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Part 1
PCT - Conventions and Results

1 Dirac Equation and y-Matrices

The y-matrices are defined by

{(" ) =29"1 (1.1)
where
1 0 0 0
0 -1 0 0
p
g 00 -1 0 |~ (1.2)
00 0 -1

and if y* = (7%, v) then it is usual to require for the hermitian conjugate matrices
AT =4 and Af = —~. (1.3)

This condition ensures that the Dirac Hamiltonian Hp = —ia.V 4+ fm, where
B =" a =%, is hermitian and (1.3) can alternatively be written as

Pyt =" (1.4)

The matrix 75 is defined by
=0, () =T, Y = (1.5)

and with (1.3) 75' = v5. The irreducible representations of (1.1) are given by

4 x 4 matrices and the representation is unique in the sense that if v*,~v* both

satisfy (1.1) then v# = Sy*S~! for some S and if v* = Sy*S~! then S = AI.
The Dirac equation for a spinor field v is

(170, — m) () = 0 . (16)

and with ¢ = ¢4
D(x) (—ify“%u — m) =0. (1.7)
The expansion of the quantum field which is a solution of eq.(1.6) has the form
Y(x) =) [a(p, Nu(p, Ne P+ b(p, \)Tv(p, )\)eip'm} : (1.8)

DA

if u(p,\) and v(p, ) are 4 component spinors satisfying (v.p — m)u(p,A) = 0
and (v.p+m)v(p,\) =0, with A = i% a spin label and p* = (F,p) where
E = /p2+ m? so that p> = m?. Thus u(p, \)e P and v(p, \)e®P* are positive
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and negative energy solutions of the Dirac equation eq.(1.6), being eigenfunctions
of Hp with eigenvalues F and —FE. In the summation

3 oot

means — .
(2m)32F

p

We will also use the notation d,, for (27)*2Ed*(p — p’) so that

2O [ (¥) = F(p) - (1.9)

The standard Bjorken-Drell conventions for y-matrices are

7°=<é_0]>’ 7:<_Oag>’ 75:<?é>’ (1.10)

although physical results are of course independent of any particular representa-
tion. In the conventions of eq.(1.10) the spinor u(p, \) can be written as

u(p,)\):\/m< S ) (1.11)

E+mAX

1
for x, a two component spinor and we may also take x, = (O)’ X 1= ((1])
2 2

The spinor v(p, A) is associated with the anti-particles and will be discussed later
when we consider charge conjugation.

2 Parity Inversion

2.1 Boson Fields

The operation of parity inversion, P, is associated with the spatial map * — xp
where if z# = (x9,X) then 2 = (29, —x). If ¢(x) is a classical scalar field or the
wave function of an associated spinless particle then the operation of parity on ¢
is defined by the transformation

¢(x) — npd(zp) , (1.12)

where np is the intrinsic parity of the field or particle. Since repeating the parity
operation leaves x unchanged we would expect to have P? = 1. For a classical
real field ¢ this means that np = +1. However in a quantum theory, since a
complex wave function is arbitrary up to a complex phase, we need only require
that |np| = 1.

In the case of a quantum field theory P is represented by a unitary operator
P acting on the Fock space of particle states. For a quantum boson field ¢(x)
the parity transformation becomes

Po(x) P~ = npd(ap) . (1.13)
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In terms of momentum modes a scalar field ¢, representing a spinless charged
particle, has the expansion

o(z) =3 [alp)e ™" + b(p)Te™] (1.14)

p

and eq.(1.13) becomes

> {]3@( )Pl 4 Py(p) Pl x} > {npa —tpr +77pb(p)Teip‘”P} :
p

p

(1.15)
Now p.xp = pp.z where p» = (E, —p) and, taking into account the invariance of
the p-summation under parity, we can write the right side of eq.(1.15) as

> [npa(pp)e ™" + npb(pp)e™] .

p

Equating this with the left side of eq.(1.15) we conclude that

Pa(p)P~" = npa(pp) ,  Pb(p)'P™" = npb(pp)" . (1.16)

If we assume also that the vacuum is parity invariant, that is P|0) = |0), the
effect of parity on a momentum state is therefore

Plp) = Pa(p)'0) = Pa(p)'P~110) = nFa(pp)'0) = 17 pp) , (1.17)

that is P reflects the spatial momentum and multiplies the state by the intrinsic
parity of the boson. If the field ¢ is hermitian, so that a(p) = b(p), then eq.(1.13)
requires np to be real and hence np = +1.

In a general theory P2 # 1, so that np need not be £1, but it should be
expressible in terms of other conserved quantities in the theory. For example
P2 = ¢29Q where Q is the electric charge, but then we may redefine Pe=iaQ _y p
so that then P? =1 and therefore np = £1.

We normally expect parity to commute with internal symmetry transforma-
tions so the above results remain true for fields with internal symmetry indices.
The isovector pion field 74, o = 1,2, 3 for example obeys Py (x)P~' = —m,(zp)
because the pion has negative intrinsic parity.

2.2 Dirac Field

In determining the parity transformation properties of the Dirac spinor wave-
function we require that the transformed wave-function must also satisfy the
Dirac equation (1.6). It is not enough simply to invert the spatial coordinates x
of the field ¥ (z). Instead we have under parity

U(@) — e’ (z) (@) = 2"(p) (1.18)



where the matrix 7° is introduced in order to satisfy the requirement that ¢ (x)
should satisfy the Dirac equation. To show this we have from (1.6) letting x —
—x, since Y9, = 7°0, + -V,

(woat —iy-V — m) Y(rp)=0. (1.19)

Now since 7°(7%,7)7° = (4%, —v) and (7°)? = I, or (7°)~1 =Y, it is straightfor-
ward to see that, with the definition of ¥ in (1.18),

(79, — m) " (2) = 0 | (1.20)

as required.
The Dirac quantum field is therefore assumed to transform under parity as

N N A

P(z) Pt =npyd(zp),  Po(z)Pt =npd(ap)’ . (1.21)

It follows that under P we have

Yle)p(x)  —  ep)p(ep)  scalar,

Y(@)ys(z) — —Y(xp)ys(zp) pseudoscalar , (1.22)
b(@)y"(z) = Y(xp)y’¥(xp) charge density '
(x)y(r) — —(xp)yp(zp) current density .

The transformation properties of other bi-linears in 1 and v can be worked out
in a similar fashion.

2.3 Transformation of States Under P

Under the parity transformation the positive energy Dirac wave-function of mo-
mentum p transforms as

u(p, e~ = A u(p, e P = u(pp, \)e Pr (1.23)

assuming
’You(pv )‘) = u(va )‘) ’ (124)

which is in accord with eq.(1.11). That is the spatial part of the momentum has
been reflected but the spin state has been left unaltered which is just what is
expected from a parity transformation. By following a similar argument as for
the bosonic field and using eq.(1.24) we see that

Pa(p, \)P™" = npa(pp, ) , (1.25)
and (again assuming invariance of the vacuum under parity) we obtain
Plp, X) = nFlpp, A) . (1.26)
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where |p, \) = a(p, \)T|0), which is what would have been expected on the basis
of the wave-function analysis above. The transformation of b(p, A) and hence the
anti-particle states is discussed later when the spinor v(p, A) has been defined in
detail.

For a particle with arbitrary spin we may also assume that the single particle
states transform under parity according to eq.(1.26). Since PJP~! =] the phase
factor np must be independent of A.

3 Charge Conjugation

3.1 Scalar Field

A scalar quantum field ¢(x) has the decomposition in terms of creation and
annihilation operators

o(z) =3 [alk)e ™ + b(k)fer] | (1.27)

where a(k) annihilates particles and b(k) annihilates anti-particles of momentum
k. Charge conjugation C' interchanges particles and anti-particles. Acting on the
basic Fock space we require a unitary transformation C such that for a general
single particle state C |k, particle) = ncf|k, anti-particle), where 7¢ is a phase fac-
tor associated with the particle. This is achieved by requiring C0) = |0) and
Ca(k)C~' = neb(k). Assuming also Cb(k)C—* = na(k) then

~

Co(x)C™" = ned(x)' . (1.28)

We have also ) )
Co(2)'C! = g olx) (1.20)

If ¢ is hermitian, ¢ = ¢, then nc must be real and so ¢ = 1. For non hermitian
®, nc in (1.28) is arbitrary since if no = €*# then we may take e=#¢ — ¢ so that
now 7n¢ — 1.

The possibility that a 4+ sign may be involved in the charge conjugation
properties of neutral fields is non-trivial and of physical significance. The elec-
tromagnetic 4-vector field A, (z) obeys

CA(z)C™' = —A,(z) , (1.30)

which is necessary to ensure that electromagnetic interactions are invariant under
C. An N photon state therefore has charge conjugation (—1)" and a 7° can decay
to two photons but not three, assuming charge conjugation is an exact symmetry
of electromagnetic and strong interactions.



3.2 Dirac Field

In the same way as for the charged scalar field the charge conjugation operation
on the Dirac field interchanges particles and anti-particles. The transformation
therefore involves the hermitian conjugation of the field. The field after charge
conjugation must however satisfy the Dirac equation. We use the following no-
tational conventions:

o ey
PO ) | T | A
(o) (o)
and
W) = (@), (o), dala)!, ) (182

and so Y (x) = (z)°.

Under charge conjugation we therefore assume

Y(x) — nev(z) , ¥°(z) = CY(a)" (1.33)

with ¢ denoting transpose. The matrix C'is then chosen to ensure ¥ (z) satisfies
the Dirac equation. From the transpose of (1.7) we have

(i) = m) () =0, (1.34)
and so
(—iCc(y)'C19, —m) ¥C(x) =0 . (1.35)
Assuming C' satisfies
C(M)'C™H ==t (1.36)
then from (1.35)
(170, — m) v°(z) = 0, (1.37)

as required. The existence of a matrix C' such that (1.36) holds is guaranteed
since —(7*)" also obey the essential definition of gamma matrices in eq.(1.1).
From (1.36) we can further straightforwardly obtain

C* A C™ = =[y"7"], CyWC =7, CH')C =9y (1.38)

Taking the transpose of (1.36) and then eliminating (y#)! gives C~1y#Ct =
C7IAHC or Y*CTC~! = C'C~4* which requires C'C~! oc I. Hence we must have
C' = +C. The sign is further determined since I'* = (I,7*, 2[v*,7"], 775, 75)
form a basis for 4 x 4 matrices and in order for I'AC' to give 10 symmetric and 6
antisymmetric matrices we must then require

C'=-C. (1.39)



By taking the hermitian conjugate of (1.36) and using the hermeticity conditions
(1.3) we find O~ (y#)!CT = —4# and then using (y*)! = —C~4*C from (1.36)
we may find (COT)"I4*CCT = 4* or CCT commutes with #. This requires
that CCT is proportional to the identity and, with a choice of normalisation, we

therefore have
ct=c. (1.40)

In the Bjorken and Drell representation of (1.10) we may find an explicit form
for C' by taking

0 o
_ A 0.2 2
C=ivy = (i@ 0 ) , (1.41)
since for the standard Pauli matrices ioyotioy = o and (igy)*> = —I. For this

particular representation it is easy to see that (1.39) and (1.40) are satisfied.
Charge conjugation on the quantum Dirac field is then given by

Cp()C™" = neCi(x)' = nev(x) |

CP(x)C™Y = nap(z)*Cly° = —ndy(x)iCct | (1.42)
applying (1.40). From (1.42), with the assumed definition of ¢¢, we have
CYC (@) = —nd C(CT (@) = nd () , (1.43)

using (1.39).

3.3 Transformation of Bi-Linears Under C

A particularly important operator is the electric current j,(x) = ¥(x)y,(z). If
1 is a quantum operator it is convenient to amend the definition as follow:

P(@)ah () = (V)as¥a(@)¥s(x) = 5(Vasla (@), Ya(@)] (1.44)

where the simple product of operators has been replaced by the anti-symmetrized
product. This definition ensures that j, has well defined properties under charge
conjugation and may also eliminate spurious infinities. We have then

~

Cju(x)CH = %(W)aﬁ[éaa(x)é_laéi/’ﬁ(@ '] (1.45)
= =3 (Wasl((2)' C e, (C(2)")4]
= 3OO wp [bu (2), Pp(@)] -
But C'7,C = —v,! so therefore
Oju(“’)éil = %(’Vu)ﬁ’a/[iﬁa/(l’)a@g'@)] (1.46)

= —ju(x) .



The effect of C' on other bi-linear expressions in 1 and ¥ may be worked out in
a similar way.

Note that, if as indicated above, we assume that the photon is negative under
charge conjugation then the electromagnetic interaction j#(x)A,(x) is invariant
under charge conjugation. It therefore causes transitions only between states
with the same charge conjugation eigenvalues.

3.4 Negative Energy Solutions

In a previous section we left the detailed form for the negative energy solutions,
or equivalently for the spinor v(p, A) in eq.(1.8), of the Dirac equation unresolved.
We can use the charge conjugation properties of the Dirac field to fill in this gap.
Applying (1.42) to eq.(1.8)

Cop(x)C™" =ne Y- [b(p, NCT(p, \)'e ™" + a(p, ) Ca(p, \)'e?"| . (1.47)
DA

However the effect of charge conjugation is just to interchange particles and anti-
particles, leaving momentum and spin unchanged. Therefore we must require

Ca(p, )™ =ncb(p,A) . Cb(p,\)'C™! = nea(p, ), (1.48)
and hence
Co(@)C =nev(x), (@) = X [bo. Nulp, Ve~ +a(p, \)o(p, N
DA
(1.49)

Comparing eq.(1.47) and eq.(1.49) we see that the required definition for
v(p, A) is such that
v(p, ) = Ca(p,\)', (1.50)
which then implies u(p,\) = Cv(p, \)*. In the Bjorken and Drell representation
from eq.(1.11) and eq.(1.41),

u(p, \) = ( 0 oy ) m( (,XQ, . ) . (1.51)

102 0 _E+mX)\

Using the fact that the Pauli matrices satisfy ioyc'ic, = o we see that

op
v(p,N) = VE +m ( W;@XA ) , (1.52)
A

where x§ = ioax,. This completes the construction of the negative energy solu-
tions of the Dirac equation.

If a(p, ) and b(p, \) are different, as for a usual quantised Dirac field, then
nc may be eliminated by redefining the phases of a(p, ) and/or b(p, \). A ‘real’
or Majorana fermion field is one where a(p, \) = b(p, A) so that

i) = vO(a) (1.53)



3.5 Charge Conjugation and Parity
If the parity of a Dirac field is np then we have shown in eq.(1.21) that

Pi(z)P7' = npy%(ap) (1.54)

The u spinor has the property (1.24) which leads to eq.(1.25). With the definition
for the v spinor in eq.(1.50) we may now obtain

Yo(p,X) = —C(a(p, ") (1.55)
= —Cu(pp, A)t
= _'U(pPa >‘) .

Hence the parity transformation properties of the Dirac field in eq.(1.21) now
require

Pb(p, \)' P~ = —npb(pp, M) . (1.56)

Assuming np = £1 we see that the parity of a spin % anti particle is opposite to
that of the associated particle. Thus if we choose positive parity for the electron
then the positron has negative parity. Similarly quarks have positive parity and
anti-quarks have negative parity.

Equivalently using

Py(a) P~ =08 Plap)y” (1.57)
we find for conjugate field ¢ (x) = Cip(x)!
PYC(z)P~' = CPy(x)'P 7", (1.58)
= C(ep)
=~ 'CY(xp)
= _n;WO@Z)C(fEP) )
since C'(7°)! = —+°C. This is opposite to eq.(1.21) if np is real. If ¢(x) = % (),
as for a Majorana field, then we must take np = —npg" or np = £i.

4 Time Reversal

4.1 Classical Theory
Newton’s equation of motion for a particle of mass m subject to a force F(x) is
mx = F(x) . (1.59)

It is easy to check that if x(t) is a solution then so is x” (t) = x(—t). This is what
is meant by time reversibility in the classical case, namely that the backwards
running motion is just as good a solution as the original motion. If there is
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a velocity dependent force due to the presence of a magnetic field B then the
equation of motion
mx = F(x) 4+ ¢x x B(x) , (1.60)

is only time reversal invariant if we also reverse the magnetic field. That is both
xT(t)|g = x(—t)|_p are solutions of this equation of motion. This is an indication
of how it is necessary to consider the effect of time reversal on all the fields in a
problem in order to exhibit invariance. For electric and magnetic fields in general
we must require E(¢,x) — E(—t,x), B(t,x) - —B(—t,x).

4.2 Quantum Mechanics

The wave function for a non-relativistic particle satisfies the Schrodinger equation

ih%w(t,x) = <—;—mv2 + V(X)) Y(t, x) . (1.61)

A solution corresponding to time-reversed evolution should involve ¥(—t,x).
However this time-reversed wave-function does not satisfy the Schrodinger equa-
tion. To obtain such a solution it is necessary to combine time-reversal with
complex conjugation so that the action of time reversal on a wave function is

¢(t7X) — nT¢T(t>X) ) ¢T(tax) = w(_tvx)* ) (1'62)

for |ny| = 1. It is easy to see that ¢! does satisfy the Schrodinger equation.
The complete time-reversal transformation therefore is anti-linear. Thus if 1 is
replaced by a) then under time reversal

a)(t,x) — a*nrp’ (t,x) . (1.63)

Note the effect of anti-linearity on scalar products:

V(1) 9(1) — WT(0,6"(1) = [dxuT(,x)"67(t,x)

- /d3x¢(—t,x)*z/1(—t,x)
= ((=1),%(-1))
= (p(—t), 0(—1))" . (1.64)

Time reversal therefore complex conjugates scalar products. Probabilities which
depend only on the modulus of scalar products are unaffected by the anti-linearity
of the transformation.
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4.3 Specification of an Anti-Linear Operator

The complete effect of a linear operator can be determined by specifying its action
on a basis set of the vector space of physical states and then extending its appli-
cation by exploiting the linearity of the map. Similarly the complete effect of an
anti-linear map can be determined by specifying its effect on a basis and extending
the result using its anti-linearity. For example according to previous definitions
above time-reversal acting on the momentum state wave-function e®*/" is to
produce the complex conjugate wave-function e~*/%  In Dirac notation in this
basis 7' is defined by

Tlp) = |-p) . (1.65)
A general state [1)) can be represented as
[v) =" d()p) - (1.66)

The effect of time-reversal is then

A

Ty = TS d(p)p) = ¢ (p)TIp) =Y. ¢*(p)l-p) = . ¢"(—p)p)
= |97). (1.67)

If the state |¢) = Y, &(p)|p) is defined similarly then the scalar product for these
two states (p|v)) = X, ¢*(p)y(p) so that

(@) = (¢"]v")" . (1.68)

This results holds generally for the action of the anti-unitary operator T and it
is easy to check that this result is essential in accord to be consistent with the
required anti-linear properties of T', when if |1) = a1]th,) + as|th,) then |pT) =
ar*[Pn") + ag'[yah).

4.4 Time-Reversal for Relativistic Wave-Functions

In line with non-relativistic quantum mechanics the effect of time-reversal on the
complex wave-function ¢(z) of a relativistic scalar particle is

$x) — nro’(z) . ' (2) = dlar)”, (1.69)

where 2, = (—t,x). Using the anti-linear properties of the transformation it is
easy to see, by modifying ¢ by a suitable complex phase, that we may take ny = 1
but we keep 1y for later convenience. The transformation under time reversal for
a state of definite momentum, ¢(p, x) = e~"P*, is therefore given by

" (p,x) = {7} = TP = g(py, @) (1.70)
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where pf. = (E, —p).

Dirac wave-functions are dealt with in a similar way but with an additional
linear transformation in order to ensure that the result satisfies the Dirac equa-
tion,

U(x) — " (x) W (2) = B(er)" (1.71)

Hence from the complex conjugate of the Dirac equation for ¢ (x) and taking
20 — —2° we find

(19%0% — i7"V = m) (x7)" =0 . (1.72)
If we assume that the matrix B is defined by the requirement
B(y, =B~ = ("), (1.73)

then, with the definition of 7 in eq.(1.71),
B ("0, — iv"-V = m) ¢(p)" = (iv"0, — m) ¢ () (1.74)

so that 7 satisfies the Dirac equation if 1) does. To satisfy eq.(1.73) it is sufficient,
since from the hermeticity condition eq.(1.3) (v%*, —v*) = (7%, ~%), to take

B=nC, (1.75)

where we use the basic property of C' in eq.(1.36) and also the result that ~s
anti-commutes with v# from (1.5). With the result (1.75) for B we have also

B'= -Cvi{=—-yC=-B, B'=Clys=B"' = B*=-B',  (L76)

using the hermeticity of v5 and egs.(1.39,1.38,1.40).

Acting on spinors u(p, A) time reversal not only reflects the spatial part of
the momentum but also reverses the spin label since the action on the angular
momentum operator is given by TIT-' = —J. Thus the time reversed spinor
which is given by eq.(1.71) has the form

Bu(pp, A)" = u(p, =) , (1.77)

where 7, = #£1 depends on the conventions chosen for relating different spin
components. This result may be regarded as giving a definition for u(p, —%) in
terms of u(p, 3). Taking the complex conjugate of (1.77) and using (1.76) we find

u(pp, A) = —Bu(p, —=A)"nx , (1.78)

so we must require 7_\ny = —1.
From the definition eq.(1.50) for v(p, \) and using eqs.(1.75,1.76,1.77), so that
B = —Cv4, then with C* = —C~!, 75" = v5 and Ov/C~! = ~5 we also find
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similar result for the v spinor as for the u spinor in (1.77),

v(p, A" = C*ulp,\)' = —C7'5%(p, \)
= OB u(pp, —A)"m
= —CY’B™" " u(pp, —N)'n,
_ 0_1700’75t’70tc_1v(pp,_)\)77)\
—C 57 0(pp, =)
B~ u(pp, =) - (1.79)

Explicitly in the Bjorken and Drell representation eq.(1.75) gives, as a result
of eq.(1.10) and eq.(1.41),

B:(“(;? ! ) . (1.80)

With the form given by eq.(1.11) for the spinor u(p, \) the effect of time-reversal
is

Bu(p,\)* = N/E+m< G ) , (1.81)

EJF—mZ'CTQX;
since o900y = 0. In the standard representation x, are real and it is easy
to see that iopx, = x_,(—1)2"*. Hence we see that eq.(1.77) is satisfied with

m = (—1)7

4.5 Time-Reversal and Quantum Fields

In order to achieve the same time-reversal properties on the particle states for a
scalar quantum field as is suggested by the previous discussion of wave functions,
we demand T'|0) = |0) and

~

Ta(p)T™" = nra(pp) , (1.82)

which gives for single particle states
Tlp) = Ta(p)'(0) = Ta(p)'TT|0) = 177 a(pp)"|0) = 17 pp) - (1.83)

Again the phase 17 has no absolute significance since if np = €2 we may remove it
from (1.82) by letting ¢ a(p) — a(p), taking account of the anti-linear properties
of T.

The operation of time-reversal on quantum fields can then be found in terms
of its action on the creation and annihilation operators. For a scalar field

(@) =Y alp)e ™ + b(p) e (1.84)

p
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remembering that T is anti-linear

To(@)T™ = Y [Ta(p)Te™ + Th(p)'T e #7] (1.85)
= nr Y [alpp)e®* + blpp)Te ]
(1.86)

where we also require R A
To(p)'T™" = nrb(pp)" . (1.87)

Using the invariance of the range of the p-summation under p — pp and pp.z =
—p.xp it follows that for a scalar field

To(x)T™ = nro(zy) . (1.88)

Analogous reasoning holds for the Dirac spinor field so that

~

T(a)T™" = e B~ (wr) - (1.89)

We have also o B
o) = 0 P(en) B (1.90)
Using eqs.(1.77,1.79) it is easy to see that

Ta(p, VT = nr(=1)=Palpp, =) . Tb(p. VT = 17 (=1) P b(pp, =)
(1.91)
Some important examples of the transformation of bi-linears under 7" are the
scalar

TO(x)p(x) T = () BB (2y) = (ap)v(zy) (1.92)
and the electric current
T ()T~ = (2y) B(y") B~ (xy) (1.93)
so that
T5%(x)T " = j%(xr) (1.94)
and R R
Ti(2)T" = —j(ey) (1.95)

Time-reversal therefore leaves the charge density unchanged but reverses the flow
of the current.
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4.6 Transformation of States Under T

For a general single particle state of spin S the transformation properties under
time-reversal is given by

Tip, ) = 07 (=) pp, =) . (1.96)

The dependence of the phase factor on A is dictated by compatibility with stan-
dard conventions relating spin states. For the particle at rest p* = (m,0)
we require Ji|p,\) = Ngii|p, A £ 1), with Ng, real, and under time reversal
TJLT~' = —J;. Clearly it follows from eq.(1.96) that

T2p, \) = (= 1) T |pp, —A) = (=1)>%|p, \) (1.97)

and hence in general T2 = (—=1)F, where F' measures the fermion number.

5 Applications of P,C and T

As an example consider the interaction Lagrangian of QED, namely

Li(z) = —ep(a)y"v(2)Au(w) . (1.98)
The associated interaction Hamiltonian is
V(t) = — / Bx Lo(z) (1.99)
and the S-matrix relating in states to out states is
S = Texp {—z/ dtV(t)} . (1.100)
Taking into account the transformation properties of all the fields we see that
PLi(x)P™Y = Li(zp), (1.101)
CLi(z)C™r = Li(x), (1.102)
TL(x)T™ = Li(xr) . (1.103)
These results have the implications
PV()P™Y = V(1) (1.104)
CVHCt = V), (1.105)
TVHT™ = V(-t) (1.106)
For the S-matrix we find
PSP = &, (1.107)
csct = §. (1.108)



The S-matrix therefore commutes with P and €. This in turn implies that the
parity and charge conjugation properties of the initial and final states in QED
are the same.

Time-reversal is a little more complicated. Expanding the time-ordered ex-
ponential in eq.(1.100) we have

S=> (—i)" /_O;dt1 /_todt2 .

We have then

tn—1

dt, V(E)V (t).. . V(L) . (1.109)

tn—1

~ A~ o) t
Sp=TST™ ' = Zi"/ dt, /ldt2 . dt, V(—=t1)V(—ts) ... V(—t,) .

' (1.110)
If now we set 7; = —t,,_; ;1 we find after a consideration of ranges of integration

oo T1 Tn—1
ST:ZZ%/ dﬁ/ dTQ.../ dry V)V (mr) ... V(n),  (L111)

with the consequence that

Sr =St (1.112)

Because 7' is an anti-linear transformation we have for any states |a) and [b)
(we use the notation |ar) = T'|a) etc.)

{ar|ST|br) = (a|ST|b)*, (1.113)

that is
(blS|a) = (ar|Sr'|br) . (1.114)

Time reversal invariance of the theory implies that Sy = S therefore
(b/S|a) = (ar|Slbr) - (1.115)

In turn this implies that the probabilities, rates or cross-sections are equal for
two processes related by time-reversal.

5.1 The CPT Theorem

If a theory is invariant under 7T, P and C' separately then it is invariant under
the combined (anti-linear) transformation CPT. Even if T, P and C are not
separate symmetries it can be shown that for any Lorentz invariant Lagrangian
L(x) formed products of quantum fields at the point x then it is also invariant
under C'PT. This is a version of the C'PT Theorem. In general the C'PT Theorem
implies that any Lorentz invariant local quantum field theory will be invariant
under the combined transformation. The consequence is that if we set © = CPT
then

050~ = 5T, (1.116)

16



Invariance under C'PT is sufficient to ensure that particles and anti-particles
that are unstable have the same lifetime. Note also it is a consequence of the
theorem that if a theory is time-reversal invariant then it is certainly invariant
under C'P, or if it is invariant under any two of the transformations it will be
invariant under the third.

