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1. Introduction

Ever since ’t Hooft showed the essential renormalisability of gauge field theories [1]
there has been much detailed discussion of the formalism of renormalisation and also
detailed calculations at two and more loops of the various renormalisation group β func-
tions [2]. Nevertheless additional insight has recently been gained as a consequence of
the intensive investigations of two dimensional conformal field theories. In particular
Zamolodchikov’s c-theorem [3] has provided an understanding of how conformal field
theories under perturbation by some relevant operator may flow, as required by solving
the renormalisation group, for increasing length scales towards some infra-red stable fixed
point defining a new conformal field theory with reduced degrees of freedom. Zamolod-
chikov constructed a function of the couplings C which decreases monotonically under
this flow and at the fixed points, where the β functions and hence the trace of the energy
momentum tensor vanish, is equal to the Virasoro central charge of the associated confor-
mal field theory. In essence perturbing a conformal field theory by superrenormalisable
operators introduces masses into a previously massless theory and the infra-red stable
fixed point then corresponds to the conformal field theory defined by the subset of the
remaining massless fields (which therefore define the low energy effective field theory).
Various calculations [4] have shown how conformal field theories are linked when they
are perturbed by a single scalar operator O with coupling g and dimension 2− ε, ε� 1,
SI = g

∫
O, so that the associated β function β(g) ≈ −εg + bg2 has a perturbatively

accessible fixed point g∗ ≈ ε/b.
Cardy [5] has also suggested that the essential ideas of the c-theorem may be gen-

eralisable to four dimensional field theories although Zamolodchikov’s proof is no longer
applicable. Just as in two dimensions C may be related to terms in the trace of the energy
momentum tensor on curved space. In two dimensions C is defined by the coefficient of
the scalar curvature while in four dimensions it is natural to consider the corresponding
coefficient of the topological Euler density. With an appropriate normalisation for free
fields then

C0 = 62nV + 11nF + nS , (1.1)

for nV massless vectors, nF Dirac fermions and nS scalars [6](extensions to spin 3
2 [7]

and 2 [8] have also been calculated but these do not correspond to renormalisable field
theories, nevertheless all contributions are positive). In four dimensions the possible
conditions required to demonstrate that C is strictly decreasing under renormalisation
flow are no longer simple to demonstrate [5,9]. Nevertheless Cardy [5] conjectured a
potential application to QCD for a SU(N) gauge group and f fermions in the fundamental
representation with a single coupling of g. According to conventional wisdom, assuming
confinement, the infra-red limit may be restricted to f2 − 1 massless Goldstone bosons
corresponding to the spontaneous breakdown of SU(f)× SU(f) chiral symmetry and if
C → C∗ then from (1.1) we may expect

C0 = 62(N2 − 1) + 11fN, C∗ = f2 − 1 . (1.2)

So long as 11N − 2f > 0, which is necessary for asymptotic freedom so that g = 0 is a
UV stable fixed point, C0 > C∗.
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Although attractive this picture is essentially nonperturbative. Recently [10] a ver-
sion of the c-theorem has been derived within the context of renormalisable field theories
and the conventional perturbation expansion, both for the two dimensional and also the
four dimensional cases. This depends on a careful analysis of the additional countert-
erms necessary to define products of composite operators and also allowing for a general
curved space background. Related ideas were discussed some time ago for determining
counterterms proportional to R2 [11], where R is the scalar curvature, and were extended
later to consideration of other possible counterterms [12]. The method described here in
sections 2 and 3 ensures that we can obtain a complete analysis of all possible relations
of this kind which include equations corresponding to the c-theorem.

Of course these results are restricted to perturbative calculation. In order to discuss
a potential infra-red stable field point we consider briefly the situation where the number
of fermion flavours f is such that 11N − 2f although positive remains bounded for large
N . In this case the two loop contribution to the β function is O(N2) and there is a
zero, β(g∗) = 0, such that g2

∗N = O(1/N) as N → ∞. Usually the large N limit,
g2N = O(1), is taken with f fixed and, subject to confinement, has been argued to be
phenomenologically realistic, with narrow meson resonances and baryons as solitons [13].
However it is also possible to take f = O(N) and the field theory still simplifies by the
leading term being given by planar graphs although resonances are no longer narrow [14].
As a special case this limit realises the situation where there is a perturbatively accessible
infra-red stable fixed point [15] and for which we are then able to calculate the change
in the C function from g = 0 to g = g∗. Although beyond the scope of this paper it is
plausible that for f = O(N) confinement no longer applies, so that physical states are
then not only SU(N) singlets, and that therefore there is a phase transition as a function
of f for large N .

In this paper in the next section we discuss the basic framework for renormalisation
involving composite operators and their products with an arbitrary curved space back-
ground using dimensional regularisation. This extends previous work by one of us and is
at the basis of section 3 where various consistency conditions are derived. These relate
counterterms depending on the curvature tensor formed from the spatial metric to those
necessary to define products of composite operators on flat space. In section 4 the gen-
eral formalism is applied to gauge theories coupled to fermions. A careful BRS analysis
is given to ensure that the additional contributions necessary in our discussion depend
only on the usual gauge invariant coupling g rather than the gauge fixing parameters.
Section 5 contains calculations to two loops for a gauge field theory coupled to fermions
and the change in the C function in going to the perturbative infra-red stable fixed point
described above is calculated. In section 6 the analysis is extended to scalar field theories
where there are complications due to the presence of operators with dimensions less than
four. The metric on the space of couplings is computed for both quartic scalar and also
in section 7 for Yukawa interactions, when the leading term occurs at three and two loops
respectively. In both cases, as well as for a gauge theory, this metric is positive definite
for weak coupling. In section 7 the relative coefficients of the different terms appearing in
the two loop β function for the Yukawa coupling is shown to be partially determined by
integrability conditions for the variation of C. Further remarks and other implications of
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the perturbative c-theorem obtained here are contained in a conclusion.

2. Renormalisation and Composite Operators

In general the definition of finite composite operators in quantum field theories re-
quires further analysis beyond the usual treatment of renormalisation [2]. However if
all couplings are allowed to be x dependent in the original field theory then finite local
operators can be immediately obtained by functional differentiation of the renormalised
quantum action.

To describe the basic general framework we assume an initial Lagrangian L(φ, g) for
a set of fields φ and with dimensionless couplings gi (additional couplings with positive
mass dimension will be discussed in relation to specific models later). For a renormalisable
theory then Lo = L(φo, go) is assumed to be such that for suitable cut off dependent
gio(g), φo(φ, g) then this gives a finite perturbative quantum field theory as the cut off is
removed.

Here we use dimensional regularisation so that L is extended to be defined on a d
dimensional space with metric γµν so that

L(φ′, g′) = µ−εL(φ, g) , g′i = µk
iεgi , φ′ = µδεφ , ε = 4− d . (2.1)

With minimal subtraction then

gio = µk
iε
(
gi + Li(g)

)
, φo = µδεZ(g)φ , (2.2)

where Li(g) and Z(g)− 1 contain only poles in ε. The quantum action

So =

∫
ddx
√
γ Lo ≡

∫
Lo , (2.3)

is then supposed to define a finite theory on flat space, or γµν constant, and also for gi

constant as usual. From (2.2) it is easy to derive in the standard fashion the renormali-
sation group equation.(

β̂i
∂

∂gi
− (γ̂φ)· ∂

∂φ
− ε
)
Lo = 0 ,

µ
d

dµ
gi

go

= β̂i = −kigiε+ βi(g) , µ
d

dµ
Z

go

= Zγ(g) , γ̂ = γ + δε ,

(2.4)

(throughout the index on ki is irrelevant for the summation convention).

If the metric is generalised to describe an arbitrary curved space γµν(x) and also
the couplings are extended to arbitrary gi(x) then, apart from introducing appropriate
covariant derivatives so that L is still a scalar, the form of the dependence of L on gi and
correspondingly of Lo on gio remains unchanged. However additional counterterms are
required depending on the curvature tensor, assuming manifest coordinate invariance is
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maintained throughout, and also on ∂µg
i. Thus it is necessary to extend Lo → L̃o. If

we consider, for simplicity, only those necessary counterterms independent of the fields φ
then by power counting and discarding total derivatives we may take [10]

L̃o = Lo − µ−ελ · R , λ = (a, b, c, Ei,Fij ,Gij ,Λ) ,

λ · R = aF + bG+ cH2 + Ei∂µgi ∂µH + 1
2Fij∂µg

i∂µgj H + 1
2Gij∂µg

i∂νg
j Gµν + Λ ,

Λ = 1
2Aij ∇

2gi∇2gj + 1
2Bijk ∂µg

i∂µgj∇2gk + 1
4Cijk` ∂µg

i∂µgj∂νg
k∂νg` . (2.5)

F , G and H2 are the additional purely metric counterterms required in the extension
from flat space and at least at one loop they have been much discussed. With Gµν they
are here defined by

F = RαβγδRαβγδ −
4

d− 2
RαβRαβ +

2

(d− 2)(d− 1)
R2 ,

G =
2

(d− 3)(d− 2)

(
RαβγδRαβγδ − 4RαβRαβ +R2

)
,

H =
1

d− 1
R , Gµν =

2

d− 2

(
Rµν − 1

2γµνR
)
.

