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1. Conformal and Superconformal Transformations in Three Dimensions

As usual with supersymmetry it is convenient to adopt a spinorial notation. In three

dimensions the gamma matrices are expressible in terms of symmetric real 2 x 2 matrices

(0a)ap = (0a)ga,  (5a)*7 =% (00)ss , (1.1)

with o, 3 = 1,2 and
Ou0p+ 0p0, = _277ab1, (1.2)

with 74 the 3-dimensional Minkowski metric with signature (—1,1,1) and I the identity

0 1 2
matrix. Any 3-vector % is then equivalent to a symmetric 2x2 matrix r +2 r 0 r 1 >
x T’ -

or, using the o-matrices in (1.1),

1% — Xap = (2%04)ap , %P = g% s (1.3)

so that
x% = —2%1, z? = —%Xagi‘w = —detx. (1.4)
For z real x = x*, on analytic continuation to a Euclidean metric x = —x*. We also

define

Oap = (0%00)ap, 0P =170, (1.5)

so that
Dap X0 = —0,7048 — 8,205 . (1.6)

Conformal transformations are determined in terms of conformal Killing vectors v®(x)

which, with the above notation, can be written as
P =32 — P @ %0, P A% 450 b s %P w7 =0. (1.7)
For any v*? of the form (1.7)
[0, 377°0,5] = 0a70y5 + 05700y — Aag,  @a® =0, (1.8)

which defines 03® = wg® — b, X7 + 1 55 b,s%?%, A = A + bs%70.

For a conformal primary field of spin s, @4, ...a., () = P(a;...a..)(2), then conformal

transformations have the form

5’1}®O¢1...0¢23 — (% {}aﬁaaﬁ - Ax)@al...ags + 28 d}(ozla ®042...Q(25)a Y (19)
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with A the scale dimension. Writing the transformation (1.9) as
i8u@Pay. s, = 58 Pag —iANH +iwg®Mo" + 3bogK* @4, as.] (1.10)
this gives

[Pozﬁa (I)Dzl...ozzs (I‘)} — iﬁaﬁ ¢041...Oé23 ($> y
(Mo, @00, ()] = = (778050 — 5847 K7°055) Pay..ra. (7)
+2s (5(alﬁ¢.az--~a23)a(w) - % 50? Py ..., (ZL')) )

(1.11)
[H, @0, ..as,(2)] = (= 38P00p + A) Pay .. (T)
(K, @4, ap, ()] = i(Z7%7 005 — 2(A — 8) X)) Dy, (),
— 12800, Dy )y (T) — 128000, %Y Py ) (T) -
Since
[605: 00y | = 60y VP = 2(97°0,5 757 — ¥57°0,5 71°7) , (1.12)

then (1.10) implies the commutation relations for the Lie algebra of the three dimensional
conformal group SO(3,2),

(M M) =6 M —6.°MP . [MSP, Pys| = 6,7 Pas + 65" Pya — 8° Pys

[H, Pop] = Pop,  [H, K] =-K",  [H M)S] =0, 1.13
(M K7 = — 8K — K" + 6,/ K7, (1.13)
[Pap, K7°] = 40" Mg + 40070 H,  [Pag, Pys] = [K*7, K7°] =0.

P.s = Pgq is the momentum operator, M._.P the generator of three dimensional Lorentz
transformations while H is the generator for scale transformations and K** = K8 for

special conformal transformations.
Standard quantum hermeticity conditions require
(Pap)t = Pop, (KO =K H' =-H, (MS)'=-M;. (1.14)

However for states |®a,. .as.) = Pai..as.(0)[0), which are annihilated by K and
H|Pu. as.) = A|Pq,. as.), then there is an associated scalar product defining a con-
jugation such that

(Pag)t = —K°P, (K*P)T = -P,g, Ht=H, (MP)T = Mg~ (1.15)

U For Pag = (0“Pa)ag, K* = (6°Ka)*” and M. = —1i(0%6%)o” May, May, = —Mya, then
P,, Ko, May, H satisfy the commutation relations for the standard SO(d, 2) conformal Lie algebra
in any dimension d, with in particular [P,, K| = —2i Map — 20ap H, [Mab, Pe] = i(Nac Py — Mbe Pe).



M., H are then the generators of the maximal compact subgroup SO(3) x SO(2).
Superconformal symmetry transformations are expressed in terms of superconformal
anti-commuting Killing spinors, linear in z,

e (x) = € +inp . (1.16)

Here é*(z) is regarded as a N-component row vector, although additional indices are
suppressed. The associated column vector formed the transpose is written as

e%(x) = e (x)T =€ +ix%nz e RV, (1.17)

If ®,,. a,.(x) is a superconformal primary field belonging to a vector space Vg then a

superconformal transformation gives

_\Ila,al @ 9 (118)

(1R

A
5€(Da1 € \Ila,al Qg

.Qos T Qg T

with Yo 0, . 0. (T) € RN x Vs. Closure of superconformal transformations requires
0e,06, — 06,06, =20, + 26, (1.19)
for §,®q, ..a,, defined as in (1.9) with
oB =P (61 & — e & ) (1.20)
and ¢, an infinitesimal R-symmetry transformation so that

67"@0(1...0125 =TI LI(I)oq...ozzs . (121)

The R-symmetry transformations define a group Gr and then in (1.21) L; belong to a
representation of the generators of G acting on V. For the commutator of R-symmetry

transformations
Ory Oy — Opy Opy = 0y r'r=rurek caxkr < [Li, Ly] = crykx L . (1.22)
Along with [6,,d,] = 0 we also require
[6c,0,] =0e,, &¥=—ripr = [p1,ps] =ik Pk, (1.23)

and
[6e,0,] = der (1.24)
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for
¢F =L1(00,5 + N)e? — 70,7, (1.25)

so that
P =—w, +IXe® —in,a*”, Mo =wa Ty — 3 A0 — i€ by . (1.26)
For v*¥ in (1.20) to be a G singlet we must have

(pr)" = —pr, (1.27)

so that from (1.23)
E_ra =TIpr ga. (128)

As a consequence of (1.27) the R-symmetry group Gg C SO(N). We also assume

CIIK = C[IJK] - (1.29)

Conformal and R-symmetry transformations are easily extended to Wq ;.. 0., 8S
defined in (1.18), by taking

1~ 1\ 13
51)\1104,041...0423 = (QV Baoz/@ - (A + 5) /\)\Ija,ou..-oézs (1 30)
25 e, > @ 0o W '
+ Sw(al Qg...ag5)a + Wa Bya1...005 9

and
57"‘1:!047061---0125 = TI(pI =+ LI)\Ijoz,al...ozzs . (131)

The required superconformal transformations have the form

0: ¥ a1 a0 = € 108aPay..an, + 2(A = 8) Ta Pay..as, + 450, Pasy..az0)a
+2pmMa L1®a,...as,
+a & 10030, Pay..az)a)
+ p1€° L1 i(b0sa®Pay...az, +2¢0(5(0r Pars...an.)a) T AO(aras Pars...n ) Br)
+ JoBor.azs € 4 Fay. s, Eag € - (1.32)

This is in accord with (1.19) for [d¢,, e, |Pa, .. .as., Where the last three lines in (1.32) do
not contribute so long as (1.27) holds and also

Jaﬁ,al...ags == Jﬁa,al.,.ags == _(Ja,@,ozl...ags)Tv Fal,..ags = (Fal.,.ags)T7 (133)

as N x N matrices, so that Jog o, ..as. € (RN X RN A x Vo, Fa,..an. € RN xRN)g x Vs
Assuming (1.21) then (1.19) requires

rr = 6%pr N2a — €27 p1 NMa = €1°P1 N20 — €27 01 Na (1.34)
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where the terms linear in « vanish owing to (1.27).

The coefficients a, b, ¢, d in (1.32) are determined, from (1.24), by imposing, using (1.9)
and (1.30), [0¢, 0] ¥ a,01...00. — 9 VYo ay...as. = 0, with € given by (1.25). All terms cancel
except those those arising from aa/gj\ = —2ba.g, (%Igd)ﬂy‘s = bya (535 + by 500 — bas 575. For
these contributions to be compatible with (1.24) we require

2s

T (1.35)

and b, ¢, d must satisfy

(A—s)b+c=1, sb+Ac+d=0, (2s—1)c+(A+s—2)d=0. (1.36)

This gives
A+s—1 s
btec= d=-— : L.
T ATy YT TBI DG (1.37)
With these results then from (1.32) we may obtain
1 5 s .
0eVi1.1= At ((A+ s)et + szlLI) 1011 P11
1 A A
A+38)E® +pre’ L) (A +s—1)i0y1 @11 — 51011 P

+ (A—1)(A+s) (( +8)€" + pre I)(( + s ) 1021 P11 — 59011 1.,.12)

+2((A+ )+ prm L) 1.1, (1.38)
and

e (‘1’2,1...1 — ‘1’1,1...12)
= ——((A—1—s)e' + pre' L) (i012P1..1 — i011P1..12)

+2(A_1)(2_1_8)((A—1—s)22+p122L,)

X ((2A = 3)i020P1..1 — 2(A + s — 2) 1021 P1. 12 + (25 — 1) 1011 P1...122)
+2((A=1=9s)n2 +prm2Ly) @10 —2((A =1 —s)m + prmLy) ®1.12. (1.39)

For s = 0 then (1.32) simplifies to

Ly g
0Wa = 1 (AE + me"LQ i03a® +2(Ata + pralis)® (1.40)
€

+Ja5g’6+F6ag B

Superconformal transformations as in (1.18) or (1.32) are generated by the supersym-
metry charges (), and their superpartners S<,

5é®0¢1...a23 = [eaQOé + ﬁas’a: ®Ot1...0423j| bl QO( == (QO()T7 Sa = (ga)T * (1'41)
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By virtue of (1.19) and (1.10) we have
{Qa,Qs} =2Pup1, {82, 8°} = —2K“°1, (1.42)
where I is the identity on RV, and
{Qa, S} =2(M, + 6., H) 1 —2p;R; 5.° . (1.43)
In (1.43) Ry is the R-symmetry generator so that in (1.21)
0r@a iz, = 1R Porn ][R Panan,] = =Li®ay s, s (1.44)

so that R; obeys the same Lie algebra as Ly in (1.22).
Using (1.24) with (1.26) we get

[ 7’7@04}_56@7 157562@» [H’QG}Z%QM
P Q] = N (1.45)
[M,° ,sa]: —5“55 5008, [H,58% =-48%,
[Pys,5%] = —6,°Qs — 05°Qy,  [Pys,8] =0.
Furthermore for the R-symmetry charges defined by (1.44), (1.22) leads to
[Rr, Qo) = —p1Qa [Rr, 5% = —p15°. (1.46)

Imposing the Jacobi identities requires that the antisymmetric matrices p; satisfy the
completeness condition

(P1)rs (P1)uv = Oru 050 — Opv Osu - (1.47)
This ensures that we must identify G ~ SO(N).
As operators the hermitian conjugation in (1.14) extends to
Q) =Qa, (891 =-5,  R/ff=-Ry, (1.48)

where the conjugation includes a RY matrix transpose and we assume with (1.27) that ps
is real. Corresponding to (1.15) we have

(Qu)T =5 (59" =Qa. (1.49)

2. Shortened Superconformal Representations

For a superconformal primary ®,,. .,. € Vs, which transforms as in (1.18) and
corresponding to a representation Rg for the R-symmetry group SO(N), then, for general
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A, ¥4 a4..a,. can be decomposed into fields which transform according to all the irreducible
representations R; which appear in the tensor product decomposition

Ry @Re ~ @R, (2.1)

where R denotes the basic NV dimensional representation, with generators p;, defined on
RV In addition Wo.aq...a0, can also be decomposed into fields with spin s & % As is well
known for particular A there are truncated representations in which some representations
are absent. The critical condition is

(A€+p[€L1)@¢U\IrCRN®Vq>, EERN,(I)GV¢, (2.2)

where Uy ~ ®;cpV; for a particular set of the representation spaces V; associated with the
representations R; labelled by ¢ € U. If C'g, is the quadratic Casimir for the representation
Ri, defined so that for ® € Vg, L; L1 P = —Cr, P, this then requires

A=X=1(Cr,—Cr, —(N=1)) forall ieU, (2.3)

since, from (1.47), prpr = —(N — 1) 1. As a consequence of (1.40) for 5.V, this is directly
applicable to the case of a spinless superconformal primary ®. Subject to the absence of
contributions to ¥, belonging to U, there is a short superconformal representation in this
case. In (1.40) J,3 and F' are also constrained by the requirement ¥, ¢ Uy, so that we
may decompose

(RNXRN>AXV@2VJ@UJ, Jag €V . (2.4)
Applying the same analysis to (1.39) then if
A=1+4+s+A\, (2.5)

there are corresponding semi-short representations where W, ,. «,, lacks contributions

1

belonging to Uy with spin s — 3,

5(10[1\1’04,041...0425 ¢ Z/{\Il . (26)

In general in both (2.3) and (2.5) unitarity requires A > 0.