To verify how invariance of £ follows we consider first the C'PT transformation
on a scalar field ¢ where our previous results give

O¢(2)0~" = nrnpned(—z)" . (1.117)

We now choose phases so that nynpne = 1. For an arbitrary bosonic quantum
tensor field ¢, ., we generalise this to

OBy, (1) = (= 1) G (=) (1.118)

Note that this result is consistent with forming new fields by taking derivatives,
e.g. ¢, = 0,¢. Acting on Dirac fields it also follows from the previous results for
the action of P, C,T separately that, with a similar choice of phases,

OY(z)0 ' = —O(—2)',  OY(x)O ' =w(—2)o", (1.119)

where the matrix § = —B~'7%C. From eqs.(1.21,1.42,1.89) and the result for B
in eq.(1.75) we find 6 = v5'7%. Hence eq.(1.119) can be rewritten as

OY(2)0~" = —(Y(-2)')" , OY(2)07" = (v (-a))". (1.120)

With this result we may find for the transformation of an arbitrary bi-linear
formed from Dirac fields 1)1, 1o,

Oy (2)Mip(2)0~" = (750 (—2)") M* (a(—2)T5)'
= ¢2(—$)T75MT75¢1(—$)T
— i
= [Bi(—2)sMysths(—2)] (1.121)
It is then straightforward to see that an n rank tensor field constructed from Dirac

fields by choosing an appropriate form for the matrix M has the same trans-
formation properties as in eq.(1.118) (note that from eq.(1.5) V5Vu, -+ Vun V5 =

(_l)n%u - -’7;1”)'

Thus a Lorentz invariant Lagrangian which is a sum of monomials in the fields,
including possible bi-linears in fermion fields, which are Lorentz scalars formed
from contracting Lorentz indices satisfies under a C'PT transformation, assuming
the boson fields and fermion bi-linears transform according to egs.(1.118,1.121),

L(z) — L(—x)" = L(—x) . (1.122)
In particular the interaction Lagrangian formed from the operator fields satisfies

0L ()07 = Li(—x) , (1.123)
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so that the S-matrix operator given by eqs.(1.99,1.100) obeys eq.(1.116). This
result holds even if C', P and T are not separately defined in the quantum theory,
such as when the corresponding discrete symmetries are broken and the required
transformed states may not exist, since the operator © may always be defined by
its action in eqs.(1.118,1.120). On particle states C'PT transforms particles into
anti-particles with opposite spin since Ga(p, \)O~! = (—1)%+’\b(p, =\).
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Part II
Broken Symmetries in Field
Theory

1 Symmetry in Quantum Theory

In theoretical physics as a whole and in quantum mechanics in particular the idea
of symmetries which combine to form a symmetry group is of crucial importance.
In a quantum theory the action of symmetry transformations conventionally cor-
respond to unitary (or perhaps anti-unitary) operators acting on the space of
states for the given theory.

In general a transformation g acting on the states belonging to the Hilbert
space for a quantum mechanical system, |[1) - |19), where [1)9) is the state

corresponding to the transformed physical system, is a symmetry if for all states
|1}, |¢) transition probabilities are invariant,

(@ [W) " = [{dl)]*. (2.1)

A theorem due to Wigner asserts that there are two possibilities, either

V) = ) + azlihn) = [P°) = a[s’) + aglpf) and (¢7[P7) = (9l¢), (2:2)

or

V) = a1ln) +azlths) = [9°) = af|Pr) +az]d) and (¢[97) = (9|)", (2.3)

In case (2.2) there is a unitary operator U(g) such that for all |¢)

Ulg)ld) = [97) (2.4)

while for (2.3) the corresponding operator is anti-unitary (if the symmetry trans-
formations are continuously connected to the identity then U(g) can only be
unitary). If the symmetry transformations belong to a symmetry group G then
for any two symmetry transformations g, g € G we may define their product
9192 € G and it is natural to suppose

U(g1)U(g2) = U(g192) (2.5)

Actually in quantum mechanics states are only defined up to a complex phase of
modulus 1. This leads to the freedom of introducing complex phase factors on the
right hand sides of (2.5). In many cases such complications can be avoided with
the assumption of standard phase conventions for a suitable basis of states in the
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Hilbert space for the theory. The assumption of the symmetry being invariant
under time evolution of course means that the Hamiltonian itself is invariant

U(g)'HU(g) = H . (2.6)

In this cases the states with a given energy must form a representation space for

G
U(g)lr) =>_1s)Dur(9) (2.7)

where r labels the states and D(g) defines a finite dimensional representation of
the group G. Thus the space of states of given energy may be classified in terms
of the representations of the group G. As well as the usual rotational group
in particle physics the isospin group SU(2); and its extension SU(3)r are well
known and although they do not define exact symmetries of the Hamiltonian
they classify particle states of nearly degenerate masses. To the extent that
the symmetry is exact the vacuum must be invariant, or form a trivial singlet
representation of the group,

U(9)0) = 10) - (2.8)

1.1 Spontaneous Symmetry Breakdown,
Discrete Symmetries

Although the above is the conventional way in which symmetries are realised in
quantum theory it is not the only possibility. The crucial assumption is that
contained in (2.8), namely that the vacuum state is invariant. In classical physics
there are many instances when the ground state does not respect the basic sym-
metry of the Lagrangian or Hamiltonian. To illustrate this in field theory we
consider the simplest case of a Lagrangian density for a single scalar field ¢,

L=10"00,0-V($). (2.9)
which is invariant under the Z, symmetry (Z, is virtually the simplest possible
group with only two elements {1, —1}),

b —9. (2.10)

The assumption of symmetry under (2.10) requires
V(g)=V(-9), (2.11)

and as a typical field theory example we may take
V(g) =3m°¢* + 590",  g>0, (2.12)

with the condition on the coupling g necessary to ensure that V(¢) is bounded
below. For m? > 0 the conventional picture is realised at least classically since
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the minimum of V' occurs at ¢ = 0 which is invariant under (2.10). In the
quantum theory we would expect that the symmetry should be realised by a
unitary operator U such that U? = 1, the identity. The assumption of symmetry,
from (2.6) and (2.8), in this case,

U'HU=H, U|0)=10), (2.13)
implies that the energy eigenstates can be written [¢)y) where

Ulps) = £|v), (2.14)

since there are just two possible representations of this very simple group Z,.
The states |¢4) and [1)_) are respectively created by the application of even and
odd numbers of field operators ¢ in the quantum field theory to the vacuum state
|0).

However a very different picture emerges if m? < 0. In this case by addition
of a constant we might rewrite V(¢) in the form

V(p) = g1 9(¢* —v*)%, (2.15)
which has the form the form of a double well, shown below

Double well potential

\

\_/

\/

In the ground state of minimum energy there are two possibilities classically,
¢ = v, and in the quantum field theory there are expected to be two vacua |04)
such that

(04|p(2)|04) = +og, (2.16)

with vg some renormalised value, including quantum corrections, of the constant
v. For the two vacua it is possible to construct two independent Hilbert spaces of
states H by the application of field operators to |0+). These two Hilbert spaces
have no overlap, all states in H . are entirely distinct from those in H_, but they
define two equivalent quantum field theories. Although there is an exact one to
one mapping between states in the two spaces there is no unitary operator acting
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on the states which realises this as a physical symmetry. To set up a perturbative
expansion for this theory it is necessary to shift the field

p=v+f, (2.17)
so that the Lagrangian density defined by (2.9) and (2.15) becomes
L=30"fO.f - g9 f* +uf°+ 1 fY), (2.18)

so that f is a massive field with cubic and quartic interactions. In perturbation
theory then to lowest order (0] f|0) = 0 but there are corrections which will make
this non zero resulting from Feynman diagrams with one external line.

It is important to recognise that in H, there may be states |¢)) which are
essentially identical to |0_) for some finite region V, i.e.

(W]p(0,x)]1p) = —vr for x €V, (Y]|p(0,x)]1h) = vg as |x| = o0. (2.19)

Such states are similar to a bubble inside which the theory looks like that repre-
sented by the space H_. The state |¢)) however has a non zero energy which is at
least proportional to the area of the boundary of the region V so that the region
V cannot expand in time indefinitely. If the symmetry is broken so that |0_) has
a lower energy density then it is possible for the bubble to grow indefinitely, since
the gain in energy proportional to the volume of V' can compensate the energy
involved in the boundary.

The scenario just described is valid in quantum field theory but it fails in
ordinary quantum mechanics. To illustrate this we may consider the above ex-
ample replacing the field ¢ by x. The Hamiltonian for this one dimensional model
becomes

H=1p"+ L g(®—v*)>. (2.20)

The Z, symmetry for z <> —x is then the conventional parity symmetry. It is well
known that in quantum mechanics that parity is always a good quantum number,
if the potential is invariant under reflection, and that the energy eigenstates can
be classified in terms of being even or odd parity. Near the minima of the potential
the Hamiltonian in (2.20) may be approximated by a harmonic oscillator form
%p2 + %wQ(x F v)? with w? = égv2 so that there are two apparent degenerate
ground state wave functions each with energy %w,

oz F o), W) = (f) (2.21)

In perturbation theory these states remain degenerate but there are non pertur-
bative effects due to tunnelling through the potential barrier separating the two
minima. The tunnelling amplitude is proportional to

e S V@) _ sVt (2.22)
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and the two low lying states are now non degenerate with approximate wave
functions and energies of the form, if gv® is large,

Vi(z) ~ %(wo(fb’—v)i%(ﬂv)) , Ey= %W:FKe_%ﬁvi K >0. (2.23)

Clearly these are now parity eigenstates with parity +. This tunnelling between
the two ground states does not happen in quantum field theory. If the theory
were quantised in a finite volume V' then there would be a tunnelling amplitude
so that

(0_]0L) ~ e V. (2.24)

This goes to zero, as also does the overlap between any state formed by applying
products of field operators to the state |0,) and any similar state formed from
|0_), as V — oc.

The above description of spontaneous symmetry breakdown for Z5 generalises
straightforwardly to any discrete symmetry group of order N. Any quantum field
theory has a unique vacuum state chosen from N equivalent possibilities but there
may be localised regions, bounded by domain walls of non zero energy density,
where the state appears like one of the NV — 1 other vacua.

1.2 Spontaneous Symmetry Breakdown,
Continuous Symmetries

We may also consider continuous symmetry group which may undergo spon-
taneous symmetry breakdown. As a simple illustration we first consider an n
component scalar field theory with real fields ¢ = (¢1,...¢,). Defining ¢* =
o0 =3, o0, we postulate a Lagrangian density.

L=10"00,0—V(g), V(p)=1Lg(¢*—v*?, g>0. (2.25)

For n = 2 the potential has the form shown,
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This Lagrangian is clearly invariant under the symmetry group O(n) which ro-
tates the n-vector ¢. It is also evident that the classical ground state correspond-
ing to the minimum of the potential in (2.25) is given by ¢ = ¢ for any ¢ such
that

i = v°. (2.26)

This defines an n — 1 dimensional sphere, S™~!, which is not a single point left
invariant by O(n) (for n = 2 the classical ground state is a circle). At any point
on the S™~! defined by (2.26) there are directions where the potential energy
remains unchanged. Although this is nearly obvious we can see this explicitly by
expanding ¢ about a particular point on S™~!, for example

o =(0,...,0,v), (2.27)
so that
gb: (¢l7v+f)a ¢L:(¢17"'7¢n—1)' (228)
The potential now becomes
V(9) = 390 f* + 59v (0” + [)f + 59 (0.7 + [9)*. (2:29)

There is only a quadratic piece for the field f, the n—1 fields ¢, have no quadratic
contribution so that the frequencies of these modes for small fluctuations around
¢o are zero. The quadratic terms in Lagrangian, after any linear terms have been
removed by shifting the fields, determine the particle masses in the associated
quantum field theory so that in this example there are n — 1 massless fields after
spontaneous symmetry breakdown and one massive field f. The fields which
are massless are called Goldstone modes. The symmetry group O(n) for this
situation is then reduced to O(n — 1) which may be defined by those elements of
O(n) which leave ¢y invariant, for ¢y as in (2.27) the O(n — 1) group acts only
on the first n — 1 components ¢, of ¢.

A more general discussion of spontaneous symmetry breakdown can be devel-
oped which is applicable to any field theory in which the Lagrangian is invariant
under a continuous symmetry group G but the ground state is invariant under
a subgroup H. We assume a Lagrangian density with a multi-component scalar
field ¢, belonging to a vector space V,, on which a representation of the group G
(which for ¢ having n components must be a subgroup of O(n)) is defined, for
g € G then ¢ — g¢. The potential V' is assumed to be invariant so that,

V(gp) =V (¢p) forall geG. (2.30)

(Classically spontaneous symmetry breakdown arises when the ground state is not
a single point invariant under GG but is a non trivial manifold,

(I)O = {gbo . V(gbo) = Vmin} . (231)
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For any point ¢y € &y we may define its stability group H C G by
hoo = ¢o forall he H. (2.32)

It is convenient to assume that G acts transitively on ®, (this need not be true,
it is possible to tune the parameters in the potential V' so that two or more local
minima, on each of which G acts transitively, both have the same value which is
the global minimum of V', but this is an unstable situation) which means

b0, 00 € Py = dg = goo for some g € G. (2.33)

In this case the stability groups at each point are isomorphic, if H' is the stability
group for ¢¢ then H' ~ gHg™ !, and we can identify ®; with the coset G/H (for
any subgroup H C G, G/H is defined as the set of equivalence classes under the
equivalence relation g; ~ g if g3 = goh for some h € H) since if ¢g = g109 = ga¢bo
then go g9 = ¢o so that go-tgy = h for some h € H. Thus,

Oy~ G/H . (2.34)

In this context there is a crucial theorem, the Goldstone theorem, which
states that in a quantum field theory when spontaneous symmetry breakdown of
a continuous symmetry occurs there are zero mass particles, Goldstone bosons,
whose numbers are determined by the dimensions of G and H. At the classical
level this amounts to counting the number of zero frequency modes for small
oscillations around the classical ground state. To demonstrate this result we first
recast (2.30) in infinitesimal form,

V(p+0¢) =V (d) for 6¢=6Nbad, a=1,...dimG, (2.35)

where 6, are the dim G generators of the Lie algebra of GG in the representation
defined by ¢. (2.35) can obviously be rewritten as

0

¢y

Since the kinetic term of the Lagrangian is also required to be invariant the
generators should be antisymmetric or

¢/'<9a¢> = _<9a¢/)'¢ . (237)

The frequencies of the oscillations of the fluctuations around the ground state are
determined by the eigenvalues of the matrix formed by the second derivatives of
V evaluated at the minimum. Choosing an arbitrary point ¢y € ®( this matrix,
which acts linearly on Vy, is then defined by

82
" 00,00,

V(¢) (0a¢)r =0. (236)

MST‘

V(o) (2.38)

p=do .
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Now from (2.36) we have

62
0p 0,

and since at a minimum the first derivatives of V' must be zero we have

V(¢) <9a¢)r + %V((ﬁ) (‘9a)rs = O, (239)

Msr(0a¢0)r =0. (240)

Thus 6,0, is a zero frequency eigenvector for the matrix M.

To count the number of such zero eigenvectors we first note that from (2.32) if
t; is a basis in the appropriate representation for the generators of the Lie algebra
of H which is the stability group at ¢g € ®¢ then

tido=0, i=1,...dimH. (2.41)

If G is compact and semi-simple (as is the case for most symmetry groups) we
can define a positive definite group invariant scalar product on the Lie algebra of
G. In this case we may then choose a basis for the Lie algebra such that

O = (ti,0a), (2.42)

with 6; orthogonal to t;, which corresponds to tr(¢;0;) = 0. With this result it is
clear from (2.40) and (2.41) that there are dim G — dim H linearly independent
eigenvectors ;¢ with zero eigenvalues for the matrix M (if f30;¢0 = 0 for some
linear combination f;0; then this satisfies (2.41) and so should belong to the Lie
algebra of H which is clearly impossible with the unique decomposition defined
by (2.42)). If we apply this counting to the example given with G = O(n), H =
O(n — 1) then

dimO(n) —dimO(n—1)=in(n—1)—i(n—1)(n—-2)=n—-1, (2.43)

which is the correct number of Goldstone modes in this case. The group H is the
manifest unbroken symmetry group of the theory after spontaneous symmetry
breakdown. As an illustration we demonstrate that the eigenvectors of M with
non zero eigenvalues may be classified in terms of the representations of H. To
show this we apply a further derivative to (2.39) and then set ¢ = ¢, to give,

83

Msr<‘9a>rt + Mtr<‘9a>rs + mv<¢) b=o

(0apo)r =0, (2.44)
and then take 0, — t; using (2.41) and the antisymmetry of ¢; to give
[ti, M] =0. (2.45)

The vector space Vi may be decomposed into orthogonal irreducible subspaces
under the action of the group H and in such a basis the matrix M takes a block
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diagonal form, each irreducible subspace giving eigenvectors of M with the same
eigenvalue.

In quantum field theory there are similar features with the spontaneous sym-
metry breakdown of a continuous symmetry as for a discrete symmetry. If we
introduce coordinates £ for G/H (any group element g € G is specified by g(u, &)
where g(u,&)h = g(u/,§) for any h € H) then the vacuum state can be la-
belled |0¢) and there is a explicit symmetry under which the vacuum is invariant
U(h)|0¢) = |0¢) for h € He, the stability group at the point £. Application of
field operators to the vacuum |0¢) defines a Hilbert space H,. All H, give equiv-
alent quantum field theories. For a continuous symmetry group the essential new
feature when it undergoes spontaneous symmetry breakdown is the appearance
of dim G — dim H Goldstone bosons, exactly massless spinless particles if G was
originally an exact symmetry.

1.3 Proof of the Goldstone Theorem in Quantum Field
Theory

To demonstrate the existence of Goldstone bosons for spontaneous symmetry
breakdown of a continuous symmetry it is possible to extend the previous discus-
sion directly to the effective potential V.g(¢) which is a quantum generalisation of
the classical potential and whose minima determine the vacuum state. However
an alternative proof makes the required assumptions more manifest. We assume
the existence of conserved currents j#,, a = 1,...dim G, whose charges induce a
representation of the Lie algebra of G on a set of scalar fields ¢

J@a1%(@), 6(0)] = =i 6a6(0). (2:46)
The requirement of spontaneous symmetry breakdown is made by assuming
(0[¢(0)]0) = ¢o, (2.47)

is non zero. To prove the theorem it is necessary to obtain a general expression
for (0|[j".(x), $(0)]|0) so we first define

(2m)° > 0% (k = pn){01j"a(0)[n)(n]@(0)[0) = ik"O(k)pa(k?),
(2m)* 20" (k = pa)(0l6(0)[n) (nlj*a(0)[0) = —ik"O(k")pa(k?), (2.48)

where the form of the right hand side is dictated by Lorentz invariance, 6(z) is
the step function, #(x) = 1,0 for x = 0, and p,(0), po(0) are non zero only for
o > 0. From these definitions we may obtain, using j*,(x) = e7%j#, (0)e
with P* the 4-momentum operator,

. 1 4 —ik-x 0 2 0\ ~ 2
(OILa(=), #(0)]10) = ~0" -5 [t (0() pa(k2) — B(—K")u(K?)) .

(2.49)
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The left hand side must vanish if 22 < 0 and from the result

i —ik-x :
Az;0) =~ / dik e Foe(K)o (k2 — o) = 0 if 22 <0, (2.50)

for e(x) = +1 if z = 0, we must require p, = p, which then gives

(O]17a(2), 6(0))}0) = =0 [do A(:0) palo) (2.51)
Using now
(0> 4+ 0)A(z;0) =0, (2.52)
it is easy to see that
0ujt% () =0 = op.(o) =0, (2.53)
pa(0) = Nyo(o). (2.54)

For a non zero vacuum expectation value in (2.47) N, must be non zero since
given the definition of A(x; o) in (2.50),

/d% Az;0) = —2°, (2.55)

and therefore (2.46) implies
N, = —0.00. (2.56)

For N, non zero then (2.54) implies that there must be a contribution from zero
mass states in the sum over intermediate states in (2.48). These are identified
with the Goldstone bosons. With spin 0 massless particle states |B,p) then we
define

(07%(0)[B, p) = iF"p",  (B,plé(0)|0) = 27, (2.57)
with ZP a vector belonging to the space defined by the fields ¢. Since
d’p 4
—= — = 0(k°)o(k* 2.58
S 04k =) = OR)3), (259)

we therefore find from the summation over these massless particle states in (2.48)
and (2.54)
N,=> FFZ". (2.59)
B

If the group G is spontaneously broken to a group H, defined by generators such
that t;¢9 = 0, then there must be dim G — dim H linearly independent N, from
(2.56) which implies in turn that in (2.59) the matrix F,” must have rank at least
dim G — dim H and hence that there must be this number of massless Goldstone
bosons. From (2.56) clearly N; = 0 which is in accord with the result that the
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charges formed from the unbroken symmetry currents annihilate the vacuum,
[ 1%(2)|0) = 0.

We should note that this theorem depends crucially on assuming manifest
Lorentz invariance and also that the space of states has positive definite norm
and for this reason fails in gauge theories when quantisation in general violates
one or other of these assumptions. The theorem about the necessary existence
of massless Goldstone bosons also breaks down for more technical reasons in two
space-time dimensions.

2 Higgs Mechanism

In a gauge field theory spontaneous symmetry breakdown can lead to very dif-
ferent effects, essentially it provides a method of giving gauge fields a mass while
maintaining gauge invariance. Although this effect was essentially first discovered
in the theory of superconductivity and then generalised to relativistic theories by
several different authors it is usually called the Higgs effect or Higgs mechanism.
The essential features can be understood at the classical level although the jus-
tification for the physical relevance of the Higgs mechanism is in the context of
quantum field theory. The exact gauge invariance is crucial in obtaining quantum
field theories describing massive vector particles that can be renormaliseable and
also have a positive norm Hilbert space of physical states. We first consider a
simple example based on a U(1) gauge theory and then analyse the general case
for a relativistic non abelian gauge theory.

2.1 Higgs Mechanism in an Abelian Gauge Theory

The most elementary relativistic gauge field theory is the Maxwell theory of
electromagnetism expressed in terms of the 4-vector gauge field A,. Here we
consider its coupling to a complex scalar field ¢ with the Lagrangian density,

L= —LF"E, +(D'6) D, — V(6'0), (2.60)

where

F,=90,A,-0,A,, D,p=0,0—1ieA,p. (2.61)
This theory is invariant under local U(1) gauge transformations where
1 _
A=A +-00, ¢, (2.62)
e

for arbitrary A(x). The covariant derivative is so constructed so that under
(2.62) D,¢ — €D, so that gauge invariance of (2.60) is trivially evident. In
any gauge theory the invariance under gauge transformations implies that there
is a redundancy in the initial Lagrangian, the physical dynamical variables must
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be defined modulo gauge transformations whose time evolution is unconstrained.
In some cases it is possible to reformulate the theory explicitly in terms of gauge
invariant variables but more generally it is necessary to impose some additional
gauge fixing conditions which remove the gauge freedom but it is then necessary
to carefully identify the physical results in a fashion which is independent of the
gauge fixing procedure.

For the theory described by the Lagrangian (2.60) there are two phases with
very different physics for which the natural physical variables are completely
different.

1. The minimum of V(¢*¢) occurs at ¢*¢ = 0, for instance

V(¢'9) =m?¢*d + 39(6°¢)*, m* 9> 0. (2.63)

In this case in the classical theory in the ground state ¢ = 0 and in the quan-
tum theory we expect a unique vacuum state |0). The gauge field couples to
a conserved current j# whose corresponding charge Q = [d3zj° is conserved
and generates a U(1) symmetry with Q|0) = 0. In a perturbative expansion the
theory describes spinless charged particles, with to lowest order a mass mh and
charges +en, interacting with massless photons. The physical degrees of freedom
are then 2 for the field A, corresponding to the two photon polarisation states
after removal of gauge degrees of freedom, and 2 for the field ¢, corresponding to
the two charge states.

2. The minimum of V' (¢*¢) occurs away from the origin at ¢*¢ = %v2, for instance
we might take

V(p*¢) = 59(0*¢ — 50°)%. (2.64)
In this case the U(1) gauge symmetry is broken by the ground state. To derive

the physical consequences in this situation it is convenient to rewrite the fields if
¢ # 0 in the form

A= A+ é 0.0, 6= f (v+ f)e? (2.65)

with f,6 real. Under the action of gauge transformations in (2.62) it is easy to
see that
0— 0+ X, (2.66)

while A, f are gauge invariant. Using

Dy = 76“’(8,7“ ie Au(v + 1)), (2.67)

we may rewrite the Lagrangian in (2.60) in the form
L=—-2F"F, +3e*(v+ [)PA"A, + 30" fO.f —s9(uf + f7)*.  (2.68)
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For small fluctuations around the ground state given by f, A’, = 0 we may restrict
this to just the quadratic terms giving

‘Cquadratic = _i F‘LWFW, + %627]2 A/uA/“ + %8“]6 @f — %g’UQf2 s (269)
which results in the linearised equations of motion,

oA, =0

(82 + 621)2)14/” =0 <a2 + gU2)f =0. (270)

ME,, +ev*Al, =0 = {

Thus A, represents a massive vector field describing spin 1 particles with mass
My, M2 = e?v? at lowest order, which has therefore 3 degrees of freedom, while
the field f describes spinless particles of mass my, m? = gv?. Unlike the case of
spontaneous symmetry breakdown of a non gauged continuous symmetry there
are no massless modes, in a sense the photon absorbs the Goldstone boson so as
to ensure it has the right degrees of freedom to give a massive spin 1 particle. The
Lagrangian in (2.68) has two basic couplings e, g which determine its interaction
terms, their particular form plays a crucial role in ensuring renormaliseability
of the perturbative expansion starting from the free field theory described by
(2.69). There is of course no longer any conserved charge whose eigenvalues label
the states.

In the example described above it was possible to rewrite the theory just in
terms of gauge invariant variables, so that # disappeared from the Lagrangian in
(2.68). By a suitable gauge transformation as in (2.66) we could transform 6 to
zero. Alternatively we could impose a gauge condition on the fields. Equivalent
results to the above may be obtained by applying the gauge condition,

=0, (2.71)

which makes ¢ real and hence 6 = 0.

2.2 Higgs Mechanism in Non Abelian Gauge Theories

A gauge theory Lagrangian may be defined for any Lie group G. The Lie algebra
L¢ for G forms a vector space on which can be defined a Lie bracket [, | which
maps Lg X Lg — Lg. Assuming a basis T,, a = 1,...dim G, this has the
properties

To, Ty = =Ty, Tu] = Cape Tt (2.72)

and also we require the Jacobi identity
[[Tm Tb]a Tc] + [[Tb, Tc]a Ta] + [[Tca Ta]a Tb] =0. (273)
This can also be written in terms of the structure constants c,p. as

Cabd Cdce T Cbed Cdae + Cead Cdbe = 0 5 (274)
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or equivalently in terms of the matrices,

(Tada)bc = Cacb (275)

then (2.74) becomes
[Tadm Tadb] = Cabc Tadc ) (276)
where [, ] is here the standard matrix commutator so that the identity (2.73)

is automatic. The matrices T2 define the adjoint representation of the Lie al-
gebra for which the representation space is the Lie algebra itself and so has
dimension dim G (for a general element of the Lie algebra X = X,T, then
[Ta, X] = (T4 X)T5).