(2.6)

The d-dependent factors introduced in (2.6) are not essential but simplify the subsequent
analysis. F is the square of the conformal Weyl tensor while G is the Euler density,∫

S4

d4x
√
γ G = 64π2 .

Under reparameterisations on the space of couplings it is clear that Ei,Fij ,Gij and Aij
are tensors while, although Λ is a scalar, Bijk and Cijk` transform with additional inho-
mogeneous pieces (this could be avoided by introducing a connection Γijk and replacing

∇2gi in (2.5) by ∇2gi + Γijk∂µg
j∂µgk).

λ in (2.5) contains just poles in ε and we assume that (2.4) now becomes(
β̂i

∂

∂gi
− (γ̂φ)· ∂

∂φ
− ε
)
L̃o = µ−εβλ · R . (2.7)

This requires(
ε−β̂i ∂

∂gi

)
λ · R = βλ · R , βλ = (βa, βb, βc, χ

e
i , χ

f
ij , χ

g
ij , βΛ) ,

βΛ = 1
2χ

a
ij ∇2gi∇2gj + 1

2χ
b
ijk ∂µg

i∂µgj∇2gk + 1
4χ

c
ijk` ∂µg

i∂µgj∂νg
k∂νg` ,

(2.8)

where hi∂/∂gi∂µg
j = ∂µh

j . The terms on the r.h.s. of (2.7) may be removed, and a ho-
mogeneous renormalisation group equation restored, by introducing additional couplings
for each term in λ · R. However these new couplings perform no further role and are
therefore not introduced here.
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For our purposes βa is irrelevant but at one loop or for a free theory

β
(1)
b =

1

64π2

1

90

(
62nV + nS + 11nF

)
, β(1)

c = 0 , (2.9)

for nV massless vectors, nF Dirac fermions and nS scalars, which corresponds to (1.1) if

C0 = 360× 16π2β
(1)
b . As particular cases of (2.8) we find

(
ε− β̂` ∂

∂g`

)
Aij − ∂iβ̂kAkj − ∂j β̂kAik = χaij , (2.10a)(

ε− β̂` ∂

∂g`

)
Bijk − ∂iβ̂`B`jk − ∂j β̂`Bi`k − ∂kβ̂`Bij` − 2∂i∂j β̂

`A`k = χbijk , (2.10b)

with similar equations as (2.10a) holding for χfij , χ
g
ij in terms of Fij , Gij .

As a consequence of the extension to an arbitrary metric γµν(x) and also gi(x) it is
straightforward to define a finite energy momentum tensor and also the complete set of
finite local dimension four scalar operators specified by L by

Tµν(x) = 2
δ

δγµν(x)
S̃o , [Oi(x)] =

δ

δgi(x)
S̃o . (2.11)

From (2.11) [Oi] has the generic form

hi[Oi] = hi
∂

∂gi
L̃o −∇µJµh , (2.12)

where Jµh arises from counterterms containing ∂µg
i and is necessary for finiteness even

when ∂µg
i is subsequently set to zero. From the particular φ independent counterterms

in (2.5) Jµh |∂νg=0 = −hiEi∂µH. These operators have simple properties under changes of
renormalisation scale since, defining the Callan-Symanzik operator by

D = µ
∂

∂µ
+

∫ (
β̂i

δ

δgi
− (γ̂φ)· δ

δφ

)
, (2.13)

then directly from the definitions (2.11) and (2.7) it follows that

DTµν = 2
δ

δγµν

∫
µ−εβλ · R ,

D[Oi] = − ∂iβ̂j [Oj ] +
δ

δgi

∫
µ−εβλ · R+ (∂iγ̂ φ)· δ

δφ
S̃o .

(2.14)

Clearly from (2.14) ∂iβ̂
j is the anomalous dimension matrix for the operators [Oj ] while

the contribution of the last term vanishes on using the equations of motion.
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Within this framework it is similarly straightforward to define operator products
which are finite on insertion into correlation functions, for instance

δS̃o

δgi(x)

δS̃o

δgj(y)
− δ2S̃o

δgi(x)δgj(y)
, (2.15a)

δS̃o

δgi(x)

δS̃o

δgj(y)

δS̃o

δgk(z)
− δ2S̃o

δgi(x)δgj(y)

δS̃o

δgk(z)

− δ2S̃o

δgj(y)δgk(z)

δS̃o

δgi(x)
− δ2S̃o

δgk(z)δgi(x)

δS̃o

δgj(y)
+

δ3S̃o

δgi(x)δgj(y)δgk(z)
. (2.15b)

Such operator products can be used to provide an alternative definition of Aij , Bijk, . . .
appearing in (2.5). Restricting to flat space and letting [Oi]|∂µg=0 = [Oi]c = ∂ih

aOo
a, with

Oo
a independent of g ([Oi]c is the local composite operator as obtained in a conventional

analysis) then

δ

δgi(x)
[Oj(y)]


∂µg=0

= Kk
ij [Ok(y)]cδd(x− y)− µ−εAij∂2∂2δd(x− y) ,

Kk
ij = ∂i∂jh

a ∂g
k

∂ha
.

(2.16)

This shows that the correlation function 〈[O(x)i]
c[O(y)i]

c〉So
is divergent and requires

a further subtraction. In terms of the Fourier transform Γij(−p, p) of this correlation
function, assuming for simplicity that 〈[Oi]c〉So

= 0, the finite amplitude within minimal
subtraction is given by

ΓRij(−p, p) = Γij(−p, p) + µ−εAij(p2)2 . (2.17)

Similarly from (2.15b) for the three point correlation function Γijk(p, q, r), p+ q+ r = 0,

ΓRijk(p, q, r) = Γijk(p, q, r)−K`
ij Γ`k(−r, r)−K`

jk Γ`i(−p, p)−K`
ki Γ`j(−q, q)

− µ−ε 1
2

(
Bijk (r2)2 + Bjki (p2)2 + Bkij (q2)2

)
− µ−ε

(
Āijk p2q2 + Ājki q2r2 + Ākij r2p2

)
,

(2.18)

where
Āijk = Aij,k − 1

2Bikj −
1
2Bjki . (2.19)

Applying D to (2.17) gives, using (2.10a),

DΓRij(−p, p) = −∂iβ̂kΓRkj(−p, p)− ∂j β̂kΓRik(−p, p)− µ−εχaij(p2)2 . (2.20)

Similarly from (2.18) and (2.10b)

DΓRijk(p, q, r) = − ∂iβ̂`ΓR`jk(p, q, r)− ∂j β̂`ΓRi`k(p, q, r)− ∂kβ̂`ΓRij`(p, q, r)

+ ∂i∂j β̂
` ΓR`k(−r, r) + ∂j∂kβ̂

` ΓR`i(−p, p) + ∂k∂iβ̂
` ΓR`j(−q, q)

+ µ−ε 1
2

(
χbijk (r2)2 + χbjki (p2)2 + χbkij (q2)2

)
+ µ−ε

(
χ̄aijk p

2q2 + χ̄ajki q
2r2 + χ̄akij r

2p2
)
,

(2.21)
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where χ̄a is defined in terms of χa, χb just as Ā in (2.19) and we have used(
ε− β̂` ∂

∂g`

)
ha = 0 ⇒ β̂`

∂

∂g`
Kk
ij + ∂iβ̂

`Kk
`j + ∂j β̂

`Kk
i`−K`

ij∂`β̂
k = −∂i∂j β̂k . (2.22)

Clearly χaij , χ
b
ijk play an essential role in determining the behaviour of ΓRij and ΓRijk or

equivalently of operator products. Analogous relations for four point functions involving
χcijk` can also be derived.

3. Consistency Relations

The trace of the energy momentum operator is a scalar operator of dimension four
and should therefore be expandable in the basis of scalar operators [Oi]. To derive such
an expression for the trace we assume that under conformal rescaling of the metric and
the fields

δγµν = 2σ γµν , δφ = σ∆φ , (3.1)

where ∆ is a matrix defining the canonical dimensions of the fields φ. Since δ
√
γ =

−dσ√γ it follows that, neglecting dimensional couplings in L̃o so that for σ constant in

(3.1) δL̃o = 4σL̃o,

γµνTµν = εL̃o +∇µIµ − (∆φ)· δ
δφ
So . (3.2)

Iµ arises from the appearance in L̃o of terms containing derivatives of γµν such as the
Riemann tensor. Assuming

(Xφ)· δ
δφ
So = (Xφ)· ∂

∂φ
Lo −∇µKµ

X , (3.3)

and using (2.7) and (2.12) this becomes

γµνTµν = β̂i[Oi]− µ−εβλ · R+ µ−ε∇µZµ +∇µJµΘ − (∆φ+ γ̂φ)· δ
δφ
So , (3.4)

where
Iµ + Jµ

β̂
−Kµ

γ̂ = JµΘ + µ−ε
(
Zµ +∇νXµν

)
, Xµν = −Xνµ . (3.5)

JµΘ is some potential finite operator current formed from φ (when it occurs such currents

may be defined in terms of the variation of S̃o with respect to an arbitrary gauge field Aµ
which plays the role of an additional coupling). The remaining current Zµ appearing in
(3.4) is field independent and arises from the counterterms in (2.5). For an appropriate
choice of Xµν Z