As an illustration for N' = 3 and Gg = SO(3) then as usual representations are
labelled by r = 0, %, 1,.... The basic three dimensional representation R3 corresponds to
r = 1 and, with Re the representation labelled by r, Cr, = r(r + 1). In this case in the
tensor product (2.1) r; = r + 1,r. Requiring the r + 1 representation is absent then it is

easy to see that in (2.3) and (2.5) A = r. For N = 6, Gg = SO(6) then the irreducible
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representations may be labelled by Dynkin indices [r1,r2,r3] and the Casimir operator is
then

C[Tlﬂ"z,m} = 7“1(’[“1 +3) +T3(’I“3 +3) — 1—11(7“1 —7“3)2 -|-’I“2(T1 -|—’I“2 +’I“3 +4) . (27)

The basic six dimensional representation Rg has Dynkin indices [0, 1, 0], of course from
(2.7) Cio1,00 = 5. Assumed Rg has Dynkin labels [rq,72,73] the decomposition (2.1)

becomes now

[0,1,0] ® [r1,72,73] = [r1,ro+1,73] & [r1+1,r0—1,r3+1] & [r1+1, 72, r3—1]

(2.8)
EB [7’1—1,T2,T3+1] EB [Tl—l,T2+1,T3—1] EB [7’1,7‘2—1,7“3] .

Requiring that the omitted representation R; in the superconformal transformation d:® is
that labelled by [r1, 7241, 73] then, according to (2.3), A = £ (r1 + 2ra + 73).

For a short representation with a superconformal scalar primary ¢ € V,,, with scale
dimension A, constrained by (2.3), superconformal transformations, as in (1.18) with
® — ¢, are expressible in terms of ¢, € Vy =~ @;qpV;, and Vo = Yol , where

v, = 'Dw %4 > \T]a = &aﬁw > (29)

for Dy : Vy — V, x RV and 1/_173 = (Dy)T. Hence (1.18) becomes
- Y ¥ P P

— =

5@ Y = € D¢¢a = —@Da 'Dw ga . (2.10)

Then (1.40) shows that the associated superconformal transformations for 1, can be writ-

ten as
¢ ho = Dpilapp € + 20, Dy 9 Mo + DyJas €’ + DpFeape”, (2.11)

for D, such that D, : V, x RN — Vy, where

1
DyD,p = <H+A—p1L[>g0, (2.12)
1)

and also Dy : V; x RV — Vy, Dr : VF X RN — V., where the supersymmetry algebra
requires
DyDy = —(DyDy)" = pr My, DyDr = (DyDr)" . (2.13)

Since coker Dy, ~ Uy, coker D; ~ Uy, are non empty there are Q,,, Q such that
QuDy =0, Q;D;=0. (2.14)
The existence of Q,, Q lead to non trivial constraints in superconformal Ward identities.
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3. Ward Identities for Three Point Functions

For simplicity we first analyse the superconformal constraints for the three point func-
tion involving three scalar superconformal primary fields 1, @2, @3, with scale dimensions
A1, As, Az belonging to short supermultiplets. Conformal invariance determines a unique
form for the three point function in this case

(1(z1) pa(w2) p3(x3)) = Caynnn, (@1, 72, 23) C (3.1)

where C' € (Vy, X Vo, X Vi, )sym. and we define

1
CAlAzAg (561,332,%3) = (m122)%(A1+A2_A3) (x232)%(A3+A2—A1) (ac312)%(A3+A1—A2) . (3.2)
Superconformal Ward identities are obtained by requiring
Oe(Wra(@r) @s(s) pe(ae)) = 0. (3.3)
To determine (0:;q () @s(zs) @t(x¢)) in (3.3) as determined by (2.11) we may use
0 Lo 2i A S S e’ 3.4
mﬂmﬁ (xr)_ ¢ mna—— ersaﬂf (Is), ()
to obtain
Or o5 Cayngng (X1, 2, m3) €7 (1) — 20 Ay, Caynga, (21, 2, 73)
1 - 1 -
= — ((Ar + AS — At)gj 5 Xrsaf E/B(ZIZ']) + (AT + At — As)p Xrt af E/B(;L't))
rs Tt
X CA1A2A3(IE1,IE2,333) . (3.5)

By virtue of (2.11) and (2.10) other contributions to the superconformal identities are

determined in terms of

<Jraﬂ<xr) 905(375> Qot(xt)> — in[st]aB CAlAgAg (.5131, Z2, .’173) Kr,st ) (36)
and 1
<¢ro¢ (xr) ¢sﬁ(xs> Sot(xt)> =1 F XTSaﬂ CAlAQAg (1'17 €2, 1'3) Prs . (37)
In (3.6)
1 . 1 1
Xr[st]aﬁ = Xr[st]ﬁa = m (erXstXtr)ozﬁ = ﬁ Xrsaf — ﬁ Xrtaf (38)



where

Vv xstQ
Xost] Xpfts] = 202 L. (3.9)

From the definitions (3.6) and (3.7) we must require
Kr,st = _Kr,ts ) P = PsrT . (310)

The superconformal identities arising from (3.3) are then

A(ar))

ap

1
A, DWC< erageﬁ(ms)—l—
x

t2 XT’tO{B
((As At)D 7.C_DJ.KT' st)X [st]aﬁgﬁ( )
1 1 A
+ Pmup 27 Xroap €(ws) + Pri Dy, — Xrta5 €7 () = 0. (3.11)

’I”

From this we may extract

2A, D, C = — Pry Dy, — Py Dy, , (3.12a)
(Ay = A)D,.C =Dy Ky — 2(PrsDy, — Pt Dy,) - (3.12b)

Using (3.12a) with (3.10) we may obtain
S, A Dy, Dy, C =3 A, (Dy, Dy, C) (3.13)

or using (2.12),
> Lr1C=0, (3.14)

which just implies that C' is a SO(N) invariant. Combining (3.12a) and (3.12b) to give
(A — Ay — A,) Dy, D, C =Dy, Dy Ky st + Dy Py Dy, , (3.15)

from we may also eliminate P,
1 1

(AS_At_Ar)<_LrI+

A Lt 5 L) O = Mg Koo+ MoK (316)

This gives three independent equations but one linear combination just gives (3.14) again.

If A, =1 the current J,,g is may be conserved,

%P Jyep = 0. (3.17)
For r = 1 then .
4 (gt ) =0 1

and hence from (3.6) and (3.2) 51°‘B<J1ag(:1:1) wa(x2) 903(x3)> = (0 for Ay = 1 and also so
long as Ay = Ag.
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4. Further Superconformal Identities for Three Point Functions

We here discuss the form for the superconformal Ward identity for a three point
function involving two scalar superconformal primary fields 1,2, with scale dimen-
sions A, As belonging to short supermultiplets, and a superconformal primary with

spin s, @, . .a,..- For notational convenience here we write, in terms of (3.8), Xo5 =
X1[23]a8s Zap = X3[12]a
Instead of (3.1) conformal invariance now requires

{p1(x1) P2(22) Pay s, (23)) = C8In, Avrren (€1, 22, 73) Copripaa (4.1)

where we define, for s =0,1,2,...,

(s) _ 1 2N L(A—A—As—s
CA1A2 A,aq...o (xl’xQ’x?’) - (37132)A1 (33232)A2 (Z )2( ' ? )Z(a1a2 s Zazs—loéQs)

. Z(alaz Cct Za2sfla28) (4 2)
= (m122)%(A1+A2—A+3) (x232)%(A+A2—A1—s) (x312)%(A+A1—A2—s) . .

The conformal functions of x1, z2, x3 given by (4.2) satisfy the identities

CXI)AQ Aar...ans (xl’ L2, 1'3) = (_1)8 CXQ)A1 A,aq...a0g ($27 Z1, .CCg) ) (43)
and
) _ 2 (s—1)
CA1A2 A,ao&l...a2571<m17$23 CL’S) = 13 Za(ochl_H Ao A,a2ma2571)(£€1,x2,1‘3) ,
+1
(28 + 1> C(AslAi A+1,aﬂa1...a25 (1’1,1’2,1’3) (44)
= Zag CXBAQ Ao ... o0 (x17 X2, .1’3) + 2s Za(alcgl)AQ A,ag...azs)ﬁ(xl’ x9, :Ij'3) ,
with also
(S) - (S+1)
Zaﬁ CAlAQ A,a1...Q95 (xla o, 333) — CA:[AQ A+1,aBa;...ass (xl, o, x3)
2s (5—1)
+ 2s +1 Ca(ar€plaz CA1A2 A—i—l,ag.,.azs)(xlax%x?)) .

(4.5)

In particular cases the conformal functions (4.2) satisfy identities. For instance using

1
Orap Lys = 2 e X13 (7 X13 8]6) » (4.6)
we may find
812C(%8)A2 Acrcs (5131, To, .%3) (4 7)
= (A — AQ — % — S)(A — AQ + % + s) C(%S)Az N (;L'l,:L‘Q,ZL’g) .
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The relevant superconformal Ward identities are derived by requiring

e (P1a(1) P2(22) Pa, ..an, (23)) = 0. (4.8)

To determine (0¢t14(21) Y2(22) Pay .. .as. (3)), With de1)1, given by (2.11), we may use (3.4)
and (4.6) to obtain

alo&ﬁ Cgl)Ag A,al...ags (xl? x27 xg) 25(1‘1) - 27’ Al T’Oé CXEAQ A,al...ags (:E]_, x27 x?’)

1 R 1 A
= - ((A1 + Az — A+ 5)— X120 eP(x2) + (A1 + Ay — A+ $)—5 X130 EB(%))
19 x13

(s)
X CAlAQ A,al...ags (.Tl, 'TQ? .TB)

o (s—1)
—+ 2s —w132 X13 Oc(Oc1X13B|o¢2 eﬂ(xl) CAl—I—l Ao A,ag...ags)(xh T2, .I‘3) . (49)

The other contributions to this superconformal identity are determined in terms of

(J1ap(@1) P2(22) Pay .00, (23))

_ (s)
- ZXO(B CAlAQ A,y ...z (.CC]_, x27 xg) KJlSa?(P (4.10)
1 (s—1)
+1 $132 X13 OC(OleEKI(ﬂOé2 CAlJrl Ao A,Otg.‘.()lgs)(xl’ x2, xS) LJ1g02<I> ;

and, using (2.10) for dz¢2,

(10(21) Yap(22) Pay...a0. (T3))
1 s
=2 N1%ap C) An s sy (@15 02, 03) Py (4.11)
1 o1

+ L $132 Xlga(O‘lX23ﬁ|a2 A1‘|‘1 Az A,ag...ags)('xl’ $27 '/E3) letzzq) °

We also require, using (1.18),

<w1a (xl) ©2 (2172) \T]B,al Qg (113'3)>
1

=1 33132 Xl?’aﬁ CXEAz Ajaq...aos (.’171, T2, 333) Pw1902‘i’ (412)
: (s) _
+ L5 :L,132 X13a(oz1 CAlAg A,CYQ...OLQS) ﬁ<x17 .TfQ, mg) le@Q\I/ :
If we define
P1/11<P2¢’+ = PwMPQ‘i’ + Q¢1<P2‘I’ ’ P’l/J1902‘1’— = 2s Pwﬂpz‘i’ - Q¢1<P2‘if ) (413)

then Py, ,, g4 correspond to U having spin s + %
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Combining the different contributions the superconformal identity (4.8) then becomes

1 N 1 N
{A1 D¢1C¢1¢2<1>( X12a5 €7 (22) + —5 X130 Eﬁ(%))
12° T13
((AQ —A+ 3) D@lc’s@lm‘b - DJlKJ1<P2<P) Xap 25(;51)} C&?Ag A,aq...azs (xl’ L2, :133)
1 o 1
(QSDLPlCSOlGDQq:' +DJ1LJ14P2<I>) 3 Xlga(a1X13ﬁ|ageﬁ(l’1)Cgl-f—iAzAOé3 Q2 )(xl’xQ’xS)
1 ~ 3
+ Pwl 2‘1>D¢2 XlQaﬁ € (:C2) CAlAQ A,O{l Qg (x17 x27 xS)
1 s—1
+ Q¢1¢2®Dw2 X13a(a1X235|a ( )C(Al-f-i AQ A ,(3...Q25 )(w17 ZEQ, f[fg)