The gauge field A,, belongs to the adjoint representation space since the
corresponding infinitesimal gauge transformations are given by

1
0Aua = g (DyA)a (DpA)a = uAa + g CocaAup Ac (2.77)

for arbitrary A,(z) and for a coupling g. In (2.77) D, = 0, + gA,. T, is the
covariant derivative for the adjoint representation. The associated field strength
is defined by

F;wa = OMAW - OVAW + g CbcaAubAuc . (278)

Under a gauge transformation as in (2.77) we have
5F,u1/a = Cpca F,uub Ae = _)\b<Tade,ul/)a ) (279)

which depends crucially on the Jacobi identity (2.74). Using (2.76) we may easily
verify that acting on the gauge fields

[517 52] = 53 ’ )‘3a = Cabc)\lb)\2c . (280)

If we now assume that the structure constants c,. are completely antisymmetric,
which can always be achieved if the group G is compact and semi-simple, then
we can simply define a group invariant scalar product by X.Y = X,Y, since
X.(T*MY) = —(T*4,X).Y. Then the usual gauge field Lagrangian extends to the
non abelian case by taking,

Loage = —5 F" . Fpy . (2.81)

It is also straightforward to extend this gauge invariant Lagrangian to include
scalar fields belonging to a vector space V, on which a representation of G is
defined, with generators 0,, [0,,0,] = Capcf.. Assuming a group invariant scalar
product on V, satisfying (2.37), the Lagrangian for the scalar field in (2.25) may
be extended to be invariant under local gauge transformations if

Lo =1 (D"6) Dyt~ V(9), (2.82)

32



since the covariant derivative,
D,u(b = 8u¢ +9 A,uaea(b s (283)

satisfies

0Dy = —AebuDypd i 8¢ = —Aobadh, (2.84)

assuming the gauge field transforms as in (2.77). For gauge invariance of course
the potential V' must also satisfy (2.30) or infinitesimally (2.36) which can be
equivalently be written as
V'(¢)-(0a¢) = 0. (2.85)
In order to discuss the Higgs effect in this theory we now assume that the po-
tential determines a ground state corresponding to spontaneous symmetry break-
down of the group G, i.e. the minimum of the potential occurs for non zero
®o € Py as in the discussion of spontaneous symmetry breakdown for continuous
symmetries. Unlike the previous treatment however local gauge transformations
do not represent physical degrees of freedom and to obtain a well defined dy-
namics we impose gauge conditions. With the gauge group G reduced at any
point on ®( to invariance under a subgroup H it is often convenient, although
not necessary, first to consider dim G — dim H gauge conditions which maintain
local gauge invariance for H and then treat the resulting gauge field theory in
the same fashion as any other conventional gauge theory. There is no unique nec-
essary gauge fixing condition but a convenient choice which makes the physical

degrees of freedom explicit is the so called unitarity gauge which just restricts
the scalar fields ¢,

(0ato)-¢ = 0. (2.86)
Since, for t; the generators of H,

tipo =0, (2.87)

we may restrict (2.86) to just (0app)-¢ = 0. Any ¢ can be arranged to satisfy
(2.86) by applying a suitable gauge transformation ¢ — g¢. This does not impose
any restriction on H gauge transformations, infinitesimally when d¢ = —\;t;¢ this
is evident from

(Batho)-(ti¢) = —(tiblatpo)-@ = —([ti; Oa] o) @ = —Cian(Obpo)-& = 0, (2.88)
using (2.87).
With this gauge condition it is convenient to expand
d=do+f,  (Oado)f=0, (2.89)

and to use as before in (2.42) the natural decomposition of the generators, and
hence also for the gauge fields, into those belonging to the Lie algebra of H and
those which are orthogonal,

0, = (t;,0,), Ape = (A, Aa) . (2.90)
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With this decomposition and (2.89) the covariant derivative defined in (2.83)
reduces to

Dugb - Duf + QAM&Q&(QZ)O + f) ) Duf = aﬂf + gAuZtlfa (291)

where D, f is the H covariant derivative and 4, the corresponding gauge field.
From (2.86) the gauge condition becomes

(Oacbo)-f =0, (2.92)
which implies by virtue of (2.88)
(Bago)-Duf =0, (2.93)
and so the Lagrangian in (2.82) is now

Ly = 1DUFD,f+1g? A% AL (Ba(do + 1)) (05(d0 + £))
+ g A (0af) Duf = Vigo+ f) (2.94)

The structure constants for the Lie algebra of G defined by (2.72) can also be
decomposed in this basis as

Cijk
Cabe = Cil;é y (295)
Cabe

with ¢;;;, the structure constants for the Lie algebra of the subgroup H, so that
[ti, t;] = cijite, and they satisfy the appropriate version of the Jacobi identity in
(2.74). We may now also correspondingly decompose the field strength given by
(2.78) as

F,uua = (‘F/J,l/i + g Cibe A/J,?)Al/@7 F,ul/d) ) (296)
where
F,uui = auAl/i - al/A;Li +g CijkA,ujAl/k ’
Fuu& = D;,LAV& - DVAM& +9g C&I;éAuI;Aué ) (297)
with R R o X
,D,uAu& = a/J,Al/d + gApl<ﬂ>&5AV5 ) (Crz)dl; = —Ciab (298)

the covariant derivative acting on 141,, since T} are the appropriate generators of
the Lie algebra of H, [T;,Tj] = ¢ Ty by virtue of (2.74) and (2.95). The gauge
field Lagrangian in (2.81) then becomes
Loge = —LF™.F,, —1F™F,
— 19 ciab AV A% Fui — 197 ciaicicd A" A% A A (2.99)
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Although the complete theory is described by £ = Lgauge+ L4 the physical particle
states are given just by the quadratic terms in the expansion,

Lowedratic = —1F".Fp, — L(D"A” — D" A").(D,A, — D,A,)
+1DMfDf — L (MF) + M A A, (2.100)

with the matrix M defined as in (2.38) and
Mai, = g*(6acho)-(Bscho) - (2.101)

The matrix M is positive definite since, by (2.101), it is clearly positive and
any eigenvector with zero eigenvalue would have to satisfy f;0;09 = 0 which is
impossible since it would then imply f;0; was a generator of H. The result (2.99)
or (2.100) is expressed in a manifestly gauge invariant form for the gauge group
H, with infinitesimal gauge transformations given by

1 A .
S = (PuNis 0= —N(Tda, O = —Mtif. (2.102)

The matrices M and M in (2.100) determine the masses of the physical scalar
fields f and vector fields flu, apart from the H gauge fields A", which are massless.
By virtue of (2.92) f is orthogonal to 0;¢ which are the eigenvectors of M with
zero eigenvalue so there are no necessary massless Goldstone bosons in this case.

For each eigenvalue the eigenvectors of M and M form representation spaces for
H. For M this follows by virtue of (2.45) and for M

[Tiv M]di? = _g2<[ti7 9@]¢0>'<95¢0> - g2<9d¢0>'<[ti7 95]‘250)
—g*(tibago)-(Bid0) — g°(Bacdo)- (t:ficbo) = 0, (2.103)

using the definition of 7} in (2.98), (2.87) and the invariance of the scalar product
as in (2.37). Since no linear combination of #; annihilates ¢ the matrix M is
positive definite. To obtain fields of definite mass we may introduce and orthog-
onal transformation Aué = 73@5121’”5 so that RT MR is diagonal, and similarly for
the scalar fields f.
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Part III
Weak Decay Processes

1 Weak Decays

The earliest manifestation of weak interactions to be identified was the S-decay of
radioactive atoms which were shown to emit electrons with a continuous spectrum
of energies. The basic process is the decay inside a nucleus of a neutron to a
proton, electron and a neutrino (actually anti-neutrino)

n—-pt+e +7U,.

Since the neutron (939.565 MeV) by itself is heavier by 1.293 MeV than the
proton (938.272 MeV) and the mass of the electron is only 0.511 MeV this decay
can also occur for free neutrons. In the context of a nucleus the binding energies
of the initial and final multi-particle systems can permit the reverse process

p—>n+e++1/e

to occur. It was in order to ensure conservation of energy and angular momentum
in [-decay that led Pauli to propose the effectively massless spin—% neutrino as
an essential part of the weak (-decay process.

In fact the neutrino that occurs in the above S-decay processes is specifically
associated with the electron which is why we have given it the suffix e. Subse-
quently (in cosmic ray studies) the muon (105.66 MeV) was identified. This is a
particle like the electron that participates only in weak and electromagnetic in-
teractions. It is entirely similar to the electron except for its much greater mass.
It was later confirmed in neutrino scattering experiments that there is a distinct
neutrino v, associated with the muon. The muon and the electron together with
their associated neutrinos were the first leptons to be identified. They were joined
by a much heavier third lepton, the 7 (1777 MeV) and its associated neutrino v, .
At the present moment the three neutrinos are thought either to be massless or
have very low masses. The upper bound on the mass of the v, is about 10 eV.
A full discussion of neutrino masses is complicated by the possibility of neutrino
mixing. It appears that there are only these three generations of leptons, at least
associated with relatively light neutrinos.

1.1 Massless Dirac Field

The experimental existence of virtually massless spin—% neutrinos, which interact
solely through weak interactions, is a crucial fact in determining the detailed
structure of the weak interaction. In the absence of mass neutrinos should be
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described by a massless Dirac field. Such a field satisfies the massless Dirac
equation:

v (x) =0 . (3.1)

This has the important property that, because 7,75 = —757,, 759 () also satisfies
the same equation,

Y Oysib(a) = 0. (3.2)
Since 75 = 1 it follows that the fields

Yr(r) = 3(1 = 9)e(z) and Yr(r) = 3(1+5)(2) (3-3)

do so as well. These fields are eigenvectors of v5 with eigenvalues F1 and describe
particles of definite helicity. To show this we use the result that the angular
momentum operator acting on Dirac wave functions ¢(z) is J = —ix x V+ S
where the spin S; = ite;;1777". Using 75 = iv°y'9?93 it is straightforward to see

that 15S = %707. We have therefore for a Dirac spinor of momentum p

ypu(p,A) =0 = (1-28py)ulp,) =0, (3.4)

where we have used p = p/FE (|p| = F for massless particles). The component of
the spin of a particle along the direction of motion, measured by S.p, is referred
to as the helicity. Hence for the projections in eq.(3.3)

(1+2S.p)ur(p,A) =0, (1 =2S.p)ur(p,\) =0, (3.5)

so that these describe left handed and right handed particles, with negative and
positive helicity :F%, respectively. The Dirac quantum field ¢ (z) annihilates
massless particles of negative helicity.

Charge conjugation applied to the fields defined in eq.(3.3), which represent
definite helicity, yields ¢z g (z) = C’EL r(2)t. However since vs5' = 75

Yi(z) = C%(l + 75 )Y ()
= (140 , (3.6)

using C74C~! = ~5. It follows that the anti-neutrino corresponding to a left
handed neutrino of negative helicity has positive helicity and vice versa.

1.2 Leptonic Processes

The most striking experimental discovery concerning weak interaction processes
is that they are not invariant under parity. The sign that parity is not conserved
is the appearance in experimental results of non-vanishing expectation values
for pseudo-scalar quantities such as the projection of the electron momentum
along the direction of the nuclear spin in [-decay. It turns out that the parity
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breakdown is in a certain sense “maximal”. This can be demonstrated most
directly by the fact that the neutrinos that participate in weak interactions have
only negative helicity, that is they are purely left-handed. Correspondingly the
anti-neutrinos are purely right-handed.

After much detailed analysis of experimental results it was concluded that the
effective interaction Lagrangian controlling (low energy) leptonic weak interac-
tions has the following form:

_Gr
V2

where G is the weak coupling constant and

Lw(z) = — L (@) () (3.7)

Ja() = Ve(x)1a(1 = 75)e() + V(@) Ya (1 =75) (@) + 77 (2) 10 (1 = 75)7(2) - (3.8)

The v/2 in eq.(3.7) is conventional. The operator J,(z) is referred to as the
weak current and changes the electric charge by AQ = 1 while J*(x)T gives
AQ = —1. The Lagrangian Ly (x) in eq.(3.7) is described as a current-current
interaction. The current J,(x) can be decomposed into a vector part under parity
transformations that is denoted by V, ()

Va(r) = Te(x)yae(z) + ... (3.9)
and an axial vector part A,(z)

An(z) = Ue()yayse(x) + ..., (3.10)

so that
Jo(z) = Vo(z) — An(z) . (3.11)

Since only the combination V' — A enters in Ly (x), which has the consequence
that as indicated above the neutrino field enters only in its left-handed form, the
theory is referred to as V — A theory. Under parity transformation V—A — V+4+ A
which again is the justification for saying that weak interactions violate parity.
The V, A currents however transform oppositely under charge conjugation so that
Ly in (3.7) preserves C'P invariance and hence also, by the PC'T theorem, time
reversal invariance.
Such an interaction with the leptonic current in eq.(3.8) gives rise to the decay
processes
P = et + v (7)) + Uu(vy) (3.12)

and similar decays for the 7-lepton as well as neutrino electron scattering which
has also been observed.
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1.3 p-Decay Rate and the Value of G

If £;(z) is the Lagrangian density which gives rise to a coupling between a single
particle state |p), of mass m, p?> = m?, which has the relativistically invariant
normalisation (p'|p) = (2m)32p°53(p’ — p), and states | f) which have a continuous
mass spectrum then we may calculate the decay rate I to first order in £; in terms
of the differential decay rate given by

1
dlr= —d 2 13
5 dog M (3.13)

where
M = (f|£:(0)[p) (3.14)
and dpy, called the phase space element, is defined, if 3>, |f)(f| = 1, by

S @)t P —p) — Y /dpf (3.15)

f spins ¥ momenta

For |f) composed of particles with momenta p, then, with standard normalisa-
tions,
dpy = [T =S2 2m)46* (P —p) . P =, . (3.16)
7 (27m)32p) ’ o

The differential decay rate for a particular decay process is then defined by sum-
ming or integrating eq.(3.13) over all unobserved final states, for the total decay
rate I' all states are summed over. If the decaying particle has spin but experi-
mentally only decays of unpolarised particles are measured then the rate should
be averaged over the initial spin.

In order to discuss the decay of the u as a consequence of the weak interaction
described by Ly in eq.(3.7) we choose the momenta of the particles so that

p(p) = e (k) +ve(q) + vu(d) (3.17)

corresponding to

Mu decay to electron and neutrinos
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The matrix element for the process, suppressing spin labels, is

M = (e” (k) 7e(q) vu(d) | Lw (0) ™ (p)) - (3.18)
In this process the Dirac fields can be regarded as free so that
M= =R (7@ (1 = 260 Paral — 25l ()
= —G—\/g e (k)7 (1 = ¥5)00.(q) To, (@) Ve (1 — ¥5)un(p) - (3.19)

To calculate the transition rate we need to compute the sum over spins of [M|2.
These can be calculated using 3, u(p, \)u(p,\) = ~v.p + m if p> = m? and
Sau(p, ) Xu(p, A) = tr(X(v.p+m)) (for anti-particle spinors v similar formulae
hold but with m — —m) we find

G 2
> IMPP= 7F51a652a5 ; (3.20)

spins

where assuming the neutrinos have zero mass

Si% = tr {(fyk + me) v (1 = 75)7.¢7° (1 — 75)} , (3.21)
Szap = fr {(v-p +mu)Va(l = 5)7-q"v8(1 — 75)} :

Using the standard rules for traces of y-matrices (tr(ysy#v"7y7v?) = 4ie!”?? with
€0123 = 1) we find

Sif = 8 {ko‘qﬁ + kg™ — k.q g™ + ieo‘ﬁ"pk(,qp} ,
Sras = 8{pad's + Psda — P-09as — i€asrpq"} - (3.22)

Using the fact that the four momenta are linearly dependent (p —k —¢q— ¢ = 0)
we have
$1%% 8505 = 256 p.qk.q . (3.23)

A consistency check for the result provided by eqs.(3.20,3.23) for |M|? can
be found by considering the case when all the 3-momenta are along the same
direction z in the limit m, — 0. If the initial p is at rest and assuming the final
electron and p-neutrino are moving parallel to z then k oc ¢/, for m, = 0, so that
|M|? = 0. This is essential for angular momentum conservation since as the e, v,
are left handed and the 7., which moves in direction —z, is right handed the total

spin along z is —% which is incompatible with the initial ;1 having spin %

_ - #e‘
Ve q l’_ ql - V“

Collinear decay of amu forbidden by
conservation of angular momentum
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According to eq.(3.13) the decay rate I' of the muon is given by

I'=

21)'0" (p—k—q—q') 5 D IM|*, (3.24)

spins

1 / d3k d3q d3¢’ (
2m,, J (2m)32k0 (27)32¢° (27)324"°

where we average over the initial muon spin states. We have then

G [ Phddy

=
8m,, 5 )0 @ ¢°

Sp—k—q—q)pakq . (3.25)

We evaluate this phase space integral by first integrating over the neutrino mo-
menta ¢, ¢’ since these are unobserved. If we introduce a momentum Q) = q¢+¢' =
p—k, Q®> =2q.¢ = 0% > 0 with also Q° > 0 then, since for massless neutrinos
¢° = |q|, ¢° = |d/| the essential integral becomes

d3q d3q'
lal |d']

Lorentz invariance requires that this has the form

IW(Q) =aQ.Q, + bg;wQ2 . (3.27)

To calculate a,b we may contract /,,(Q) with ¢"” and also Q*@Q” which then
gives the equations

LLI/(Q) = 54(@ —q— q/) Quq/u . (326)

d3q d3q/
CICT g0 g—q) . (3.28)
lal lq'|
The integral I can be easily evaluated in the centre of mass frame Q" = (o,0)
since it is Lorentz scalar,

a+4bz%], a+b=:1I, I =

1
4

d (3]
Iz/ﬁa(a—ﬂqp :47r/ dgd(o —2¢) = 2, (3.29)
0
and hence
. (3.30)
Using eqs.(3.27,3.30) then eq.(3.25) becomes
G2 d3k
P=— o [S5 (2 (p—k) +pk(p—k)?) . 31
S o] o (2R k(=R pk (- b?) (3.31)

In the muon rest frame the integral can be reduced to one over the electron
energy E using the result that p.k = m,E and d*k/k° — 4x|k|dE. At this point
it is also convenient to take advantage of the fact that m./m, = 0.0048 < 1 to
neglect the electron mass so that eq.(3.31) becomes

2G mu

/ i1 E*(3m,, — 4E) , (3.32)
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which is easily evaluated to give the final result for the muon decay rate

GZEm?
Py setmetu, = Wﬁ; : (3.33)

The muon lifetime is measured to be 7, = 2.1970 x 10 %ec and, as this is the
inverse of the decay rate, therefore I'- .- 15,4, = 0.2996 x 107'*GeV since
the muon has virtually only one decay channel (we have used for the conversion
1 GeV™! = 6.582 x 10™%sec). Inserting the experimental numbers in eq.(3.33),
with m, = 105.658 MeV, we would find Gy = 1.1638 x 10~°GeV 2. Including
small radiative corrections the current experimental result is

Gr =1.1664 x 107°GeV 2 . (3.34)

G is known as the Fermi coupling constant.
On replacing m,, by m, in eq.(3.33) we obtain the estimate for the purely
leptonic decays of the 7

Lo e imetvs ~ Do 17,10, = 0.405 x 1072GeV | (3.35)

since there are no new parameters to be determined. Experimentally the 7 decays
18% of the time into each of these channels. The lifetime of the 7 is 0.295 x
10~ sec so the total decay rate I';, = 2.23 x 1072GeV and 18% of this total
decay rate is ~ 0.402 x 107'2GeV which is very close to the estimate in eq.(3.35).
This is therefore strong evidence that the same weak coupling constant controls
all leptonic weak interactions.

1.4 Semi-Leptonic Processes

The (-decay of the neutron,
n—p+e +70., (3.36)

is referred to as a semi-leptonic process because it involves hadrons as well as
leptons. The initial and final state hadrons in general S-decay processes satisfy
the selection rules:

AB=0, AS=0, AQ=ALL=41, |AI|=0,1, (3.37)

where B = baryon number, S = strangeness and /3 = 3-component of isospin.
These characteristics are shared by 7 decays such as

™= et (T), T = pt+u.(7) . (3.38)

Such processes can be accommodated in the current-current model for weak in-
teractions by the inclusion of an additional hadronic part in the weak current.
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This term also has a parity breaking V — A structure. The weak interaction
effective Lagrangian density is now extended to the form

_Gr
V2

where J,'°P* is as in eq.(3.8) and

Ly (x) = J@) Ju(z) , Jolx) = Jo(2)' Pt 4 Ty (z)P2d (3.39)

Ja()P = V() — Ay (2)h (3.40)

Only the cross terms JolePt-1,J had- 1 ¢ in eq.(3.39) are of course relevant for semi-
leptonic processes. In eq.(3.39) we have made the fundamental assumption that
the same weak coupling governs the semi-leptonic decays as the purely leptonic
ones. However to make this a meaningful restriction we must identify more
precisely the structure of both the V" and A parts of the weak hadronic current. At
this point it is useful to employ hind-sight and exploit the modern understanding
of hadronic structure that views the proton p and neutron n as made up of more
fundamental quarks:

p ~ uud , n ~ udd . (3.41)

The [-decay of the neutron is regarded as being induced by the [-decay of one
of the d-quarks in the neutron:

d—u+e +7.. (3.42)

If we assumed that the quark contribution to the weak current is analogous to
that of the leptons we would expect

Jo(2)P o ()0 (1 — y5)d(z) + ... . (3.43)

However there are also analogous semi-leptonic decay processes in which the
strangeness of the hadrons changes by +1. A few examples of strangeness chang-
ing semi-leptonic weak interactions are

A=p+e +7., Y —snt+e 47, QO -=4e +7,, (3.44)
and K3 decays such as
K* = 1%+ e +v.(7.) . (3.45)

In the quark model these particles have the structure A ~ uds, ¥~ ~ dds,
O~ ~ sssand Z~ ~ dss while K~ ~ us. Such processes can therefore be thought
of as being due to the -decay of a strange quark,

s—>u+e +7.. (3.46)
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The general selection rules for strangeness changing semi-leptonic decays resulting
from s — w and also its charge conjugate 5 — w are

AB=0, AS=AQ=+1, AL=zx1,6 |[All=1, (3.47)

Such processes also exhibit a V' — A structure. However a key point is that, al-
lowing in the appropriate way for the kinematic differences due to the different
masses of the particles involved, the decay rates for strangeness changing pro-
cesses are much less than for the corresponding AS = 0 processes. It turns out
however that the difference in strength is accounted for by modifying effective
weak coupling for AS = 41 decays to G sinfc while for AS = 0 semi-leptonic
processes it is Grcosfc. 6 is the Cabbibo angle and experimentally 6, = 13°
or sinflc = 0.22. The factor cosfc = 0.975 is also necessary to explain small
differences between G'r measured in p decay and the corresponding coupling in
B-decays of radioactive nuclei. Actually we see later that this simple picture must
be further elaborated when applied to ¢, b,t quarks as well. However for weak
decays of low mass hadrons it is sufficient to take instead of eq.(3.43) a current
which leads to u «+ d and u <+ s transitions

Jo(2)" = 1(2) 74 (1 — 75) (cos O d(z) + sin O s(z)) + ... . (3.48)
We have then for the associated vector and axial currents
Vo(z)2 = (x)y, (cos ¢ d(x) 4 sin Oc s(x)) + . ..
Ag(2)" = T(2)yay5 (cos O d(x) + sin O s(x)) + ... .

Historically the structure of the hadronic weak current was postulated before
quarks were generally accepted in terms of its algebraic properties. If we introduce

the column vector
U

g=1|4d |, (3.49)
S

then this forms a triplet of quark fields under the group SU(3). Using the 3 x 3
Gell-Mann A-matrices, which form a basis for the Lie algebra of SU(3), we may
define octets of vector and axial currents

Vaa(®) = 7(2)IAar0g(x) and Aga(x) = 7(x) IAararsa(e) (3.50)

Using the canonical equal time anti-commutation relations for the quark fields
and [Ag, Ap] = 2ifapeAe it is easy to see that they satisfy commutation relations:

V2@, W@, = ifaV @) x - x)
V@), )|, = ifaeAl @) (x = X)
[A(x), AY(2)] = ifaeV2(2)0(x—X) . (3.51)

&
~
—
—,
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Since these commutation relations are inhomogeneous they fix the normalisa-
tion of the vector and axial currents independently of their detailed form in
terms of quark fields. From the vector and axial currents we may construct
charges Qy,(t) = [d3xV2(z) and Qaq(t) = [d3z A%(z) so that from eq.(3.51)
Qxa(t) = 3(Qva(t) £ Qaa(t)) obey the algebra of SU(3) x SU(3) which is re-
garded as an approximate symmetry of the strong interaction Hamiltonian (SU(3) x
SU(3) is supposed to be spontaneously broken to SU(3)y generated by Qy,(t)).
The generators of isospin [j23 = Qyi23 and Qyg = @Y, where Y is the hy-
percharge, so that the electric charge for u, d, s quarks is given by ) = I3 + %Y.
Without assuming their construction in terms of quark fields the hadronic weak
current given by eq.(3.48) can also be written as

Jahad' = cos O¢ (Va1+i2 - Aa1+i2) + sin O¢ (Va4+i5 - Aa4+i5) +..., (3-52)
since
01 0 0 0 1
TM+id) =0 0 0, TAa+iXs) =10 0 0 . (3.53)
0 0 0 0 0 0

The structure of the hadronic weak current in (3.48) or (3.52) provides strong
constraints on allowed semi-leptonic decays. In particular it forbids AS = —AQ
processes, such as X7 — netv,, where X1 is a suu baryon and n is formed from
udd quarks, and KT — nt7te 7., where KT and 7t are us and ud states. Such
decays have never reliably been seen although closely related AS = AQ decays,
such as ¥~ — ne 7, and KT — nt7 e'r,, are well known.

1.5 Decay of Pseudoscalars to Two Leptons

Much of the evidence for the picture we are describing, especially in relation
to the vector part of the weak current, lies in the detailed analysis of baryonic
weak interactions, in particular the decays of strange baryons. Additional useful
information on the axial vector part of the weak Hamiltonian comes from the
study of the two particle semi-leptonic weak decay of pseudo-scalar mesons which
involves the axial current alone. This decay process is also technically much
simpler to describe.
We consider then 7y decays

T (p) = ¥ (k) +ve(Ze)(q) and 7 (p) = p* (k) + v, (7)(q) - (3.54)
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Pi decay to electron and neutrino

To lowest order the leptons can be taken as non interacting so the basic matrix
element for the first of these processes is

M = (e (k) Te(q)|Lw (0)]7 (p))
- _%@—(/{;) 7e(q)[E7* (1 = 75)v]0) (0]Ja(0)"* |7~ (p))

= G—\/g cos 0c Ue (k)7 (1 = 75)vn. (@) (0] Aari2(0) |77 (p)) »  (3.55)

where we have used the form eq.(3.52) for the weak hadronic current and also,
because of parity and isospin, only A,11:2(0) has a non zero matrix element
between the negative intrinsic parity or pseudoscalar 7= (P|r~(p)) = —|7~ (pp)))
and the vacuum. Since the pion is spinless this matrix element can only have the
form

(0] Aa14i2(0)|7~ (p)) = iV2F:pa (3.56)

and under parity p,, transforms as a vector so the negative parity of the pion must
be counterbalanced by the additional minus sign in the parity transformation of
an axial current. This equation defines the pion weak decay constant F; which has
the dimensions of mass (the V2 is again conventional but sometimes f, = V2F,
is used instead). From eqgs.(3.55) and (3.56) we find

M = iGpF; cosOc U (k)y.p(1 — v5)v,.(q) - (3.57)

If we take into account the fact that p = k + ¢ and make use of the results
Ue(k)vy.k = T.(k)m. and v.qu,, (¢) = 0 for massless neutrinos we find

M = GpFym,cosOcu.(k)(1 —7v5)v,.(q) , (3.58)

so that the matrix element vanishes if m. = 0. This is a consequence of angular
momentum conservation since in this limit the electron has negative helicity while
the anti-neutrino has positive helicity which, in their centre of mass frame, add
up to a component of spin or angular momentum —1 along the electron direction
of motion which is incompatible with an initial spinless pion.
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k

e= — . - 7,
T

Decay of pion forbidden by angular

momentum for zero electron mass

If we sum the modulus squared of the matrix element over the final electron,
neutrino spins we get

Z |./\/l|2 = (GpFyme cos 90)2 tr {(v.k + me)(1 —v5)7.9} (3.59)

spins

where
tr{(v-k+me)(1 = 75)7.q} = 4k.qg = 2(m2 — m?) . (3.60)
From the general formula eq.(3.13) the decay rate
1 d3k d3q

I = / o)t (p — k — 2 61
2m, J (2m)32k0 (27?)32q0< MOk =) S§S|M| 7 (3.61)

Therefore from eqs.(3.59,3.60)

1 1 3
I = (GpFymecosfo)” —(m2 —m?) d'k

My (4m)2 ) EkO|k|

S(my —k° —|k|), (3.62)

where £ = (m2 + k2)2 and we have restricted the integral to the 7~ rest frame.
The remaining integral may be easily evaluated giving

My mz 2
| S Emg <1 — m—%> GAF?cos® O . (3.63)
If we were to do the calculation for muons we would find
2\ 2
My m
Lo pim, = Emi <1 — m—é‘) GRF? cos Oc (3.64)

Although we are not in a position to predict F; and hence the absolute values of
these decay rates we do have a prediction from our V' — A theory for the ratio of

the rates
L(r~ —e +7.) m?(m2—m?)?

