ is a vector current, V µ(x) −→
P

(V 0(xP ),−V(xP )). This current may

be identified with that associated with the U(1)V symmetry in QCD leading to
the conservation of baryon number. The coefficient in (6.69) is chosen so that
the associated charge takes integer values for fields obeying suitable boundary
conditions.

5 Electromagnetic Interactions, π0 → γγ decay

The simple effective lagrangian for low energy pion amplitudes can be extended
in various ways. An important and non trivial task is to extend it to include
electromagnetic interactions involving the photon field Aµ. For pions we have
Q = I3 so that the gauge group U(1)Q is identified with the U(1) subgroup
of SU(2)I generated by I3. Gauge transformations are, from (6.58), then U →
e

1
2
iλτ3Ue−

1
2
iλτ3 as well Aµ → Aµ+∂µλ/e. As usual the effective lagrangian such as

(6.59) is made gauge invariant by replacing derivatives by covariant derivatives,

∂µU −→ DµU = ∂µU − 1
2
ieAµ[τ3, U ] . (6.71)

However the interactions obtained in this way do not describe the decay π0 → γγ,
which is the dominant decay of the π0. By parity the simplest amplitude for this
process must involve an ǫ-tensor which cannot arise from any lagrangian obtained
through the replacement (6.71).

The solution is another consequence of anomalies in the conservation of axial
currents constructed from fermions in quantum field theory. With the quarks
coupled to the electromagnetic field the current jµ5,3, defined in (6.13), is no longer
conserved when mu = md = 0 but

∂µj
µ
5,3 =

e2

32π2
S ǫαβγδFαβFγδ , Fαβ = ∂αAβ − ∂βAα . (6.72)

To derive this it is sufficient to consider just the triangle diagram formed from
a quark loop coupled to two photons through the usual electromagnetic current
qQγµq and also jµ5,3 = q 1

2
τ3γ

µγ5q,

Q

Q

�

3

j

�

5;3

Triangle Graph Giving the Axial Anomaly
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The coefficient S in (6.72) is given by

S = tr(τ3Q
2) , (6.73)

and it can be shown that it is not affected by QCD corrections. For the case here
of just u, d quarks

Q2 =
( 4

9
0

0 1
9

)

⇒ S = 3× 1
3
= 1 , (6.74)

where the factor 3 comes from three colours.
Corresponding to a chiral transformation as in (6.8) with A = B−1 = e

1
2
iτ3β

we have, in a similar fashion to (6.22),

δSQCD = −
∫

d4x ∂µβ j
µ
5,3 =

e2

32π2
S
∫

d4x β ǫαβγδFαβFγδ . (6.75)

The anomaly may then be incorporated in the low energy effective theory by
modifying the action so that it satisfies

δSπ =
e2

32π2
S
∫

d4x β ǫαβγδFαβFγδ , (6.76)

when
δU(π) = iβ{1

2
τ3, U(π)} . (6.77)

The desired result may be achieved by adding to the low energy effective theory
and additional anomaly piece

Lanomaly = F (π)
e2

32π2
S ǫαβγδFαβFγδ , (6.78)

where under (6.77) we require

δF (π) = β . (6.79)

For simplicity we consider only the lowest order contribution to F (π). Using
U(π) ≈ 1 + iπ·τ/F then (6.77) gives δπi = βFδi3 + . . . so that we may take

F (π) =
1

F
π3 + . . . . (6.80)

For π0 → γγ decay the amplitude to O(e2) may then be taken as

M = 〈γ(q1ε1)γ(q2ε2)|Lanomaly(0)|π0(p)〉 , (6.81)

where ε1, ε2 are the polarisation vectors of the decay photons and

q21 = q22 = 0 , p2 = m2
π , p = q1 + q2 . (6.82)
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Using (6.78) and (6.80) with (6.68) we may obtain

M = 8
1

Fπ

e2

32π2
S ǫαβγδε∗1αq1βε

∗
2γq2δ . (6.83)

The decay rate is then given by, with an extra factor 1
2
since the two final photons

are identical bosons,

Γπ0→γγ =
1

2

1

2mπ

∑

q1ε1,q2ε2

δ4(p− q1 − q2)|M|2 ,
∑

q1,q2

=
∫

d3q1
(2π)32q01

d3q2
(2π)32q02

.

(6.84)
Since, summing over the photon spins we may take

∑

ε εµε
∗
ν → −gµν and in

contracting ǫ-tensors ǫµναβǫµνγδ = −2(δαγδβδ − δαδδβγ), we have, using also (6.82),

∑

ε1,ε2

|ǫαβγδε∗1αq1βε∗2γq2δ|2 = 2(q1·q2)2 , (6.85)

so that, since 2q1·q2 = m2
π,

∑

ε1,ε2

|M|2 = α2m4
π

2π2F 2
π

S2 , α =
e2

4π
. (6.86)

The remaining phase space integration is easy since

∫

d3q1
|q1|

d3q2
|q2|

δ4(p− q1 − q2) = 2π , (6.87)

and hence finally

Γπ0→γγ =
α2m3

π

64π3F 2
π

S2 . (6.88)

This is in agreement with experiment for S = 1.
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