µ must be finite as a consequence of all other terms in (3.4) being well
defined. Iµ in (3.2) may be computed by using that under the conformal variation of the
metric in (3.1)

δF = 4σF , δG = 4σG− 8Gαβ∇α∇βσ , δH = 2σH + 2∇2σ ,

δGµν = 2
(
∇µ∇νσ − γµν∇2σ

)
, δ∇2 = 2σ∇2 − (d− 2)∂µσ∂µ ,

(3.6)
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while the corresponding contributions to Jµ
β̂

, defined by (2.12), are

uµi β̂
i −∇µ(viβ̂

i) + 2vi∇µβ̂i , uµi =
∂L̃o

∂∂µgi
, vi =

∂L̃o

∂∇2gi
. (3.7)

Hence we obtain

Zµ = 8Gµν ∂
νb− 4∂µ(Hc) + 2H Ei∂µgi − ∂µH Eiβ̂i −Gµν Gij β̂i∂νgj

−H Fij β̂i∂µgj + 2∇µ∇ν
(
Ei∂νgi

)
−∂µ

(
(Fij − Gij)∂νgi∂νgj

)
−∇ν

(
Gij∂µgi∂νgj

)
−(2− ε)Aij∂µgi∇2gj + ∂µ

(
Aij β̂i∇2gj

)
−2Aij∂µβ̂i∇2gj (3.8)

− 1
2 (2− ε)Bijk ∂νgi∂νgj∂µgk + 1

2∇µ
(
Bijk∂νgi∂νgj β̂k

)
− Bijk

(
β̂i∂µg

j∇2gk + ∂νg
i∂νgj∂µβ̂

k
)
−Cijk` β̂i∂µgj∂νgk∂νg` +∇ν(Qij∂µgi∂νgj) ,

assuming the appropriate contribution to the Xµν has the form

Xµν = −Qij∂µgi∂νgj , Qij = −Qji .

The finiteness of Zµ may be disentangled, using when necessary results such as
(2.10a,b), into separate finiteness conditions for

8∂ib− Gij β̂j , (3.9a)

4c+ Ei β̂i , (3.9b)

4∂ic+ (Fij +Aij)β̂j , (3.9c)

2Ei +Aij β̂j , (3.9d)

Gij + 2Aij − Āijk β̂k (3.9e)

Fij +Aij + 1
2εAij −

(
Āijk − Āk(ij)

)
β̂k , (3.9f)

Λij − Λji , Λij = Aki ∂j β̂k + 1
2Bkji β̂

k , (3.9g)

(2− ε)
(
Āk(ij) − 1

2 Āijk
)
+∂jΛik + ∂iΛjk − ∂kΛ(ij) − Bij` ∂kβ̂` − Cijk` β̂` , (3.9h)

where Āijk is given by (2.19). Both Āijk and Λij transform as tensors under redefinitions
of couplings. These conditions are not completely independent since contracting (3.9f)

with β̂j and using (3.9g) and (2.10a) gives (3.9c) with c expressed in terms of (3.9b) and
(3.9d) up to finite terms.

The essential consequence of (3.9a,b,c,d,e,f) is that all counterterms required in (2.5)
for a curved space background may be defined in terms of Aij and Bijk required for flat
space only. These results were partially obtained previously [11,12] by restricting to
∂µg = 0 but by considering that

L̃o = Lo − µ−ε(aF + bG+ cH2)
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defines a finite quantum field theory for arbitrary metric γµν(x). In this case we consider
the finite operator products, analogous to (2.15a,b),

δS̃o

δσ(x)

δS̃o

δσ(y)
− δ2S̃o

δσ(x)δσ(y)
, (3.10a)

δS̃o

δσ(x)

δS̃o

δσ(y)

δS̃o

δσ(z)
− δ2S̃o

δσ(x)δσ(y)

δS̃o

δσ(z)

− δ2S̃o

δσ(y)δσ(z)

δS̃o

δσ(x)
− δ2S̃o

δσ(z)δσ(x)

δS̃o

δσ(y)
+

δ3S̃o

δσ(x)δσ(y)δσ(z)
, (3.10b)

where δ/δσ denotes the response to a conformal rescaling as in (3.1) with subsequently
σ = 0. Thus, if for simplicity we suppose δLo = 4σLo and neglecting equation of motion
terms,

δS̃o

δσ
' εL̃o − 4µ−ε c∇2H = Θ̂ ,

δ2S̃o

δσ(x)δσ(y)
' 4δd(x, y)Θ̂− 8µ−εc∇2∇2δd(x, y) + 8εµ−εbGµν∇µ∇νδd(x, y)

− 4(2 + ε)µ−εcH∇2δd(x, y)− 4(4 + ε)µ−εc ∂µH∂
µδd(x, y)

)
.

Restricting to flat space then (3.10a,b) allow definition of the finite correlation functions

ΓR
Θ̂Θ̂

(−p, p) = ΓΘ̂Θ̂(−p, p) + 8µ−εc (p2)2 , (3.11a)

ΓR
Θ̂Θ̂Θ̂

(p, q, r) = ΓΘ̂Θ̂Θ̂(p, q, r)− ε
(
ΓΘ̂Θ̂(−p, p) + ΓΘ̂Θ̂(−q, q) + ΓΘ̂Θ̂(−r, r)

)
+ 4µ−ε

(
εb+ (2− ε)c

)(
(p2)2 + (q2)2 + (r2)2

)
− 8µ−ε

(
εb+ 2c

)(
p2q2 + q2r2 + r2p2

)
, (3.11b)

where ΓΘ̂... are correlation functions of Θ̂|γµν=δµν = Θ̂0 after Fourier transform. Using

Θ̂0 = β̂i[Oi]c then comparing (3.11a) and (2.17) we require

8c ∼ Aij β̂iβ̂j , (3.12)

with ∼ representing equality up to finite terms. Similarly from (2.18) and (3.11b) using

β̂iKk
ij = εδkj − ∂j β̂k , (3.13)

which can be obtained analogously to (2.22), gives

8
(
εb+ (2− ε)c

)
∼ 8
(
β̂i∂ib+ 2c− β̂i∂ic

)
∼ −2Λij β̂

iβ̂j , (3.14a)

8
(
εb+ 2c

)
∼ 8
(
β̂i∂ib+ 2c

)
∼ Āijk β̂iβ̂j β̂k . (3.14b)
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It is straightforward to see that (3.12) and (3.14a,b) are direct corollaries of finiteness of
expressions (3.9a,...f), using

Āijk β̂k ∼ εAij − 2Λ(ij) , Ājki β̂j β̂k ∼ ∂i(Ajk β̂j β̂k)− 2Λij β̂
j .

The conditions that (3.9a,...h) contain no poles in ε can be reexpressed in terms of
equations involving the β functions in (2.8). From (3.9a)

8∂ib− Gij β̂j = Wi , Wi = G1
ij k

jgj , (3.15)

where G1
ij denotes the residue of the simple ε pole in Gij . Using

(ε− β̂k∂k)
(
8∂ib− Gij β̂j

)
−∂iβ̂k

(
8∂kb− Gkj β̂j

)
= ∂iβb − χgij β̂

j ,

we obtain

8∂iβb = χgijβ
j − βj∂jWi − ∂iβjWj , (3.16a)

ζWi ≡ (1 + kjgj∂j)Wi +Wik
i = χgij k

jgj , (3.16b)

were ζ is easily seen to be an operator counting the number of loops and (3.16b) is
equivalent to the definition of Wi in (3.15). Defining

β̃b = βb + 1
8Wiβ

i ,

(3.16) gives

8∂i β̃b = χgij β
j + (∂iWj − ∂jWi)β

j , (3.17a)

8βi∂i β̃b = χgij β
iβj . (3.17b)

These equations are similar to those of Zamolodchikov [3] for two dimensional field
theories and it is natural to define

C = 360× 16π2β̃b . (3.18)

(3.17a) shows that β̃b is stationary at critical points where βi = 0, β̃b = βb and C is
the natural analogue of the Virasoro central charge while (3.17b) demonstrates that if
χgij is positive then the renormalisation flow of C or β̃b is monotonic. For a free theory
C = C0 as given by (1.1). As expressed in (3.17a,b) the equations are covariant under
redefinitions of couplings and so should be valid in other regularisation schemes although
the precise simple definition of Wi is no longer appropriate. Any arbitrariness, such as
provided by the d dependent factors in (2.6), in the definition of b leads to a contribution
to Wi of the form ∂iB which cancels in (3.17a).
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For a single coupling g (3.16a,b) can be easily integrated to give

βb(g) = β0
b −

1

8

∫ g

0

dg′ g′
k+1
k W (g′)

∂

∂g′

(
β(g′)

g′
k+1
k

)
, (3.19)

where β0
b is given by (2.9). In general, β(g) ∝ g

k+1
k as g → 0 so if W is first non zero at

n loops βb has corrections at n+ 2 loops.