Ry = — = —0 (3.65)

D(r= = p=+7,)  mp (mZ —mj)?
Inserting the appropriate masses we find Ry = 1.28 x 10~* which should be
compared with the experimental result Regp. = 1.23 X 10~*. This very small

number is a direct consequence of the V' — A theory. While there is a reasonably
good comparison between theory and experiment it can be improved considerably
by including appropriate radiative corrections (i.e. loop corrections due to virtual
photons). If we accept this evidence then it goes to support the idea that the
same hadronic axial current matrix element controls the two decay processes and
hence supports the V — A theory. There are many other decay processes that can
be estimated with results that support the theory.
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1.6 Non-Leptonic Processes

Many of the decays of strange particles involve no leptons at all. Such processes
may in principle arise from the effective Lagrangian density in eq.(3.39), from the
term Jehad -t j had = Also the strangeness conserving part may induce small parity
violating effects in nuclear physics which are potentially observable. However
there is no completely well defined procedure for calculating theoretically such
processes directly from Ly since the hadronic currents are not simply expressed in
terms of free fields. They couple to strongly interacting particles which cannot be
treated in any perturbative fashion such as was used for leptons. In the product
of hadronic currents in Ly it would be necessary to introduce a complete set
of intermediate states rather than just write it as a factorised product of single
current matrix elements which was all that was necessary in the calculation of
matrix elements for purely leptonic and semi-leptonic decays. In consequence the
theory of non-leptonic weak decays is primarily phenomenological and does not
determine much about the structure of weak interactions themselves.

2 CP Violation

A crucial non leptonic decay is that of neutral K’s since in these it is possible to
observe C'P-violation. The K° and its anti-particle K° are pseudoscalar mesons
with quark structure 5d and ds, having strangeness 1 and —1 respectively. Under
combined charge conjugation and parity the K° K° states (at rest with zero
3-momentum) may be chosen so as to transform as

CPIKY = |K%,  CPIRY) = |KY), (3.66)
so that we may define C'P = +1 and —1 eigenstates by
1 1
V2 V2

Assuming that weak interactions conserve C'P the possible decays of K and K,
are very different. K\° is allowed to decay to mm whereas K7’ is not. Under C
7t < 7~ while 7% — 7% and, in the centre of mass frame for two pions, P in-
terchanges the two particles and hence CP|rtn~) = (=1)¢|xta~), CP|r'x0) =
(=1)¢7°7%) where ¢ is the orbital angular momentum. In K decay we must take
¢ = 0 as the K is spinless. In consequence, with C'P conservation, K5 is not
allowed to decay to 7w states and only CP = —1 7w non leptonic final states
are possible, as well as semi-leptonic decays. This is in apparent accord with ex-
periment where neutral kaons have two characteristic lifetimes, the short lifetime
K¢’s are observed to decay almost entirely according to K¢’ — 77—, 7%7°, with
a lifetime 0.89 x 107'%sec, while K;’s have a much longer lifetime 5.18 x 10~ 8sec,
with a variety of decay modes including non leptonic 37 states. If neutral kaons

KO = =(IK) +|K%).  |K) = —=(IK°) — |K). (3.67)

48



are produced then beyond a few K¢° lifetimes only K;"s remain. The observation
of K;° — 7 decays shows, with the definitions,

T T He KP) ™ T (r0m0Hy [K ) '

that |n._|, |noo| are non zero. Experimentally |n, | & |noo| ~ 2.28 x 1073.
Since this demonstrates that C'P is not conserved we cannot identify K¢°, K;°
with the K°, K5 C'P eigenstates defined in eq.(3.67). Instead

1 1
KO = 7 Klo €1 K20 y KLO — = 1 K20 €2 Klo )
1K) = e (KO + alk) 1K) = 2 (1) + el 1Y)
(3.69)

with €1, €5 complex. These states are determined by diagonalisation of the 2 x 2
matrix

R=M—Lr= ((KO\H’IK°> (KOIH’\K°>) _ (Rn R12) 30

(K°|H'|K®) (K°|H'|K°) Ro1 Rap

where H' is the effective Hamiltonian describing processes to second order in the
weak interaction Hyy,

' Hyw | f){(f|Hw
H_HW—%:Ef_mW_Z,E, (3.71)

and we restrict to the subspace formed by K°, K states at rest. In eq.(3.71) the
states |f) satsfying Ef = my, are possible states to which K° K° may decay,
these give «(H' — H'") = 2r Y ; 6(Ey — mw) Hw|f)(f|Hw. As a consequence H’
and hence R in (3.70) are not hermitian, which is a reflection of the decay of
K° K°. The eigenvectors of the non hermitian matrix R = M — %iF determine
the appropriate linear combinations appearing in (3.69) with (3.67). The corre-
sponding complex eigenvalues may be written as mg — ’i%%‘, mp — i%yL respec-
tively. Under time evolution we then have | K¢ (£)) = e~ims=i339) | KP(0)), |K,°()) =
e~imi=izm)t| [¢,9(0)) and hence, since |e" ™22 = ¢ yg, ~; are the decay
rates for the observed K¢, K;" neutral kaons while mg, m; are their masses.
Even without any C'P violation second order AS = +2 weak interactions lead
to non diagonal contributions to the matrix and give rise to a mass difference
between the K¢® and K;° states.

Assuming C'PT invariance requires O 'O~ = H'T with © = CPT. Since we
may take O|K°) = |K%), ©|K°) = |K°), then from the antilinear property of ©
we have (K°|H'|K®) = (K°|H'T|K°)* = (K°|H'|K°), or in 3.70 Ry; = Ry, while
(K°|H'|K®) = (K°|H'{|K°)* is unconstrained. Conversely, assuming 7" invari-
ance, TH'T' = H'M and T|K°) = |K°), T|K°) = |K°), leads to (K°|H'|K°) =
(K°|H'|K"), or Ri5 = Ry;. The unnormalised eigenvector of the matrix R given
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1+€1
1—61

1+€2

0 .
by eq.(3.70) for K¢’ is of the form ( 14 e

CPT so that Ri; = Ry leads to

) and for K;°, ( ) Assuming

, = VR —VRo
VR + vV Ry .

Conversely T invariance alone and hence Rijs = Ry requires ¢, = —ey. Ex-
perimentally these quantities may be measured and, within errors, C'PT is con-
served. If the only source of C'P violation is through the mixing in eq.(3.69) then
N4— = oo = €2. Experimentally |1, _/noo|* —1 ~ 2 x 107 which is small but non
ZETO.

(3.72)

€1 = €

3 Intermediate Vector Bosons

The effective Lagrangian in (3.39) summarises a very large amount of experimen-
tal information concerning low energy weak interaction processes. Nevertheless it
is theoretically unsatisfactory. Treated to first order weak processes rise rapidly
with energy and violate general bounds. Regarded as an interaction in a quantum
field theory then the perturbative expansion is unrenormaliseable and presents
severe difficulties, essentially because the product of two currents has dimension
6. An amelioration of these problems is obtained if we replace the current-current
interaction with an interaction between the weak current and an elementary com-
plex vector field W,

Lr=gw (J"Wa+ JTW) (3.73)

The free field Lagrangian density for W, is taken to be
Lo=—3FTE5+miyWW,, | F,5 = 0,Ws — 05W, , (3.74)

which is an extension of the Lagrangian density for the electromagnetic field to
include a mass term. From this form it is easy to derive the classical equation of
motion

O“Fop +miyWs =0, (3.75)
which in turn requires
(O +m)Ws =0, Wy =0, (3.76)

so that W, is a free field of mass my, with zero divergence. The field may be
quantised by decomposing it into plane wave modes

Walz) = 3 (alp, Nealp, Ve + b(p, )iea(p, \)e™) (3.77)

DA
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where the summation is over all 4-momenta that satisfy the mass-shell condi-
tion p?> = m¥, and the A\ summation is over labels identifying the three allowed
polarization vectors that satisfy

p.e(p,A) =0 and €(p,\)*.e(p, ') = —0rn - (3.78)

In the rest frame when p = (my,,0,0,0) then €*(p,\) has the form (0,¢e(X))
where {€(\)} are three orthonormal 3-vectors. By contracting both sides with
the linearly independent set {p, ¢(p, \)} we can verify the completeness identity

DaP
Zea PN Es(DA)* = —gap + 28 (3.79)
mw

On quantisation a, b, a, b' become annihilation and creation operators which sat-
isfy the commutation relations

[a(p7 )‘)7 a’(pla A,)T] = 5pp’5)\>\’ ) [b(pa )‘)7 b(pla A,)T] = 5pp’5)\>\’ ) (380)

where a(p, A\)T,b(p, A\)! create massive spin 1 particle states. In the usual way
from the quantised free fields we may construct the Feynman propagator

(OIT{Wa(2) W5(0)}0) = iDag(x)

= o1 Pl (3.81
27r/p m—l—ze(gaﬁ+ W)()

There is some subtlety in determining the propagator for the W field since using
the mode expansion eq.(3.77) in the time ordered product in (3.81) leads to an
extra non covariant piece when o = 8 = 0. However a more careful treatment of
the quantisation for the field theory arising from (3.74) shows that it is consistent
to just take the form given by iD,g(x) in eq.(3.81) for the W propagator. For
application to weak interactions the crucial result is that as my, — oo, or more
physically if in any process the components of the momenta for virtual W’s satisfy

|p*| < myy, then
1
Dos(z) ~ — gas 54 (z) . (3.82)
w

In the quantum field theory with the interaction in eq.(3.73) the corresponding
S operator is as usual given by

S=T{c[Peti} (3.83)

where the W field has the propagator in eq.(3.81). For processes in which no
massive particles described by the W field are created or destroyed then, effec-
tively by normal ordering S and dropping all terms involving the annihilation
operators a, b and also the corresponding creation operators, we find

S . 7’{6*1'912/[/ ffd4xd4g3/ Ja(x)TDaﬁ(xfm/)JB(x')} . (384)
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For low energy processes in which it is appropriate to take the limit given by
eq.(3.82) then it is easy to see that the S operator takes the form corresponding
to the weak interaction given by eq.(3.39) if

Gr _ giv (3.85)

Clearly the coupling constant gy, which is defined by the interaction eq.(3.73),
is dimensionless which is necessary for this interaction to be at least potentially
renormaliseable. However this theory of interacting massive vector fields is still
not satisfactory since the large momentum behaviour of the vector propagator,
which is exhibited in (3.81), contains the p,ps/mi, terms which lead to unrenor-
maliseable divergences. Such terms do not appear in quantum electrodynamics
essentially as a consequence of gauge invariance. A renormaliseable quantum field
theory describing weak interactions requires the construction of a suitable spon-
taneously broken non abelian gauge field theory. The first, and also the finally
experimentally consistent such theory, is the Weinberg-Salam model.
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Part IV
Weinberg-Salam Gauge Field
Theory

1 Electro-Weak Theory

The electro-weak gauge theory is an illustration of the theoretical unification of
physical phenomena which initially appeared very different. It brings together
the theories of QED and weak interactions. In virtually its present form the
theory was described S Weinberg in 1967 although it was also put forward by
A Salam in the following year and earlier S Glashow had discussed many of the
essential features of the final theory. In conjunction with J Iliopoulos and L
Maiani, Glashow also showed how with the introduction of the charm quark, in
addition to the already established u, d, s quarks, the theory could be successfully
extended to hadrons.

1.1 Electro-Weak Theory for Leptons

Some of the essential experimental and theoretical ingredients used in construct-
ing a unified theory of weak and electromagnetic interactions for leptons are:

a) Leptons have only electromagnetic and weak interactions.

b) QED is a gauge theory - a fact that is important for its renormalizability
which allows for calculations of higher order corrections.

c) Weak interactions - like QED - involve vector-like currents which have a
V' — A structure, giving rise to parity violation, while the electromagnetic
current is pure V.

d) The current-current interaction, although very successful to first order as
a phenomenological description of low energy weak interactions, does not
allow higher order corrections to be calculated. It is not as it stands a
renormalizable field theory and at energies of order 1/+/Gf weak processes
are no longer weak and the first order predictions of the current-current
interaction must be drastically modified.

In order both to unify the forces governing weak interactions and to render the
theory potentially renormalizable it is therefore natural to postulate that there
should exist gauge bosons related to the weak currents in a manner similar to the
way that the electromagnetic field is related to the electric current. However it is
obvious that there are no massless vector particles that are partners to the photon.
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It was shown by Higgs and others that this problem can be overcome by exploiting
the ideas of spontaneous symmetry breaking which allows for massive vector
particles in gauge theories. Using gauge theories with spontaneous symmetry
breakdown, when some scalar field gains a non zero vacuum expectation value,
also provides a mechanism for generating lepton masses when mass terms are
forbidden by the gauge symmetry.

1.2 Chiral Structure of the Dirac Spinor Field

As a preliminary to describing the gauge theory we examine the chiral structure
of the Dirac field. Such a field, for the electron say, satisfies the Dirac equation,

(7.0 —me)e(z) =0 . (4.1)
This equation is obtained from the Lagrangian
L(x) =¢(z) (i7.0 — me)e(x) . (4.2)

Now split e(z) into left and right chiral components

e(x) = er(x) +er(z) , (4.3)
where
er(z) =3 (1+75)e(z) and ep(z) =3 (1—5)e(x) . (4.4)
The conjugate fields are
o) = (@) = (@)L (1 +95) 1 =@ (1) . (45)
and similarly
ez(e) = 2a) (14 75) - (4.6
It follows that
er(z)er(x) =er(z)er(r) =0, (4.7)
and
er(z)y%er(r) = er(z)yer(z) =0 . (4.8)

The electron Lagrangian given by eq.(4.2) can then be rewritten as
L(x) =egr(x)iv.0er(x)+er(x)iv.0er(x) —me [eg(z)en(x) + ep(x)er(x)] . (4.9)

The ‘kinetic’ part of the Lagrangian is therefore a sum of two terms involving the
right and left chiral components separately, while the mass term couples right to
left and left to right. From this point of view that the electron mass arises from
an interaction that transforms left handed, or negative helicity, electrons into
right handed, or positive helicity, electrons and vice versa. A massless neutrino
has no interaction inducing such a L — R flip so that it can therefore remain
purely lefthanded
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1.3 Weak Iso-Spin and Hypercharge

The starting point for the construction of a unified Electro-Weak gauge theory is
to identify the appropriate gauge group G and also the corresponding represen-
tations under which the fields transform. For simplicity we initially restrict the
theory solely to the electron and its associated neutrino which may be assumed
to be massless and purely left-handed. Since the weak interactions violate parity
the left handed and right handed fields are treated separately and may therefore
belong to different representations of the gauge group. For the electromagnetic
and weak interactions to be treated on a unified basis there has to be a close
connection between the neutrino and the electron. The standard method for
achieving such a relationship in quantum field theory is to combine the fields for
the related particles into a multiplet that forms a representation of the appro-
priate symmetry group. In the present case the neutrino and the left handed

electron form a doublet
L(z) = < ve(7) ) | (4.10)

er(x)

which is supposed to form a two dimensional representation of an SU(2) group
called weak iso-spin. The members of a symmetry multiplet must have the same
numbers of degrees of freedom so only the left chiral component of the electron
field is linked to the naturally left-handed neutrino field. The right chiral com-
ponent of the electron field is taken as a weak iso-singlet which can be written
as

R(z) = eg(x) . (4.11)

It is easily checked that the kinetic part of the electron-neutrino Lagrangian can
be expressed as

Liin.(z) = L(2)iv.0L(z) + R(x)iy.0R(x) . (4.12)
Clearly Ly, (x) is invariant under weak iso-spin transformations when
L(z) = ez L(z) , L(z) = L(z)e 27 | (4.13)
where 7 are the usual 2 x 2 Pauli matrices, and R(x) is invariant
R(z) = R(z) , R(z) — R(x) . (4.14)

The Lagrangian is also invariant under two independent U(1) groups, or phase
transformations, when L and R transform separately by multiplication by dif-
ferent complex numbers of modulus one. In constructing a gauge theory then
classically any global symmetry of Ly, may be made into a local symmetry by
introducing suitable gauge fields and replacing the derivatives in eq.(4.12) by the
appropriate covariant derivative. In order to accommodate electromagnetism it
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is essential that the gauge group G should contain the local U(1)q electromag-
netic gauge group generated by the electric charge ). Acting on the left-handed
doublet and right-handed singlet fields defined in eq.(4.10) and eq.(4.11) it is easy
to see since the neutrino has no charge and the electron charge —1 that

QL@):(S EH)L@), QR(x) = —R(x) . (4.15)

Acting on L clearly
Q=357m—31, (4.16)

which implies that a U(1)g gauge transformation generated by @) is a product
of an element belonging to a U(1) subgroup of the weak SU(2) and an element
belonging to an independent commuting U(1) group. If we denote the generators
of the weak SU(2) group in general by T;, i = 1,2,3, [1;,7}] = i€;jxT% and the
commuting U(1) group by Y then eq.(4.16) is generalised to

Q=T+Y. (4.17)

The minimal gauge group that is consistent with the requirements for an electro-
weak theory involving just e, v, may be therefore taken to be G = SU(2)rxU(1)y
where the factor SU(2)r refers to weak iso-spin, with generators T, and the
factor U(1)y has as its generator the weak hypercharge Y. The generators of
SU(2)r x U(1)y then have the form T x 1,1 x Y. A typical element g of this
group can be written

g(a, B) = exp(ia.T) exp(ifY) . (4.18)

Acting on the T' = % representation defined by L we take T — %7‘ while for
the T' = 0 singlet representation provided by R then T — 0. The irreducible
representations of U(1)y are one-dimensional and are determined by assigning
a particular value to Y, acting on L as in eq.(4.16) Y — —3 while for R from
eq.(4.15) Y — —1. In general the value of the weak hypercharge Y for an
arbitrary multiplet is dictated by eq.(4.17) where @ takes equal values for the left
and right handed chiral components of any charged field since the electromagnetic
current is purely V.

1.4 SU(2) x U(1) Covariant Derivatives

If ¥(z) is a field multiplet with weak hyper-charge Y then it transforms under a
local or space dependent SU(2)r x U(1)y gauge transformation according to

w(x) N €m(x)'T+w(m)Yw(x) ’ (4.19)

where T belongs to the appropriate representation. For compatibility with the
required form for weak interaction all left handed lepton and also quark fields
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belong to T = % doublet representations while the right handed fermion fields
are all singlets. The covariant derivative for ¢)(x) depends on gauge fields A,,, B,
and has the form

D,(x) = (0, —igA,(z).T —ig'B,(z)Y) ¢¥(z) , (4.20)
where the non abelian SU(2)7 vector gauge fields transform as
) . 1 . :
A, (x). T — em(z)'TAM(x).Te_w‘(x)'T + —ew‘(x)'Ti@Me_m(“”)'T , (4.21)
Y

while the abelian U(1)y gauge field transforms as
1
Byla) > Byla) + 0,0(0). (122)

With these transformation properties for the vector fields the covariant derivatives
transform in the same way as the multiplet itself in eq.(4.19). Thus

Dyip(ar) — D THIOY D y(z) (4.23)

Note that because of the direct product structure of the gauge group it is nec-
essary to introduce two coupling constants g and ¢’, one for each factor in the
gauge group. The existence of two coupling parameters is crucial to the structure
of electro-weak theory although it is an indication that the theory is not really
fully unified.

Using the hyper-charge assignments for the various multiplets we see that the
covariant derivatives for the lepton fields are then

DyL(z) = (0, —ighAu(x) T +ig3Bu(x)) L(z) ,
DuR(x) = (04 +ig'Bu(z)) R(x) . (4.24)

We can also define the field strengths for the gauge fields themselves by
F,(x)=0,A(z) — 0,A.(x) — gA,(x) x A,(z) , (4.25)

where under a gauge transformation there is no inhomogeneous term as in eq.(4.21)
F;w (l‘) T — eioz(ﬂﬁ).TFuy(:L,) .Te—ia(a:).T’ and

Gu(z) =0,B,(x) — 0,B,(z) , (4.26)

which is invariant, just as the usual Maxwellian electromagnetic field strength is
under gauge transformations.

The kinetic term for the lepton fields given by eq.(4.12) can now be extended
to the local gauge invariant form as

Liept. (z) = L(x)in" D, L(z) + R(z)iv" D, R(x) , (4.27)
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with covariant derivatives defines as in eq.(4.24), while the gauge fields are de-
scribed by the usual generalisation of the Lagrangian for the electromagnetic
field

Loauge(z) = —1F" (2).Fy, (z) — 1B" (2) B, () . (4.28)
Since the left handed and right handed lepton fields transform differently under
both SU(2)r and U(1)y there is no possibility of adding any mass terms to

eq.(4.27) which is compatible with invariance under the gauge group.

1.5 Spontaneous Symmetry Breakdown

The gauge fields for the field theory described by the Lagrangian in eq.(4.28)
correspond to massless vector, or spin 1, particles after quantisation, at least
when treated in perturbation theory. For a theory of electro-weak interactions
the only allowed massless vector particle is the photon corresponding to the usual
Maxwell gauge field. The remaining vector fields must be given a mass. In order
to ensure that the theory is renormaliseable this must be done in a way which
preserves gauge invariance under the gauge group G = SU(2)7 x U(1)y. This can
be achieved by using the mechanism of spontaneous symmetry breaking when the
Lagrangian remains invariant under the symmetry group but the vacuum state
of the theory does not. The simplest way of achieving the required spontaneous
symmetry breakdown is to introduce an elementary scalar Higgs field ¢ whose
potential V' (¢) is invariant under gauge transformations on ¢ but is such that its
minimum is obtained for non zero values of the field. In the ground state of the
field theory the Higgs field is restricted to a subset Vi, on which G acts in a
non trivial fashion. In the quantum field theory the vacuum is defined, to lowest
order in perturbation theory, by choosing a particular point ¢y belonging Vi,
and then expanding about it. In general ¢q is not invariant under the action of
group transformations belonging to G but those elements of G which leave ¢q
invariant, h¢g = ¢y, define a subgroup H C G which is then the unbroken gauge
group. The gauge fields linked to the generators of the Lie algebra of H remain
massless while those corresponding to the coset G/H gain a mass. In the present
case it is necessary to preserve a residual U(1) invariance to ensure that there
remains a massless photon. This is ensured by choosing the Higgs field to be a
T = 1 weak iso-spin doublet which also carries weak hypercharge Y = % Hence

2
_ ¢1(7)
¢($) - < ¢2(x) ) ) (4.29)
when the covariant derivative is

Dyé(x) = (0, — igh Au(z).m —ig'§ Bu(2)) ¢(x) . (4.30)

A Lagrangian for ¢ that is invariant under the local gauge group SU(2)r x U(1)y
is then

Litiggs (v) = (D"¢(2))' Dy () = V(9(2)) , (4.31)
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if the potential V' (¢) has the form

V(9) = F(¢'9) . (4.32)

The Lagrangian defined by eqs.(4.31,4.32) is invariant under SU(2)r x U(1)y for
any value of the weak hyper-charge of ¢ but choosing Y = % is crucial later to
allow for coupling of ¢ to the lepton fields. For spontaneous symmetry breakdown
the potential V, or F, is assumed to have a minimum at a point where ¢¢ = %1)2.
For renormaliseability V' (¢) should be at most quartic in the field ¢ so, if we

choose Vi, = 0, we may take

V() = 1A (616 — 2?)" . (4.33)

As a particular ground state which realises the minimum of V' (¢) we choose

¢0=%<8> : (4.34)

where v is real and v > 0. All other solutions of the minima condition ¢f¢ = %’02

can be obtained from ¢y by an application of suitable transformations belonging
to the symmetry group of V', SU(2)r x U(1)y. In the quantum field theory of
course ¢q is the vacuum expectation value of the Higgs doublet. With the choice
in eq.(4.34) it is easy to see that

(537 +351)do=Q¢po =0, (4.35)

where the charge @ is defined in general by eq.(4.17). Thus the unbroken sub-
group under which the ground state or vacuum is invariant is U(1)g generated
by @. The coupling to the Higgs field, as in eq.(4.31) then gives masses to all
gauge fields other than that corresponding to the photon.

1.6 The Electro-Weak Lagrangian and the Physical De-
grees of Freedom

The physical fields after spontaneous symmetry breakdown may be identified
most easily by using a gauge transformation to ensure that the Higgs field is or-
thogonal to the massless Goldstone boson fields. These Goldstone modes can be
regarded as belonging to the coset space SU(2)r x U(1)y/U(1)g and are effec-
tively absorbed into the gauge fields by the gauge transformation. The resulting
form for the Higgs field is equivalent to writing in this case

bx) = (v + p(a) ( 0 ) , (436)

Sl
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where p is a real scalar field which represents the fluctuations of the Higgs field
around the ground state value. The choice in eq.(4.36) is equivalent to imposing
three gauge conditions on the Higgs field of the form

<Z5(37)T7'¢0 - <Z50TT<Z5(37) =0, </5<5U)T¢0 - ¢0T<Z5(37) =0, (4.37)

where ¢ is given by eq.(4.34). Although (4.37) contains apparently four lin-
ear conditions on ¢ because of eq.(4.35) one is redundant so there remains one
real degree of freedom represented by p in eq.(4.36). With the definition of the
covariant derivative in eq.(4.30) we then find

" V2 \0up+i3(v+p)(gAus — 9By
g

rgtgterns) (§) st o (1) 059

where the Weinberg angle 6y, is defined by

/

tan Oy = g . cosby = % , (4.39)
9 (9% +97)2
and we introduce the linear combinations
Wu = % (Alu - iA?u) )
Z, = cosbyAs, —sinbyB, . (4.40)

The Higgs Lagrangian which is given by eqs.(4.31,4.33) then becomes

Lhiges = %8Hpaup+i92<v+/))2( %Z”Zu+W“TWﬂ)—%)\(p2+21)p)2 . (4.41)

cos? Oy,
The field p(x) represents the degrees of freedom associated with the Higgs boson
whose mass satisfies m,* = Av?. Actually the corresponding Higgs particle has
not been observed experimentally. Its mass is considered to be very large lying
between 100 and 200 GeV. The most important aspect of eq.(4.41) for the con-
struction of a viable electro-weak theory is that it generates a mass term for the
vector fields W, Z,, when p — 0

my WHW, + tmz21Z, (4.42)

where )
2 9 My

g’ mp=1(g+ g = (4.43)

PN

2 SRR L S—
Mw = cos? Oy,
The orthogonal combination to Z, in eq.(4.40) given by

A, =sinbw As, + cos 0w B,, | (4.44)
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has no mass term, i.e. there is no term of the form %A“AM, and is the gauge
field for the unbroken U(1)qy gauge symmetry. The result in eq.(4.41) is in fact
independent of the particular weak hypercharge assignment to the Higgs field ¢
although the definition of the Weinberg angle 0y, would have to be modified from
eq.(4.39).