_ 28 (s)
+ Py, @ 12 X134 € (23) CA1A2 A,a...ans (21,72, 23)

_ = (s)
+ Q¢1<P2‘I’ T1F X13 (|8 € ( )CA1A2A az.. a2s)a($1,$27l‘3)

—0. (4.14)
From this we may extract
H
201Dy, Cpr 30 = — Py 5,0 Dy — Py 5
— (4.15)
0= Q1/117172‘I>D1/’2 + Qi/’l%%‘j ’
and also -
(A — A1 — Ay — S) D<P1C<P1<,02<I> = — 'DJIKJMDQ@ + Pw“z?@'Dwz , (4 16)

25 D¢10@1¢211) - - DleJ1<p2q> + levf;ybﬁwz *

The result (4.16) provides a constraint on three point functions in that if the repre-

sentation Re € Ry, @ Ry, but Re € Ry, ® Rey, Ry, ® Ry, then Cy, »,e # 0 is possible
only if
A:A1+A2, s=20. (417)

When A; =1 we may impose the additional condition (3.17) for » = 1. Using

51 ( Cl Ao A,aq ... (.’L‘l,IQ,I‘g)) = Q(AQ — A) C?()SKQ Aar...aos (131,12,.733) y

5,0 1 s—1
0P <x132 X13 (a1 X13 8|y Cé AQ)A . n )(a:l,:cg,:pg)) (4.18)

= (Ag — A+ 5+ 1)CA A aran, (T1.22,23) |
n (4.10), (3.17) requires
2(A—A2> KJ1¢2¢+(A—A2 —S—l) LJ1<P2¢. =0. (419)
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Combining (4.19) with (4.15), (4.16) gives

200 = A+ s+ 1)(A = A2 = 5) Dy, Cipy 50

(4.20)
= — 2(A - AZ) P¢1<p2\i/ - (A — Ay —s— 1) Q¢1<P2‘i’ :

Further relations for the three point function in (4.1) obtained from considering the
superconformal transformations of ®,, . q,,, starting from the identity

Se(p1(21) pa(2) Vo a,...an, (23)) = 0. (4.21)

To evaluate (p1(21) p2(22) 6e¥a a;...as. (€3)) We use, from (1.32) and (1.27),

0e¥a1...az. = €7 1050 Pa .0z, T 2(A = 8) 7l Pay .4z, 45701 Pay...an)a
— 200 p1LiPq,...a,
+ a €% i0,5(0, Pay...an.)a]
— &7 p1L1i(b0saPay..az. +260(p(ar Paz.az)a) T A0(aras Pas...az)8a)
+ &7 Jup.on..cn. — €€ Fay...cun, - (4.22)

With the aid of

1 1

83 aB Z,y(; = QR(Q(,YZg)ﬁ) , Rozﬁ = Q X233 + — 132 X13a8 (423)

the action of the derivatives on the three point function (4.1) is given by, for a given by

(1.35),

83ﬁacggl)A2 A,ay...a05 (:El’ Z2; $3) ta 83 ﬁ(a1cg)A2 Ajas...azs)al <x17 L2, l’g)
- _(Al _AQ)Z CXBAQAOL]_ ags(xl’x27x3)

+ (A o 8> Raﬁ CXI)AQ A7041-“&23 <x17 :1;27 :I;S) + 28 R,@(alcgl)Az A,ag...a%)a('xl’ $27 mg) )

(4.24)
and also, with b, ¢, d satisfying (1.37),
ba3ﬁacgl)A2 A,or...azs (xl’ L2, CL‘3) +2c 83(»3(041CX1)A2 A,as...azs)@) (QU1, x2, $3)
+d63(0510¢2 Cg)AgAal Qg )ﬁa(x17x27$3)
1 S
_ (A1 - AQ) A—s—1 Zﬁa C(Al)Az A aq...a0q (xly €2, $3) (4.25)

25+ 1 (s+1)

+ (Al - AQ) (A — 5 — 1)(A + S) AlAQ A,ﬂaal...azs (xl,xQ,ng)

+R6acA Ao Acy.org, (L1, T2, T3) -
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Defining

. . 1 . 1
eﬁ(:vg)Rga —2iM0 = —5 Eﬁ(afg)Xzﬁa +— eﬁ(xl)xlgga =eq4, (4.26)
T23 T13
we then find
(p1(21) pa(22) 0eWa .00, (3))
1

= —i(A1 — Ag) €B(9€3)<H BN PIL<I>,I)C<p1<p2<I> Z56CR) Ay Ao cun, (T1: T2, T3)

2s +1

(A1 = Ao) (A—s—1)(A+s)

éﬂ(xii) ,01L<I>,I C<p1<p2<I>

(s11)
X CA1A2 A+1,Baag...as (.161, x2, $3)

+iea((A —s)1— pIchJ)C'LPqu) C(ASBAQ Avay...cvms (1,22, 23)
_|_ Z 28 C@l‘PQ‘P e(al C(Asl)Ag A,Ozg...ags) O((x]" x27 333)

+ &% (x3)(p1(z1) P2(72) Jag . ...n. (73)) — € (23)e g0 (1(21) P2(T2) Fuycn, (73)) -

(4.27)
In (4.27) conformal invariance requires
- a(s+1
<§01('T1> ¥2 (xQ) Jaﬁ7a1-»~0¢2s (1L'3)> =1 C(ASIA; A+1,aBa1...az (113‘1, L2, Z‘g) C¢1<P2J+

- (1)
+ 8a(a1€ﬂ|a2 CAlAQ A+1,a3...0z23)<x1’ L2, .'173) 0901992‘]—

(p1(x1) p2(72) Fu, .0, (23)) = iCXI)AQ AtLon. o, (@1,72,23) Cy o F - (4.28)

The superconformal identity arising from (4.21) also requires, assuming (2.10), con-

tributions from (15(x1) v2(22) Ya,ay...as. (T3)), which is given by (4.12), and also

(p1(71) Y25(72) Y01 ..ap, (73)), Which has a corresponding definition in terms of P, ¢
and @, 4,5 Since

1

2B
— €7(x1) X1380 » 4.29
.T132 ( 1) 138 ( )

I
5 €B($2)X235a -

% (x3) Zga =
T23

and with the definition (4.26) the superconformal identity implies, with notation as in
(4.13),
2((A + )1 - pIL‘I’J)C<P1<P2‘I’ = —Dy, Pwupz‘iH— - D¢2P<p11/)2‘ff+ ] (4.30)

and, for s > 0,
4s (A= s—=1)1—prLe1)Cop 00 = =Dy, Py, v - — Dy Py i (4.31)

together with

1
20901902J+ = 2(A1 - AQ) (H A T s pIL<I>J>Cs01302<I> + ID’¢11P1/J1<,02‘11+ - D¢2P<P1¢2\Tf—|—

(4.32)
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and

1
2(28 —+ 1) CiPUPzJ— =4s (Al - Ag) (H — m ,0[[/@,[> C<P1<P2¢'

+ D¢1Pw1s02‘if— - D%Pm't/)z@— .

(4.33)

Together (4.30) and (4.31) give

- Q(A - 1)(D¢1 P?liltpz‘ff + D¢2P9011/12‘Tf) - (A -8~ 2) (,le QT/’ISDQ‘I’ + D¢2Q9011/)2‘Tf)

1
fry —m(?(S + 1)(A — S — 1)(’D¢1P¢1L‘02@+ + D¢2P¢1,¢)2@+)
+(A+s) (D%Pwupz‘i— + D¢2P¢1¢2‘If—)>
=4((A+s)(A—=s5s—1)I1—(A—=1)prLa1)Cpypsa - (4.34)

Assuming both A; = Ay = 1 and using (4.20) together with the corresponding equation
for D,,Cy, p,e then leads to

(A + S)(A -8 1)(D¢1D¢1 + D¢2D¢2)C@1¢2©

(4.35)
=2((A+s)(A=5—1)I1—(A—=1)prLa,1)Copppa -
(2.12) then implies
(A+8)(A—=s—=1)(L1,r+ Lo1)Coipe = —2(A = 1) Lo 1 Cp, pra (4.36)
or, since (L1,7 + Lo, 1 + La,1)Copypya = 0,
(A4+s—1)(A—=5—2)La,1Cppa =0. (4.37)

Unless Lo 1 Cyp o0 = 0 and @ is a singlet this implies that A = s+2or A =1, 5 =0,

assuming unitarity constraints on A.

5. Ward Identities for Four Point Functions

There are also corresponding superconformal Ward identities for higher point func-
tions. Here we consider the application of such identities to a four point function
(p1(x1) p2(x2) p3(x3) wa(x4)) for superconformal primary fields ¢, belonging to short su-
permultiplets such that (2.10) and (2.11) give the associated superconformal transforma-
tions.
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The superconformal transformations de(11a(21) p2(22) p3(x3) pa(za)) = 0 lead to a
basic Ward identity for the four point function of the form

10108 Dy (p1(1) p2(w2) @3(23) Pa(wa)) €7 (1)
+ 241 Dy, {p1(21) P2(2) 03(23) Pa(24)) Na
= — Dy, (J1ap(1) p2(x2) p3(x3) pa(w4)) €7 (21)
- - . (5.1)
+ (Y10 (21) Y2(22) 03(23) @a(x4)) Dy, €° (2)
+ (Y1a(1) 2(x2) Y3p(x3) pa(Ta)) %1/13 € (w3)
(

+ (ra(21) 02(22) @3(23) Yag(z4) ) Dy, €% (4) .

By virtue of conformal invariance

(p1(21) p2(22) pa(w3) pa(ra)) = Cayasns0, (21, 22,23, 24) F(u,v), (5.2)
where u, v are conformal invariants

2 .2 2. 2
_ T12” X34 _ T23" T4

2 2 2 2

—_— —_ Trs = Ty — Tg - (5.3)
T13" To4 T13" To4

The choice for Ca,a,A;A,, depending on r.2, in (5.2) is arbitrary so long as it has the

required conformal weight at each x,., for convenience we assume here

(x232)E—A3 (x242)E—A4
CA1A2A3A4 (.1:]_,.132,.133,.134) = (.T/'122)A1 ($342)E 5 (54)

with
E=1A1+A3+A—Ay), (5.5)
Using (3.4) and noting that

~q 1 o 1 . a 2
€ (903) = E (X32X21) Jé] 5($1) + E (X31X12) ,866(952)7 (5~6)

ap

with a similar result for 3 — x4, then, taking €(x;) and €(z2) as linearly independent,
(5.1) reduces to

Carnonsa, (71,72, 23, 24) 10108 Dy, F(u, v)
= — 019 Dy, (J1ap(21) 02(22) @3(3) Pa(24))
+ (10 (@1) @2(22) V3y (3) 9a(24)) Dy, (Ra2x21)7 5
+ (ra(21) 92(2) 93(23) Yaqy (24) ) Dy, (Ranxa1) 75,

(5.7)
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and

—CAy 05050, (71, T2, 3, T4) 2A1 X120 Doy F'(u,v)
= 215 (Y1a(21) Y25(22) 3(23) pa(24)) Dy,
+ (Yra(@1) @2(2) O (23) @a(24)) Dy, (Ra1x12)7 5
+ (¥1.0(21) 92(22) @3(23) Yaqy (24) ) Dy, (Rarx12)75.

(5.8)

To analyse (5.7) and (5.8) we use conformal invariance to write

<¢m($r) &sﬂ(xs) Spt(xt) SOU(IU»
1

1 . . -
(w 5 Xrsaf R, (U, ’U) + G Z(Xrtxtuxus)aﬁ Srs (ua U)) )
(
(

= CAyArnsA, (T1, T2, 3, X4
rs Lt Ty

)
r<s, (r,s,t,u) =(1,2,3,4),(1,3,4,2),(1,4,3,2),(2,3,4,1),(2,4,1,3),(3,4,1,2) ,
r>s, (r,s,t,u) =(2,1,4,3),(3,1,2,4),(4,1,2,3),(3,2,1,4),(4,2,3,1),(4,3,2,1), (5.9)

and

<J7"a/6’(xr) 0s(s) pi(w) ‘Pu(xu»
- CA1A2A3A4 (5517 xT2,x3, 1'4) (in[st]aﬁ Ir(ua U) + Z.X*r[tu]aﬁ JT(’U,, U)) 3 (510)
(r,s,t,u) = (1,2,3,4),(2,3,4,1), (3,4,1,2), (4,1,2,3) .