It is also possible to derive expressions for βc from (3.9b,d) or (3.12), where

8c−Aij β̂iβ̂j = X + εY , Y = −A1
ij k

igikjgj . (3.20)

Just as in going from (3.15) to (3.16a,b) we obtain

8βc = χaij β
iβj − βi∂iX , (3.21a)

ζY = −χaij kigikjgj , ζX = 2χaij β
ikjgj + βi∂iY . (3.21b)

Since from (3.11a)
DΓR

Θ̂Θ̂
(−p, p) = −8µ−εβc(p

2)2

the results (3.21a,b) can also be obtained by using (2.20) and writing

ΓR
Θ̂Θ̂

(−p, p)− β̂iβ̂jΓRij(−p, p) = µ−ε(X + εY )(p2)2 .

For a single coupling

8βc(g) =
1

k2

β(g)

g
k+1
k

∫ g

0

dg′ g′
2
k Y (g′)

∂

∂g′

(
β(g′)

g′
k+1
k

)
, (3.22)

so that for Y non zero at n loops βc is non zero at n+ 3 loops.

A similar discussion is possible for the other expressions in (3.9), for example from
(3.9c)

χgij + 2χaij − χ̄aijk βk = −βk∂kVij − γ k
i Vkj − γ k

j Vik , ζVij = χ̄aijk k
kgk . (3.23)

This relates χgij , which played a crucial role above, to flat space quantities.

4. Gauge Theories

The discussion of composite operators in gauge theories and the derivation of a
relation for the trace of the energy momentum tensor has by now a relatively long history
[16]. Nevertheless the extension of the framework described in the last two sections to
this case appears to us to elucidate some points.

For simplicity we restrict to a simple gauge group G and as always the fundamental
gauge field Lagrangian is

L(A) = 1
4 F

µν ·Fµν , Fµν = ∂µAν − ∂νAµ +Aµ ×Aν , (4.1)
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(X·Y = XaYa , (X×Y )a = fabcXbYc). Fermions will be incorporated later. The quantum
action is then given by

Lq(φ, J, g, ξ, ρ) =
1

g2
L(A) + K̃µ ·D′µ(A, g)c− 1

2g L·(c× c)− ξ
1
2b·b+ (GTµb)·aµ ,

Aµ = Acµ + g aµ , D′µ(A, g) = ∂µ +Aµ× + vµ , vµ =
1

g
∂µg ,

K̃µ = Kµ +GTµc̄ , φ = (aµ, c, b, c̄) , J = (Kµ, L) .

(4.2)

aµ is the quantum gauge field with Acµ a fixed background, c, c̄ the ghosts, anti-ghosts
and b the usual gauge fixing auxiliary field. Kµ and L are external sources which are
important in the BRS analysis later. GTµ denotes the operator transpose of Gµ so that,

after elimination of b, the gauge fixing term in Lq becomes Lqg.f. = 1
2G

µaµ ·Gνaν/ξ. We
choose the background gauge covariant form

Gµaµ = ∇µaµ +Acµ × aµ − ρµaµ , GTµ = −Dc
µ − ρµ , (4.3)

where Dc
µ is the background gauge covariant derivative. ξ, ρµ are thus gauge parameters

and along with g are assumed to be arbitrary functions of x, the vector ρµ plays a
necessary role in the subsequent analysis. The Feynman gauge used later for calculation
is obtained by taking

ξ = 1 , ρµ = vµ . (4.4)

Lq enjoys the usual BRS invariance, sLq = 0, under

saµ = D′µc , sc = − 1
2g c× c , sc̄ = −b , sb = 0 , s2 = 0 . (4.5)

Corresponding to (2.1) we take

g′ = µ
1
2 εg , φ′ = µ−

1
2 εφ , J ′ = µ−

1
2 εJ , ξ′ = ξ , ρ′µ = ρµ .

Assuming no anomalies the renormalised quantum action is constrained by∫ (
δSqo
δf
· δS

q
o

δJ
− b· δS

q
o

δc̄

)
= 0 , f = (aµ, c) , (4.6a)

δ

δb
Sqo = Gµaµ − ξ b . (4.6b)

(4.6a) is equivalent to the nilpotence of the functional operator

QS
q
o =

∫ (
δSqo
δJ
· δ
δf

+
δSqo
δf
· δ
δJ
− b· δ

δc̄

)
. (4.7)

These results are obtained order by order from the BRS symmetry (4.5), if Sqo,n defines

a finite theory to n loops and satisfies (4.6a,b) then at n + 1 loops Γ
(n+1)
div is local and
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it follows that QSqΓ(n+1)
div = 0. Hence the n + 1 loop divergence may be cancelled by

a suitable choice of Sqo,n+1 also obeying (4.6a,b). Inserting a general ansatz consistent
with power counting for Lqo into (4.6a,b), assuming rotational invariance and background
gauge invariance are preserved, gives

Lqo = µ−ε
(
Zg
g2
L(Ao) + K̃µ ·D′oµc− 1

2Zγg L·(c× c)− ξ
1
2b·b+ (GTµb)·aµ

)
,

Aoµ = Acµ + Zβg aµ , D′oµ =
Zγ
Zβ

(
Dc
µ + Zβg aµ× +

1

Zγg
∂µ(Zγg)

)
.

(4.8)

The novel feature here is the form of D′oµ. In addition, to take account of the counterterms
required for curved space, we write

L̃qo = Lqo − µ−ελ(g) · R , (4.9)

with the additional terms just as in (2.5) but restricted to the single coupling g. It is
crucial that we are able to use the fundamental theorem that if αi is any gauge parameter

∂

∂αi
S̃qo = QS

q
oXi , (4.10)

where Xi is the integral of a local invariant function of ghost number −1 [19]. In this
case

δ

δρµ
Sqo = QS

q
oµ−εc̄·aµ ,

δ

δξ
Sqo = QS

q
oµ−ε

(
β K̃µ ·aµ − γ L·c

)
,

∂

∂ξ
Zβ = βZβ ,

∂

∂ξ
Zγ = γZγ ,

(4.11)

so that even for arbitrary ξ(x) it appears just in Zβ , Zγ and the additional terms in (4.9)
depend only on g.

From (4.8) it is easy to see that

Lqo = Lq(φo, Jo, go, ξo, ρo) ,

go = µ
1
2 εZ

− 1
2

g g , ξo = Z2
aξ , ρoµ = ρµ +

1

Za
∂µZa ,

aoµ = µ−
1
2 εZaaµ , co = µ−

1
2 εZcc , bo = µ−

1
2 ε

1

Za
b , c̄o = µ−

1
2 ε

1

Za
c̄ ,

Kµ
o = µ−

1
2 ε

1

Za
Kµ , Lo = µ−

1
2 ε

1

Zc
L , Za = ZβZ

1
2
g , Zc = ZγZ

1
2
g .

(4.12)

Usually there is an arbitrariness in the multiplicative renormalisation of c, c̄ as a con-
sequence of the U(1) ghost number symmetry but this is fixed due to the x depen-
dence of g, ξ. These renormalisation factors are such that QSqo remains invariant under
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φ → φo, J → Jo. It is now straightforward to define β functions for each coupling and
also two essential ξ dependent anomalous dimensions, as in (2.4),

β̂g = − 1
2εg + βg(g) , β̂ξ = βξ = −2γaξ , β̂ρµ = βρµ = −∂µγa ,

µ
d

dµ
Za


go,ξo

= Zaγa , µ
d

dµ
Zc


go,ξo

= Zcγc .
(4.13)

Replacing (2.13) we may write

D = µ
∂

∂µ
+

∫ (
β̂g

δ

δg
+ βξ

δ

δξ
+ βρµ

δ

δρµ
− (γ̂φ)· δ

δφ
− (γ̂J)· δ

δJ

)
,

γ̂φ = (γaaµ, γcc, −γab, −γac̄)− 1
2εφ , γ̂J = −(γaK

µ, γcL)− 1
2εJ ,

(4.14)

so that DS̃qo = µ−ε
∫
βλ · R as in (2.7).

It is straightforward to now define finite local composite operators, setting J = 0 for
convenience on the r.h.s.,

g
δ

δg
Sqo = − 2

g2

[
1
4 F

µν ·Fµν
]

−
[
(GTµc̄) ·D′µc+ (GTµb) ·aµ

]
+aµ ·

δ

δaµ
Sqo + c· δ

δc
Sqo , (4.15a)

δ

δξ
Sqo = −

[
1
2b·b

]
, (4.15b)

δ

δρµ
Sqo = −

[
c̄·D′µc+ aµ ·b

]
, (4.15c)

∇µ δ

δρµ
Sqo =

[
(GTµc̄) ·D′µc+ (GTµb) ·aµ

]
−
[
b·Gµaµ

]
−c̄· δ

δc̄
Sqo , (4.15d)

aµ ·
δ

δaµ
Sqo =

[
aµ ·Dν

(1

g
Fµν

)
+g (GTµc̄) ·aµ × c+ (GTµb) ·aµ

]
, (4.15e)

c· δ
δc
Sqo = −

[
(D′′µG

Tµc̄) ·c
]
, D′′µ = Dµ − vµ , (4.15f)

c̄· δ
δc̄
Sqo =

[
c̄·GµD′µc

]
, (4.15g)

b· δ
δb
Sqo =

[
−ξ b·b+ b·Gµaµ

]
. (4.15h)

The l.h.s. of (4.15a,...h) provide a definition for each local operator appearing on the
r.h.s., (4.15e,...h) are equation of motion operators (of course it is trivial to eliminate b
by setting b = Gµaµ/ξ) while (4.15b,c,d) are given by variations of a gauge parameter
and as a consequence of (4.10) or (4.11) do not contribute to matrix elements between
physical states. However the basis defined by the l.h.s. of (4.15a,...h) is more convenient
from the point of view of computing the operator mixing under renormalisation. Thus
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from (2.14) and using (4.13)

D

 [Og]
[Oξ]
[Oρ]

 = −

 β̂g,g −2 γa,gξ γa,g
0 −2(γaξ),ξ γa,ξ
0 0 0

 [Og]
[Oξ]
[Oρ]

+

 γ̂,gφ
γ̂,ξφ

0

· δ
δφ
Sqo ,

[Og] =
δ

δg
Sqo , [Oξ] =

δ

δξ
Sqo , [Oρ] = ∇µ δ

δρµ
Sqo .