Using the definitions in eqs.(4.40,4.44) we may now decompose the gauge field
Lagrangian in eq.(4.28) in terms of the physical gauge fields W, Z,, A, selected
by the mass terms generated by the Higgs field. It is convenient to define

i, =0,A,—0,A,, F2,=0.,2,-0,7,, (4.45)
and we may write for F,,

F3 = sinfy F4, +cosby FZ, —igW,W,] — W, W,0)

FY = 5(Fur = iFus) = W, —d,W,
dy, = 0, —igAu3 = 0, —ieA, —igcosbOw Z, , (4.46)
where we define
e = gsinfy . (4.47)
We may now rewrite eq.(4.28) in the form
Egauge — _%FWMVTFWMV o iFA,uz/FA!W o iFZ,uz/FZ!W
+ iWrW (e FAW + g cos GWFZW)
+ 197 (WP — (wwhy?) (4.48)

Since the relations given in eqs.(4.40,4.44) between the gauge fields A3, B,, and
the physical fields A,,, Z,,, which are the natural basis for the mass terms so that
they take the form in eq.(4.42), is just an orthogonal rotation

As, | cosBy  sin Oy Z,

( B, ) - ( —sin by cos Oy ) ( A, ) ’ (4.49)
the quadratic terms in Lyauee remain diagonal. Clearly the piece —;F4F4,
in Lgauge represents the usual Lagrangian for the electromagnetic field. There is
no coupling between A, and Z, reflecting that the massive Z particle is neutral,
with electric charge zero, like the photon. The complex vector field W, is coupled
to the electromagnetic gauge field with a coupling e, defined in eq.(4.47), so that
the corresponding spin-1 particles in the quantised theory have charge +e.

To complete the construction of the Lagrangian for the electro-weak theory
of the electron and its neutrino it remains only to consider the coupling of the
leptons to the Higgs field. If the T = % doublet ¢ has weak hypercharge Y = %
then there is an invariant Yukawa like coupling

Liept,o(x) = =V2G. | L(@)g(x) R(z) + R(z)d(x) L(x)] . (4.50)
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With the choice of gauge when the Higgs field takes the form in eq.(4.36) this
becomes

Liepto = —Ge(v + p) [Erer +erer] = —G(v+ p)ee . (4.51)

In the ground state when p — 0 the lepton Lagrangian acquires an effective mass
term so that
me = Gev . (4.52)

The mass of the electron is thus determined by the coupling of the Higgs field to
the lepton fields and by the vacuum expectation value v of the Higgs field which
sets the basic mass scale of the theory. It is important to recognise that the full
Lagrangian

L = Loauge + Liept + Liept,o + LHiges » (4.53)

as given by eqs.(4.28,4.27,4.50,4.31,4.33), contains all terms allowed by renor-
maliseability and SU(2)r x U(1)y gauge invariance so it is the most general
renormaliseable gauge invariant Lagrangian for the fields e, 1., ¢ with the as-
sumed representations of SU(2)r and assignments of weak hypercharge Y.

1.7 Massive Vector Bosons
Neglecting its interactions with the other fields the field Z,, has a Lagrangian
L;=—-YF""WF2, +im;2'Z, . (4.54)
The Lagrangian in eq.(4.54) gives rise to the equation of motion
MF2, +myZ, =02, —0,0.Z +m3Z,=0. (4.55)
Taking the divergence we find at once that
mz0.Z2=0. (4.56)

In turn this implies that
(0*+m3)Z,=0. (4.57)

When expressed in terms of annihilation and creation operators for states of
definite momentum the vector field becomes

Zu(@) = 3 (alp, New(p, e + alp, Mle, (p, A) ) | (4.58)

DA

where the summation is over 4-momenta that satisfy the mass-shell condition
p*=mj, (4.59)

and the A summation is over labels identifying the three allowed polarization
vectors that satisfy

pe(p,A) =0 and e(p, \)*.e(p,\) = = - (4.60)
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If we look at the particle state in its rest frame then p = (mz,0,0,0) and €(p, \)
has the form (0,¢())) where {e(\)} are three orthonormal 3-vectors. By con-
tracting both sides with the linearly independent set {p,e(p, \)} we can verify
the useful identity

* Pubv
Z GM(p, )‘)GV(pa )‘) - _guu + - 2 - (461)
A mz

After quantisation the annihilation and creation operators satisfy the commuta-
tion relations

[a(p, )‘)7 a(pla )‘,)T] = 5pp’5>\)\’ . (462)
The field Z,(x) therefore is associated with a vector particle.

To perform perturbative calculations in which the vector particle appears on
internal lines of a Feynman graph it is necessary to determine its propagator
D, (x —y). This can be defined by introducing an extra coupling to an exter-
nal current j*(z)Z,(x) in the the Lagrangian L£z(z). The classical equations of
motion then become

0* 7" (x) — 0"0.Z(x) + mZ 2" (x) = —j"(z) , (4.63)

with the consequence this time that

m20.Z(z) = 0.j(x) , (0*+m3)Z,(z) = —(g,w + 8“2”)7”(@ : (4.64)

mz

The solution is then written as
Zu(w) = [ dy Dl — )" () (4.65)

If we use Fourier transforms with Feynman boundary conditions the differential
operator is easily inverted giving find

d*p . - - 1 Dup
D, (1 — :/ = p D,p)=—— (=g, +22) .
(=) 2 w(D) s Duw(p) P —mItic ( G+ 724%6)6)

In Feynman diagrams the propagator for each internal line corresponding to a
virtual neutral vector boson Z,, is iD,, (x — y) or in momentum space iD,, (p).

The charged vector boson field W, (x) can be treated in the same way. The
propagator is exactly the same with the mass m, replaced by the mass my;.

For low energy processes, as for weak decays, the mass of the vector boson
my or myy is very large relative to the momentum components {p,} and it is
appropriate to make the approximation in which the momentum is neglected. In
the neutral Z boson case for example

. Gow 1
D, (p) ~ # , D(x —y) ~ Wgwé‘*(x —y) . (4.67)
Z 7Z
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1.8 Interactions between Fields

The most important interactions from the viewpoint of an experimentally suc-
cessful electro-weak theory are:

i) the charged gauge fields W, (z), W, (x)" with the leptonic weak currents,
ii) the electromagnetic field A, (z) with the electric current,

iii) the massive neutral vector boson Z,,(z) current with the new neutral weak
current.

All these couplings arise from the gauge invariant extension of the kinetic part
of the leptonic Lagrangian as given in eq.(4.27),

Elept. = Ly + gDy“%rL.A“ — g’(%[ify“[j + R’Y“R) B;L
g . g
Liin + == (J* W, + JHW,) + et Ay + —— T4 7, (4.68
k+2\/§< ﬂ+ ,u)"‘e.]e.m. u+2COSQW n#( )

The couplings of the charged vector mesons arise from the terms involving A,
and A,,. Using the definition of W, in eq.(4.40) it is easy to see that

Jt =20y L =0 A4"(1 —5)e , (4.69)

using the definition of the lepton doublet L in eq.(4.10) and

T =3(n +im) = (8 (1)) : (4.70)

Hence W, couples to the AQ) = 1 weak current for the electron and its associated
neutrino with an effective coupling is g/2v/2. Later this result will be used to
relate g to the weak coupling constant G .

Using the results in eq.(4.49) for A,3, B,, in terms of the electromagnetic gauge
field A, and the massive neutral vector field Z,, and also the definition of e in
eq.(4.47), we may find expressions for the electromagnetic current j# —and also
the neutral current J#. For the former it is easy to obtain

Jh . = L' (s — 1)L — Ry"R = —eye (4.71)

which is of course the required form for the contribution to the electromagnetic
current arising from the electron Dirac field. For the neutral current we can
similarly read off the required contributions from the electron, neutrino fields,
using eq.(4.39) to eliminate ¢’,

Jt = L

n

(cos? Oy 73 + sin® Oy 1) L — 2sin? Oy RYM R
(1 — 75)ve — Ey*(1 — 5 — 4sin? Qw)e} . (4.72)

AH
= %[ﬁ
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The neutral current allows the Z to decay into 7., or ete”. Of course the
weak neutral current receives similar contributions from muons, 7’s and their
associated neutrinos which also provide decay channels for the Z.

The Weinberg Salam electro-weak theory predicts the existence of a neutral
vector boson with a mass my as well as a charged vector boson with mass myy.
Well after the theory was well established by relatively low energy experiments
these particles were discovered experimentally and the latest values for their
masses are my = 80.4 £ 0.2 GeV and my = 91.187 4 0.007 GeV. The ratio
mw /mz = 0.8798 £ 0.0028 which yields from eq.(4.43) an estimate of the Wein-
berg angle sin? fy, = 0.232, although at this level of accuracy it is necessary to
consider higher order corrections and specify precisely the exact definition of yy .

To analyse the theory at low energies we may expand the S operator for the
interaction of the W, Z fields with the charged, neutral currents to second order
when there is a contribution due to virtual W, Z’s with propagators iDZ‘;, ZDZ
respectively,

_ d4r B pwtyps 1 g A }
S {expz/ J W, + JW, N + QCOSHWJ" u)

N _._ 4 14 7 n Tt yW A TV (!
= 7{1 ig9 /d xdx(J (2)' D (v — 2")J (2)

(@) DE (x — ') T () + .. } . (4.73)

cos? Oy,
neglecting terms which involve operators which create or destroy W, Z particles.
For low energy processes the momenta of the virtual W, Z is small compared
with their masses my/, mz and so it is valid to use the approximate form given
in eq.(4.67) and correspondingly for DE{,. Hence we find a low energy effective
current-current interaction given by

92 ut m‘g‘/
Lywes = — 3 (P Tt phd) . P = s (4.74)

ok cos? Oyym2
From the expressions for the W, Z masses and the Weinberg angle in eq.(4.43)
p=1. (4.75)

This result is a direct consequence of the choice of the SU(2)r and weak hyper-
charge quantum numbers of the Higgs field ¢ which gives rise to spontaneous
symmetry breakdown. Comparing eq.(4.74) with the phemenonological form for
the weak interaction deduced from an analysis of weak decays we find

Gr g9’

— = . 4.76
From the formula eq.(4.43) for my, the essential energy scale v set by the vacuum
expectation value of the Higgs field in eq.(4.34) can be determined

v = (\/iGF)’% ~ 250 GeV. (4.77)
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The electro-weak theory is defined by three parameters, the energy scale v and
the two couplings g, ¢’ or at low energies the electric charge e, the Fermi constant
Gr and the Weinberg angle #y,. To determine the latter requires experimental
investigation of neutral current processes. With the extension to quarks these
were found to be in accord with the predictions of the Weinberg Salam model
and to give a value for #y agreeing with the values of the masses of the W, Z
which were later discovered directly.

1.9 Coupling to Quarks

The electro-weak coupling of gauge fields to hadrons is similar to that for leptons
when it is assumed that it is sufficient to use a Lagrangian involving the funda-
mental quark fields although some of the details are more intricate due to the
need to incorporate a non zero Cabibbo angle. For the moment we consider a
multi-component fermion field ¢ which forms a representation of SU(2)r xU(1)y.
The gauge invariant coupling to the gauge fields A, B, is given by

Ly =vi*Dyy, Dy = (9, —igA,T —ig B,Y), (4.78)

where the covariant derivative, as in eq.(4.20), is determined by the matrix gener-
ators T of SU(2)r and also the hypercharge Y. If we assume that only left-handed
fermion fields have non trivial representations of SU(2)r then we can write

T="Ty;(1—7), (4.79)
while the hypercharge is determined by eq.(4.17)
V=Q-Ts=Y5(1 =) +Yrs(1+7), Yi=Q—-Ti, Ya=Q, (480)
since () is purely vector, not involving 5. Writing as in eq.(4.68)

9

SR — | /1 481
2cosfy "M (4.81)

—. qg ;
o= T, 0 (W ) e

we may determine the contribution in general for the fermion field v to the weak
currents. Essentially by construction we have

Jom = V"QY (4.82)
while for the charged current
JH = @7“(1 — )T, Ty =T +iTs . (4.83)

Using eq.(4.49) the neutral current then has the general form
Jh =204 = 2sin” Oyt =Py (1= 95)Tes — 2sin O Q) ¥ . (4.84)
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In order to reproduce the observed low energy weak interactions of hadrons it
would be necessary to assume the left-handed quarks with low mass, u, d, s, form
al = % weak doublet of the form

ur,
( cos o dy, + sinfc sy, ) ’ (4.85)

where 0 is the Cabibbo angle. The right handed quarks are singlets as usual and,
in the absence of any other quarks, so must also be the orthogonal combination
—sinfcdy, + cosfcsy,. While this gives the accepted form for the charged weak
current

J* =uy"(1 — ~5)(cos Ocd + sinO¢s) (4.86)

it leads to an immediate problem with the neutral current since now
JHy = %ﬁfy“uL — % (cos Ocdy, + sin Gcﬁ) ~H (cos Ocd;, + sin HcsL) . (4.87)

This contains terms which, for 8- # 0, give rise to the ‘flavour changing’ transition
d < s which are strictly forbidden by experiment for neutral current processes.
They would lead to decays like K° — pi which would easily have been observed.
The resolution of this paradox is the so called GIM mechanism, after Glashow,
[liopoulos and Maiani, which involves the charge % charm quark (undiscovered at
the time the idea was put forward). The essential assumption is that there are
two left handed quark T = % doublets

uy, cr,
( cosbfc dp +sinfc sp, ) ’ ( —sinfe dy, + cosbc sy, ) : (4.88)

The charged weak current can then be written as

J“:(ﬂ E)v“(l—m:,)( cosfc  sinfg )(d) . (4.89)

—sinfo  cosfc S

It is easy to see that for processes without any charm quarks that this is identical
to the experimentally successful form in eq.(4.86). Since sin 0 is small it is also
clear that hadrons containing the charm quark, with non zero charm quantum
numbers, decay predominantly to strange hadrons. With two T" = % doublets as
in eq.(4.88) we may also see that

Iy o= 4 (m @)v“(ﬁf)

-1
(T — cosbc- sinfc L cosbc sinfc dr,

2 ( dy 5L ) ( —sinfc cosfc ) i ( —sinfc cosfc Sr. (4.90)

where it is now evident that the unwanted d < s terms cancel so that the neutral

current is diagonal (the part given by the electromagnetic current is diagonal by
construction).
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The contribution of the u,d,s,c quarks to the weak neutral current J# =
2J% — 2sin® Oy is then clear from eq.(4.90) since the electric current is
straightforwardly given by

G =2 ( uyHu + Efy“c) —tr ( dytd + Efy“s) : (4.91)

These results imply that the Z boson can decay into hadrons through its coupling
to the weak neutral current. The decay rate can be estimated by treating the
quarks as free particles even though free quarks do not appear in the final state.
The introduction of further generations of quarks requires a more systematic
treatment which also shows how the GIM mechanism becomes more natural.

The distinction between the different charge % quarks u, ¢, t and also between
the different —tr charge quarks d, s, b is due to the fact that they have different
masses, all other interactions are essentially identical. If the d, s quarks had the
same mass then the Cabibbo angle would be without significance since there
would be no independent distinction between these quarks. In fact the physical
significance of the Cabibbo angle in the weak current depends on assuming that
the quark fields are defined so that the mass terms are of the conventional form
Ly = —>,mgqq with m, all different. Hovever, just as for leptons, there are
no possible SU(2)r or U(1)y invariant mass terms so these can only arise from
the coupling to the Higgs field through the mechanism of spontaneous symmetry
breakdown when the Higgs field gains a vacuum expectation value.

Without further input we can only assume the most general form for the
coupling of the T' = %, Y = % Higgs field ¢ to the quark fields. It is important to
recognise that from ¢ it is possible to form a conjugate field ¢¢ which transforms
under SU(2)r x U(1)y as a weak iso-doublet with a weak hyper-charge Y = —1.
This is defined by

T T
¢° = iTap* = < _01 (1] ) ( 2; ) = < —QZJ ) : (4.92)

The hyper-charge Y of ¢¢ is obvious and the SU(2) transformation properties

follow from the fact that complex conjugation leads to an equivalent 7 = 1

2
representation which is given by ¢¢. This can be seen by using
T T iTy =T, (4.93)

with the result that o, ,
Ty [e%‘”} = e2*7iTy | (4.94)

Note that the vacuum expectation value of ¢, taking v to be real, from eq.(4.34)

) o = % < 8 ) : (4.95)
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For many flavours of quarks we assume that all quark fields are assembled in a
multi-component column vector ). We assume that ¢, forms a reducible 7" = %
representation of SU(2)7 while the components of ¢p are all T' = 0 singlets. It

1S convenient to write

1+
o= () wm=| ] (4.96)

gN+

for N T = % multiplets. In this basis, for 7 the 2 x 2 Pauli matrices and 1 the
N x N, unit matrix
T, = %7‘ x 1. (4.97)

In this basis we also take

10 2.0
YLI%<01>X1, YRI<8_tr>X1, (498)

so that, since Q = T3+Y as in eq.(4.17), after spontaneous symmetry breakdown
leaving just the massless photon g_ are the charge —tr quark fields while ¢, are
the % charge quark fields. It is easy to see that ¥;q_r and Tt g, transform as
T = % representations with Y = —% and Y = % respectively. Hence the general
gauge invariant expression for the coupling of the Higgs field to the quark fields
is of the form

Lyo= —V2 (%F_q_R ¢+ T4 g ¢° + hermitian Conjugate) , (4.99)

where I'_ | I', are complex matrices acting on ¢q_,q,.. When the Higgs field is
replaced by its vacuum expectation values in eqs.(4.34, 4.95) (when the generator
of the unbroken U(1)g gauge group is given by eq.(4.17)) then this becomes a
mass term

Lym=— (%m,q,R + 1 m4 ¢y + hermitian conjugate) , (4.100)

where m_ = ['_v and m, = I", v are potentially arbitrary complex mass matrices.
Of course there can be no term mixing ¢_ and ¢, since this would violate charge
conservation and U(1)g is an unbroken gauge symmetry. In the absence of the
mass terms the basis chosen for ¢ and ¢, is arbitrary. To select the basis of
physical quark fields with definite mass it is necessary to diagonalise the mass
matrices. For the physical case of N = 3 the eigenvalues of m_fm_ are taken
to be m2, m2 mg while the eigenvalues of m,"'m, are m2,m?2 m?, assuming
three generations of quarks. It is a theorem on matrices that m_ can be brought
to diagonal form using two unitary matrices L_, R_, and similarly for m,, (to
prove this use the result that a hermitian matrix can always be diagonalised by
a unitary transformation R to write Rm'mR~! = D?, where D is diagonal with
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real positive entries, and then define mR~!D~! = LT which ensures LL' = 1 so
that L is unitary and LmR™! = D)

mg 0 0 m, 0 0
LmR'=| 0 mg 0|, Lym;R7'=| 0 m. 0 |, (4.101)
0 0 my 0 0 my

where we may require the masses mgy, ms, my, My, m., m; to be all positive. We
now make a change of basis of the —é and % charged quarks through separate
unitary transformations on the left and right handed quark fields,

d d
s | =L_q-r, s | =R_q-r, ¢ | =Liqsr, ¢ | =Riqsr,
b/, b /g bt/ b/ R
(4.102)
so that the mass terms in eq.(4.100) are diagonal,
Loym=— >, mgqq. (4.103)
q=d,s,b,u,c,t
It is also easy to see that the kinetic term also remains diagonal
Lok =vin.0p= Y qindgq. (4.104)

q:d787b7u7c7t

Thus mg, mg, my, my, me, m; are the physical masses of the quark fields. Clearly
the coupling to the Higgs field can generate arbitrary masses for each quark so
there is no understanding of the bizarre mass ratios required for agreement with
experiment. However the charged weak current now contains a matrix V' in the
basis of the physical quark fields which is a generalisation of the orthogonal matrix
specified by the Cabibbo angle appearing in eq.(4.89)

d
=T (1=vs)g- = (T & T )y"1—)V | s |, V=L,L". (4.105)
b

As required experimentally the neutral current also becomes a sum of terms
diagonal in the quark fields where, from eq.(4.84),

JE = Yyt — 2sin® Oyt Qu
= T3 (1-5sin’ 0w —75) ¢ —T7"% (1 - §sin® O — 75) ¢
= Z q*y“l ( sm 20 — 75) Z qu“1 ( sm 20 — 75) .(4.106)

g=u,c,t q=d,s,b

The above formalism can be applied to a theory with any number of genera-
tions. For N generations the unitary matrices Ly, Ry, and hence V', are N x N
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so V contains N? parameters. However the N charge —tr quarks and the N
charge % quark fields contain 2N unobservable complex phases but the current
J# is invariant under a common phase transformation on all the —tr and % charge
quark fields, so that ¢ — e€?q.. Thus 2N — 1 complex phases in the matrix V
are physically irrelevant leaving N? —2N +1 parameters in general. If we consider
the GIM two generation model then the unitary matrix V' can be restricted to a
real orthogonal 2 x 2 matrix depending solely on an angle #- when it takes the

form
- cosfc  sinfc
V= ( —sinfo  cosBc ) ’ (4.107)

Of course 6¢ is the Cabibbo angle which on phemenonological grounds is not
Zero.

In the realistic case of a three generation model then V' has 4 relevant param-
eters. A real orthogonal 3 x 3 matrix is determined by 3 angles so in general V'
must contain a complex phase. There are many ways of choosing the 4 parame-
ters. The first people to construct such a parameterisation were Kobayashi and
Maskawa. A version of the CKM matrix is

Vud Vus Vub 8] 51C3 5183
V=| Vi Vs Vi | = —sica cicacs + 59836 10083 — sacze™ ;
Vie Vis Vi —S$182 18203 — C283€" 18283 + Cacze™

(4.108)
using the convention that ¢; = cos#; and s; =sin#; ¢ = 1,2,3. The 4 parameters
are then the three angles 01, 65, 03 and one complex phase . The presence of
the phase 6 # 0 in the matrix shows that in general it cannot be reduced to
purely real form for three generations of quarks. This lack of reality corresponds
to a breakdown of C'P invariance or equivalently of 7" invariance. In this picture
clearly three generations are necessary in order to have C'P violation. Assuming
that all the angles are small we can identify 6, with 6.. To verify the unitarity of
the CKM matrix it is easiest to note that it can be written as a product of three
obviously unitary matrices, thus

1 0 0 ca s1 0 1 0 0
0 Coy —89 —S1 C1 0 0 C3 S3 . (4109)
0 sy ¢ 0 0 €° 0 —s3 c3

Independent of any specific parameterisation it is a major experimental challenge
to determine the elements of the matrix V', up to the phase arbitrariness V., ~
e0r=9:)V, . At present only |Via|, |Vus|,|Vea| are reasonably well known. Note
that from the unitarity of V, VIV = I, there is a condition on the elements in
the first and third columns of V' of the form

VirVud + VeaVed + VVid =0 . (4.110)
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The three complex numbers in eq.(4.110) form a closed triangle whose area is
1| J| where

J = Im(Vy Ve Vi Vi) (4.111)

which is a parameterisation independent measure of the C'P violation arising from
V, with the form in eq.(4.108) J = cjcac3s®sas3sind. Note that the triangles
defined from other pairs or columns of V' have the same area.

A similar discussion is possible for the leptons so that in general we may expect
a mixing matrix Viep; as well as Viyark. However if no right handed neutrinos are
contained within the lepton sector of the standard model, so that the coupling
to the Higgs field has no piece corresponding to the ¢¢ term in eq.(4.99), then
the neutrinos are massless. In this case the electron neutrino v, can be defined
by its coupling to the electron in the charged weak current, and similarly for
Yy, V7. When right handed neutrino fields are incorporated into the theory there
can be non zero neutrino masses and also mixing angles. The weak interaction
eigenstates v., v, v; are no longer mass eigenstates and so after they have been
formed in weak decays of hadrons we may expect neutrino oscillations in which
there are transitions such as v, < v,.
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Part V
QCD, perturbative aspects

1 QCD as a non abelian gauge theory

Hadrons, which are particles that undergo strong interactions, can be regarded
as composite bound states whose constituents are fractionally charged quarks,
u,d, s, ..., just like nuclei are formed from protons and neutrons. Historically,
when quarks were first introduced, they were regarded by many as a conve-
nient fiction which motivated the appearance of particular representations of the
approximate symmetry group SU(3)r with appropriate values of the quantum
numbers for P,C' and dynamical problems such as the non appearance of free
quarks were neglected. The advent of QCD showed how quarks could be de-
scribed as interacting particles by a fundamental quantum field theory. QCD
is a non abelian gauge field theory based on the gauge group SU(3)colour and
the particles corresponding to the gauge field are referred to as gluons, reflecting
their role in binding hadrons together. As far as the basic quantum field theory
is concerned quarks in QCD appear in a very similar fashion to electrons in QED,
quantum electrodynamics, while gluons are analogous to the photon. Neverthe-
less there are of course very real differences since, unlike electrons and photons,
quarks and gluons never appear as physical particles. This phenomenon is re-
solved by the dogma of confinement which asserts that the dynamics of QCD are
such that only SU(3)colour singlet states are present in the space of finite energy
physical states which provides a representation space for the associated quantum
field theory. Furthermore there are no massless states except perhaps the pions
and associated pseudoscalar particles if the quark masses vanish. These features
cannot be described in conventional perturbation theory since the starting point
is then a theory of free quarks and free massless gluons with no restrictions on
allowed colour quantum numbers but depends on understanding how the non
perturbative dynamics of QCD require a new confinement phase which is very
different from previous quantum field theories. However in perturbation theory
we may show that non abelian gauge theories uniquely, in four space-time dimen-
sions, have the property of asymptotic freedom which justifies the application of
perturbation theory calculations to predict quantitatively some measurable as-
pects of scattering cross sections in suitable contexts, usually some high energy
limit. Thus many perturbative calculations in QCD have been carried out, at
two or more loops, which allow detailed comparison with experiment so that
now QCD has been tested to a high precision. The detailed hadron mass spec-
trum is outside perturbation theory, since it cannot incorporate confinement,
although careful analysis of QCD as a renormaliseable field theory shows how a
mass scale can be generated even if no mass parameter is present in the original
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lagrangian. Any discussion of QCD, after introduction of the basic lagrangian,
should therefore start by a consideration of its properties after renormalisation
and its dependence on mass scales.