With the prescription in (5.9)
R.s = Ry, Srs = S’ . (5.11)
In (5.9) the choices given for r, s, t,u are sufficient by virtue of the identity
Xrt Xeu Xus + Xru Kut Xts = T Xps - (5.12)
Similarly (5.10) is sufficient given

Xr[st] = _Xr[ts] ’ X’r[st] + Xr[tu] + Xr[us] =0. (513)

The superconformal identity (5.1) reduces to two 2 x 2 equations. First from (5.8)

—2Aq1 DmF(u, ’U) = (IRlz(u, ’U) + XSlg(U, ’U)) 5¢2
+ (T Ry3(u,0) 4 (T —X) "' Sy3(u,v)) Dy, (5.14)
+ (T Ry4(u,0) 4 (I = X) S14(u,v)) Dy, ,
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for
1 5 5 1

X = —5 5 X13X34X42X21 = | — —5—— X13X32X24%41 - (5.15)
L13" T24 L13" T24

Secondly from (5.7)

0 0
(X1[23] ua— + X1[43] ’Ua > D¢1F(u 'U) — DJl (X1[23] Il(u, U) + X1[34} Jl (u, ’U))
<X1[32] ng(u, v) + X1[42] Slg(u, U)) <§¢3

«—

+ (X2 Ria(u, v) + Xqz S14(u, v)) Dy, -
(5.16)
or using Xy[34 Xy ' = X (I = X)7, XyugXypg ' = —-1-X)!

Q(U% —XI-X)"! v%) Dy, F(u,v) = — Dy, (I1(u,v) + XTI = X) 7" Jy (u,v))
- (ng(u,v) + (I - X)_l S13 (u,v ) (1_)¢3 (5 17)

«—

— (01— X)"" Rya(u, v) + S14(u,v)) Dy, .

If X is diagonalised, with eigenvalues x, Z, so that from (5.3) and (5.15)?

u=detX =z, v=det(I-X)=(1—-2)(1—2a), (5.18)
- 1,0 1,0 2 519
x 0 l—x Ov Ox
Defining
Tio(z,Z) = Ria(u,v) + x S12(u,v),
Ti3(z,%) = Riz(u,v) + (1 — ) 1 S13(u,v), (5.20)

T14(z,z) = Ris(u,v) + (1 — ) S14(u,v) .

(5.14) becomes
—2A, Dy, F = Tis Dy, + Ti3 Dy, + Tia Dy, - (5.21)

Using (5.19) with

_ 1 1
Kq(z,2) = Eh(u,v)—i— T J1(u,v), (5.22)
2 By using a conformal transformation we may take
x1— (¥ 0 x2 — 0, x3—00, x4—1
1 0o 7)) X2 ;X3 . :

. z 0 0 1;@ 0
In this case X — (0 $> whereas X[32) — 1 and Xip3 — 0 1 :

O 8=
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(5.16) becomes

0 1, =
-2 aleF =Dy K+ ETlg Dy, +

1

———— T D, 5.23
20 —z) 114 P (5.23)
For both (5.21) and (5.23) there are associated conjugate equations obtained by z « Z.

The identities (5.21) and (5.23) may be extended by using, from (5.4),

A, B-A
CAyApAsA, (X1, 22,23, 24) = U "0 22 Caynsagn, (T2, T3, 4, 21)

= (v/u)E_A2_A3 CA3A4A1A3 ($3,$4,$1,CE2) (524)

= U 0% Caun, 800, (T4, 71, 72, 23) -
Following the same derivation as before (5.21) generalises to
—
=20, Dy, F' =3, Trs Dy, (5.25)

where in addition to (5.20) for r < s

ng(x,j) = Rgg(u,’v) + (1 - l‘) Sgg(u, U) 5
Tos(2,Z) = Rog(u,v) + 2+ Soy(u,v), (5.26)
T34(x, .T) = R34(u, U) +x 534(u, v),

and, using (5.11),
T, =T . (5.27)

Furthermore in addition to (5.23) we have

0 Ay — A1 As+A3—X% 1 — 1 —
21 — D,,F =Dy, Ky — T3 Dy, — — T4 D
(83: + T * 1—x 72 P2 g —g) BT T g TR e
0 As+A3—3% 1 — 1 —
2\ —+—+——— |D,. F=Dj, K3+ —151 D —— T3, D
(830 + z(1—x) ) w8 Jfts + g T * z(1—x) 2 e
0 NAg+A4—% 1 — 1,
2| —m+—— | D, ,F =Dy, K4 — Ty1 Dy, — — Ty D
(6:1: + - ) P4 Jad8a (1 —2) a1 Pyy = — L4z Py,
(5.28)
for ) )
Kol ) = Iy(wv) + (o),
. (5.29)

1 1
Kr(.ilf,i'):mIr(u,U)—}—E,}T(U,U), r=24.

By considering ), Dy, Dy, F' and using (5.25) with (2.12) then it is easy to see that
we must have

r, I =Y, .
Lo F=0 5.30
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as a consistency condition, in a similar fashion to the three point case.

Applying the conservation condition (3.17) for » = 1 and using

~ 1 2x95 ~ 1 2297 1
0 —Xipgap | = — 555 0 —5 Xipsla (1-3)
! (:mz 1(23] 5) (x19%)? 212 ! (:1:1 1[43] 5) (212)2 218 v

(5.31)
gives in this case
0 1 0 0 1 0 1 1 1
2@[1 — E<1 —’U,—U)a—fl —Qa—Jl + — (1—U—U)%J1 — EII + E(l — ;)Jl =0.
(5.32)
Equivalently from (5.22), and with K;(x,z) = K1(Z,x),
0 Kl 0 K1 . 1 Kl Kl
) () == (T - (5:33)

6. N = 3 Superconformal Algebra

For N' = 3 we may use the isomorphism SO(3) ~ SU(2)/Zs to write the six super-
charges as Quij = Qajis 1, j = 1,2 and for their superconformal partners S*¥ = §®J%. In
this case we define

Qaij = Eikgjl Qakl 5 Saij = &ikEjl Sakl . (6.1)

The commutation relations (1.42) are equivalent to the algebra

{Qaij, Qi } = (gireji+ ciejr)Pas

{84, Sﬂkl} = — (el + " 5jk)K“5. (62)
and (1.43) becomes
{Qaij, S} = 2686 ) (M. + 6, H) — 26, R(F6,) (6.3)
with R/, R;* = 0, the SU(2) R-symmetry generators
(R, Ry,'] = 6/ R;' — 6l Ry . (6.4)

The supercharges form the three dimensional vector representation so that (1.46) in this

case becomes

[Ri?, Qart] = 0 Qait + 7 Qari — 6/ Qawt,  [Ri?, 8] = =659 — 5158 4 5] GokL.
(6.5)
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In terms of the usual SU(2) or SO(3) generators

. Rs R,
J| =
[RZ } (R _RS) ) (66)
and (Rij)]L = Rji = —SikSﬂRkl.

In a quantum field theory context we require unitary representations in which H
has a positive real spectrum but the operators are unitary with respect to a modified
scalar product than that implicit in (1.14). Such representations can be constructed by
using as a representation space the Verma module for which a basis is given by the action
of the generators (P,g)"# (Mg')"™ (R_)"% (Quqij)™" with a definite ordering and for
ni1, 12, N2, nar, e = 0,1,2,..., mqi; = 0,1, 7 < j, on a highest weight state |A, s, 7)pw
satisfying

HIA, s, ") hw = A|A, 8, M) hw
R3|A, s, m)nw = 7|A, S, 7)hw MMA, 8,70 = 5|A, 5,7 b (6.7)
SN, 8, ) pw = Ry |A, 8, hw = M2|A, 5,7y =0,
1

) 9
S1(2,R)spin With generators M.,”. The condition involving S% implies also that |A, s, 71w

where unitarity requires r,s = 0, =, 1,..., s labels the finite dimensional representations of
is annihilated by K®?. In general states satisfying K“”|¢)) = 0 are conformal primary.
The states formed by the action of R_, Ms! on |A, s, 7)1, form the superconformal primary
states and have dimension (2s+ 1)(2r + 1), the supercharges Q,i; acting on this generate
26(2s +1)(2r + 1) conformal primary states.

Except in special cases when |A, s, r)py satisfies additional constraints, unitarity re-
quires also A > 1+s+r. Truncated representations are formed when some (),;; annihilate
the highest weight state. For the case of interest here we require

Qa11|A, 8,7 w =0, (6.8)
where the anti-commutator (6.3) then requires
A=r, s=0. (6.9)

In this case there remain four supercharges (Q,12,Qq22 generating the Verma module.
Denoting representations of SU(2)r x SI(2, R)gpin by 75 the action of the supercharges on
the highest weight state generate representations formed from conformal primary states
according to,

2 J— — 3 —
Q rr @ mo,(r—1o(r—2)o @ (r

11
(r—1) (r—2); 2 (6:10)
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where there are both 16r — 8 boson and fermion states. When r = % if we use the
Racah-Speiser algorithm so that in a decomposition in terms of SU(2)r representations
(—r) ~ —(r — 1) then (6.10) becomes

2 3 4
%Oi%%&¢&_%%&_%o. (6.11)
For r = 1 with a similar use of the Racah-Speiser algorithm
2 3 4
1o % 13,05 % 10,00 % ¢ % — 0y (6.12)

In (6.11) and (6.12) ¢ denotes that there are no contributing representations, the negative
contributions reflect that is necessary to impose derivative constraints on the antecedent
representations. Hence (6.11) describes the fundamental hypermultiplet which is formed

by conformal primary states |¢;), [)a;), which have A = 1, 1, such that

Qaijler) = 3 (gin [Vaj) + €jk |ai)) | Qaij|Vsr) = —€ikPaplej) — €jxPasplei), (6.13)

where we require also
PPPslp) =0,  P*ljg) =0, (6.14)

which ensure the absence of the negatively contributing representations in (6.11). For
the supermultiplet with » = 1 described by (6.12) there is a SU(2)g singlet vector state
|Jas) = |J8a), With A = 2, satisfying the condition

PPl J.5) = 0. (6.15)

(6.14) are just the dynamical equations for free hypermultiplet fields while (6.15) corre-

sponds to a conserved current.

7. Superconformal field transformations for N/ = 3

We here consider the Ward identities for N' = 3 superconformal symmetry involv-

ing superconformal primary fields belonging to the truncated supermultiplet described by

1
5 .

which are expressible in terms of homogeneous functions of SU(2) spinors t*, i = 1,2, of

(6.10). The superconformal primary fields for » = 5n are symmetric rank n SU(2) tensors

degree n according to
Pirin () = P (@, 8) = iy (@)t oM (@ M) = A (2 t) . (7.1)

For superconformal transformations then, following (6.10) and ensuring homogeneity in ¢
is preserved,

oo (1) = €9 £,0,00M (1) + e it x D (1), (7.2)
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where we define
tNZ‘ = &4y tj y 5Z = eij(‘)j s (73)

and the Killing spinor in (1.16) is now
e (x) = eV 4 iqgl 2P (7.4)

The corresponding transformations for the spinor fields v, x, generated by the action of
the supercharges, are then from (6.10)

Sep) () = &H (atdy i0app"™ (1) + Lity Jé%_z)(t)) + na o .0 o™ (t)
+ €ap Pkl ((n — 1) fkalf(”)(t) + (TL — 2) fkflf(n_2)(t)) ,
Sex A (1) = — M (a 10, iaaﬂ%‘?(n)(t) + 40, J;Z_2)(t)) — na o 00 ™ (t)
+ €ap gh (6k61f(")(t) + (n + 2) Zkalf(”_2) (t) + gkflf(n_4)(t)) .