(4.16)

Within this framework it is simple to obtain an expression for the trace of the energy
momentum tensor as in section 3. Corresponding to (3.2)

γµνTµν = εL̃qo +∇µIµ − 2∇µ δ

δρµ
Sqo −

(
(∆φ)· δ

δφ
+ (∆J)· δ

δJ

)
Sqo ,

∆φ = 2(0, 0, b, c̄) , ∆J = (2Kµ, 4L) ,

(4.17)

and

εLqo =
(
β̂g

∂

∂g
+ βξ

∂

∂ξ
+ βρµ

∂

∂ρµ
− (γ̂φ)· ∂

∂φ
− (γ̂J)· ∂

∂J

)
Lqo

=
(
β̂g

δ

δg
+ βξ

δ

δξ
− (γ̂φ)· δ

δφ
− (γ̂J)· δ

δJ

)
Sqo +

(
γa + 1

2ε
)
∇µ δ

δρµ
Sqo .

(4.18)

Up to terms which vanish for physical matrix elements and for J = 0,

γµνTµν ' β̂g
δ

δg
S̃qo + µ−ε

(
−βλ · R+∇µZµ

)
, β̂g

δ

δg
S̃qo ' −

2β̂g

g3

[
1
4 F

µν ·Fµν
]
, (4.19)

where βλ · R and Zµ are just as discussed in section 3 with the same requirement of
finiteness of Zµ. With this definition it is trivial that DγµνTµν = µ−εδσ

∫
βλ · R.

It is also simple to extend this treatment to allow for fermions coupled to the quantum
gauge field so that Lq now includes, as well as (4.2),

Lqψ = ψ̄
(
γµ
↔
Dψ
µ +M

)
ψ − g ηt·cψ − g ψ̄t·cη̄ ,

↔
Dψ
µ = 1

2∇µ −
1
2

←−∇µ +Aψµ + t·Aµ , [ta , A
ψ
µ ] = [ta ,M ] = 0 .

(4.20)

ta are matrix generators of G in the representation defined by ψ, [ta , tb] = fabc tc, t
†
a =

−ta. M is a general mass matrix while Aψµ is an external vector field coupled to a

gauge singlet fermion current. Aψµ = AψµαTα may be regarded as belonging to the Lie

algebra of a group Ĝ defined by the maximal set of generators Tα = −T †α, [Tα , Tβ ] =
FαβγTγ commuting with ta. η, η̄ are the sources for the BRS variations of ψ, ψ̄, since
sψ = −g t · cψ, sψ̄ = −g ψ̄t · c, so that previous formulae may be extended to include
fermions by taking φ = (aµ, c, b, c̄, ψ, ψ̄), J = (Kµ, L, η, η̄) and f = (aµ, c, ψ, ψ̄). Lψ
is invariant under local Ĝ gauge transformations if

δAψµ = Dψ
µω = ∂µω + [Aψµ , ω] , δM = [M, ω] , δψ = −ωψ , δψ̄ = ψ̄ω , (4.21)
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for ω = ωαTα.

By BRS symmetry and also local Ĝ invariance Lqo is still of the same form (4.12)
with in addition

ψo = µ−
1
2 εZψψ , ψ̄o = µ−

1
2 εψ̄Z̄ψ , ηo = µ−

1
2 εη

1

Zψ
, η̄o = µ−

1
2 ε

1

Z̄ψ
η̄ ,

Mo = ZmM , [ta, Zψ] = [ta, Zm] = 0 , Z̄ψ = Z†ψ

(4.22)

Zm(g) is independent of the gauge parameters, in contrast to Zψ(g, ξ). In general we
may expect to require Aψµ → Aψoµ = Aψµ + N∂µg where N† = −N, [ta, N ] = 0 but in
this case for a single coupling g, when N and also Zψ are scalars formed from ta so that
[Tα, N ] = 0 and [Tα, Zψ] = 0, it follows that N = 0. Besides Aψµ , M is also allowed
to have an arbitrary x dependence so further counterterms are necessary and are of the
general form

L̃qo = Lqo − µ−ε
(
λ(g) · R+ λm(g) · M+ 1

4 tr(K(g)FψµνF
ψµν) + tr(Λ(g)M4)

)
,

λm · M = 1
2

(
H tr(hM2) + tr(r Dψ

µMDψµM) + 2∂µg tr(sMDψµM) + ∂µg∂
µg tr(tM2)

)
,

λm = (h, r, s, t) , Fψµν = ∂µA
ψ
ν − ∂νAψµ + [Aψµ , A

ψ
ν ] . (4.23)

This treatment enables the definition of further finite local composite operators by[
Om(X)

]
= X · δ

δM
Sqo =

[
ψ̄Xψ

]
, X† = X , Jµα =

δ

δAψµα
Sqo =

[
ψ̄γµTαψ

]
. (4.24)

As a consequence of invariance under (4.21), for η = η̄ = 0,

∇µJµα + Fαβγ A
ψ
µβ J

µ
γ =

[
Om([M, Tα])

]
−(Tαψ)· δ

δψ
Sqo + (ψ̄Tα)· δ

δψ̄
Sqo .

The renormalisation group may be extended to this case by defining anomalous
dimensions γψ, γ̄ψ for the fermion fields as in (4.13) and also introducing a β function
for M ,

βm = −γm(g)M , µ
d

dµ
Zm


go

= Zmγm . (4.25)

For the new terms in (4.23)(
ε− β̂g ∂

∂g
+ (γmM)· ∂

∂M

)
λm · M = βm · M , βm = (βh, κr, κs, κt) ,(

ε− β̂g ∂
∂g

)
K = βK ,

(
ε− β̂g ∂

∂g
+ 4γm

)
Λm = βmΛ .

(4.26)

Using ' to denote equality up to contributions of equation of motion operators and also
operators obtained by variation of a gauge parameter we now have

D
[
Om(X)

]
'
[
Om(DX + γmX)

]
, D

[
Og] ' −β̂g,g

[
Og
]
+
[
Om(γm,gM)

]
, DJµα = 0 .

(4.27)
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The additional contributions in (4.23) may also be related to subtractions in corre-
lation functions of composite operators. For instance if Γµναβ(−p, p) denotes the Fourier
transform of 〈Jµα Jνβ 〉 on flat space then

ΓRµναβ (−p, p) = Γµναβ(−p, p)− µ−εtr(KTαTβ)
(
p2δµν − pµpν

)
. (4.28)

Hence, similarly to (2.20),

DΓRµναβ (−p, p) = µ−εtr(βKTαTβ)
(
p2δµν − pµpν

)
. (4.29)

The trace of the energy momentum tensor may be obtained by extending the con-
formal transformation in (3.1) so that

δM = σM , ∆φ = (0, 0, 2b, 2c̄, 3
2ψ,

3
2 ψ̄) , ∆J = (2Kµ, 4L, 5

2η,
5
2 η̄) , (4.30)

ensuring still that δLψ = 4σLψ. In this case (4.17) holds with Iµ → Iµ + Iµm where

Iµm = −µ−ε
(
−∂µtr(hM2) + tr(rMDψµM) + ∂µg tr(sM2)

)
. (4.31)

Replacing (4.19) we find the finite expression

γµνTµν ' β̂g
[
Og
]
−
[
Om((1 + γm)M)

]
−µ−ε

(
βλ · R+ βm · M+ 1

4 tr(βKF
ψ
µνF

ψµν) + tr(βΛM
4)
)

+ µ−ε∇µ
(
Zµ + Zµm

)
, (4.32)

where

Zmµ = −∂µtr(hM2) + tr
(
(r− sβ̂g + rγm)MDψ

µM
)
+∂µg tr

(
(s− tβ̂g + sγm)M2

)
. (4.33)

This gives rise to new consistency conditions by requiring the finiteness of

2h− r + sβ̂g − rγm , (4.34a)

h′ − s+ tβ̂g − sγm , (4.34b)

which in turn are equivalent to the finite relations

2βh − κr + κsβ
g − κrγm = −

(
βg

∂

∂g
− 2γm

)
S , S = − 1

2gs
1 , (4.35a)

β′h − κs + κtβ
g − κsγm = −

(
βg

∂

∂g
− 2γm + βg ′

)
T + γ′mS , T = − 1

2gt
1 .(4.35b)