1.1 Basic Lagrangian

A gauge field theory for the non abelian gauge group SU(3) has eight gauge fields
Aue, a=1,...8, and a corresponding field strength

F,ul/a = a,uAl/a - al/A,ua + g fabcA;LbAuc ) (51)

pay

where ¢ is the coupling and f,. are the totally antisymmetric structure constants
of SU(3). For A, the Gell-Mann A-matrices, 3 x 3 generalisations of the Pauli
matrices, we have [%)\a, %)\b] = z'fabc%)\c. The quark fields belong to the complex
3-dimensional representation of SU(3) defined by the A\-matrices so that the basic

QCD lagrangian is simply

EQCD = _iFWZLFuua + qu@fyuDu - mf)Qf ) (52>
f
where the covariant derivative is defined by
Dyqr = Ouay — igAua%)‘aqfv (5.3)
and colour indices, as well as spinor indices, for the quark fields are suppressed.
The sum over f is over the different quark flavours, so that ¢ = u, d, s, ..., which

are distinguished by their differing masses my. This lagrangian is easily seen to
be invariant under local SU(3) gauge transformations when infinitesimally

1 )
5Aua = g(auga + gfabcAubgc) 5 5Qf = Zga%)‘an . (54)

The quantisation of non abelian gauge theories, such as described by (5.2), is
nowadays standard. It is necessary to add extra gauge fixing terms which break
the gauge invariance to Lqocp in order to set up a perturbative expansion starting
from a zeroth order free field theory of quarks and gluons. In order to ensure this is
done consistently it is necessary also to introduce ghost fields and then amplitudes
for physical processes, or matrix elements involving gauge invariant operators,
are independent of any gauge fixing parameters and the theory defines a space of
physical states, with positive definite norm, invariant under time evolution. The
Feynman rules involve quark and gluon propagators, three and four gluon vertices,
which are proportional to g and g2 respectively, and also an O(g) vertex when a
gluon couples to a quark. Furthermore there are ghost propagators which, with
standard choices of gauge fixing, couple to other lines in a Feynman graph through
a single gluon vertex o ¢g. The perturbative expansion defines a renormaliseable
quantum field theory so that no new parameters, beyond those present in the
initial classical lagrangian and gauge fixing terms need be introduced.
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1.2 General Features of Renormalisation

QCD is a renormaliseable quantum field theory with a single coupling g. For
simplicity we here neglect the quark masses my although the treatment can be
extended to include them. In practice m,, my are very small compared with
typical hadronic scales and naively one would expect that mass terms would be
irrelevant in high energy limits when all components of the momenta become
large. In general setting mass terms to zero may generate additional infra red
divergences in Feynman amplitudes but with appropriate prescriptions, and due
caveats to be made clearer later, these can be avoided and the massless limit of
perturbative QCD exists. Because of short distance ultra-violet divergences it is
necessary to introduce some regularisation for the loop integrals which appear
in the perturbative expansion of physical amplitudes. Ideally a convenient reg-
ularisation should preserve as many as possible of the general requirements of
quantum field theory and also the symmetries of a particular theory (it cannot
preserve them all since if that were possible the regularised quantum field the-
ory would itself be a bona fide quantum field theory). Without specifying any
details we suppose there is a cut off M which renders Feynman integrals finite
and preserves Lorentz invariance, unitarity, etc for energy scales << M. Any reg-
ularisation introduces a mass scale like M even if the original theory has no mass
parameters such as QCD in the massless limit (for QCD dimensional regulari-
sation is virtually universally used since this preserves gauge invariance, in this
case the regularisation mass scale is more subtle but is present since the coupling
g is no longer dimensionless if d # 4).

Let us now consider some physical amplitude f, which we take to be charac-
terised by a set of momenta p;, and which has a perturbative expansion so that
we may write f(g, M;p;) where we display explicitly the necessary dependence
on the cut off M. The fundamental requirement of renormaliseability, which may
be proven order by order in the perturbative expansion, asserts that if we let
g — go(M) and, if the overall normalisation of f(g, M;p;) is not constrained
by some identity we also introduce a suitable overall rescaling Z(M) which is
independent of the momenta, then we may take the limit M — oo so that

Z f (g0, M;p;) — F(g, ;) as M — oo, (5.5)

where F(g, u;p;) is finite and obeys the general axioms of quantum field theory
(more generally Z becomes a matrix corresponding to a set of physical amplitudes
such that Zu, f5(g0, M;pi) — Fu(g, ;p;)). The statement (5.5) is valid order by
order in a perturbative expansion in the finite coupling parameter g so that

90(g. %) —g+0(*),  Z(g %) =1+0(¢%), (5.6)

are also given as an expansion in g. In (5.5) and (5.6) we have introduced a
finite mass scale 1 which is essential in order to consistently define gy, Z and also
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the renormalised amplitude F'. Its appearance is tied up the precise definition
of g which is essentially arbitrary other than being required to satisfy (5.6).
Any precise definition of g compatible with this is permissible, in dimensional
regularisation the standard prescription is termed minimal subtraction when only
the poles in 4 — d are subtracted to define the finite physical amplitude in the
limit d — 4. In the present context we may alternatively choose some physical
amplitude f, which has a perturbative expansion

folg,. Mspi) =g+ ..., (5.7)

and where we require that f, does not need any overall factor such as Z in (5.5)
in order to obtain a sensible limit for M — oco. Then we may define

g= A/l[iinoofg(gmM;ﬁi)a (5.8)

where p; are an arbitrarily chosen set of momenta specified in terms the arbitrary
scale p, which therefore becomes a variable on which g depends. We may sim-
ilarly precisely determine Z in (5.5) if F(g, p;p;) is prescribed in some fashion
compatible with the lowest order perturbative result for some convenient choice
of the momenta p; in terms of . In older discussions the scale p was usually
not introduced explicitly but was essentially replaced by some physical mass, in
QCD this could be some quark mass, but then it is impossible to take the zero
mass limit. In zero mass QCD the presence of u is essential to avoid infra red
divergences.

Although p plays an essential role in the definition of finite physical amplitudes
its particular value is unimportant. This is reflected in F'(g, u; p;) obeying a so
called renormalisation group equation reflecting its invariance under any rescaling
i — e'p. Initially this appears an almost trivial identity but it is in fact a
deep consequence of the fundamental property of renormaliseability and leads to
significant physical consequences. To derive this we note that, for fixed go, M,
f (g0, M; p;) is independent of p or

u%f(go, Mip) = 0. (5.9)

Using (5.5) this becomes

M%F(g,u;p@-) = (u% + 6(9)8%)F(g,u;pi) = —(9)F(g,p;p:),  (5.10)

where, since the total p derivative is defined for fixed gy,

d d
B(g):M@g : V(Q)Z—Maz z7t. (5.11)

90

g0

Since F' is independent of the cut off M, £(g),v(g) must also be independent
of M and hence pu, and depend only on g (the definition of v(g) extends to the
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case when Z and hence (g) are matrices). The result (5.10) is a version of the
renormalisation group equation and is essentially similar in form to the so called
Callan-Symanzik equation which has a very similar content (a more systematic
derivation entails that the momenta p; should be restricted so that all linear
combinations p;, + ...+ p;, are non zero and also that there are no singularities
present in any Lorentz scalar combination).

In a perturbative treatment we expect that go(g, M/u) has an expansion of
the form, dropping any inverse powers of M,

M M
go = g+gf‘”(bln7 +a) +g5(362(1n7)2 +) +0(g") . (5.12)

Differentiating with respect to p we find from the definition of the S-function in
(5.11)

M M
0= B(g)<1+392(bln? £a) 4. ) =g 36 ot (519

giving

Blg) = g°b+O(g°) . (5.14)
It is important to note that consistency determines the ¢°(In(M/u))? term in
(5.12). This property extends to higher orders, all powers of In(M/u) beyond

first order, which determine 3(g), are fixed by the renormalisation group equation.
Similarly we expect to lowest order in the perturbative expansion

Z:1+g2(cln%+d) +0(gh, (5.15)
v

which in (5.11) gives

1(g) = g°c+0(g"). (5.16)
The coefficients b, ¢ in (5.12,5.15) are determined by the short distance divergences
while a, d depend on the precise definition of g and the conditions which specify
the finite part of Z. In general beyond lowest order 5(g),v(g) are not unique but
depend on the choice of renormalisation scheme, different schemes correspond
to couplings which are related by a reparameterisation, g — ¢'(g) = g + O(g?).
It is important to use the same scheme for calculations of different processes,
such as consistently using dimensional regularisation with minimal subtraction,
or to take account of the appropriate redefinition when comparing calculations
according to differing regularisation schemes.

1.3 Solution of Renormalisation Group Equation and its
Physical Consequences

The renormalisation group equation (5.10) reflects the fact that the overall scale
for p is immaterial. This becomes evident from its explicit solution. To obtain
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this we first recast (5.10) in the form

d
il e'w;pi) = —v(90) F(ge, €' 11 i) (5.17)

where ¢, is defined by

d
3% =5, g=g for t=0. (5.18)

Eq. (5.17) is an ordinary differential equation which is readily integrated to give

B d
F(ge, e'p;pi) = e "D F(g, ji;p;)  for /M =70, p(0)=0.  (519)

The solution for g; in (5.18) and p(¢) in (5.19) may alternatively be given by

gt 1 t g y(x)
dr —— =1t, p(t :/dsygs = dr —=. 5.20
g B(z) ) 0 (9:) g B(x) ( )
These equations have physical content if we assume the dimensional scaling
rule, since apart from the momenta p provides the only scale,

F(g,p;e'p;) = " F(g, e pi) (5.21)

where p is the scaling dimension of F' (in mass units). Combining (5.21) with
(5.19) for u — ey we find

F(g, s e'p;) = e PO F gy, 115 py) . (5.22)

This result makes clear that the behaviour of F(g, u;p;) when all momenta be-
come large simultaneously and the neglect of mass terms is justified, or in (5.22)
t — o0, is controlled by the properties of g, and also p(t), which are defined by
the solutions to (5.18) or (5.20), as t — oco. Conversely for a massless quantum
field theory the behaviour in the infra red limit of small momenta is given in
terms of the limit ¢t — —oo.

The main features of these limits depends only on the qualitative form of
B(g). Although analysis of the infra red limit in terms of the renormalisation
group equation is also of vital theoretical importance, especially in the context of
statistical physics, we here concentrate on the high energy ultra violet limit. The
justification of the renormalisation group equations depend on perturbation the-
ory, at least for equations of the form (5.10), but they are assumed to transcend
such limitations so that 8(g), and also y(g), are presumed to be general functions
of g with only the first few terms in an expansion at g = 0 known (the pertur-
bative expansion is at best asymptotic and there may well be non perturbative
contributions).

The possibilities for the behaviour of g; as ¢ increases is shown below
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Beta functions and renormalisation flow for non zero fixed point and
also for asymptotically free theories

In the first case the S-function has a zero such that

B(g«) =0, B'(g:) < 0. (5.23)

Then if ¢ is in some neighbourhood of g., so that for g > ¢., f(g) < 0 and for
g < g«, B(g) > 0, then it is easy to see that solution of (5.18) requires

gt —> g« as t—00. (5.24)

In this situation g, is referred to as an ultra-violet fixed point. From (5.20) we
may expect

p(t) ~v(g:)t, (5.25)
assuming that v(g.) # 0. Hence from (5.22) we then have

F(g, 1; Api) ~ NP9 F (g pwipi) as A — oo, (5.26)

with F(g., p; Ap;) = AW F (g, p;p;). This result represents an exact scaling
relation with ~y(g.) corresponding to an anomalous dimension.

Such ultra-violet fixed points, while theoretically feasible, are beyond the
scope of any perturbative analysis. Another relevant possibility is if

p(0) =0, B(g) <0 for g in some neighbourhood of g =0. (5.27)
For an initial ¢ in this region we then have
g —0 as t— o0, (5.28)

so that the origin is an ultra-violet fixed point. Such a circumstance is called
asymptotic freedom and it provides a justification for the validity of using per-
turbation theory for high energy processes. Whether the behaviour in (5.27)
holds may readily be found from perturbative calculations, in (5.14) it just cor-
responds to b < 0. If the O(g°) terms in (5.14) are neglected, as is appropriate
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if g is small, then the differential equation in (5.18) may be written explicitly in
the form

d 1
——==-2b 5.29
which can easily be solved to give
1 1
— — — = —=2bt. 5.30
92 9 ( )

With b < 0 then clearly gZ ~ 1/(2|b[t) — 0 as t — oc.

If we take the lowest order result for v(g) in (5.16) in conjunction with that
for B(g) then from (5.20) we may easily find

c, 49
t)=—-In—. 5.31
plt) = 5 n (5.31)

To apply this we may also assume that to lowest order in perturbation theory
the amplitude F(g, p; p;) has the form

F(g, 1;0:) ~ 9" Fo(pi) , (5.32)

where from (5.21) Fy(Ap;) = N Fy(p;). Using this, as well as (5.31), in (5.22) we
find

g\
F(g.me'p) ~ o (%) Fo(e'n). (539

This result, which depends only on lowest order perturbative calculations, be-
comes asymptotically exact as t — oo in the asymptotic freedom case, i.e. b < 0,
so that the form of F(g, u; p;) when all components of all momenta become large
simultaneously is thereby determined.

The general solution of (5.18) g, = g(e’'u) defines a running coupling constant
which no longer has a fixed value, g(u) depends on the arbitrary scale . The
lowest order solution (5.30) may be rewritten as

1 1 2
_ — _pln .
g(m)?  g(w')? w2

(5.34)

Any measurable physical amplitude must be independent of p but the detailed
form of ¢g(x) may be exploited to justify and extend the scope of a perturbative
analysis beyond its initially apparent region of validity.

1.4 [-function in Non Abelian Gauge Theories

In any renormaliseable quantum field theory it is straightforward to calculate the
f-function to one or two, or sometimes more, loops. For a non abelian gauge
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theory, with a simple gauge group so that there is a single gauge coupling g, the
corresponding [-function may be writtens as

93

Bl9) = —Bo 75— +O(9"). (5.35)

We suppose that, as in QCD, the gauge field is only coupled to fermion fields
1; through covariant derivatives D, 1; = 0,¢; — 19 A, qtiai, where t;, are matrix
generators of the Lie algebra of the gauge group for the irreducible representation
defined by 1y, [tia, ti] = ifapetic- In this case the general formula for 5y (this
assumes that the gauge field coupling does not distinguish between left and right
handed fermions, there is no v involved) is

Bo=UC-45"T,, (5.36)
f

where C, T are group theory factors defined by

facdfbcd == C((sab s tr(tfatfb) = Tféab . (537)

For gauge group SU(N) then C' = N while if the fermions are in the fundamental
representation, as are the quark fields for SU(3)colour, then Ty = % For QCD the
formula therefore becomes

Bo=11— 2Ny, (5.38)

where Ng is the number of quark flavours which contribute to the S-function,
Ny = 3 for the light u,d, s quarks while Ny = 4 if the ¢ quark is added as well
(in determining the running coupling g(x) those quarks with masses > p should
not contribute to the g-function). Clearly from (5.38) By > 0, so that we have
asymptotic freedom, since the total number of flavours is just Ny = 6.

It is convenient to define for the QCD coupling, like in QED,

2
9

s =", 5.39

“ 4m ( )

and then the lowest order solution (5.30) of (5.18), which may alternatively be

written as d
— g = 5.40

for the running coupling g(x) can be equivalently expressed as

1 _ﬁol I

———=—In— 5.41
ag(p?)  4rm HAz (5.41)

where A, which may be regarded as a constant of integration in the solution
of (5.40), provides a basic QCD mass scale even in the absence of any quark
masses. A is in essence the fundamental strong interaction mass scale which
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replaces the coupling g or a; as a free parameter. The result (5.41) shows clearly
how a,(pu?) — 0 as u — oo, although A cannot really be determined precisely
from (5.41) since any rescaling of A modifies the result by terms O((In u?/A%)~2)
which are of the same order as contributions from higher orders in §(g). Such
rescalings of A result from redefinitions of the coupling corresponding to different
regularisation schemes, so that the precise value of A has significance only in
the context of a particular scheme. In a modified minimal subtraction scheme
A =~ 200 — 250 MeV, although the uncertainty is quite large.

2 e e — hadrons

In many ways the cleanest application of asymptotic freedom in QCD is to the
total cross section for e™(p;) + e*(pa) — hadrons. To lowest order in the elec-
tromagnetic coupling e the e”e' annihilate to produce a virtual photon, with
momentum g = p; + pa, which then forms physical hadron states.

As a precursor to discussion of this we consider e~ (p;)+e™ (p2) — q(k1)+q(k2)
for ¢, q free quarks, anti-quarks with charges +@), in units of e, and k; + ko = ¢.

ky
e 1 kl
0
y4! D2
et D2 ko =
Ky

Electron positron annihilation to quark, antiquark

The amplitude is then simply

iM = (—ie)2Qulk )y v(ks) i qg;” T(p2)y ul(pr) (5.42)

The sum over e and ¢, spins in |M|? can be converted to Dirac traces in the
conventional fashion, neglecting electron and quark masses, so that p;? = ps> =
k2 =k =0, we get

Q? y
YMIMP = €t ) tr(y-ky v ko V) (VDL Y P2 W)

spins
2
16¢* ((ji 5 (k" + k"K' — g™ k1-ka) (P1up2w + ProPoy — GuwPr-D2)
_ %
= 32e (q2)2 (pl-kl pg'kQ —|—p2'l€1 pl'kg) . (543)

In the centre of mass frame p/* = (|p|, p), p* = (|p|, —p) so that ¢* = (v/¢%,0)
with v/¢2 = 2|p|. The quark momenta ki, k; may be represented similarly in
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terms of k with |k| = |p|. Assuming a scattering angle 6, so that k-p = iqz cos b,
we have

p1-k1 = paky = iqz(l —cosf), pak1 = proke = iq2(1 + cosb), (5.44)

and hence
ST M = 4e*Q*(1 + cos?0) . (5.45)

spins
The formula for the differential cross section in this case becomes

1 dgkl dgkg 1
" F 2m)*0%(q =k — ka) 2 4
do F (2m)32k° (27r)32k20< ) 0% (q — k1 — k2) 1 Z |IM|*, (5.46)

spins

where F is the flux factor for the initial states and the factor of 1 is for averaging
over the initial spins. With standard normalisations consistent with M in (5.42)
we have

F = 4p°pv = 247, v =|vy — vy, (5.47)

since the relative speed v = 2 in the C.M. frame neglecting electron masses.
Substituting this and (5.45) into the cross section formula (5.46) we have

e'Q? 3 2 2
TR k(v — 2/k[) (1 + cos®6). (5.48)

Since d*k = |k|2d|k| dS2, where dS2 is the solid angle element for the direction k,
we have finally for the differential cross section

do =

do  o* )
E = 4—q2 (]_ + COS 0) s (549)
where a = 2 /4m. Tt is easy to integrate this to find the total cross section
4o
Otot,e—et—qg — 3—q2 Q2 5 (550)

which would be valid for v/¢% > m,.

It is not immediately obvious how the above calculation, which assumes free
quarks, applies to the experimental observed process e”e™ — hadrons. To show
the relevance of the result (5.50) to the total cross section for e”e™ — hadrons
we first derive a general formula for this, to lowest order in e. For a final hadronic
state X the amplitude is

1
Mx =¢é’ 7 (X|J410) D(p2)yuu(pr) (5.51)

where J{' is the hadronic contribution to the electromagnetic current which may
be expressed in term of quark fields by

N =77"Qq, (5.52)
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for @) the diagonal matrix of quark charges. Extending (5.46) to this case gives,
for ¢ = p1 + po,

> (2m)*0* (g — px) IMx|*. (5.53)

spins

A~ =

Otot, e~et —hadrons — F Z
X

The sum over hadronic states X may be subsumed in a single function of ¢? by
virtue of

Py (q) (2ﬂ)3%;<V(q—-px)«NJﬁhY><XﬂJﬁMD

= (=9 + ¢“¢") 0(¢") pu(d®) , (5.54)

using Lorentz invariance and current conservation, 8,“]}‘1‘ = (. In consequence,
neglecting the electron mass,

33 @20)54 g — px) [ My = f;) (¢ D1ps + 20D 4-02)u(@?) = 8¢ pul?)

X spins

(5.55)
and hence, with the result (5.47) for the flux factor F,
41
Otot, e~ et —hadrons — 7T€ q_ ph(q ) (556)

It remains to understand py,(¢?) which for general ¢> > 0 is potentially very
non trivial. If we once again consider the quark fields composing J£ in (5.52) to
be free, and restrict Yy to a sum over ¢, q states, then

B B .
ZQf/ 272k (@m0 @ =k = k)

. (5.57)

k2=k'2 :m?c

) tr((v-k + mp)y (y-k —my)y”)

The phase space integral can be evaluated with the aid of

Bk 3K
KO k0

§*(q—k — k') kK"

222
k2=k’ =my

4m2N\z (¢ + 2m?
= 0(¢")0(g — 4m?) w(1 - q2f> { s 9+ %g”"qQ}(E).E)S)

Hence (5.54) and (5.57) give

¢ +2m? 4m2\3
m(a’) = T3 QZQf ¢* — 4m7) 2 f(l— qu) - (5.59)
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It is easy to see that for ¢* > m7 (5.56) and (5.59) are compatible with (5.50).
The application of QCD is based implicitly on the postulate, whose justifica-
tion is essentially beyond the scope of perturbation theory, that

SoooxXNX[= Y X)X, (5.60)

X=hadrons X=q,q,g states

at least in application to high energy processes. If we restrict >- to those quarks
such that ¢* > m7 then the assumption (5.60) leads to

pla’) = 122(0012@( o) + (ZQf) ( o)), (56

or, with N, the number of colours (3 for QCD),

O'tot,e—e+~>hadrons:4ﬂ-a ( ColZQf ( ) (ZQf) ( 2, )) (5 62)

where we have set the quark masses to zero, my = 0, in which case each quark
contributes identically and and the result depends only on two functions of ¢*/u?
and a4, which may be calculated in terms of a Feynman diagram expansion. The
zero mass limit is well defined in perturbation theory so long as we introduce the
arbitrary scale p and then in (5.61) and (5.62) oy — a,(p?), the QCD running
coupling. Since we have factored off explicitly the number of colours N, it is
evident from the above results for free quarks that

R(z,0)=1. (5.63)

Furthermore by drawing Feynman diagrams (or considering states such that X =
3 gluons) we also have

S(z,as) = Oay’). (5.64)

In calculating R and also S no overall factor like Z in (5.5) is necessary to remove
divergences when the limit M — oo for the cut off is taken, since the conserved
current J{' does not require independent renormalisation. Assuming R satisfies
a renormalisation group equation of the form (5.22), reflecting the arbitrariness
in the scale y, we then have

R(Z—Z,QS(MZ)) = R(l,as(cf)) ~ 1+ asti) as q° — 00, (5.65)

where the first QCD correction to (5.63) has been exhibited. From (5.64) it is
similarly clear that S is asymptotically unimportant in the large ¢? limit.

In principle the result (5.65) allows the coupling «, to be determined by
comparing with experimental results for oo, e e+ —hadrons 8t high energies although
in practice this is difficult to achieve accurately.
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2.1 Space-like and Time-like Asymptotic Limits

Theoretically the application of the renormalisation group to py(¢?) and neglect
of mass terms, which was assumed in obtaining (5.61) and (5.62), is not really
justified. py(g?) is not analytic and has potential discontinuities in ¢*> whenever
the threshold for producing new states X in (5.54) is achieved and also has peaks
when resonances with the appropriate energy are present. To overcome such
difficulties we consider first the Feynman amplitude

Z/ dz e (0] J () JE (0)]0) = (—g""¢* + ¢"¢") Tu(¢?) , (5.66)

which can be calculated in terms of the contributions of Feynman graphs. ITj,(¢?)
is related to pn(¢®) by the Lehmann representation

/d P St (5.67)

so I, (s) may be extended to an analytic function of s throughout the complex
s-plane except for a cut along the positive real axis. For s real and negative the
zero mass limit may be justified order by order in the perturbation expansion
and we may apply renormalisation group methods to the limit —s — oco. From
(5.67) pu(s) for s > 0, which is directly measureable in e~ e*-scattering, can be
related to Iy (s) by

p(s) = 2i (Hh(s +ie) — (s — ze =5 / dz —Hh (5.68)

™

where C' is a contour from s + i€ to s — e around the branch point at x = 0. It
is convenient to define

d
D(—s) =—s—1II 5.69
(~5) =~ Thi(s) (5.69)
and then (5.68) becomes
1 dx 1 fme ,
=— [ = D(—z)=— D(se” :

pu(s) 2mi /c x (=) 2m 77&? (s"), (5.70)

choosing for C' the circular contour z = —se?, —m1+e < <7 — €.

The result (5.70) allows the asymptotic result for D(s) in the space-like limit
s — oo where D(s) is analytic, assuming it to be also valid for |s| — oo with
—m 4 € < arg(s) < m — € (which need not be true as ¢ — 0 reflecting the fact
that py(s) need not be a smooth function), to be applied to derive the asymptotic
behaviour of py(s). From the renormalisation group we get

as(s)

D(s) ~ D0< (5)% +.. ) : (5.71)
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From the leading behaviour (5.41) of the running coupling the relevant integral
in (5.70) is of the form

o1 1 1 2
/d@—:—tanfl i S (5.72)

9 set? s s
27 J—x In A2 ™ In AZ In Az 3 (lIl %)

Hence the asymptotic expansion of py(s) differs from D(s), as in (5.71), at order

ad.

3 Deep Inelastic Scattering

The most detailed results which are described by perturbative QCD are found in
deep inelastic scattering for proton or neutron targets. Historically experimental
results for deep inelastic scattering were interpretated in terms of point-like free
constituents or partons. The parton model predicted Bjorken scaling, at high
energies cross sections depended on functions of particular dimensionless vari-
ables, and led to many relations which agreed with experiment if the partons
were identified with fractionally charged quarks. Subsequently QCD provided a
justification for the assumptions made in the parton model, which was essentially
a zeroth approximation to the full QCD result, and gave calculable corrections
to Bjorken scaling.

3.1 Kinematics
The essential process for deep inelastic electron scattering on a hadron H, of mass
M, is

e(p) + HP) — e(p)) + X, (5.73)
where X is an unobserved final state. To lowest order in e the electron couples
to the hadron through a virtual photon,

Deep inelastic electron, neutrino scattering on a hadron

The amplitude is

iM = (ie)*u(p’ )y u(p) i qrf" (X|JL|H, Py, q=p—1. (5.74)
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In the hadron rest frame P* = (M,0), p* = (F,p) and p* = (E',p’) and the
basic dynamical variables are

v="Pq=M(FE-F), Q*=—q¢* =2pp =2EFE'(1 — cosh), (5.75)

where we have neglected the electron mass, so that £ = |p|, £’ = |p/|, and 0 is
the electron scattering angle. Clearly Q? > 0 and also

MZ=(P+q?*>M> = @Q*<2v. (5.76)
The standard expression for the differential cross section gives

1 43 p/

do = — ——=—— Y (2n)** P — 2 5.77
“ F (271')32]7/0 Z Tr (q " pX eszpi:ns ‘M‘ ’ ( )

where F' is the flux factor
F =4p"P°|v, — vy| = 4EM , (5.78)

in the hadron rest frame. It is easy to see from (5.74) that

> M= T ) Ly (H, PIJ|X) (X|J{|H, P) (5.79)

e spins

where, setting m, = 0,

Lyy = 3 ap)yu@) @) yuulp) = tr(ypr e )
e ‘spins
= dpupy + Puly = Gup D) (5.80)
If we define
Wit (q, P) = %; (2m)*0*(q + P — px) (H, P|JY | X) (X |JI'|H, P),  (5.81)

then the cross section formula (5.77) becomes

plo < LW, P) (5.82)
By~ 82 )2EM ()2 b '

If the hadron H has spin, as in the realistic case of a proton or most nuclei, then
in (5.81) the spin should be averaged over.