(7.5)

The coefficients in (7.5) are determined by requiring closure of the algebra which determines

A= %n In general we have

(0ey6e, — 0e,0,) ™ (1) = UPIR fog i i () + VIR gis ja(8) + WM hyj i (t),  (7.6)
where B -
[rabigkl _ él(oc ij é2ﬁ) kKl éQ(a ij élﬁ) kL _ proB.kl.ij ,
W = e bl e
With the identity
2 tN[j 6k] =€t O , (7.8)

we have, using the symmetry conditions in (7.7), for the individual contributions to (7.6)

VR ((n — 1) 10, 1,0, + 1T, 0,0;) £ (t)
= VIR (n = 1) ey 30) + 28 E;0000) £ (8) = 0,
VIR ((n = 2)£:0; Ty + (n+ 2) it 10;) f 72 (2)
= Vij’kl(_Q(n — 2) g1 0 + 41ty Z[jal})f(n_z)(t) =0,
UCPIR (1,0, 100y — Ty 0k01) Dape™ (1)
_ B (65 Ti0h + €31, 13 70 ) C%gso(") (t) = _%n2 gesiikl e 8a5¢(ﬂ)(t) ;
[ eP-is.kl (tNiaj tut; — thEJ Ekal) Jti%_z) (t) =0,
WRN(E,0; 1,0, — it 3k5l)90(n)(t) = —n Wk 0, 0™ (t) . (7.9)
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Choosing a = —2/n? we have

(e20e, — 0, 0, )" (,8) = v (1) i0app™ (2, 1) — 2w () (H0; — n67) o™ (2, 1)
v = (e Vel M — Ve My w = mgagn — 8 g
(7.10)
This result is in accord with (6.2) and (6.3), where the action of P,g, M,?, H, K is just

as in (1.11) with A = Zn, and
[Rij, go(”)(ac,t)} = —Lijgo(") (z,t), (7.11)
for

LM (t) = (=70, + §né) )™ (1), LIL; "™ (t) = gn(n+2)™(t).  (7.12)

These results for N/ = 3 superconformal transformations can be expressed in the
general form described in section 2 by taking ¢ — (™ (z,t) and the fermion fields 1), are
then given by a column vector formed by the two SU(2) representation appearing in (7.2),

(n)

wolet) = (00 ) ) = vl 719

with also corresponding results the vector and scalar fields J,3 and F,

_— (@, t)
Joy 7 (,t), F(z,t)=| fO"2(z,t) | . (7.14)
Fr=A(z,t)

The superconformal transformation (7.2) is then in the form (2.10) if

Dyijta(,t) = (t0) titj) va(z,1), (7.15)

and (7.5) may also be expressed as in (2.11) with the definitions

n 2 [ t,;0; .
Dy ijp'™ (3,1) = = <_(6-jaj) o).
> (7.16)
DJ,ij‘](i%_Z)(mut) = ( bt )J(%_Q)(m,t),
—t9))
and
L _((n—1) 7j~(z’aj) (n—2)t; Ej 0



Using (7.16) and (7.15) we get

Dy.i; DS o™ (t) = (5(z'k5j)l + % 5(z'(ij)l)>s0(n)(t) ) D =emenD, o, (7.18)
as required by (2.12). Also, with D = ekmelnD; 0
Dy,ii DA T2 () = 5 F My I =D (@), MLT"D (1) = —n it T (1), (7.19)
in accord with (2.13). The conditions (2.14) satisfied by taking
Qf = (3(n—2)9" (n+1)t"), Q7 =t (7.20)

where QJiDJ,ij J(n_Q) (t) = 0.

8. Ward Identities for N’ = 3

The preceding results can be used to obtain Ward identities for A/ = 3 superconformal
symmetry in three and four point functions where ¢,.(z,) — cp(”r)(xr, tr), A, = %nr. For
the two point function then SU(2) invariance dictates

1

(o™ (@1, 1) o™ (22, t2)) = ((t1t22) )5 | 1)

T2
letting tity = —toty = ti'te;. The three point function corresponding to (4.1), with o)

belonging to the %n SU(2) representation and A; o = %nl,g, becomes

(" (w1, t1) 92 (w2, 12) BYY ,, (m3,t3))

— C1p0CY) ty, to,t (82)
12,0 CAL Ay Avay.oorgs (X172, 23) Frynan (1, 2, 3)
with frn,nons (1,2, t3) homogeneous of degree n, in ¢,.. SU(2) invariance requires
Framans (b1, b, t3) = (t172) 2072779 (130) 3 (2 s =) (157 ) 3 (nabra =n2) (8.3)
Ing —nal <nz <ny+ny. .
This satisfies
1 n n n
Franang (1, ta, tg) = (—1)2(mtnetns) g (2,81, 83) = Frgnina (ts,t1,2) (8.4)

in accord with standard results for SU(2) 3j-symbols, and

L1 frinans (b1, ta, t3) = 2n1 to ite? fry ny—ans (b1, ta, ts) — 01 ts5t57 fryng ng—2(t1, ta, t3)

1
+ 2(n2 — n3) t1 it fry—2nans (t1, t2, 3) - (8.5)
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For four point functions, as in (5.2), then the scalar F(u,v,ty,ts,t3,t4) now becomes
a homogeneous function of degree ni,ns,ng, ny in tq,to, t3, t4 in addition to depending on
u,v. Using (7.15) and (7.16), (5.21) becomes

2 ([ {101 > . <
- F=) T,
ni (—311' 81;’ Z '

r=2

ar(itrj) )

[ , 8.6
;7 (8.6)
where T3, are 2 X 2 matrices since 1, as in (6.14) has two components. Also from (5.23)

4 fl(lalj) 0 t~li Elj
— —F = - K
n12 (—811' 81j Ox _tl(ialj) '

— ~ — -
1 Ds(ils; 1 Daita;
+_TB<}(M>+ TM(4QM)_

z tsits; z(1 —x) ta; ta;

(8.7)

Since t1to taty + taty tats + tats tity = 0, there is one invariant which is homogeneous
of degree zero in all four t,.,

tsty tot tots tit
oo Bt btstits (8.5)
tgtl t3t4 t2t1 t3t4
Defining
Frvnangna (b1, ta, ta, ta) = (t1f2)™ (tafz)™2 ™ (tata)™ ™ (t31a)°, (8.9)
for
6:%(n1+n3+n4_n2>:071a27"'7 (810)

we may then write

F(u,v,t1,t2,t3,t4) = frynonsny (t1, t2,t3,t4) F(2, 2, @) ,

(8.11)
Kl(x7j7t17t27t37t4) — fn1—2n2 ns n4(t17t27t37t4) ]C(ZL‘,f‘,Oé) )

where, assuming e < ng, nyg, F(z,Z, ) is a polynomial in « of degree min(e, nq), K(x, Z, )
similarly has degree min(e—1,n,—2). Similarly, 713,774 may also be expressed as

T13 — ( fn1n2n3n4(t17t27t37t4) A?) fnln2n3—2n4(t17t27t37t4)83 )
fn1—2n2 ns n4(t17t27t37t4> CS fn1—2n2 n3—2n4(t17t27t37t4) D3 ’

Toy = fryng nsna (b1, to, t3,t4) Ay fring nsna—2(t1,ta, ts, ts) By
fri—2nonsng (t1,t2,t3,t4) Ca fry—2ngnsna—2(t1,t2,t3,84) Dy )’

(8.12)

with As, A4 polynomials of degree min(e,ny), Bs, By of degree min(e—1,n;), C3,Cy of
degree min(e—1,n,—2) and D3, D, of degree min(e—2,n;—2).
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The various 4, 7 components in (8.7) give three independent equations which may be
obtained by contracting with the basis formed by toto/, t1lit5) and tiity. Using
L tats

t1~83a:—ﬁa(1—a), tg-ﬁgoz:—ﬁ(l—a),
t 53 2 t3£4 (8.13)
t1'84(1/:1—~204(1—04), t2'84(l/:—3—~2 y
t4t2 t3t4
then (8.7) reduces to
4 0 1 1
n—ﬁ%f—lc+5y3+my4a
32}“:1(——n¢4+ay)—;(ln4¢44+(1—a)y4) (8.14)
ny Ox x 27373 (1= 1) \2 ’ ’
0= g(—71;),.43,4—04323) +1_—a(n4A4+(1—a)y4)
T z(1—x) ’
and
4 0 1 1
— —F'"=K'+=-Z34+ ——— Z4,
ny? Ox +£B 3+a:(1—3:) *
—i—;(— %n3€3+a23) — m (%TL4C4—|—(1—O&)Z4),
i(n—I)EF—Q(—TLC+0zZ)+1_—a(nC+(1—a}Z) (8.15)
g M oz T 7 3C3 3 +(1—2) 4Cy 4), .
with primes denoting differentiation with respect to o and where
Vs=eds+(1—a)As +Bs, Vy=—-eAs+aAf+By, (8.16)
Z3=(€—1)Cg—|-(1—04)63/—|—1)3, Z4:—(6—1)C4+OéC4/+D4. .
Furthermore by contracting (8.6) with t5'to/, which eliminates T», we get
2 2
—f/:y3+y4, —F =234 2. (8.17)
ni ny

The remaining four equations obtained by contracting (8.6) with t(’t5)), t;'t)/ should serve
to determine the four components in T,. It is easy to see that by combining (8.17) with
(8.14) and (8.15) that we must have

Vi =23, Vi=2,. (8.18)
In addition to (8.14), (8.15) and (8.17) there are corresponding equations for x — Z.

In the extremal case, e = 0, then 7/ = 0 and in (8.14) and (8.15) only A3, A4, as well
as F, are non zero. In consequence %.7—" = 0 and with the corresponding equation when

x — & JF is just a constant which is given in terms of the three point functions given in
(8.2) by
f = Cnlnz na—ni Cn3n4 na—+ng (819)
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9. N = 6 Superconformal Algebra

For N' = 6, with R-symmetry SO(6) ~ SU(4)/Z2, the superconformal algebra can
be written in a very similar form to the N' = 3 case given in section 4 except that the 12
supercharges and their conformal partners are now

Quij = —Qaji, S =-5%  ij=123.4. (9.1)
Replacing (1.42) we now have
{Qaij» Qpr} = €ijit Pag {51 GPRY = _glikl ol (9.2)
and, instead of (6.3), reflecting the antisymmetry in (9.1),
{Qaij) S’gkl} = 24/%5)! (Maﬁ + 50/8H) — 44, R[Z-[kéj]l] . (9.3)

The other commutation relations are unchanged in form except that, with R;/ now gener-
ators for SU(4) satisfying (6.4),

[Ri?, Qari] = 61 Qait + 67 Qani — 267 Qo »

[Rij’sakl] _ _gkgeil _ slgaki 4 %6Zj5akl, (9.4)

and, instead of (6.1),

Qo = 5™ Qart, 5% = g i 5. (9.5)

The construction of unitary positive energy representations is similar to the N' = 3
case although the highest weight states are now labelled !A,s, [7“1,T2,T3]>hw where we
require Rij|A, s, [7’1,7*2,7*3]>hw =0 for j > i and

HzlAa S, [?"1,?"2,7’3]>hw = Ti‘A, S, [rlv r2, T3]> (96)

hw’

with H; a basis for the SU(4) Cartan generators so that r; are integers and [r1,ry, r3] are
then the Dynkin labels for the corresponding SU(4) representation. Here

Ri' = 1(3H, +2H, + H3), Ry* = 1(—Hy +2H> + Hj),

; 1 L (9.7)
R3* = — Y(Hy +2H, — Hs), R4'=—1(Hi+2H>+3H;).

Acting on }A, s, [r1,72, r3]>hw R;7 for j < i generates superconformal primary states form-
ing a basis for the associated SU(4) representation space of dimension d(rq,792,73) =
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S(r1+1)(ro+ 1)(rs +1)(r1 + r2 + 2)(r2 + r3 + 2)(r1 + 72 4+ r3 + 3). The 12 supercharges
Quij then generate conformal primary states with dimension 2'%(2s + 1)d(r1, ra2,73).