(4.35a) shows how βh can be determined in terms of κr, κs which need only calculations
restricted to flat space.
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5. Calculations

The various renormalization functions introduced in the previous section are calcula-
ble in the usual perturbative loop expansion. To achieve this for the curvature-dependent
terms we adopt a method of calculation developed by us earlier, within dimensional reg-
ularisation, which allows for the singular poles in ε to be found for an arbitrary spatial
metric in a completely covariant fashion [18]. This depends on an expansion of the Green
functions, defining the quantum field propagators in the presence of background classical
fields and metric, based on the DeWitt [19] heat kernel expansion. The Green functions
correspond to the differential operators acting on the quantum fields φ when the action
is expanded to quadratic order in φ. From (4.2), eliminating b and setting Kµ, L to zero
and in the gauge (4.4), these are

∆µν
a = −Dc2γµν − 2F cµν × + Y µνa ,

∆gh = −Dc2 + Ygh 1 ,

Y µνa = Rµν +∇µvν +∇νvµ − γµν(∇σvσ − vσvσ) , Ygh = −∇σvσ + vσvσ ,

(5.1)

where Y µν , Ygh are gauge singlets, vµ = ∂µg/g arising from the x dependent coupling g.
For the fermion fields the appropriate second-order operator is

∆ψ =
(
− γµDψ

µ +M
)(
γνDψ

ν +M
)

= −Dψ2 − γµDψ
µM − 1

2γ
µγνFψµν +M2 + 1

4R 1 .
(5.2)

At one loop then

Γ(1) = −`n det ∆a + `n det ∆gh + 1
2 `n det ∆ψ . (5.3)

and the additional counterterms necessary for curved space and x dependent g are found
from the standard formula for the coincident DeWitt coefficient a2 as

S̃(1)
o =

1

16π2ε

∫ (
(nV − 2nF )

1

180
(3F −G)− 1

24
(2nV − nF )RαβγδRαβγδ

+
nV
2

tr
(1

6
R− Ya

)2

− nV
(1

6
R− Ygh

)2

− nF
2
R2

)
.

(5.4)

In terms of (2.5) this gives

λ(1) · R =
1

16π2ε

(
− 1

20
(2nV + nF )F +

1

360
(62nV + 11nF )G

+ nV
(
2Gµνvµvν +Hv2 − (∇µvµ)2 − v2v2

))
.

(5.5)

At two loops the amplitudes depend on the cubic and quartic pieces in the expansion
of Lq, in particular

Lq3 = g aµ × aν ·D′cµ aν − g D′cµ c̄ · aµ × c .
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One loop subdivergences are cancelled by taking

∆(1)
aµν =

g2

16π2ε

(
2

3
(5C − 4R)

(
−Dc2γµν +Dc

µD
c
ν − 2F cµν × + v2γµν − vµvν

)
+ 4C

(
∇σvσ γµν + 2vνD

c
µ + 2vµvν

))
,

∆
(1)
gh = D′c Tµ D′µ(1)

o , D′µ(1)
o =

g2

16π2ε
(Dc

µ − vµ) ,

(5.6)

which are in accord with (4.8) assuming the usual one loop results

Z(1)
g =

2

3
(11C − 4R)

g2

16π2ε
, Z

(1)
β = − 1

2 (3 + ξ)
Cg2

16π2ε
, Z(1)

γ = −ξ Cg2

16π2ε
, (5.7)

for ξ = 1 and where facdfbcd = Cδab, tr(tatb) = −Rδab. After subtraction of subdiver-
gences and taking into account the various d-dependent factors in (2.6) we obtain

λ(2) · R =
nV g

2

(16π2ε)2

(
ε

9

(
C − 7

8
R
)
F

− 2

3
(11C − 4R)

(
2Gµνvµvν +Hv2 − (∇σvσ)2 − 2v2∇σvσ − 2v2v2

)
+
ε

6
(51C − 20R)

(
2Gµνvµvν − (∇σvσ)2

)
+
ε

6
(29C − 12R)Hv2

− ε

3
(7C − 4R)v2∇σvσ −

5ε

9
(23C − 4R)v2v2

)
.

(5.8)

An important consistency check is that the double poles are in accord with the renormal-
ization group equation (2.8).

In addition we have calculated the M dependent terms in (4.23). At one loop

λ(1) · M =
1

16π2ε

(
H tr(M2) + 2 tr(Dψ

µMDψµM)
)
, (5.9)

while at two loops

λ(2) · M =
1

(16π2ε)2

(
1
2 (12− 11ε)g2H tr(t2M2) + (12− 5ε)g2 tr(t2Dψ

µMDψµM)

+ (12− 11ε)2g∂µg tr(t2MDψ
µM)− 24ε ∂µg∂µg tr(t22M2)

)
.

(5.10)

Again the double poles are in accord with the renormalization group equation (4.26) since

γ(1)
m = −6t2

g2

16π2
. (5.11)
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From (5.5) and (5.8) we obtain, apart from (2.9), to two-loop order

βa =
1

16π2

(
− 1

20

(
2nV + nF

)
+

2

9
nV

(
C − 7

8
R
)
h

)
, h =

g2

16π2
,

χg = −2χa =
nV

16π2g2

(
4 +

4

3
(51C − 20R)h

)
,

χf =
nV

16π2g2

(
2 +

2

3
(29C − 16R)h

)
, χe = 0 ,

χb =
nV

16π2g3

(
4 +

16

3
(11C − 4R)h

)
,

χc = − nV
16π2g4

(
8 +

4

9
(341C − 76R)h

)
,

(5.12)

while 16π2βK = − 4
3 + 4t2h. We have checked that these expressions are consistent with

the various conditions flowing from the finiteness of (3.9a...h). In particular from (3.15)
and (3.20) to this order

gW = 4Y =
nV

16π2

(
2 +

1

3
(51C − 20R)h

)
. (5.13)

Using (3.19) and (3.22) along with

1

g
βg(g) = −β0 h− β1 h

2 − β2 h
2 , β0 =

1

3
(11C − 4R) , (5.14)

gives

128π2βc =
2

3
β0β1nV h

3 +

(
β0β2 + β0β1

(17

4
C − 5

3
R
)

+
2

3
β1

2

)
nV h

4, (5.15a)

16π2βb = 16π2β0
b +

1

8
β1nV h

2 +
1

6

(
β1

(17

4
C − 5

3
R
)

+ β2

)
nV h

3 . (5.15b)

Of course beyond the lowest-order contribution, to order O(h3) and O(h2) in (5.15a) and
(5.15b) respectively, the results are sensitive to the choice of renormalisation scheme.
The lowest order terms obtained here agree, for the appropriate choice of β0, β1, with
previous results for QED and pure gauge theories [12].

In addition from (5.9) and (5.10) we obtain

16π2 βh = 2− 22t2h ,

16π2κr = 4− 20t2h ,

16π2 g κs = − 44t2h , 16π2 g2κt = −96t2h .

(5.16)

Since S, T are first nonzero at two loops it is straightforward to check that these results
satisfy (4.35a, b).
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As was mentioned in the introduction it may be possible to obtain a version of
Zamolodchikov’s c-theorem in four-dimensional field theories and to the extent that χg is
positive definite this has been verified by our perturbative treatment as in (3.17b) with C
defined by (3.18). For fermions coupled to gauge fields with a simple gauge group so that
there is a single coupling g there is the usual UV-fixed point as g → 0 so long as β0 > 0
and C → C0 where for an SU(N) gauge theory with f fermions in the fundamental
representation C0 is given by (1.2).

An infrared stable fixed point may be realised perturbatively if 0 < β0 � −β1 in
(5.14), when,

h∗ =
g2
∗

16π2
≈ β0

|β1|

(
1 +

β0β2

β1
2

)
.

In the large-N limit this situation may be achieved with h∗N expressible as a power
series in 1/N , as was realised some time ago [15], if there are sufficiently many fermions.
Choosing f = 11

2 N − k with k � N then, since R = 1
2f ,

β0 =
2

3
k , −β1 ≈

25

2
N2 − 13

3
Nk , −β2 ≈

701

12
N3 , (5.17)

using the results of Tarasov et al. [20] for β2 which they obtained in a MS scheme
consistent with our calculations. In this case

h∗N ≈
4

75

k

N

(
1 +

548

752

k

N

)
. (5.18)

Although in the mass-independent dimensional regularisation scheme used here this fixed
point is independent of fermion mass terms it is only relevant to the long distance be-
haviour when all physical masses are zero so we suppose that M = 0. From (5.15b) we
find, despite the unpleasant numerical coefficient in β2 in (5.17), the relatively simple
form

C∗ − C0 ≈ −
8

5
k2 − 1

5

(28

25

)2 k3

N
. (5.19)

The arbitrariness in the choice of regularisation procedure disappears at the fixed point
where also βc = 0. At this fixed point the anomalous dimension of the scalar operator
1
4 [Fµν · Fµν ] becomes βg ′ ≈ 2β2

0/|β1| ≈ (4/15)2k2/N2 and also

γm(g) ≈ 3Nh+
31

4
(Nh)2 , γm(g∗) ≈

4

25

k

N
+

3

25

(14

25

)2( k
N

)2

. (5.20)

The interpretation of these results is nevertheless unclear but will perhaps be of relevance
when the scale-invariant theory defined in this fashion is better understood.
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6. Scalar Field Theories

The gauge theories treated in sections 4 and 5 depend only on a single coupling g.
This restriction may be relaxed by considering renormalisable field theories for a multi-
component scalar field φi when the basic coupling becomes a symmetric tensor gijk`.
Neglecting any other fields the initial Lagrangian has the form

L = K(A, φ) + V (φ) ,

K(A, φ) = 1
2 (Dµφ)TDµφ , Dµφ = ∂µφ+Aµφ , AT

µ = −Aµ ,
(6.1)

for V (φ) a general quartic polynomial in φ, ∂i∂j∂k∂`V = gijk` and Aµ a background
gauge field.