By virtue of current conservation (px — P),(X|JI'|H, P) = 0 which implies
Wi (q, P) = ¢, Wy (¢, P) = 0 and hence

g p. p.
Wit'(q, P) = ( 9"+ qqq )Wl - (P” -1 q") (P“ = q—f q“) W, (5.83)

q2
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with W, 5 Lorentz scalars, called structure functions for the hadron H, and which
depend on the two variables Q% and v. In writing (5.83) we have neglected a
possible term involving the e-tensor but this can be excluded by using parity
invariance. To calculate the contraction in (5.82) we may use L,q" = L,,q" =0
so that from (5.80) and (5.83) we have,

L,Wi(q,P) = 8ppWi+4(2p-Pp-P — M*p-p)W,
4Q* Wy + 2M*(AEE' — Q*) Wy

1 _
~ 8EM(a;y W+~ I/Wg) , (5.84)
y

where in the second line we have used p-p’ = —%q2, if m, = 0, together with p-P =
ME, p/P = ME' and in last line we have assumed the limit Q* = O(v) — oo
with z,y dimensionless variables (in this limit Q? < EE’),

Q2 v E'
T=5"  Y=E T (5.85)
which stay fixed. It is easy to see that
0<z<1, 0<y<1. (5.86)
Since
d®p’ — 2w E”d(cos ) dE' = nE'dQ*dy = 2nE'vdx dy, (5.87)
we have in the high energy limit from (5.82), (5.84) and (5.85)
do 4’ 9 9 9
Tody ~ o ME(0-0B@ Q) ot R@.QY),  (583)
where as usual o = €?/47 and
Fy(z, Q%) = vy, Fi(z, Q%) =Wy, (5.89)

are dimensionless quantities. Clearly comparison of cross section measurements
with (5.88) allows W5 or Fj 5 to be disentangled.

In the basic process (5.73) the electron e may be replaced by a muon without
changing any of the subsequent results. A very similar analysis also holds for
inelastic scattering of neutrinos, or anti-neutrinos, when

vu(p) + HP) — p~(p)+ X or 7,(p)+ HP) — put(p)+ X. (5.90)

For such processes the incoming neutrinos or anti-neutrinos are produced by weak
decay of pions, so they are almost entirely v, or 7,,, and their energies have to be
inferred from the total energy of the final state. The scattering is now mediated
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by a virtual W or W~ instead of a virtual v so that to first order in the weak
interaction the amplitude is similar to (5.74) but

e 1 g? Gr mi

L I L — 5.91

¢ 8miy - V2my + @ 591
If we assume Q? < m{, then instead of (5.82) we have
d vHU G2 v,

= LT Wi (. P). (5.92)

By 2 42n)?2EM

since for neutrino, anti-neutrino beams no spin averaging is necessary as they
have definite helicity. Neglecting m,, we have

L, = Y a(p)v(l—s)ul)ap)y.(1 —vs)u(p)

e spins

= tr(y-p(1 —75) % vp' (1 —75) Vie)

= 8(pPy + Puly — Gou PP + i€0uapp®p") (5.93)
where €230 = 1. Similarly
Ly, = Y o)1 = v5)v(p) v(p)y.(1 — 3)v(p) = L, - (5.94)

e spins

With m,, = 0, ¢"L;, = 0. Instead of (5.81) and (5.83) we now have, if JEH are
the hadronic AQ = +1 weak currents, (J;*)T = J; *,

14 1 v
Wi (. P) = = > (2n)'0*(q + P — px) (H., PIJF|X) (X | H, P)
X

v quﬂ v Pq v Pq - vpo
+ asymptotically unimportant terms . (5.95)

The neglected terms in the last line of (5.95) are present since 8MJ§E " o my is
non zero but such contributions are expected to be small and to fall off faster
as Q*,v — oo. The additional term, beyond those which appear in (5.81),
proportional to W3 is present since the weak current contains both vector and
axial pieces so that the e-tensor is not ruled out by parity. By its definition in
(5.95) Wy (q, P)t = W™ (g, P) so that Wi, 5 are real. Using iePe,, ; =
—6,204 + 6,755 we find, instead of (5.84),

L Wi (q, P) = 16p-p Wi +8(2P-p/ P-p — M*p-p' )W £ 8p-p/ P-(p+p') Wy
= 8Q* W +4M?*(4EE — Q*) Wi £ 4Q°M(E + E'Y Wi
1 —
~ 16EM (ajy Wi YW + (1 - Ly) ngi) . (5.96)
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Combining (5.96) with (5.92) and following similar steps which led to (5.88) we
find in the limit Q?, v — oo,

2
do,nza N Gr

Tody = 2r 2ME((1 — ) Fy (2, Q%) + 2y F{ (2, Q%) £ ay(1 — 1y) F5 (x, QQ)) :
(5.97)

where now
F2i<x7Q2):yW2i7 Fl:t(xaQ2):W1i7 Ff(l’,QQ):VW;: (598)

More generally (5.97) should contain a factor (1 + Q%/mf,) =2

3.2 Light Cone Variables

In order to analyse the behaviour of W5 (¢, P) defined in (5.81), or W&"*(¢, P)
given in (5.95), in the deep inelastic limit, Q* v — oo with = Q?/2v = O(1), it
is very convenient to introduce an alternative basis for 4-vectors which give what
are termed light cone variables. For an arbitrary 4-vector V# we define

VE=V1 V3, VvV, = (VL V?), (5.99)

and then the Lorentz invariant scalar product for two 4-vectors V* and U* be-
comes

VU =LVtU 4V UT) =V, U,. (5.100)

In this basis therefore g, = g . = %, g1+ = g—— = 0 and ¢;; = —9;; for
i,7 = 1,2. Under Lorentz boosts along the 3-direction V¥ — e*?V* while V| is
unchanged.

To discuss W/(g, P) and W5 (g, P) we choose a frame such that

P, =q, =0, (5.101)
(note that P* > 0) and then
Q=—qtq, v=LqP +qP). (5.102)

The deep inelastic limit is realised by letting ¢= — oo with ¢t = O(P™) so that
v ~ ¢~ P and therefore

T~ —P—J:L, v osq P (5.103)
In this frame from (5.83)
Wit P) = Wit (P- o) m,
= -+ (M + g—Z)WQ = Fp(x,Q%). (5.104)
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The other ‘longitudinal’ components are determined by current conservation,

++ (¢")° 2 —— () 2
WH (Q7P): QQ FL(','U7Q )7 WH <Q7P): QQ FL(SL’,Q ) (5105)
Since €t~ = 2 and Vi = 1V¥ the ‘transverse’ components of (5.95) are given

by
Wi'(q, P) = "W =i FW5E, F=3( PT=q"P7),  (5.100)

where €% is the two-dimensional antisymmetric symbol, €!? = 1, and it is easy to
see with (5.102) that
F2 =12+ M?*Q?. (5.107)

In the deep inelastic limit (5.104) becomes

1
FL(x7Q2>N —F1<.§L’,Q2>+%F2(.T,Q2), (5108)
while (5.106) simplifies to

Wi’ (a, P) ~ 01 Ff (2, Q%) — i Ff (2, Q%) (5.109)

3.3 Parton Model

As mentioned earlier the parton model was developed prior to the advent of
QCD and depends only on taking seriously the idea that hadrons have point-like
constituents with a wave function which falls off for large momenta as expected
on the basis of non-relativistic intuition for bound states. The leading term in the
deep inelastic limit is then given in (5.81) by letting, in accord with the general
philosophy expressed by (5.60), | X) — |z, k)| X’) where |gy, k) denotes a single
quark state with flavour index f and 4-momentum k.

Parton model for deep inelastic scattering
In this case we may write, neglecting any quark masses,

1 47 7.0 7.2
; ~Y Y o /d FO(RD)S(R) S (5.110)

X q spins
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If we rewrite (5.52) as sum over quark flavours,

K= Qran"ar, (5.111)
f

then with the assumptions implied by (5.110), summing over both quarks and
anti-quarks, in (5.81)

g, P Z / Ak te (W) (q k)T p (P k) + W5 (. )T p(PR)) (5.112)

where Wi*(q, k), W'(q, k), denotes the relevant contributions when the virtual
photon with momentum ¢ couples to a quark, anti-quark, with flavour f and
momentum k, as given by (5.111),

Wi (q, k) = W5 (q. k) = 3Q7+"y-(k + @) " 0((k + q)?) (5.113)
and we define

Lrr (P kK)o = D 64 (P — k — pxo) (H, P[qpo|X") (X'|as|H, P),
X/
Ui (P k)ga = D 6" (P —k —pxr) (H, Plags|X") (X'[as0| H, P),  (5.114)

Xl

for a, f Dirac spinor indices. If appropriate then the definition of I'y f(P, k)
and Ty s(P, k) in (5.114) should be averaged over the hadron spins. The expres-
sion (5.112) obtained by applying (5.110) for W;/(q, P) tacitly assumes that the
quark, or anti-quark, does not interact with the state X’ after it couples to the vir-
tual photon and so this is not, by any means, the sole contribution to W (¢, P).
Nevertheless, subject to suitable assumptions, (5.112) is the dominant term in
the deep inelastic limit, other contributions being suppressed by inverse powers
of @*. The critical requirement is that Tz (P, k), and also Ty ¢(P, k), which
depend on the invariants k2, P-k, fall off sufficiently rapidly so that, assuming
light cone variables with (5.101), the limit ¢~ — oo, with ¢, P* fixed, can be
taken inside the integral. Thus, using (5.103),

(k+q)°®~q (K" +q") ~2V<]]z—++ —a:) (5.115)
and hence in (5.113)
N
o((k +q)*) ~ 2—5(% —:1:) (5.116)

In (5.114) since X' is a state with positive energy, with mass? (P — k)%, we must
have k*/P*™ < 1. The Dirac matrices in (5.113) may be simplified with the aid
of

’YV'Y)\'YM — SVMAK’Y/@ + ’iEV”)‘H%% ’ Suu)\/@ — gu)\g;u@ + gungu)\ o guug)\n ’ (5117)
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which applied in the present context, since v-(k + q) ~ %q*fr, leads to
Yty =907 +iehs). (5.118)

Hence, defining

% /d%é(j;—i—x) tw(y' Tuy(P k) = Ptaa), (5.119)

and applying the version of (5.109) appropriate to deep inelastic electron scat-
tering gives

Fy(z,Q%) ~ %;@f (ar(2) + () , (5.120)

since replacing v — 75 in (5.119) gives zero due to parity invariance after
averaging over spins. The result (5.120) demonstrates that F; depends only
on the dimensionless variable * = Q?/2v in the deep inelastic limit, which is
known as Bjorken scaling. The quark distribution functions q;(z), g;(z) defined
by (5.119) for x > 0 are positive and may be interpretated as representing a
one-dimensional momentum distribution for quarks, anti-quarks inside a hadron
H. Using crossing symmetry they may be extended to x < 0 since

Ly (P k)=-Tgs(P,—k) = qs(z)= —q;(—). (5.121)

If we apply a similar limit to the ‘longitudinal’ components of W (g, P), as
given by (5.112), then using v~ 1y~ = 4y~ we may see from (5.113) and (5.116)
that W, (g, k) = O(1) and comparing with (5.104,5.105) and (5.108),

Fi(z,Q%) ~0 = Fylz,Q?) ~ 22F(z,Q%) ~ x;@ﬁ(qf(x)wf(x)). (5.122)

The +— and ++ components of (5.112) are also compatible with the asymp-
totic vanishing of Fy(z, Q?%), as required by current conservation, using (y7)% =
(77)? = 0 and (k + ¢)* ~ 0 since k*/P* ~ z as a consequence of the delta
function in (5.116).

Applying these results to deep inelastic scattering on a proton target, and
restricting to just the wu,d, s quarks, which should be valid to a very good ap-
proximation, leads, with an evident notation ¢,(z) = wu(z), g,(x) = u(zx) etc,
to

Foproton(@, Q%) ~ (3 (u(2) +7(2)) + 3(d(x) + () + s(a) +5(2)) . (5.123)
For a neutron target, by isospin rotation u <+ d so that

Fy neutron (7, Q) ~ x(%(d(a:) +d(z)) + 5(u(z) + u(z) + s(z) + E(az))) . (5.124)
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For deep inelastic neutrino, or anti-neutrino, scattering for simplicity we set
the Cabibbo angle to zero and neglect terms involving charm quarks so that
we may restrict the weak currents appearing in (5.95) to just the wu,d quark
contributions so that

K= (1 = s)d, Kt =dy" (1= s )u (5.125)
With the same assumptions as led to (5.112)
W™ (q, P) ~ / 'k tr (W (g, k)Ca( P, k) + Wi (q, k) Tau(P k), (5.126)
where now
Wi (q.k) = Wi (g k) = 39"(1 = 35) v-(k + @) 7"(1 = 95) 6((k + ¢)*) . (5.127)

For the transverse components inside the integral in (5.126) we may write from
(5.118)

V(L =)k +a) v (L= 75) ~ g7y (6 — i) (1 - ), (5.128)

and hence from (5.109) with identical notation as previously, since also the lon-
gitudinal components give F; (x, Q%) ~ 0,

o F (0, Q%) ~ B (r, Q) @) 4 (), B (7, @) ~ 2d(a) — ()
(5.129)
Similarly
1

Fy (2,Q%) ~ F{ (2,Q) ~u(x) +d(2),  Fy (2,Q%) ~ 2(u(x) — d(z)).
(5.130)
If we apply (5.129) in the result (5.97) for neutrino scattering we find

2

SZEZ - G? 2ME x(d(x) + (1 - y)*u(a)) (5.131)

while for anti-neutrino scattering

SZZ - % 2ME z(d(z) + (1 - y)*u(z)) - (5.132)

To the extent that Q% < M} the total cross sections formed by integrating over
x,y rise linearly with the energy F. On a nuclear target N with equal numbers
of protons and protons then u = d, @ = d and oo, 5n5/Otot, yn > é, with equality

itu=d=0.
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The parton model leads to various relations. For instance, from (5.123,5.124)
and (5.129) for proton, neutron targets in the Bjorken scaling limit

F27pr0t0n<'r) + F2,neutron<x) = (F2+proton< ) FZJrneutron (.T)) ) (5133)

with equality if s = 3 = 0 (this is nearly satisfied and is a test of fractionally
charged quarks), and also the exact relation

FQ,PTOtOH(:E) - FZHGUWOH("L‘) (F?j_neutron( ) F;—proton( )) : (5134)

3.4 Sum Rules

The quark distribution functions defined in (5.119) obey important sum rules.
With the definition (5.114) and (5.121) it is straightforward to see that

d*ktr (" (Ta g (P k) = Ty (P k) = $(H, Plggy"as|H, P) = P"Np s,

kt>0
(5.135)
where Np s is the net number of f quarks in the hadron H. If Q; = [d*z g7 ¢
then Q¢|H, P) = Ny ¢|H, P). Applying (5.135) for p = + with (5.119) gives

/Old:c (q5(2) = @4()) = Nury - (5.136)

This gives rise to various sum rules for the measured structure functions in the
Bjorken scaling limit. For instance the Gross-Llewellyn-Smith sum rule is

1 _
/dﬂf 3proton .T Q2) 3proton(x Q2)) Q2—~>>oo 2 0 da (u(x)—ﬂ(x)+d(x)—d(x)) =6.
(5.137)
Since FQTproton(xu Q2> F;rproton(xu QQ) ~ 2.1’(’&(.’17) + E(.T) - d(l’) - ﬂ(l’)) we may
derive also the Adler sum rule,

/d.ﬁlf 2proton(x Q2) Zproton(x Q2)) =2. (5138)

This is in fact valid for all 2, not just as Q% — oo.

3.5 QCD Corrections

In the derivation of the parton model the quark interacts with the virtual ~, or
virtual W, for large Q2 with a pointlike coupling, not including any corrections
due to strong interactions. In a field theory approach the quark fields in the cur-
rents (5.111) or (5.125) are treated as if they were effectively free, disregarding
QCD effects. This is ultimately justified by asymptotic freedom but a detailed
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analysis shows that there are calculable corrections to Bjorken scaling. The ap-
plication of asymptotic freedom to deep inelastic scattering is not immediately
straightforward since not all momenta are becoming large, the target hadron mo-
mentum P satisfies P2 = M? which is fixed and the hadron wave function, which
determines the quark structure functions in the parton model, intrinsically de-
pend on low energy scales (these determine the fall off of I'(P, k) and T'(P, k) for
large —k?). It is necessary to introduce a further factorisation assumption, which
can be derived to all orders in the perturbation expansion, in order to justify
using the ideas of asymptotic freedom.

To simplify the discussion we drop spinor and vector indices in a schematic
treatment which can be extended without difficulty to realistic cases. We anal-
yse a generic structure function F(x,@?), such as might be measured in deep
inelastic scattering. The dominant contributions for Q% — oo arise from the ele-
mentary particles of perturbative QCD, quarks and gluons, but QCD corrections
are no longer ignored and F(x,Q?) cannot any more be represented in terms of
solely pointlike couplings to the quarks, as in (5.112) and (5.126). Instead we
assume that the pointlike vertex is replaced by Ci(q, k), where i = q;,G;, G for
a quark, anti-quark, gluon with 4-momentum k coupling to a current J carrying

4-momentum ¢, ¢> = —Q?, and which includes all QCD corrections.
Y Y

X/l
k —quark

XI
P
H H

Deep Inelastic Scattering in QCD, quarks and gluons

In the relevant limit Q* = —¢® — oo, x = Q*/2v (v = P-q), fixed, F(z,Q?) is
assumed to have the form of a sum over contributions for different i = ¢y,q;, G,

Flz,Q%) ~ Y /d‘*k Cilg, k) To(P, k). (5.139)

Z:qfvava

Replacing (5.110) in this case

>y , (5.140)
Qfﬂf

and C;(q, k) represents the sum over states X” for J(q) + i(k) — X”. Since
Ci(q, k) is taken to be a Lorentz scalar it can depend on k-q,Q* and also k2.
Assuming also that C;(g, k) is dimensionless then if we consider the limit k? — 0
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and neglect any quark masses we may write

Q @
7. ) 3)7

Cz<q7 k) K2—0 = CZ(quu Eva

(5.141)

where setting k% = 0 is possible without introducing infra red singularities if
we introduce an arbitrary renormalisation mass scale p. In (5.141) we have
also displayed the QCD coupling ay, as in (5.39), since C; may be calculated
perturbatively. To zeroth order X” is just a single quark or gluon, (k + ¢)* = 0,
and there is no dependence on p so that we may take

C,

af

(=, & 0) = Jyo(1 - ), (5.142)

E;

(a:, 622‘0) = Jio(l—z), C;

where J¢, J; are given by the coupling of the the current J to the quark, anti-
quark with flavour f. When ¢~ — oo for fixed k, using (5.103),

Q? - x k*

L _ 14
okq Kkt Ty YT P (5.143)

In general X” is a positive energy state, with mass® (k + ¢)? > 0, and hence in
(5.141) for C; to be non zero we must have
+ k*

If we consider the deep inelastic limit by taking ¢~ — oo, with ¢, P constrained
by (5.101), in (5.139) then, since in the integral there is a fall off for large —k?,
we can take from (5.141)

Ci(g, k) ~ Ci(—q, i o) - (5.145)

Hence (5.139) reduces to a single variable integral

tdy .,z @ 2
Fz, Q%) ~ — Ci(=, 5 a0) fily, 1) (5.146)
iq%fﬂ/m Yy <y “2 )
where
2 1y s KT
fily, 1) = y/d ké(P+ - y) Ty(P k), (5.147)

which may be decomposed in terms of quark, anti-quark and gluon contributions
by

fl<y7:u2) = (Qf<y7:u2)76f<y7,u2)7G<y7,u2)) ) Z = qf7qf7G (5148)
In obtaining (5.139) and hence (5.146) the dependence on the large momentum
¢, and also the particular current J, has been factorised from the details of the
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hadron wave function contained implicitly in T;(P, k) and f;(y, u*), which is non
zero if y < 1. This factorisation, which allows use of the limit (5.145), is only
possible at the expense of introducing a dependence on the renormalisation scale
i, as shown explicitly in (5.141) and (5.147). If we use just the lowest order
result (5.142) for C,, then we recover the naive parton model result which entails
Bjorken scaling,

[ L5(1-5) art) =ae) = F, Q) ~ 3 (Jpage) +- 7, )) . (5149)

since gy must also be supposed to be then independent of p.
It is important to recognise that F'(z, Q?) as a potentially measurable physical
quantity must be independent of p. In general for vectors A;, B;

d d d
,ua(AiBi) =0 = pgidi= APy pgBi= P;B;. (5.150)
The integral convolution in (5.146) can be regarded similarly as a form of ma-

trix multiplication for two pu-dependent factors. The analogous version of the
equations for A, B in (5.150) become integral relations

d QQ 14 QQ
Ci(:c,ﬁ;as) = - /—ij<y, as)Pj-(i;as), (5.151)

P =
d ldz y
pfilyr’) = X | = Pij(;;as) Filz,112), (5.152)

where P;;(y; o) is independent of Q?, the particular current J and the hadron
H, and may be determined as an expansion in a4 from (5.151). In general all
components of P;;(y; o) are non zero. The equations (5.151,5.152), referred to
as the Altarelli-Parisi equations, are an extension of the renormalisation group
equations to this case. In (5.151)

d 0 0
M@ = M@ +B(9)5- (5.153)

or equivalently in (5.151,5.152) we should take ay — a,(p?) the running coupling,
which is explicitly given by (5.41) to lowest order. Since p is arbitrary we may
set p? = Q% so that (5.146) becomes

Fz,Q*) ~ Y /I—Ci(f,l;as(Qz)) fily, Q%) , (5.154)
i=qpa5,G7 % Y Y
where from (5.152)

d 2 _ Mz, Y0 o o2
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The results (5.154) and (5.155) then provide the justification for the claim that
asymptotic freedom allows the Q? dependence of F(x,@?) to be calculated per-
turbatively in the deep inelastic limit.

The integrals in (5.154) and (5.155) can be disentangled by using moments.
If f(z) is defined on 0 < z < 1 then its moments [ are defined by

1
/d:c:cN’lf(:c) — N ON=0,12.... (5.156)
0

For f(z) = 6(1 — ) then fN =1 for all N. If g(z) is similarly defined, so

that f(z),g(z) — f~,g¢", then, similarly to the usual convolution theorem, the
essential integral becomes a product of moments,

/ de 2N~ 1/ flx/y)gly) = /Ol%g(y) /Oydx:ch f(x/y) = fNg". (5.157)
If we therefore let

F(z,Q%) = MMQ%),  filz.Q%) = f(Q%),  Py(z:05(Q") = P (0:(Q%)),

(5.158)
then (5.154) and (5.155) are equivalent to
MYNQY) ~ Y G (as(@))01(@Q%), (5.159)
i=q5,4;,G
QFON@) = X Ple(@)0N(@), (5.160)
J=45.q¢,G

(5.160) is basically straightforward to solve for ON(Q?) in terms of ON(Q?).

The matrix structure in (5.155) or (5.160) may be simplified by making use of
symmetries. For Ny flavours, since all quark masses are neglected, the symmetry
group SU(Ny) for quark flavours may be assumed to restrict C; and P,;. Cg
is an SU(Ng) singlet while C,, Cg ; both belong to the product representation
Ny x Ng which can be decomposed into just the singlet and adjoint, of dimension
N — 1, irreducible representations. Furthermore under charge conjugation Cg
is invariant while C,, <> C 5 Applying these symmetry conditions gives for P;;
the general structure

PCIfG:PGfG:Pan PGqf:PGGf:Pqu
1
quqf’ :Paqu/ PNS(Sff/ Ng (qu_P]g(f)v
1
Pagiyy = Pajap = P Op + 5 (Pl = PA7 ) (5.161)

If we consider a structure function F2Y9(z, %) which involves non singlet
quantum numbers and 4 charge conjugation then, including QCD corrections
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C C have the form

q>

C

af

(:E,Ciz J) = +C; (6’52 S):JfC’iVS(x,,Cj—Q'as), Y Jr=0, (5.162)

2 & 27
I

and (5.154) reduces for this case to

dy

P @)~ [ (@) dSe.0).  (a6)
where
¢, Q) =Y Jp(ar(z, Q*) £7,(2, Q) . (5.164)
f

The general result (5.155) now becomes a one-component Q% evolution equation
for ¢V

d ng oy _ [tz ng 2 2
03100 = [ T PE(La@) Q). (5.165)
with, from (5.161), PYS = PY¥S + PY2 A similar equation may be derived for
the singlet case for ¢° = > ¢(qy — ;) while for ¢ = > ¢(qs +q;) there is a two
component coupled equation involving the gluon distribution function G as well,

ol <qi<y,c22>> e ( $(%0,(QY) 2NaPylY; as<@2>>> <qi<z,@2>>
dQ \ G(y, Q%) y Z PGq(zv as(Q?)) PGG(Zvas(QQ)) G(z,Q) )’
(5.166)
where P35 = P5, + P7.
To first order in oy calculations of C; give expressions of the same form for
i = qy,q; so that, assuming (5.142), C,, = J;C,, Cy, = J;C, where

Q N Qs Q°
AT pak ) =6(1—2) + 5= 5 Pal®) mM— . (5.167)
and hence from (5.163)
Fi®(,Q%) ~ ¢"¥ (2, Q%) + O(as(Q%). (5.168)
From (5.167) we may determine PY* for use in (5.165) giving
as(Q?
P (yron(@) = 28 p ). (5.169)
If we define moments of p,(y),
1
dz 2™ py(z) = =17, (5.170)



then instead of (5.160), if ¢ (z, Q) — ON(Q?),

d (@) _ Ar
Qo0 @) === W 0N@), @)= nter (AT

where we exhibit from (5.41) the lowest order expression for the running coupling
a,s(Q?). The solution of (5.171) is then

(@)% o
QS(Qg)} oON(Q2). (5.172)

This result illustrates how QCD gives rise to calculable corrections to Bjorken
scaling, as Q* — oo there remains a dependence on In Q2. 7; = 0 so that there
is no such factor for the N = 1 moment but sum rules for the number of quarks
of different flavours, such as the Gross-Llewellyn-Smith sum rule in (5.137), have
corrections on the right hand side proportional to a,(Q?).

oM@ = |
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Part VI
QCD, low energy aspects

1 QCD as the theory of Strong Interactions

The remarkable, and hitherto unprecedented, feature of QCD is that the physical
states bear no direct relation to the quarks and gluons which are present in the
standard perturbative treatment. This is a reflection of the dynamical assump-
tion of confinement so that all physical states are singlets under the colour gauge
group. For a gauge group SU(3)colonr and assuming that the quarks ¢ are all
triplets belonging to the 3 representation, while anti-quarks belong to the con-
jugate 3* representation, the simplest states are then ¢g mesons as well as qqq
baryons, although states with a more complicated quark content as well as pure
gluon states are possible. In order to understand what hadron states may occur
and also their interactions it is essential to take account of all symmetries, exact
and approximate, of QCD and their implications. A crucial aspect of QCD as
it is manifested in the real world is that there is an approximate chiral symme-
try such that the ground state or vacuum is not invariant in the limit of exact
symmetry. Such a spontaneously broken symmetry leads to Goldstone bosons
which correspond to pions, and also to the other pseudoscalar mesons, which
are much lighter than other hadrons becoming massless in the symmetry limit.
The essential implication of spontaneously broken chiral symmetry is that the
low energy interactions of pions can be described by a relatively simple effective
lagrangian with only a few parameters which are to be determined by experiment
(and might in principle be calculated from QCD).