When the highest weight state is annihilated by one or more supercharges truncated
representations are obtained. For s = 0, so that Ma5|A,O, [rl,rg,r3]>hw = 0, here we
consider

Qa12|A,0,[r1,72,m3]), =0 = (H—Ri' — R?)|A,0,[r1,72,73])

) , e = 0 (9.8)
Qa13|A,0,[r1,72,73]), =0 = (H—Ri' —Rs’)|A,0,[r1,re,73])

hw O

where the constraints arise from (9.3). Together the two BPS conditions in (9.8) require
A:%(T‘l—f—rg), 7‘2:0. (99)

We may also impose in addition the further conditions Qa14|A,O, [rl,rg,r3]>hw =0 or
Qagg)’A, 0,[ry,rs, 7‘3]>hw = 0 which imply respectively r3 = 0 or r; = 0. Labelling confor-
mal primary multiplets by [ri,r2,73]s the action of the remaining supercharges on super-
conformal primary states satisfying (9.8) give

Q [(I+1507r71}l7[q7170571+1]l
[Q7 07T]0 B 2 2
[q_lalar_l]

1
2
Q2 [q,oﬂ”]1,0,[q7177"*2]1,07[(1*2»1:7"]1,07[Q*1:0,7’*1]1
—
[¢+2,0,7—2]0,[q—2,0,74+2]0,[¢—2,2,7—2]0

3
< (9.10)

[q,0,7] SU(4) representations may be defined in terms of the representation space
formed by symmetric traceless (g,r) tensors, 77! 7" = pU--dn) pdrdeot i
1.--2q

(i1..5g) 7 “ireig_1i

lently we may consider scalar homogeneous functions 7% (¢, %), of degree (q,r), of con-

= 0. Equiva-

travariant and covariant 4-vectors t* and ¢, satisfying ¢'; = 0, so that
T@I (Nt wt) = N T@) (¢, 1) . (9.11)

Acting on T(%7)(¢,f) derivatives d;, 0" are defined to give homogeneous functions of degree
(g—1,7),(qg,r—1). A precise definition, taking into account the constraint t'¢; = 0, is given
in appendix C. Applied to T(47)(t,1) = Ti];l.:‘.‘ii”“ th Lt ty, L T, with Tijll".‘_‘ii’" symmetric
and traceless, 0;, 0" are defined just as expected without considering the condition t*t; = 0
but in general, without the traceless condition on Tijll.'.'.'ii ", there are additional contributions
which are proportional to ¢;,t* respectively. Using the definition given in appendix C then,
for arbitrary homogeneous functions 7" (t,t), derivatives have the properties

[0:,0;]T @ (1,0) = [0, T@) (1,1) = [8F, ] T (t,8) = 0,

DT O (¢, 1) =0, T (1) = qT P (t, 1), GITE(t,1) =r T (L,1).
(9.12)
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General SU(4) representations with Dynkin labels [g, p, r| are also be expressible in a
similar fashion in terms of homogeneous functions which are covariant symmetric tensors

of rank p,
(a+p,r) (q+p,r)
T ) =T (1), (9.13)
subject to the conditions®
i (Q+P 7“) i (q+p, "”) _
t TZ 21 .. (t E) a CZ—'Z’Ll (t E) 0 (9']‘4)

Of course [q, p, r| representations may be equivalently defined in terms of symmetric con-
travariant tensors T'(¢7TP)i1-p (t,t) satisfying the analogous conditions to (9.14). Forp =1

the connection between the contravariant and covariant expressions is given by
(q+2) T@r TVt §) = R E T ITLT) (1) (9.15)

It is easy to see that this satisfies £;T(@"+Vi(¢, 1) = 9;T(@"+1i(¢,#) = 0 and also, subject
to the conditions (9.14), &, t? OFT @+t F) = (r + 2)TLTL7) (L, 1).

For application to the truncated supermultiplets given in (9.10) we therefore consider
superconformal primary fields

go(q’r)(:v, t,t), A= %(q +7), (9.16)
and, at the first level, fermion fields
XD @), T @8, O T @), A=gg 1), (9.17)
satisfying, from (9.14) for p =1,
£V (@4, 1) = 9V (1, 7) = 0, (9.18)

as required for the representation with Dynkin labels [¢—1,1,r—1]. Equivalently we may
take, as related by (9.15), ¥ (g.r= 1)(15 t) — 1/—}((;;—1,7«)2(75,{) satisfying the corresponding con-

Oé %
ditions to (9.18). Superconformal transformations on ¢(@7) then take the form

0\ (1, 8) = €V Lo TV (1) + € 10T (8, )

(9.19)
AT (OB

3 The dimension formula follows from
d(g,p,7) = 5(p+1)(p+2)(p+3)d(g +p,0,7)
— gp(p+ 1 (p+2) (d(g+p+1,0,7) +d(g+p, 0,7~ 1))
+5e—Dpp+1)d(g+p+1,0,r—1),
where the second and third terms correspond to the constraint conditions and the last term

removes overcounting.
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The corresponding superconformal transformations of the fermion fields involving (@)
are then

XTI (4,8) = a €1 t70" 10500 ) (8, 8) + alq + 1) Mo w 70" 07 (¢,1)
6)‘4&‘1_1”“)(@ t)="> ePRLE, O i@gago(q’r)(t, t)+b(qg+ ) T 11,0, go(q’r)(t, t),
51#5?,;_1)(15,5) = cefi (g6 —79;)0' iaﬁa@(q’rj(t7f)
+elqg+ ) naw (q0f —170;)0" o7 (4,1)

(9.20)

where the form of (57,11&(17";”_1) is dictated by the requirement that it satisfy (9.18). In (9.19)
and (9.20)

xe) 1 ~akl — Kkl 1 _klij
€ij = 5 Eijhl € Mo =57 Naij - (9.21)

In (9.20) a, b, c are coefficients which are determined by requiring consistency with the
superconformal algebra. If we consider the commutator of two transformations then from
(9.19) and (9.20)

(5251 — (5152)(,0(q’r) (t, i) = Ua&lijé ((CL — C) 5183 tkgl + btkél 518]
+ ((] + 1)0 5jk I?@él ) Z'(?ﬁa(p(qm) (t, a
+ ((] + T’) Wijkl((a — C) fzaj tkél + (C] —|— 1)0(5jk fzél ) gp(q,r) (t, f)
+ (g4 ) Wi b0 £,0; o7 (1), (9.22)

where we have used the definitions (7.7) with
UPd = Loy, UOPmn iy = Lo WKL W00 = Loy WEL (9.23)
These satisfy the critical identities
U =10/ U, (9.24)
which depends on the symmetry relation for U*%%™" in (7.7), and
Wil = Leimng, Wy = Wiy — 450 W™+ 030 W™, (9.25)

With the aid of (9.25) and taking
c=a+b, (9.26)

we may use

(05, 1 0") = =o' 130" + 61 tHoy (9.27)
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to obtain

(8201 — 6182) 07 (t,8) = — U ((ge + a) ;0% + bt°9;) 10540 77 (,7)
— (g +7) W ((ge + a) £;0" + bt"9;) o) (¢, )
—4(q+ )b Wy t* 97 1,0, 07 (8, 7)
+ Lg+rp W b 10,097 (8, 7)

(9.28)

Since
A9 1,05 ) (1,8) = —q 1,08 ) (1, 1) — (r+2) tF 0307 (8,1) — g 6F () (¢, 1), (9.29)
and using (9.24) we may obtain the final result

(8201 — 6162) 7 (8, %)
= — i((q + Dra+q(r+ l)b) (Uaﬁ’,lz; i@gago(q’r) (t, 1) + (g +r) Wk, (o) (t, f)) (9.30)

— (g4 ) Wiy ((q +1a (£0% — 1réf) — (r+ 1)b (t70; — 1q 5[?)) @ (4,7) .

For (9.30) to be compatible with closure of the superconformal algebra we require
(¢ +1)a = (r 4+ 1)b. Assuming

_ 4 N (9.31)
R R T N (S [P '

then (9.30) takes the form

(6261 — 0102) 07 (,8) = v°7 i00p ") (¢, 8) + 4w;’ (L + 2(q+7)67) 07 (2,7)
v = e ER — ey &, wit = e g a ik — €8T nan (9.32)
for

Lo (t,8) = —(K0; — ;00 — L(qg — 1) 67) (¢, 7). (9.33)
This is in accord with (9.2) and (9.3) but now

(R, @7 (@, 1,8)] = —Li? (") (a,1,7). (9.34)

The transformation of the fermion fields also include at the next level contributions
from vector fields J,3 = Jgo which in accordance with the representations required in
(9.10) are expressible in terms of the following homogeneous functions of ¢, t,

L @D, JETen, VETIwD, VD, A=ig+r+2),
(9.35)
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satisfying

tiVOE%ﬁLTfQ) (t, a _ 5ivogzﬁ1,r72)(t’ E) _ tivoggjil,r) (t, t_) _ givogg;_l,r)“, E) —0. (9.36)
Forg=r=1 VOE%T;MQ), VOE%;.LT) are absent. The additional terms in the superconformal

transformations involving the vector fields in (9.35) then have the form

Ot (4, 1) = a&fy th 8 T (,1) + o’ P M T, VTP (1, )
5/2((;1—1,1«—&—1)@’ t) = belRLE, Jéqaﬂ’)(t’ f) + L Véiﬁl’”(t» £,
ST (8 8) = ey (g6 — 49;)8" T8 (¢,1)
+ &0 ((r+ 1) 8t + £5670N) Y (¢, 8)

+ PR (g4 1)(r + D) BV (0,0 + g0, VI (1,8)

+ (r+ 1) 50, VAT (8, 1))
— &Rkt v (4 7). (9.37)

Ba,j

The detailed form in the expression for ¢’ wgf’f_l) is determined by compatibility with

(9.18). For the commutator calculated using (9.37) there are contributions involving the
vector fields in (9.35),

(6287 — 51’52)90(q’r) (t,t) = Uaﬁ’i;]z' ((a —¢) t;0; t*0' +bt*o' t;0;
+ (q —+ 1)cc5jk t_lgl ) Jgé;r) (t, t_)

+(r+ Ut T (D) (9.38)
+ U (001 — 1,470 VT (D)

+ (' + (g +2)(r + 1)) UPTH L0,V = (1,1

in the last line using the symmetry in (7.7). The superconformal algebra requires that this
is zero. Using (9.24) this is easily achieved by taking

a=q(r+1), b=—(¢+Lr, c=q—r, a=—(g+2)(r+1). (9.39)

These results for N' = 6 superconformal symmetry transformations starting from a
superconformal primary ¢(¢7) can be recast in terms of the general formalism of section
three by writing the fermion fields in (9.17) as a vector

X((Xq+1,7'—1) (x, t, ‘E)
Yol t,0) = | xS V@) |, (9.40)
S, t,8)
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and for the vector fields in (9.35)

TG0 (2,1, 7)
TG (a4, )

Ja $7t7t = ab 941
et VAR (@, 1) 40
Vogg—;blyr_m ('Ta ta E)
With the notation in (9.40) and (9.41) then for (2.10) and (2.11) we require
Dy,ijtba(t, 1) = (t30;  3€ijul tko! {0 ) Yal(t, 1), (9.42)
and
an,ijgp(qm) (tv E)
4 (T‘ + 1) %Eijkltkgl (943)
=— (¢ +1) ;05 o7 (t,1),
+D(r+1)(g+r _
and also
Dyijlap(t,?)
q(r + 1) %&jkltkgl 0
(g—r) %Eijkl (q S — tkﬁm)gl %ajkl ((?“ +1) 0,k + fmtkgl)
. 0 —(g+2)(r + 1) 0
Lo 0 Jap(t, D).
(9.44)
With these definitions and
'Z_)kal — %gklmnp%mn’ f)]kl — %EklmnDJ,mn : (945)
using (9.33),
_ 4
kL, (q,r (s ksl kr .
as required by (2.12), and furthermore
Dy.ii D Jus(t, 1) = 26 F My Tus(t, 1), (9.47)
where
Mt =L(r+1)( = (g+1)(qt;0" +rt'd; — irqs}) —t;t
=3+ )( - @+ D(eh ;- 4rad)) 14 0.8

5t (q+ 1)1 51,0, ).
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10. Ward Identities for N =6

The basic two point function for the superconformal primary fields is now

(t1-12)? (t2 - 11)"

(qﬂ") . (T7q) f. =
<90 (x1,t1,t1) @ ($2,t2,t2)> (ac122)%(‘1+’“)

(10.1)

The three point function in general is of the form

<S0(Q1,T1) (1517 t1, t_l) (p(Q2,T2) (.T27 to, 52) S0(f13,7‘3) (.133, ts, [3)>
C (10.2)
(x122)%(ql+(n—r3) ($232)%(Q2+Q3—7“1) (x132)%(ql+qa,—7"2) ’

where this is non zero only if
g1 +q@+qg=r1+r2+r3, (10.3)
and then in general

C = (t1 . 52)111 (tg . t_l)%—Ts (tg . 53)7“3 (t3 ,52)7”2—111 (tg . 75_1)7’1-1—7“3—!126()\)
. tg'fl t ~53 tg'l?g
Sty latalyty oty

(10.4)
with C(A) of the form
C\) = > en A (10.5)
0,r3—q2,q1—r2<n<q1,73,71+73 G2

The sum over n reflects the multiplicity Ny, 0, of representations with Dynkin labels
[q,0,7] that may appear in the tensor product [¢1,0,71] ® [ge, 0, r3]. For a non zero result
in (10.5) it is necessary that ¢1 +q¢2 —73,q1 +q3 —1r2,q2+q3 —71 > 0 and, with ¢—r = ¢1 +
q2—171—T3, we have then N[q,O,T] =min(q1,q92,q,71,72, 7, q1+q2—q, 7+q1 —7r2, 7+q2—71)+ 1.