Conventionally in order to ensure a finite quantum field theory it is sufficient to take

L̃o = Lo − µ−ε 1
4 tr
(
KFµνFµν

)
,

Lo = K(A, φo) + Vo(φo) , φoi = µ−
1
2 εZijφj ,

Vo(φo) = µ−ε
(
V (φ) + LV (φ)

)
, LV = O

(
V ′′2, V ′′′4, V ′′V ′′′2

)
,

(6.2)

assuming V (φ) is gauge invariant under gauge transformations on Aµ, φ, so that ∂µV (φ) =
V ′(φ)TDµφ. The corresponding β functions are defined as usual as in (2.4), in particular

β̂V (φ) = µ
d

dµ
V (φ)


Vo, φo

, ∂i∂j∂k∂`β̂
V = β̂gijk` = −ε gijk` + βgijk` . (6.3)

To three loop order, with dimensional regularisation and minimal subtraction so that
in (6.2) LV and Z − 1 contain just poles in ε,

β̂V = εV + Viγ̂ijφj

+
1

16π2
1
2 VijVij −

1

(16π2)2
1
2 VijVik`Vjk`

+
1

(16π2)3

(1

4
gijmn gk`mnVikVj` −

3

16
gik`m gjk`mVinVjn + 2 gik`mVijVk`nVjmn

− 1

4
gk`mnVijVik`Vjmn −

1

8
Vik`Vjk`VimnVjmn +

1

2
ζ(3)VijkVi`mV`jnVnmk

)
,

γ̂ij = − 1
2ε δij +

1

(16π2)2

1

12
gik`m gjk`m −

1

(16π2)3

1

16
gik`m gjknp g`mnp , (6.4)

where ∂iV = Vi, . . . , Vijk` = gijk`. The result for β̂V was partially contained in our
previous background field calculations [17] and was completed by using old results for
the ε expansion of individual three loop graphs [21]. In general Z is arbitrary up to
Z → OZ for OTO = 1 but conventionally this is resolved by requiring that Z and hence
γ is symmetric.
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If the scalar field theory described by L in (6.1) is extended to curved space then it
is convenient to take

K(A, φ) = 1
2 (Dµφ)TDµφ+ 1

8 (d− 2)φTφH , H =
R

d− 1
, (6.5)

since this gives a conformally invariant contribution to the action for general d when
δγµν = 2σ γµν and δφi = 1

2 (d − 2)σφi. Furthermore if the couplings in V are allowed
to be x dependent and Aµ is also regarded as an arbitrary anti-symmetric gauge field
then, in order to define a finite quantum field theory, it is sufficient, by discarding total
derivatives, to include additional counterterms restricted to the form

L̃o = Lo +Q(φo)− µ−ελ̃ · R , (6.6a)

Lo = K(Ao, φo) + Vo(φo) , Aoµ = Aµ +NI(Dµg)I , N T
I = −NI , (6.6b)

λ̃ · R = λ · R+ 1
4 tr(KFµνFµν) + 1

2 tr(PIJFµν)(Dµg)I(Dνg)J , (6.6c)

Q = η H + δI (D2g)I + 1
2εIJ (Dµg)I(D

µg)J , (6.6d)

where gI ≡ gijk`. In these results we have assumed manifest invariance, as is automatic
in the background field formalism using dimensional regularisation, under simultaneous
gauge transformations on φ, Aµ, δφ = −ωφ, δAµ = ∂µω + [Aµ, ω], ωT = −ω, and also
on the couplings in V , δV (φ) = V ′(φ)Tωφ, so that (Dµg)I is defined as the appropriate
covariant derivative. Hence λ · R is just as in (2.5), depending on the dimensionless
coupling gI , but with ∂µ → Dµ. In general in (6.6a) Q involves operators of dimension
two or less formed by a quadratic polynomial in φ, with no derivatives, proportional to
H or two covariant derivatives of the couplings in V so that the overall dimension of Q
is four. However in (6.6d), and henceforth, we have assumed for simplicity that V (φ)
contains no terms cubic in φ which implies that we can also assume the structure for Q,
and hence also for η, δI and εIJ ,

Q(φo) = µ−εLQ(φ) , LQ(φ) = O
(
φ2, V ′′(φ)

)
, (6.7)

where LQ contains only poles in ε. In order to obtain renormalisation group equations
as in (2.7) additional β functions are necessary, in particular

β̂V + βQ − βλ̃ · R = µ
d

dµ
V

Vo+Q−µ−ελ̃·R, φo

, βAµ = µ
d

dµ
Aµ


Ao, go

= ρI(Dµg)I ,

βQ = βηH + βδI (D2g)I + 1
2β

ε
IJ (Dµg)I(D

µg)J ,

βλ̃ · R = βλ · R+ 1
4 tr(βKFµνF

µν) + 1
2 tr(βIJF

µν)(Dµg)I(Dνg)J .
(6.8)

As before we obtain*((
β̂V + βQ

)
· ∂
∂V

+ βAµ ·
∂

∂Aµ
− (γ̂φ)· ∂

∂φ
− ε
)
L̃o = µ−εβλ̃ · R , (6.9)

* If V (φ) =
∑

n
vnPn(φ), for Pn a complete set of functions of x and monomials in φ of degree

up to 4, and also B(φ) =
∑

n
bnPn(φ) then B ·

∂

∂V
=
∑

n
bn

∂

∂vn
.

24



which implies

βQ =
(
ε− β̂V · ∂

∂V
− βAµ ·

∂

∂Aµ
+ (γ̂φ)· ∂

∂φ

)
LQ − βQ · ∂

∂V
LV , (6.10a)

βλ̃ · R =
(
ε− β̂gI

∂

∂gI
− βAµ ·

∂

∂Aµ

)
λ̃ · R+ βQ · ∂

∂V
LQ , (6.10b)

so that βQ, βλ̃ are determined as usual just from the simple ε poles in LQ, λ̃.

Since L̃o has been constructed for arbitrary x dependent couplings finite local com-
posite operators may be defined by functional differentiation,[

B(φ)
]
= B · δ

δV
S̃o ,

[
(Dµφ)Tωφ

]
= ω · δ

δAµ
S̃o , ωT = −ω . (6.11)

Using gauge invariance of S̃o it is easy to derive the equation

∇µ
[
(Dµφ)Tωφ

]
−
[
(Dµφ)TDµω φ

]
=
[
V ′(φ)Tωφ

]
−(ωφ)· δ

δφ
S̃o ,

Dµω = ∂µω + [Aµ, ω] ,

(6.12)

while it is also useful to require the relation[
(Dµφ)Tσφ

]
= 1

2

(
∂µ
[
φTσφ

]
−
[
φTDµσ φ

])
, σT = σ , (6.13)

by taking it as a definition of the l.h.s.

Within this framework it is straightforward to adapt the treatment of sections 2 and
3 to derive a finite expression for the trace of the energy momentum tensor. Assuming
in (3.1) ∆φi = φi, so that δK(A, φ) = 4σK(A, φ) + 1

2∇µ(φTφ∂µσ) − 1
4ε φ

Tφ∇2σ, then
using (3.6) (3.2) is replaced by

γµνTµν = εL̃o −∆Vo −∆Q+∇µ
(
IQ + Ĩ

)µ−φ· δ
δφ
S̃o ,

∆Vo + ∆Q =
(

4− φ· ∂
∂φ

)
Vo +

(
2− φ· ∂

∂φ

)
Q = (∆V )· ∂

∂V
L̃o , (6.14)

∆V (φ) =
(

4− φ· ∂
∂φ

)
V (φ) , IQµ = − 1

4ε ∂µ(φTo φo) + 2 ∂µη + (2− ε)δI(Dµg)I ,

where Ĩµ comes from just the λ̃ · R term in L̃o. In ∆V the couplings in V are just
multiplied by their canonical dimension so that −∆V is the classical expression for γµνTµν
after using the equation of motion. (6.14) may be simplified by using (6.9) and (6.11),
noting that L̃o contains no derivatives of the couplings in ∆V , to give

γµνTµν =
[
β̂V + βQ−∆V

]
+
[
(Dµφ)TβAµφ

]
−µ−εβλ̃ · R

−
(
(1 + γ̂)φ

)
· δ
δφ
S̃o +∇µ

(
Jµ + µ−εZ̃µ(β̂g, βA)

)
.