1.1 Symmetries of QCD
The initial Lagrangian for QCD is simply

»CQCD = _iFMV'FMV+qu(Z.7MDM —mf)qf, (61)
!

with f a label for the different flavours of quarks and where colour indices, as
well as spinor indices, are suppressed. For the most part we restrict our attention
to the two lightest v and d quarks and write

u _ _ —
o= (). =@ D). (62)
If m, = mg =m in (6.1) then the relevant part of the Lagrangian is
Eu,d = 6<Z7MDM —m 1)(] ) (63)
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which is invariant under
¢q—Uq, g—qU' if U'U=1 = UcU?2), (6.4)

with U(2) the group of unitary 2 x 2 matrices. The group U(2) may be decom-
posed as

U©2) ~ SU2); x ULy /Zs,  Zo={1,—1}, (6.5)

and associated with such continuous symmetries there are the conserved colour
singlet currents and associated charges

ji=aing, L= [dajy, =123, =g Qu= [d.
(6.6)
The operators I correspond to the generators of SU(2); isospin symmetry while
Qv counts the net number of u,d quarks and is the generator of a U(1)y sym-
metry. If we include to s quark as well and assume m, = myg = m, then
SU(2); — SU(3)r which is in fact realised as an approximate symmetry group
of strong interactions, so that particle states of given spin form multiplets which
correspond to representations of SU(3). For any number of quarks with arbitrary
masses m; there is a U(1)y symmetry corresponding to ¢ — gy, gy — e_mqf
for every flavour. The associated current is then j* = 37,G;"q; and we may
then identify the singlet charge )y = 3B where B is the baryon number, which
is necessarily conserved in QCD.
If m,, = mg = 0 then (6.3) becomes

Lua=Tr"Dugr + 7" Dyqr (6.7)

which has an additional so called chiral symmetry due to the fact that the right
handed and left handed chiral projections may be transformed independently,

qr — Aqr,  qr— Bq., ATA=B'B=1, (6.8)
so that the symmetry group becomes

This contains SU(2); as a so called diagonal subgroup composed of elements
(U,U), i.e A= B = U, with also det U = 1. Initially we restrict our attention
to the group SU(2)g x SU(2), when det A = det B = 1 and we can write

1, 1, . . . .
A = €27 B = 27 with 7 the usual Pauli matrices. The corresponding
conserved currents and associated charges are then

Jri = @®Y'qr, Qri= /d39€ j%,@-, Jri=aY'w, Qri= /dg?ﬁ jE,i,
(6.10)
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which satisfy the algebra for the generators of SU(2)g x SU(2),

(Qri, Qr,j| = i€ijkQryk ; Qi Qrj] = t€ijrQrk Qr,i, Qr,;| =0.
(6.11)

The isospin charges, as given in (6.6), are now

Ii = Qri + Qr, (6.12)
and the associated axial charge is
Qsi=Qpri — Qri = /dngg,i7 b =" 53T - (6.13)
The algebra in (6.11) then becomes
L, 1] = i€y [L;, Qs = i€k Qs , (Qs.4, Q5] = €l - (6.14)

Of course this includes the standard algebra for the isospin charges and also shows
that ()5, transforms as an isovector. The action on the u, d quark fields is given

by

i, q) = —3mq, [L,0) =07, [Qsidl = —375q, (@50 = 0537 -
(6.15)
For subsequent application it is useful to define the scalar and pseudoscalar
fields

S =1qq, P = Grivsq. (6.16)

It is easy to see by considering their commutators with I that S is an isoscalar
while P is an isovector. Under commutation with the axial charges we have

Q54,5 =1iP;, [Qs5.4, Pj] = —%Q{Tia Titqg = —i6;;S . (6.17)

In consequence S, P form a four dimensional representation of SU(2)r x SU(2)y.

Although SU(2)g x SU(2),, is a symmetry of the QCD Lagrangian it is not
apparent, unlike SU(2); isospin, in the multiplets of nearly degenerate particles
found in nature. If it were realised in a conventional manner the action of the
axial charges ()5 ; would require there to be particles of opposite parity, although
the same spin, in the multiplets contrary to experiment. It is now clear that the
symmetry is realised in a spontaneously broken fashion so that although, in the
symmetry limit, the vacuum is invariant under isospin or

I;|0) =0, (6.18)

it does not form a singlet under SU(2)gr x SU(2)., annihilated by @5, as well.
Thus we have

(0]S10) £ 0, (6.19)

reflecting the breaking SU(2)g x SU(2), — SU(2); by the ground state. As
shown later this leads to three pseudoscalar Goldstone bosons which may be
interpreted as the three pions.
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2 U(l)4 Symmetry and ¢ parameter in QCD

Before discussing further the consequences of the spontaneous breaking of chiral
SU(2)r x SU(2), symmetry we consider the axial current whose corresponding
charge would appear to generate a U(1) 4 symmetry whenever one or more quarks
are massless. If m, = my = 0 then in addition to the currents given in (6.6) and
(6.13) there is the singlet current

5 =" 4., (6.20)

which is formally conserved. The apparent symmetry group, as shown by (6.8)
and (6.9), is then U(2)g x U(2)r, ~ SU(2)r x SU((2)r, x U(1)y x U(1)4. In
general if any quark is massless then there is an axial current which is formally
conserved and generates a U(1)4 symmetry associated with the massless quark
field being multiplied by €. As a conventional symmetry with an invariant
vacuum state the U(1)4 group is unacceptable since it again leads to particle
multiplets with opposite parity. It is also unacceptable even if the symmetry is
just spontaneously broken by the vacuum. For m, = mg = 0 there would then
be four massless Goldstone bosons whereas experimentally there are three very
light pions but no corresponding fourth I = 0 pseudoscalar particle.

The situation is saved by the conservation of the singlet axial current j£' being
anomalous. By one loop calculations, maintaining carefully SU(3)colour gauge
invariance which is necessary for the consistency and renormalisability of QCD,
we have for a general singlet axial current formed from ng flavours of massless

quarks, )

" 3272
Here g is the QCD coupling and in the present case of considering massless u, d
quarks np = 2. With appropriate careful definitions of both the left and right
hand sides there are no higher order corrections.

If, for the quark fields appearing in the axial current in (6.20), we let ¢ —
e?5q, § — e then taking S(z) to be infinitesimal and 2-dependent then the
change in the QC'D action, by a variant of Noether’s theorem is

gt =n e PFFop,. (6.21)

5SQCD == —/d4l‘ auﬁjg
_ / d'z 59, = 2npBrQ, (6.22)

where in the second line after integrating by parts we have taken [ to be constant
and used the anomalous conservation equation (6.21) where

2
Q=1 [atwemorr,, Fy,. (6.23)
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As defined in (6.23) Q is a topological invariant since it is invariant under
smooth changes in the gauge fields. To show this we may consider a variation
dA, which gives for the field strength 6F), = D,0A, — D,0A,, where D,0A, =
0, A, +gA, x A, is the covariant derivative for the adjoint gauge fields, and then

5<€“VJPFMV'FUP) = 45(€MVUPDM5AV'FJP = aﬂ<4€wjapAV'FUP) ) <624)

using the Bianchi identity D, F,, = 0 or ¢??D,F,, = 0. Hence 0Q = 0 since
the variation of the integrand is a total derivative and with suitable boundary
conditions any surface terms vanish. By integrating the variation in (6.24) we
may show that

&P, Fop=0,K",  K"=4e"""(A,0,A,+ 2gA, A, x A,).  (6.25)

Nevertheless this does not show that Q is zero since although the integral in
(6.23) may be reduced to a surface term we may assume that on the surface
|z| — oo the gauge field becomes a pure gauge, so that gA4, ~ h~'9,h, with
h(z) € SU(3)colowr for QCD, and hence F,, — 0 and K* ~ —%gAy-AU X Ap.
With the normalisation in (6.23) and smooth gauge field configurations Q takes
integer values or

Q=k, kez, (6.26)

with k& depending on the topology of h(x) on the surface at infinity. There are
smooth fields called instantons which give all possible values of k. The existence
of such field configurations which give non zero Q justifies the solution to the
U(1)a problem, which was the presence of four rather than three massless bosons
in the chiral symmetry limit of zero m,,, mg, through the anomalous conservation
equation (6.21).
In general the QCD action can therefore be modified by an extra term pro-
portional to @)
SQCD — SQCD +rl Q. (627)

Under the U(1)4 chiral transformation as in (6.22) we therefore have
00+ 2npp. (6.28)

In consequence for any massless quark 6 can be transformed to zero by a suitable
U(1)4 transformation. However if the quark fields have a general mass term of
the form

L, =—qMaqr — ML, (6.29)

with M a complex np X np times matrix, then if ¢ — e#¢ we must require, as
well as (6.28),
M s e 20 (6.30)

Hence
0 + arg det M (6.31)

107



is invariant. The extra term in (6.27) cannot be then set to zero, and will in
general be generated when the quark mass matrix M is diagonalised in terms of
real positive quark masses my. This 6 term, if non zero, violates both P and T'
and experimentally it is necessary that 6 be very small. Although there are some
theoretical explanations involving additional particles called axions for this they
are not wholly plausible and have not been tested in terms of other predictions.

3 Pions as Goldstone Bosons

In any quantum field theory when a continuous symmetry group G is sponta-
neously broken to a subgroup H by the vaccuum state there are dim G — dim H
massless Goldstone bosons. In the present context we take, for QCD, G =
SU(2)r x SU(2);, and H = SU(2); so that the general theorem requires three
massless bosons. In the real world the v and d quarks are very light, with masses
a few MeV, < A the QCD scale. In this case G = SU(2)g x SU(2), is not quite
exact but there should remain three nearly massless bosons which are identified
with the pions. With more approximation we may consider the light u, d, s quarks
and take G = SU(3)gr x SU(3), and H = SU(2)r and the eight pseudoscalar
mesons are interpreted as the required nearly massless Goldstone bosons.

Initially at least it is simplest to consider exact chiral symmetry with massless
u, d quarks. The axial current j¢; is then conserved and we may write the second
equation in (6.17) in the form

Qi BO)] = [ ' [13,(x), P,(0)] = —i6;S(0). (6:32)

where V' may be restricted to some finite volume since, for large |x|, the commu-
tator [j2 (), P;(0)] = 0 since then 2> < 0 and also, as a result of the conservation
of j&,, the left hand side is independent of 2. Alternatively, neglecting possible
terms involving derivatives of 63(x) we must have the local equation,

[75:(2), P(0)] [0 = —i0:50°(x) S(0). (6.33)
If we now assume, following (6.19),
(0]S|0) = —v #0, (6.34)

By virtue of the general proof of the Goldstone theorem there must exist three
zero mass bosons |m;(p)), p* = 0, such that

(0175:(0)|me(p)) = b Frp?* . (mi(p)|F;(0)]0) = Ok; Zr (6.35)

with
F.Z. =v. (6.36)



Since js; is an axial current then |m(p)) must correspond to a pseudoscalar
particle. Thus the zero mass bosons have exactly the properties of pions and the
usual charged particle states are given by

() = ;}§(|wl<p>>:t¢|ﬂa<p>>), 7(p)) = [ms(p)) (6.37)

The coefficient F, appearing in (6.35) is exactly the quantity which determines
the decay rate 7= — pv so that it is measured to be F, = 92 MeV.

If m,, mq # 0 then SU(2)r x SU(2)., is non longer an exact symmetry and
the pion Goldstone bosons need no longer be massless but we may determine m?
to first order in m,,, my. From (5.2) and (6.13), with ¢, as in (6.2), we have

Ouits = 50{mi, MYiysq = 5(my + ma)qriiysq + 5(ma — ma)dis ivsq,  (6.38)
where

M= (WSU n3d> = 3(my +ma)l + 5 (my — ma)7s. (6.39)

Taking the divergence of the axial current matrix element in (6.35) now gives,
using the definitions in (6.16),

(010,74 (0)]m(p)) = G Fem? = L(mi, + ma) O1PA0) () = S(ma + ma) 0 Zr
(6.40)
where in (0| P;(0)|m,(p)) the pion state may be identified with that of the massless
theory and we have used (6.35) as well as (0|givsq|mx(p)) = 0. Hence, using (6.36),
we have v
m2 = 1(m, + md)ﬁ . (6.41)
Even though m,/mg may not be close to 1 the pion masses for 7%, 7° are the
same so long as m,, my are small.

Treating the pion as a Goldstone boson for spontaneously broken chiral sym-
metry leads to predictions for low energy processes involving pions. As an illus-
tration we may consider states |a), |b) and then, with p, — p, = ¢, we have for
general ¢

. q"
(bl75.ila) = (bla, mi(q)) ?Fw + Ni' i - (6.42)

The first term on the right hand side, involving a pole at ¢> = 0 which arises from
the pion propagator i/¢?, represents the contribution of the pion produced from
the vacuum, with amplitude F}, by the axial current, since according to (6.35)
we have (m;(q)|j5,;]0) = —id;iFrq”.

S non pole
a b = a —(E b+ contributions

Pion pole contribution to axia current matrix elements
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In the chiral symmetry limit the axial current is conserved so that g, (b|j§;|a) =

0. Hence
1

(bla, 7i(@)) = =% duNpai (6.43)

which ensures that the amplitude for a + m — b vanishes in the pion low energy
limit, ¢ — 0, unless there are some singularities present in pHNgf 2i- These can
only arise due to known couplings of pions to the external particles.

3.1 Goldberger-Treiman Relation

An important result, which connects F}; with the pion-nucleon coupling constant,
is called the Golberger-Treiman relation and was derived well before its connec-
tion with spontaneously broken chiral symmetry was understood. It is obtained
by considering the matrix element of the AQ) = 1 axial current between a neu-
tron and a proton state. Using parity this has the general form (there could also
be a term 0" v5q,97(¢%), 0" = %i[y",7"], on the right hand side but there are
arguments why this should be zero and it is irrelevant in the following discussion)

(p(p's")] (35,1 (0) + ij52(0))[n(ps))
=T,(p's") (1"594(6%) + 150" 9p(*) Jun(ps), q=p —p. (6.44)

This matrix element is part of the amplitude for the S-decay of a neutron, for
which ¢? ~ 0, and the experimental decay rate determines

g4 =ga(0) = 1.27. (6.45)

If we assume chiral symmetry then imposing conservation of the axial current
requires

4u{p(p's")|(45,1(0) + ij5.2(0)) In(ps)) = 0, (6.46)
which leads to, assuming M,, = M, = M,

2Mga(q®) + ¢*gp(¢>) = 0. (6.47)

Given that g4(0) # 0 it follows that gp(¢®) must contain a pole at ¢* = 0 which is
a reflection of the contribution of the zero mass pion. The residue of the pion pole,
apart from a factor (7% (q)|(j&,(0) + ij£5(0))|0) = —v/2iF.¢", can be calculated
in terms of the coupling constant for 7+ + n — p. The precise definition of the
pion nucleon coupling constant, which can be measured through pion nucleon
scattering, can be summarised in terms of an interaction lagrangian for nucleon
spinor and pion fields given by

L[ = gWNNNi’y5T'7TN = \/ﬁgWNN]_?Z"}/g;n?TJr + ..., N = (i) . (648)
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Using this the pion pole contribution to gp(g*) may be directly calculated

QP(‘JZ)

1
= —2g.Nnn—=Fr, .49
pion pole grNN q2 (6 )
and although this is need not be the complete form for gp(¢?) the remaining parts
are non singular at ¢> = 0. Combining (6.47) and (6.49) with (6.45), in a similar
fashion to the result (6.43), finally gives the Goldberger-Treiman relation

gaM = gznnE7 (6.50)

which is an exact relation in the chiral symmetry limit, with the pion as a gold-
stone boson. Taking g,nyny = 12.7, F; = 92 MeV and M = 940 MeV as well as
(6.45) in the real world it is accurate to 2-3%.

4 Effective Lagrangians

The most efficient and, in terms of current understanding of quantum field theory,
natural method for deriving the consequences of spontaneously broken chiral
symmetry is in terms of an effective Lagrangian which determines an effective
quantum field theory which is an approximation to a more fundamental theory,
valid for a certain range of energies, from which physical results may be more
readily be calculated. Although QCD may be regarded as a fundamental theory
it does not directly describe the appropriate physical degrees of freedom at low
energies. The idea of an effective field theory is to construct a field theory in terms
of the appropriate degrees of freedom at low energies which for QCD are the pion
fields. Using the symmetries of the underlying fundamental theory (or experiment
if that is unknown) the effective field theory should be determined in terms of just
a few parameters or couplings. A quantum field theory allows the constraints of
locality, unitarity and Lorentz invariance to be easily imposed. Since an effective
field theory is constructed to apply to only a restricted energy range there is
always, at least implicitly, a cut off so they need not be renormalisable but, as will
become more apparent in the case of chiral lagrangians for pions, they still make
sense in terms of an expansion in the energy of the processes described. From this
point of view the original Fermi theory of weak interactions is an effective field
theory where calculations to first order in G are sufficient at low energies. In this
case the characteristic energy or mass scale is set by my,, mz which determines
the cut off on the validity of the Fermi theory. For QCD the natural energy scale
is O(1) GeV, so that the low energy effective theory is appropriate for energies
which are small in comparison with this.

Considering again just the case of massless u,d quarks so that QCD is in-
variant under the chiral symmetry G = SU(2)g x SU(2); then an arbitrary
spontaneous symmetry breakdown by the vacuum may be parameterised by

(0Tz7aRf10) = V7. (6.51)
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with notation as in (6.2). By virtue of the action of the chiral symmetry group
in (6.8) any vacua such that

V= AVB™', (A B)eSU©2)zx SU?2)L, (6.52)
define equivalent theories and the unbroken symmetry group H is defined by
V=AVB' (A B)eH. (6.53)
The set of equivalent vacua Vj is then identified with the coset G/H or
Vo={V:V~AVB Y~ SU2)z x SU(2),/H . (6.54)

In general we have

Vo~ <v1 O> , vy, vy Teal, vy, vy >0, (6.55)
0 V2
so that Vj is specified by vy, ve. In order to ensure that H = SU(2); we must
require
v =Uy =0, (6.56)

and assuming this then for the general case V. = oU, U € SU(2). At the
particular point U = 1 (6.51) is identical with (6.34).

For any Ve Vo there is an associated quantum field theory with a unique
vacuum state |0) such that (6.51) holds. Any theories such that the Vs belong to
the same coset are physically equivalent. The particle states in the quantum field
theory are obtained by the action of field operators on the vacuum. Classically if
the fluctuations of the field are restricted to ground states associated with points
in the coset G/H then in the long wavelength limit the energy tends to zero.
When these are quantised they correspond to the massless Goldstone bosons.
The full implications of spontaneously broken symmetry for the interactions of
Goldstone bosons are obtained by considering a low energy effective theory with
fields belonging to G/H which is invariant under G. When the fields are constant
they represent a point on the vacuum manifold V, and the particles present after
quantisation are the Goldstone bosons.

For the case of QCD when G = SU(2)r x SU(2)x and H = SU(2);, so
that the coset of equivalent vacua V) is specified just by v, the elements of the
coset may be identified with the unitary matrices U. The effective low energy
field theory is then described in terms of pion fields 7 (x) so that U(w) € SU(2)
represents a parameterisation of an arbitrary SU(2) matrix (or equivalently of the
three dimensional sphere S?). It is convenient to set U(0) = 1 and one particular
choice is,

U(r) = ™/ F (6.57)

where, since the pion field 7 is conventionally assumed to have the dimensions of
energy, F' is a suitable energy scale. In any parameterisation then for small 7= we
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require U(w) =~ 1 +in-7/F. For any (A, B) € SU(2)gr x SU(2);, we may define a
nonlinear realisation acting on the pion fields by
Ulr) - U(r")=AU(r)B™ = = =2 7. (6.58)
The construction of a low energy effective lagrangian for QCD becomes straight-
forward by identifying U () as the relevant degrees of freedom at low energies and
the consequences of chiral SU(2)g x SU(2); symmetry are realised by imposing
invariance under (6.58). It is easy to see that there is no possibility of construct-
ing an invariant from U(7) with no derivatives but that there is a unique Lorentz
invariant form with two derivatives
L, = 1Pt (0"U(m)'0,U(m)) = Lg:(m)0"mi0,m; (6.59)
where the normalisation has been chosen to ensure that the O(7?) term in £,
has the conventional form for free massless fields, so that ¢;;(0) = §;;. £, may
also be regarded as defining a field theory for fields 7 € S* with a metric g;;(7).
The Lagrangian £, given by (6.59) should be regarded as the leading term
in an expansion in derivatives, at the next order there are three possible terms
with four derivatives. However (6.59) is sufficient to determine pionic amplitudes
to O(E?), where E is a typical pion energy, £ < 1 GeV. Schematically L,
has the form £, = 3, (0n)*(7/F)". For any Feynman diagram each vertex,
which involves two derivatives contributes terms of O(E?) whilst each internal
line involving a massless propagator gives a contribution which is O(E~?) and
each loop integral d*¢ over a loop momentum ¢ generates a potential O(E?) factor.
For a Feynman diagram the overall contribution for V' vertices, I internal lines
and L loops is then

EAV AL — 22l yging VA L—1=1. (6.60)
Considering only tree Feynman diagrams, L = 0, is then sufficient to O(E?).
One loop diagrams, along with the four derivative terms at the next order in
an expansion of the effective action, are necessary to consider O(E*). In any
loop integration a cut off is necessary to ensure finiteness. The effective theory
described by (6.59) is a non renormalisable quantum field theory but this does
not matter when the theory is restricted to be applicable only at low energies.
At one loop, there may be divergent terms which are quadratic or quartic in the
cut off but these can be absorbed in a modification of the coefficient F' appearing
in (6.59).

To understand the low energy theory further we consider and infinitesimal
SU(2)r x SU(2)r, transformation given by

A=1+1Li(ba+6B8)7, B=1+3i(0a—48), (6.61)
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so that dav corresponds to an infinitesimal SU(2); transformation. In QCD, where
the quark fields transform as in (6.2), then if dcr, §5 are taken to be z-dependent
we may define the isopin and associated axial currents by

§Sacn = — / d'z (9,60, 4, + 0,88 12) (6.62)
In the corresponding low energy theory applying (6.61) in (6.58) gives
0U = Li(da[r, U] + 6p{r, U}),, (6.63)
and, when d«, 6 are x-dependent, we may define vector, axial currents by
58, = — / 'z (9,00-V" + 9,08-A"), 8, = / da L, (6.64)

The currents V", A} then directly correspond to the quark currents j;';, j&; in the
low energy effective theory. By using (6.61) with (6.59) we may calculate their
explicit form,

VH = iiFQ’cr(7'(8“UUT+8“UT U)) =rmxolr+...,
Ar = LiPa(r(@U U - 0"UTU)) = —FO'T 4. (6.65)

where we have displayed the lowest order terms in an expansion in the pion fields.
It is crucial to note that A* is has a term which is linear in the pion fields unlike
V*# for which the leading term is quadratic. In the quantum field theory then in
a perturbative treatment we expand about a theory of free massless pions where
the pion states are |m;(p)), i = 1,2, 3, p> = 0, and the pion field 7(x) satisfies

(Olmi(@)|m;(p)) = dije™ ™. (6.66)

With the axial current given by (6.65) then, neglecting any loops, only the linear
term in the pion fields contributes to the corresponding matrix element giving

(0| AZ(0)|m;(p)) = iFd;p" . (6.67)
Comparing with (6.35) we must therefore take
F=F, (6.68)

so that the single parameter in the lowest order term in a derivative expansion
of the effective action, given by (6.59), is determined.

Besides the currents given by (6.65) the effective theory posesses an additional
topological current

1
VHE = Y Pt (U10,U U 0sU U0, U) (6.69)
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This may be seen to be conserved identically, 9,V# = 0, independent of the
equations of motion. Under parity, since the pion is pseudoscalar, we should take

U(r(x)) — U(r(zp))~ ", rp = (2%, —x), (6.70)

so that V* is a vector current, V*(z) — (Vo(xp),—V(zp)). This current may
be identified with that associated with the U(1)y symmetry in QCD leading to
the conservation of baryon number. The coefficient in (6.69) is chosen so that
the associated charge takes integer values for fields obeying suitable boundary
conditions.

5 Electromagnetic Interactions, 7' — v+ decay

The simple effective lagrangian for low energy pion amplitudes can be extended
in various ways. An important and non trivial task is to extend it to include
electromagnetic interactions involving the photon field A,. For pions we have
Q) = I3 so that the gauge group U(1)q is identified with the U(1) subgroup
of SU(2); generated by I3. Gauge transformations are, from (6.58), then U —
e3P [Je~377s a5 well A, — A,+0,\/e. As usual the effective lagrangian such as
(6.59) is made gauge invariant by replacing derivatives by covariant derivatives,

OU — DU = 9,U — SieA,[r;,U]. (6.71)

However the interactions obtained in this way do not describe the decay 7° — 77,
which is the dominant decay of the 7°. By parity the simplest amplitude for this
process must involve an e-tensor which cannot arise from any lagrangian obtained
through the replacement (6.71).

The solution is another consequence of anomalies in the conservation of axial
currents constructed from fermions in quantum field theory. With the quarks
coupled to the electromagnetic field the current j§'5, defined in (6.13), is no longer
conserved when m, = my = 0 but

2
3272
To derive this it is sufficient to consider just the triangle diagram formed from
a quark loop coupled to two photons through the usual electromagnetic current
qQy"q and also jks = G557 754,

Q

Oujts = Se " FopFos,  Fag=0,A5 — 0pAa. (6.72)

T3
"
Js5,3

Q
Triangle Graph Giving the Axial Anomaly
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The coefficient S in (6.72) is given by
S = tr(10Q?), (6.73)

and it can be shown that it is not affected by QCD corrections. For the case here
of just u, d quarks

4
Q2:(8 8) = S=3xi=1, (6.74)
9

where the factor 3 comes from three colours.
. . . . . 1.
Corresponding to a chiral transformation as in (6.8) with A = B! = ¢2/™#
we have, in a similar fashion to (6.22),

. e?
3Socp = — / d'00,8 5 = == 5 / diz BP0 F R ;. (6.75)

The anomaly may then be incorporated in the low energy effective theory by
modifying the action so that it satisfies

05, z B e FsF.s, (6.76)

when

U(r) = ip{37,U(m)}. (6.77)
The desired result may be achieved by adding to the low energy effective theory
and additional anomaly piece

2

353 S e PV 5 Fys, (6.78)

Eanomaly = F( )

where under (6.77) we require
SF(m)=p. (6.79)

For simplicity we consider only the lowest order contribution to F'(w). Using
U(r) ~ 1 +ir-7/F then (6.77) gives dm; = fFd;3+ ... so that we may take

Flr)= 5t ... (6.80)

For 7 — 7~ decay the amplitude to O(e?) may then be taken as

M = (7(@181)7(222) | Lanomaty (0) |7 (p)) (6.81)

where €1, €5 are the polarisation vectors of the decay photons and
G=¢=0, p=mi, P=q+e. (6.82)
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Using (6.78) and (6.80) with (6.68) we may obtain

1 é?
M =38 F 327‘(‘2 S EQBV £ laq168 2/\/q25 (683)

The decay rate is then given by, with an extra factor % since the two final photons
are identical bosons,

11 g P
Com =55 L 0G-a-aMP X = [,
" 22 T q1€1,92€2 q1,q2 2m 32q 27T 32q
(6.84)
Since, summing over the photon spins we may take Y _.e,65 — —gu and in
contracting e-tensors €*%e,,.; = —2(6%8% — §%5°), we have, using also (6.82),
> e aqipeny qs)? = 2(q1-2)? (6.85)
€1,€2
so that, since 2¢;-qga = m2,
S M= S g - (680
M Mo S , a=—. 6.86
ot 2F 2 4T
The remaining phase space integration is easy since
d3q, d®
TOEL ) gy — g) = 2m, (6.87)
1| |2l
and hence finally
a? m7r 9
oy = 61m 2 S, (6.88)

This is in agreement with experiment for S = 1.
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