For simplicity we consider here the three point function (10.2) for the case ¢y = =1

when
cty-faty -t (ta-13)2 7 (3 82) 7", @=r2—1,m3=q—1,
ctota T c12)2 (fa - £o)T2 L
¢= C—ilé ti2~t§3 ttgl(bff (tig')f3§§§_f§23 1), q3=T2, T3 =02, (106)
cty-taty -ty (ta - 13)92(t3 - 12)"2, @3=r2+1,13=0+1,
and ¢ + q3 = 72 + r3. We focus then on the superconformal identities obtained by
considering
5<’/’7(rl/0) pl42:72) S0(!13»7"3)> =0, (10.7)
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which leads to, by combining (3.12a,b) with the result (9.16) for A,

_ . — ..
(1 + g2 — Tg)'DU C = D}i,m K1’23 — f)127,m'D:pj2 . (108)

®Y1,m

In this case from (9.43) and (10.6)

DY C = =208 —t'01,,)0,71 C

®1,m

—4e Oyl to By g t1F (8o - £3) 27 Mt )2, gz =ra—1,r3=¢q2— 1,
—de oyl ?Sﬂ.fQ_,k] t1* (to - t3) ™ (ts - 52)Tf_1 (10.9)
= — 4G taT B gy 11 (o - £3) 2 (5 - £2)"2
+ (c+ ) 6l 117 (Lo - T3) 22 (t5 - £2)"2 q3="T2,73=(q2,
[ —4c 5[m{i t57] ba ) 01" (b2 - 13)92 (83 - £2)"2 gg3=ro+1,r3=q+1.

With the restriction to ¢ = r1 = 1 only Jé%’o) contributes so that in (10.8)
Kios=rk(ta-t3)P(t3-12)”, gz =r2,73=102, (10.10)
and from (9.44)
DY

Ji,m

K13 = 260,00 t17) (ty - 13)%2 (L3 - 12)"™ . (10.11)
Finally writing

Pig = (0 LDy (L0 gttt lasra)

<w%,0),&(q2—1,r2)n¢(q3,r3)>) ’ (10.12)
then
Pry m%&j = %é‘ijklfz k021 <¢E’O)X(Q2+17T2_1)g0(q;>>,7“3)>
- 1410,7) (g (10 a2 = Lr2 D) (as,8)y | g Ji 4 (10) (a2 =Lr2)s] (g rs)y
(10.13)
Requiring ¢5™ P2 ,,, = 0, the non zero contributions in (10.12) arise for
<w$70)x(q2+1,7’2_1)()0(7'27(]2)) = %emnk‘l t]_nt2kt3l (tz . Eg)qz (tg X 52)7»2_1 7 (10.14)

<¢7(71a0)>2(‘h*1,T2+1)S0(7”27QZ)> — df2,[mt_3,k] £ (ta - E3)q271(t3 )",

and

(WO pla—branpr=ha-1)) - 7(5[mn by 1" (tg - £3) 2 (ts - £2)™ "

@2—1 , T k T \ga—2 T r—l)
to t t t1" (tg - t3)%2 ta - to) 2 ,
P 2 13 [mt2,k) L1 (t2 - t3) (t3 - t2)

(Pl Ople=tranprae)y = 55 [0 gy 18 48 (1o - T3) 27 (85 - E2)™ 7. (10.15)
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satisfying also t_gm(w&’o)1/_)(‘12_1”2)”90(‘13”3)) = 827,1<¢,(71’0)@Z_J(Q2_1”’2)"@(‘13’T3)> = 0. In

(10.13) with the explicit expressions in (10.14)

%Eijklfz,kﬁz,l <w%,0)X(Q2+1,T2—1)90(?"2:Q2)>

= aqy (b2 ts7 o frts g 11 (t2 - 13)2 7 (ts - £2)"2 71 + Ol to?) B34y 01 (o - £3)92 7 (3 - £2)™)
+ a(g2 + 1)(6[m[i t37! fouy t1" (t2 - T3) % (t3 - £2)™ " — %6m[i t17) (tg - £3) %2 (3 - t2)"?),

£ Do w%,O)X(QQ—l,Tﬁl)gp(rzyqz)>

= &gz tal"t37 Lo gl g t1F (ta - T3) 271 (ts - £2)™2 = Opto?) o g 11 (L2 - T3) 27 (83 - 12)™2)
(10.16)

The superconformal identity (10.8) is trivial when r3 = ¢2 + 1 in that both sides are
zero. When r3 = g2 — 1 the identity just gives 8¢ = . For r3 = ¢» we get

- 8qz c 8qs ¢

+ 1o = 4c, + 1)a = —4c, = — , 2k=cC—cC. 10.17
(42 +1) (45 +1) e R (10.17)

To extend the discussion to four point functions we consider the simplest case where
qgr =1 =1, so that A, =1, for each r = 1,2,3,4. The invariant function F' appearing in

(5.2) is conveniently written in the form

F(U7U;t7£): Z frs(uav)tl'Erts'lers(tai),
r,s=2,3,4

Fog =t3-taty-tg, Fy3 =1ty -tyty-ta, Fag =1to-taty-t3, F33 =15 -tsty-1t3, etc..
(10.18)
In a similar fashion to (10.12) Tho(z, Z;t,t), given by (5.20), is expressed as

Tig,m = (U5 O xP0DEID) (0O OB DMLY (g T0H0DIR D ML)

(10.19)
where
<¢7(7i70)>7((072)90(171)90(171)> = Z az rs Z?r,[nlt_s,n]tln AZ,T‘S 5
2<r<s<4 (10.20)
Ag gy =ty -tatz-ta, Agos =1ty 13ty -ta, Aoz =ts-tats 1o,
and

<¢7(7}070)X(2’0)90(1’1)90(171)> = % Z b2,rs €mnkltrktsl tln B2,rs 5
2<r<s<d (10.21)

Bogsa =1ty -tgty-ta, Boos=tg taty-t3, DBoog =1ty -t3ts-ta,
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and

(SOOI DY = 2dy 61,y gt 7oy by - T + 2da O s yts) £ 2 ts - 1

+ 2 5[mnt_2’k} t* tg-tyty - t3+ 2eo 1?3,[mt_4,k] t3[nt4l] tlkt_z,l .
(10.22)
The remaining contribution to the Ward identities arises from K (x,Z;t,¢) which is here
written as
K1 = ]{71t3 -t_gtg '15_4t4't_3 +];‘1t2 't_gtg 't_4t4't_2. (10.23)

For expansion of the Ward identities it is convenient to define the basis

(Drs)i% = 6[m[i£r,n}tsj] tln Frs ) (Ersu)% = tr[itsj] Er,[mt_u,n]tln Ly - t_s y TS U= 27 37 47

Ul = 81,0, t" ts - Eato - Tata -1y, U = 0,107 " to - Taty - Taty T (10.24)

These are not independent since*

Z By + ZDrs Z Dy, — % U) =0. (1025)
r#£s#£u r#£s

In terms of the basis in (10.24) then

@¢1F2—4ZfrsDrs+fU+fU, f="rfas+fautfaz, [ =frz+ faz+ foa, (10.26)

and
Dy K =2k U+2k U. (10.27)

For the fermion contributions arising from (10.20), (10.21) and (10.22)
1_))22 <w7(771,70))_<(0’2)()0(171)90(1’1)>
= a2.23(—D32 + Ea43) + a2.24(—Daz + Ea34) + a2 34(Fa23 — E234) ,
ﬁXQ <1/}7(71’0)X(2’0)SO(Ll)SO(l,l))
= b2,93(2D23 + D4o — Dag + Eo34 — U) + b2 24(2D24 + D3a — Dag + Eou3 — U)
+ by,34(— D23 + Doy — D3y + Dus + D33 — Dag — Esaz + Eazo + 2(U = U)),
Doy, (610G (11 (11
= —cg Doy — da(D32 + F243) — d2(Daz + E234) — e2(E324 + Fy23) . (10.28)

4 Define X% = ¢, t,5tJt.", for r,s,u = 2,3,4 and €234 = 1, and Xijk = Ersutrits jtuk-
Then 0 = 108,67 X ") Xy, = 6,0, X*P Xy — 607, XIH X _n]kl + 3X"*X,,nx where
Xi]ikxmnktln_: 42*#3# TS“)W ml XX, ittt = =23 (Drr)id, —l-QZr;és (Drs)i and
5m[15nj] X klp Xklp = G(U + U)
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The sum of the three contributions in (10.28) then corresponds to le%wz for Tyo as in
= —
(10.19). The results for T13 Dy, and 114Dy, are obtained by cyclic permutation of 2,3,4.

These results may then be applied to the two four point Ward identity equations (5.21)
and (5.23). For each Ty,, r = 2, 3,4, there are 10 independent coefficients and each Ward
identity has 17 terms given by the basis (10.24). To handle the constraint (10.25) in each
identity it is natural to introduce an associated Lagrange multiplier. The identity (5.23)
then can be taken as determining 772 with 6 additional relations involving the coefficients
in 713 and T14. The 17 additional equations, depending on a Lagrange multiplier, arising
from (5.23) for T3 and 174 form in fact a linearly dependent set and so there is a necessary
constraint on the f,.; for a solution. To write this in a succinct form it is convenient to

define

a= %(f22 + 5(fas + fao + faz + foa — faa — fa3))
b= %(fss + 5(faa + fas + foz + fao — foa — fa2)), (10.29)
c= l(f44 + %(f42 + foa + faa + faz — fo3 — fsz)) )

u

and then we must require

x%(ma)+%b+(l—x)%((l—x)c) =0. (10.30)
Of course there is also the conjugate equation obtained for z — . The Ward identities
further give
1
2u
but ky + k9 is undetermined.

(ky — k) = a%(m— (1-z)c) (10.31)
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Appendix A. Superconformal Group in Three Dimensions

The three dimensional conformal generators F,g, M,P H, K can be assembled as

a 4 x 4 matrix

ME = (Maﬁ + o Pogr

’ ’ ’ 3 A:,/,B:,/, Al
et s ) (). B=(5.8). (A

which satisfies

0 g™ 0 0ol
JBECMP Tpa = MAP, JAP = <_5 g % ) , Jap = (_%a/ 0 ) . (A2)

The commutation relations (1.13) are equivalent to
(M, MP] =6 MAP — 54° MP — Jac TPEMEP — TPP M AP Tgc, (A.3)

which is just the Lie algebra for Sp(4).
Defining
0= ( %) 0P = (s Qu) -, (A4
then (1.42) and (1.43) are equivalent to
{Q4,98} =2MAPT1—204" p/R; . (A.5)
Furthermore (1.45) becomes

[(Ma”,Qc] =6c” Qa — Jac TP Qp . (A.6)

With R; a generator for SO(N) the full three dimensional superconformal algebra becomes

OSp(N|4).

Appendix B. Action of Derivatives

Here we specify more precisely derivatives with respect to d-vectors t* and t; which
are compatible with the condition t'¢; = 0. For the case of interest in the text d = 4. For
a collection of arbitrary vectors a,, ; and @,/ a basis of homogeneous functions is given by

T (1,8) = 1, (a - 0) TL, (@D (B.1)

where

q= ZQO ) r= ann . (B2)
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Acting on this basis derivatives are defined by

0. (T (a1 L@ 0
= Zaszp ap - qp 1 Hm;ﬁp(am t)qm Hn(dn . t—)rn

_ 1 B
i q+r+d—2 qurq ap - (ap- 1) (@g - )" Hm#p(am T [Lnzg@n - 0™

5@‘( Nam )" T, (@ - E)rn>
= Z C_Lqi Tq (C_Lq . t)?”q—l Hm(am - £)dm Hn;éq(an . E)Tn

1 r - T
s S wet (o 0 a0 0T gl 07 ol 07

(B.3)
It is straightforward to verify that these definitions imply (9.12). In (B.3) the second term
in the results for 0; or 0’ is necessary to account for t't; = 0, it is of course absent when
ap - aq = 0. For t;0;) and tl3 71 only the first term in (B.3) contributes which is the result
expected naively.

