
Lent Term 2010 Mathematical Tripos Part III Hugh Osborn

The Standard Model 2, Spontaneous Symmetry Breakdown

(1) A field theory is described in terms of the elements of a complex N × N matrix M by a
Lagrangian

L = tr(∂µM†∂µM)− 1
2λ tr(M†MM†M)− k tr(M†M) ,

where tr denotes the matrix trace and λ > 0. Show that this theory is invariant under the symmetry
group U(N)×U(N)/U(1) for transformations given by M → AMB−1 for A,B ∈ U(N) and where
the U(1) corresponds to A = B = eiθI (note that if H is a subgroup of G then G/H is a group if
H belongs to the centre of G, i.e. hg = gh for all h ∈ H, g ∈ G). Show that if k < 0 spontaneous
symmetry breakdown occurs and that in the ground state M0

†M0 = v2I for some v. What is the
unbroken symmetry group and how many Goldstone modes are there?
If L → L+ L′ where

L′ = h
(
det(M) + det(M†)

)
,

what is the symmetry group and how many Goldstone modes are there now after spontaneous
symmetry breakdown? (assume the ground state still satisfies M0

†M0 = v2I)
[Note U(N) = SU(N) × U(1)/ZN where ZN is the finite group corresponding to the complex
numbers e2πik/N , k = 0, . . . N − 1, under multiplication.]

(2)∗ A field theory has 5 real scalar fields φa which are expressed in terms of a symmetric traceless
3× 3 matrix Φ =

∑5
1 φata where ta are a basis of symmetric traceless matrices with tr(tatb) = δab,

where tr denotes the trace. The Lagrangian is given by

L = 1
2 tr(∂µΦ∂µΦ)− V (Φ) , V (Φ) = g

(
1
4 tr(Φ4) + 1

3b tr(Φ3) + 1
2c tr(Φ2)

)
,

where g > 0. Show that this theory has an SO(3) symmetry. Let M0 = {Φ0 : V (Φ0) = Vmin}.
Assume SO(3) acts transitively on M0, i.e. all points in M0 can be linked by an SO(3) transfor-
mation. Show that then all Φ0 ∈M0 have the same eigenvalues, which add up to zero, and that we
may choose Φ0 so that it is diagonal. Describe how the eigenvalues of Φ0 determine the unbroken
subgroup of SO(3).
For this theory show that M0 is determined by the equation

Φ3
0 + b Φ2

0 + cΦ0 = µ I , 3µ = tr(Φ3
0) + b tr(Φ2

0) .

(µ may be regarded as a Lagrange multiplier for the condition tr(Φ) = 0 when varying V (Φ)).
Verify that there is a potential solution in which the unbroken subgroup is SO(2) if b2 > 12c (note
that in this case Φ0 may be given in terms of a single eigenvalue).
For 3 × 3 traceless matrices tr(M4) = 1

2

(
tr(M2)

)2. Show that if b = 0 the initial symmetry is in
fact SO(5) and that Vmin = − 1

2 gc2 with an unbroken group SO(4).
How do the results on possible unbroken symmetry groups generalise to the analogous theory with
SO(N) symmetry defined in terms of N ×N symmetric traceless matrices?

(3) Consider a SU(2) gauge theory coupled to a two component complex scalar field φ acting on
which the SU(2) generators are represented by 1

2τ , for τ the usual Pauli matrices,

L = − 1
4 Fµν ·Fµν + (Dµφ)†Dµφ− 1

2λ
(
φ†φ− 1

2v2
)2

,

1



where
Fµν = ∂µAν − ∂νAµ + g Aµ ×Aν , Dµφ = ∂µφ− ig Aµ· 12τφ .

Explain why we may choose φ = 1√
2
(v+f)

(
0
1

)
and that the SU(2) gauge symmetry is completely

broken. What are the masses of the elementary particle states neglecting any quantum corrections?

(4) A triplet gauge field Aµ is coupled to a real triplet field φ with the Lagrangian,

L = − 1
4 Fµν ·Fµν + 1

2 (Dµφ)·Dµφ− 1
8λ

(
φ2 − v2

)2
,

Fµν = ∂µAν − ∂νAµ + eAµ ×Aν , Dµφ = ∂µφ + eAµ × φ .

Show that this theory is invariant under SU(2) gauge transformations but that this is broken by
the ground state to U(1). Rewrite the theory in terms of physical fields and determine their masses
and couplings.
For a complex triplet field φ suppose the Lagrangian is

L = − 1
4 Fµν ·Fµν + (Dµφ)∗·Dµφ + 1

2g2(φ∗ × φ)2 .

Show that in the classical ground state the potential may be minimised, up to a freedom of gauge
transformations, by choosing φ0 = 1√

2
v e3 for any complex v where e3 is the unit vector in the

3-direction. Explain why v ∼ −v under residual gauge transformations. Why is it possible to
impose the conditions Re(v∗φ·e1) = Re(v∗φ·e2) = 0? Determine the masses of the physical fields.
Why are theories with different values of v2 inequivalent?

(5) A gauge theory for the group G is described by the Lagrangian,

L = − 1
4 Fµν

aFµνa + 1
2 (Dµφ)·Dµφ− V (φ) ,

Fµνa = ∂µAνa − ∂νAµa + g cabcAµbAνc , Dµφ = ∂µφ + g Aµaθaφ ,

with a = 1, . . . dim G and θa matrices representing the Lie algebra of G, [θa, θb] = cabcθc and cabc

is completely antisymmetric. Assuming V ′(φ)·θaφ = 0 and φ′·(θaφ) = −(θaφ′)·φ show that L is
invariant under G gauge transformations.
Suppose V (φ) is minimised at φ = φ0 and that we add a gauge fixing term of the form

Lg.f. = − 1
2

(
∂µAµa − g(θaφ0)·φ

)(
∂νAνa − g(θaφ0)·φ

)
.

If φ = φ0 + f derive the decoupled linearised equations of motion for the vector, scalar fields,

∂2Aµa + g2(θaφ0)·(θbφ0) Aµb = 0 , ∂2f +M·f + g2(θaφ0) (θaφ0)·f = 0 ,

where M is a matrix determined by the second derivatives of V (φ) at φ = φ0. Show that the mass
eigenstates form multiplets of the unbroken gauge group H, for which the corresponding gauge
fields are massless (it is sufficient to show that the mass matrices appearing in the linear field
equations commute with the generators of H in the appropriate representation).

(6)∗ Let L = ∂µφ∗∂µφ− 1
2g(φ∗φ− 1

2v2)2 be the Lagrangian for a complex scalar field φ. Writing φ =
1√
2
(v +f + iα) show that the α field is massless whereas the f field has a mass

√
gv2. Consider the

scattering amplitude M for α particle scattering which is defined by 〈α(p3)α(p4)|T |α(p1)α(p2)〉 =
(2π)4δ4(p3 + p4 − p1 − p2)M where S = 1 − iT . Neglecting any Feynman diagrams with loops,
show that

M = g2v2

(
1

s− gv2
+

1
t− gv2

+
1

u− gv2

)
+ 3g , s = (p1 + p2)2 , t = (p3 − p1)2 , u = (p4 − p1)2 .

Verify that s+t+u = 0 and hence show that for α particles with low energies E we haveM = O(E4).
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