With the definitions (B.3) we have

[8’“ EJ} T(q,r) (ta i) = - EiajT(q’T) (tv E) s

qg+r+d-—1

. ; 1
T et ) = (6 - ——————
Lid (t,¢) ( qt+r+d—1

(B.4)
QW)T@”@Q.

together with corresponding results for ¢ < £, & < 0. Since t'9;T@")(¢,1) = ¢ T @) (t,1)
and £;0'T(@7) (¢, £) = r T@7)(t,) as a consequence of (B.4),

. +d—1)(g+r+d)
; £#7@r) (1)) = (g T@r) (¢ F

(B.5)
+d-1)(g+r+d)
i (10 (1) = @) (1, 7).
( (t,2) qg+r+d—1 (t¢)
Using (B.4) with (9.12) we have
& k0,00 T @) (1,1) =0, 9 R OyT ¢ (¢, 1) =0, (B.6)

which is used in obtaining (9.20).
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Further results that are relevant in (9.37), when d = 4, are

& (10" 1, ) = (r 4+ 1) (1+ ) QT 1D ),

g+r+1

& (o411 £) = — (14 )t (),

g+r+1
& kU a1 (¢ ) = QU GIT a1 (1,7 |
t7 91T (q MOt 1) = R (H T (8, 8))
(t,
(t,1)

01 oy q+1 r—2) (s f) = 0y (th.(q—‘rl,r—Q)(t t_)) _ t—le](qH,r_g) (1,1). (B.7)
53(ﬁk017%q+1T 2(,1)) = tpdy (P T2 (,0)) — op Ty TP ()
B (t a[le(qul r—2) (t ﬂ) =(r+1) ( + ﬁ) 8[le](q+1"”—2)(t,ﬂ,
O (@O T D 00) = (1= g ) TP 0,0
Generators for SU(d) acting on these homogeneous tensors are given by
LT (1,5 = (0, — 1 - %Z(q )67 TOD(1,5), (B.8)
which reduces to (9.33) for d = 4. The commutation relations are
(L7, Li'] = 6 Li' — 6,'Ly7 (B.9)
and for the Casimir operator
Ly LT (t,F) = (q(q +d—1)+r(r+d—1)— Cll(q - r)2>T(q”")(t, £). (B.10)

For d = 4 this agrees with (2.7) if 7o = 0.

As an illustration of these results we may construct a vector T{9+t17) (¢, 1) satisfying
(9.14) for p =1,

T (8,6) = VT () ¢ EEOVIT (D), VP =-virr s (Ba)

r+d—2
This trivially satisfies *T9+17) (¢, #) = 0 while 0*T{9+17)(¢,#) = 0 follows from (B.4) and
(B.5) for any Vig-q’r)(t,f). For T(¢7)(t,f) given by (B.1) then a natural choice is to take
Vigq’r) (t,1) = ap pa, ;) T (t,t) for any p < q. If V; qr)(t t) = ap ity T@ D (t,t) then
T{a+17)(¢,#) = 0. There is a similar construction for the conjugate vector

Tlar it ) = veni(t 1)t — t 0,V @RI (¢ 1) (B.12)

1
q+d—2
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For d =4 (B.12) and (B.11) are related as in (9.15) if

VD, g) = — 3 MV 1,0). (B.13)

Appendix C. Four Dimensional Superconformal Ward Identities

In many respects the analysis of superconformal Ward identities in three dimensions
is similar to that in four dimensions. Here we outline a simplified discussion of previous
results obtained earlier for A = 2 and N = 4 four dimensional theories.

For N = 2, with SU(2) R-symmetry, there are supercharges Q,; and Q4 and asso-
ciated superconformal Killing spinors €% (z) = €% — i 14:X%, €% (x) = €% 4+ ix%n,!, for
i = 1,2. As in section 6, in (7.1), we introduce auxiliary spinor variables ¢*, and then
the relevant superconformal transformations of a general %—BPS superconformal primary
@™ (t) can be expressed as

0™ (1) = %t YD () + "I (1) F €
0 (1)

1 Ny 0 ~ - .
o (n—1) _ - Y o oA(n) 2 ~ . (n) 7 (n—2) e
S IE) = o i ™ ()% +2 oM (1) 1+ JafD () £

with definitions as in (7.3) and A, = n. Following a similar discussion to that in section 4,
with analogous definitions, the superconformal Ward identies for a four point function for
four 2-BPS fields take the form, from the corresponding equations to (5.21) and (5.23),

F=T2£2¢+T3£3i+T4t~4iu

oty
1 0 (‘19 . 1 . 1 - (C.2)
— — —F = —Kty;+ —Tstg; + ——— Ty ty4;,
ny Oti* Ox 1+x 33+a:(1—x) L
with also an associated equation for %F. By contracting these with ¢5' and t{* respectively

we may easily obtain

3 t1£3 i a . 1 o ~
Gﬁi‘aatam)F—<1_x+1_a)huﬂ7 (C.3)

with « defined as in (8.8). Using also (8.9) we may write

F(U,U,tl,tg,tg,t4) = fn1n2n3n4(t17t27t37t4) f(l‘,f,Oé),

. (CA4)
tita Ty(w, @, t1,t2,t3,ta) = fryngngna (t1, 2, t3,t4) Tu(2, 2, )
where F(z,z,a) = F(Z,z,a). Then (C.3) requires
0 0 _ 1—-oax _
(xa —a%)]:(x,x,a) ~ o0 -a Ty(z,Z,a) . (C.5)
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There is also a corresponding conjugate equation with x <+ . The non trivial content of
(C.5) is the factor 1 — awx on the right hand side, with 74(z, Z, ) also required to contain a
factor 1 — . The solution of the supconformal identities for F(x, Z, ) is straightforward,

since (C.5) and its conjugate imply
Fx,z,1/x) = f(Z), Flx,z,1/z) = f(z), (C.6)

where we impose symmetry under x < Z. This ensures that F(z,Z,«) can be expressed
in terms of the single variable function f up to terms which vanish as either ax = 1 or

ar =1 giving,

F(z,%,a) = xk G l/x)f(xi : xoz — /2 (@) + (ax — 1)(ax — 1) H(x,Z,a), (C.7)

with H(z,Z,a) a polynomial in o with degree reduced by two. If e = 1, since F is then
just linear in o, H = 0.

The discussion for N' = 4 in four dimensions is similar but more intricate. The
supercharges and superconformal spinors are just as in the N' = 2 case but with indices
1 =1,2,3,4. In this case for %—BPS operators whose superconformal primaries belong to
[0, p, 0] representations of the SU(4) R-symmetry group it is natural to introduce auxiliary
six vectors t, which are null, t?* = 0. The superconformal primary field is then expressible in
terms of homogenous functions w(p)(m, t) and A = p. The superconformal transformations
which extend (1.18) to N' = 4 are then

5P (z,1) = — é(x)y -ty P (2,t) + PV (2,0) 7 - tE(w),

1 0 Ny 0
(p—1) — Z5.259 .,D za 5. 2 D)
6P (,t) el 5 Daa (@,1) €%(2) +27 - 50" (2,) Na (C.8)

1 0 .
1 Y-t A, ozdr(pil) t _7’ € .
+<-+%+27 v m)J (z,t) 3 €()

The descendant fields ¢ P~V (z,t), ¥s’ P~Y(z,t) and Joa, P~ P (z,t) in (C.8) satisfy the

constraints

0 (p—1) 7. (p—1) 9
v wa (I,t):(), de (xvt)’y :07
ot 5 ot (C.9)
trJao'”n(p_l) (IL’,t) = O, _Ot Jao'c?"(p_l)(xvt) =Y,

which ensure they belong to the representation spaces for the [0,p — 1,1], [1,p — 1,0] and
[1,p—1,1] SU(4) representations. In (C.8) and (C.9) ~,, 3, r = 1,2,...6, are 4 x4 SO(6)
gamma matrices satisfying

Vrij = _7rji y  Ur ij — %Eijlcl’)/rkl s YrYs + Vs Vr = -2 57“81 . (ClO)
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In consequence ~, forms a basis for 4 x 4 antisymmetric matrices, a basis for symmetric
matrices is given by v,y = %ierstuvw%%%, = (y[rﬁsyt})T Since t, is a null vectors
derivatives with respect to ¢, as in (C.8) and (C.9), require special care along the lines of
appendix C.

For the four point function for four %—BPS fields the corresponding expression to (C.2)
for the superconformal Ward identities becomes

0
Vg F=DA b+ Ty ts+ Ty ta, (C.11a)
1
1 o 0 1 0
Bl By A ] Sty — v K
101fy oty Ox ( +2p1+27 o (9151)fy
1 1
T A ot —— TuA -t C.11b
+ o137 3+$(1_Sc> 47 4 ( )

To analyse these equations we note that, using (C.10) and the rules for differentiation with
respect to a null vector ¢, for any homogeneous f (p_l)(t),

0 p+2 0
92 2) fe=D () = —5 . = (v -t f~V S e I N (ol DY AN 192
(p+2) S0 = =7 5 (v 1 /1) PR AR ) (C.12)
Since 7 - (%Tn =0,n=2,3,4, then
1
Tpd-t, =— 4 (v-t1 07 tn), (C.13)

2(m +2) ot

and this allows us to write

- 1 0 -
Tnﬁ/tn:Tn—i— )’S/tl’yaTTn, n:2,3,4, (C14)
1

2(p1 +1

where .
To=Voy -tog+Woy-t3y- 14712,

Tg:V3’7't3+W3’7't4’}/'t2’7't37 (015)
Ty =Viy ta+ Wi toy t37 tg.

There are also similar expressions for the other terms in (C.11a,b),

0 . 1 0 -
yo—F=F+ —n—~-t17-— F,
i 8t1 2(p1+1>7 LY 8t1 (C 16)
(1+ L 5. 8>—K—K’+ LI o & .
where A
F=Fy7y-tog+ F37y-tz3+Fy7-t4, (.17)

K=Ky ts+ K3y ts+ Ky t4.
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By considering the trace of (C.16) with ~ - t; we must have
plF:tl 't2F2—|—t1 't3F3+t1 't4F4, t1 't2K2+t1 't3K3—|—t1 't4K4 :0, (018)

since t1,K, = 0. By using (C.14) and (C.16) in (C.11a,b) the identities reduce to

F: A2—|—T3—|—T4, (C19a)
1 0 - A1 1 .
— —F=-K+-1T353+ ——1T14. C.190
p1 Ox +.CE 3+x(1—x) * ( )

Hence we must have, to ensure that the symmetric terms in (C.19a, b) cancel,

1
Wo+ W3+ W4 =0, W3+1—W4:O. (C.QO)
— X
We then have from (C.19a)
Fo=Vo+2t3-t, W3, F3=V3+2ty-t,Wy, Fy=V4i+2t-t3Ws, (C.Ql)

and from (C.19b), or (C.11b),

0
x%F:(tl-tg‘/g-(tl-t4t2-t3+t1-t3t2-t4—t1-t2t3-t4)W3)

1 (C.22)
+—1—9c (751 by Vi — (t1 - toty -ty +ty -tyto-ts—t1-t3 t2-t4)W4),
Writing now, analogous to (C.4),
F(u, v, tl, tg, t3, t4) = fp1p2p3p4 (tl, t2, t3, t4) F(.I, :f‘, g, 7') s (023)
with the definitions
Foipapspa(t1s e, t3,ta) = (81 - t2)P* (t3 - t4)® (t2 - 13)P7° (t2 - ta)™7°,
ty -ty ty -t ty -ty to -t (C.24)
1 B _ti-tzts-ta _lhirtata-ts
e=5(p1+ps+ps—p2), O hats by T o ts ls
Also if, for n = 2, 3, 4,
tl : tn Fn = fp1p2p3p4 (tlatQ; t37t4) '7:71 ) (025)
then (C.16) and (C.17) require
0 0
Fs=0—F, Fo=17—F, Fo+Fs+Fa=p1 F. (026)
Jo or
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Defining V,, — V,, in a similar fashion to (C.25) and also
by -tot3 -1y WTL = fp1p2p3p4 (t17 t27 t37 t4) Wn ) (C27)

then from (C.20), (C.21) and (C.22) we may obtain

1
02.7::]/3—1-201/\/4, Tﬁf:V4—27'(W3+W4)7 Wi+ —— Wa=0,
oo or 1—x
0 1
:U%:F:V3—(O'+T—1)W3+m(V4_(1+7'_0')W4)- (0'28)

To analyse these equations we introduce new variables, in a similar fashion to (5.18),

o=aa, T=1-a)(1—-a), (C.29)
that
so tha 9 9 a o 0
“9a " "00 1-a or '

Hence from (C.28) we may obtain

(o =) ” = 15 (i

together with corresponding equations for &« — & and also + — Z. Apart from terms

1_&w—2w@, (C.31)

involving single variable functions the solution of (C.31) and associated equations requires
F(z,z,0,7) = (ax — 1)(ax — 1)(ax — 1)(az — 1) H(x,Z, o, &) where H(z,Z,a, @) is a
symmetric polynomial in «, & with degree reduced by four.
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