(6.15)
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Z̃µ is the sum of the obvious extension of (3.8) to this case and

−AIJ (D2g)I(β
A
µg)J − 1

2BIJK (Dµg)I(D
µg)J(βAµg)K

− tr
(
PIJβAν

)
(Dµg)I(Dνg)J − 1

2 tr
(
{K, βAν}Fµν

)
−tr
(
PIJFµν

)
β̂gI (Dνg)J ,

(6.16)

resulting from the presence of Aµ in the covariant derivatives in λ · R and also the extra
terms in (6.6c). From (6.6d) and (6.14), using(

β̂g · ∂
∂g
− (γ̂φ)· ∂

∂φ

)
K(A, φo) =

(
β̂g · δ

δg
− (γ̂φ)· δ

δφ

)∫
K(A, φo) + 1

4ε∇
2
(
φTo φo

)
,

we obtain

Jµ = (Doµφo)TNI β̂
g
I φo + 1

4ε ∂µ
(
φTo φo

)
+ IQµ + εIJ (Dµg)I β̂

g
J − ∂µ(δI β̂

g
I ) + 2 δI(Dµβ̂

g)I + δI(β
A
µ g)I .

(6.17)

From (6.14) the ε ∂µ(φTo φo) terms cancel in Jµ. This is a direct consequence of the partic-
ular d-dependent factors in (6.5), other choices lead to non minimal terms in subsequent
equations which complicates the analysis. Since all other terms in (6.15) are finite op-
erators the sum of the last two terms, which are a total divergence, must also be finite.
Hence we write

Jµ =
[
(Dµφ)TSφ

]
+JΘµ + µ−εS · δ

δAµ

∫
λ̃ · R , ST = −S , (6.18a)

JΘµ = ∂µ
(
2 η − δIB̂

g
I

)
+δI

(
(2− ε)Dµg + 2DµB̂

g +BAµg
)
I + εIJ (Dµg)IB̂

g
J ,(6.18b)

B̂gI = β̂gI − (Sg)I , BAµ = βAµ +DµS = PI(Dµg)I , PI = ρI + ∂IS . (6.18c)

In order for (6.18a), given (6.17), to be possible it is necessary that

NI β̂
g
I = S +NI(Sg)I or NIB̂

g
I = S ⇒ S = −N1

I gI , (6.19)

so that S is determined by the simple poles in NI . From (6.18a) we may then write

∇µ
(
Jµ + µ−εZ̃µ(β̂g, βA)

)
= ∇µ

([
(Dµφ)TSφ

]
+JµΘ + µ−εZ̃µ(B̂g, BA)

)
, (6.20)

and since the operators appearing in JµΘ are independent of Z̃µ they must be separately
finite, at least up to contributions with a vanishing divergence, and hence

JΘµ = ∂µ[T ] + [UI ](Dµg)I . (6.21)

The finiteness of Z̃µ leads to similar conditions to (3.9a,...h) involving B̂g and BA, apart
from the extra terms in (6.17). Since the couplings for the operators appearing in JµΘ are
present only in Vo without any derivatives then from (6.18b) and (6.21) we can write

2 η − δIB̂gI = T · ∂
∂V

Vo , (6.22a)

(2− ε)δI + δJ
(
2 ∂IB̂

g + PIg
)
J + εIJ B̂

g
J = UI ·

∂

∂V
Vo , (6.22b)

T (φ) = Lδ,1I (φ)gI , UI(φ) = − 3Lδ,1I (φ)− Lε,1IJ (φ)gJ , (6.22c)
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where δI(φo) = µ−ε
∑
n L

δ,n
I (φ) ε−n with a similar expression for εIJ .

If (6.12) is used then (6.15) becomes

γµνTµν =
[
B̂V + βQ−∆V

]
+
[
(Dµφ)TBAµφ

]
−µ−εβλ̃ · R

−
(
(1 + γ̂ + S)φ

)
· δ
δφ
S̃o +∇µ

(
JµΘ + µ−εZ̃µ(B̂g, BA)

)
.

(6.23)

where

B̂V (φ) = β̂V (φ) + V ′(φ)TSφ . (6.24)

The definition for B̂g in (6.18c) is consistent with that for B̂V in (6.24). The replacement
of the β functions βV , βAµ by BV , BAµ in the final expression for the trace of the energy
momentum tensor in (6.23) is a reflection of the underlying gauge invariance since this
leads to an ambiguity in the definition of the β functions which is compensated by the
additional S dependent piece in (6.18c), (6.24). An entirely equivalent situation arises
in relation to diffeomorphisms in non linear σ models [22], in both cases the energy
momentum tensor is independent of such arbitrariness.

It is important to check that the consistency conditions (6.19) and (6.22a,b) are in
accord with renormalisation group equations, such as (6.9), determining the higher order

poles. Applying β̂gI ∂I to (6.19) and using (6.8) and (Sg)I∂I β̂
g
J = (Sβ̂g)J shows that this

is equivalent to

β̂gI
∂

∂gI
S = −ρIB̂gI or PIB̂

g
I = 0 . (6.25)

Similarly applying ε− β̂V · ∂
∂V

+ (γ̂φ)· ∂
∂φ

to both sides of (6.22a), along with (6.10a)

and (6.25), results in*

2βη − βδI B̂
g
I = −β̂V · ∂

∂V
T + T · ∂

∂V
β̂V , (6.26)

while (6.22b) corresponds to

(2− ε)βδI + βδJ
(
2 ∂IB̂

g + PIg
)
J + βεIJ B̂

g
J

= −B̂V · ∂
∂V

UI − UJ
(
∂IB̂

g + PIg
)
J + UI ·

∂

∂V
B̂V .

(6.27)

Since T is a scalar we may also let β̂V → B̂V on the r.h.s. of (6.26). The O(ε) parts of
(6.25), (6.26) and (6.27) are equivalent to the definitions of S, T and UI in (6.19) and
(6.22c).

* For a theory with a single component scalar field φ when V (φ) = 1
4!
gφ4 + 1

2
m2φ2 + . . . and

βV (φ) = 1
4!
βg(g)φ4 − 1

2
γm(g)m2φ2 + . . . then if T (φ) = −d(g)φ2 + . . . we have βQ(φ) = βη(g) 1

2
φ2H −

d′(g)∇2g φ2 + . . . and (6.26) gives βη = γmd as in refs. [11,12]
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The requirement for the additional counterterms in (6.6a,b) is first seen at two loops.
Using background field methods and extending our previous calculations for a curved
space background [17] then as part of the necessary two loop counterterms we find,

− 1

(16π2)2

1

ε

1

24

(
(DµV )ijk (DµV )ijk +

1

6
RVijkVijk

)
. (6.28)

Using (DµV )ijk = gijk`(Dµφ)` + (Dµg)ijk` φ` this can be cast in the form (6.6a,b) so
that, apart from the two loop contribution to γ̂ij in (6.4),

(
ρ

(2)
I hI

)
ij = − 1

(16π2)2

1

6
gk`m[i hj]k`m , S

(2)
ij = 0 ,

βQ(φ)(2) = − 1

(16π2)2

1

12
(Dµg)ik`m (Dµg)jk`m φiφj ,

UI(φ)(2)hI =
1

(16π2)2

1

12
gik`m hjk`m φiφj ,

(6.29)

for arbitrary hijk`. At three loops we obtain using the methods of [17], after carefully
taking into account the various d-dependent factors in (2.6) and (6.5)

λ(3)·R =
1

(16π2)3

1

ε

1

864

(1

3
FgIgI+2Gµν(Dµg)I(Dνg)I+H(Dµg)I(D

µg)I−(D2g)I(D
2g)I

)
,

(6.30)
and similarly to (6.28) there is an additional counterterm*

1

(16π2)3

1

ε2

1

24

(
2(1− 1

4ε)gijk` Vijm (D2V )k`m − ε (D2g)ijk` Vijm Vk`m

)
+

1

(16π2)3

1

ε2

1

18

(
−(1− 7

8ε)(Dµg)ijk` (Dµg)ijkm V`m + 1
2 ε (D2g)ijk` gijkm V`m

)
.

(6.31)
By discarding total derivatives this can be expressed in the form (6.6a,b), determining

Q(3) and N
(3)
I . We have checked that the results satisfy the pole equations such as

(6.10a,b) and give

(
ρ

(3)
I hI

)
ij =

1

(16π2)3

1

8
gk`mn gk`p[i hj]pmn , S

(3)
ij = 0 ,

βQ(φ)(3) =
1

(16π2)2

1

8

(
gk`m(n (Dµg)i)k`p (Dµg)jmnp φiφj − (D2g)k`mn gik`p gjmnp φiφj

+
7

6
(Dµg)ik`m (Dµg)jk`m Vij(φ) +

2

3
(D2g)ik`m gjk`m Vij(φ)

)
.(6.32)

* Apart from results contained in [17] we have used, in terms of notation defined there for flat

space G0(x, z)2
RG0(y, z)2

RG0(x, y) ∼ −
1

(16π2)3

1

3

{(
1

ε2
−

1

4ε

)
(∂2
x + ∂2

y)−
1

ε
∂2
z

}
δd(x, z)δd(y, z) where

G0(x, y)2
R = G0(x, y)2 −

1

8π2ε
δd(x, y).

28



The result for β
δ(3)
I is in accord with (6.27) given UI and εIJ from (6.29). In addition

T (φ)(3) =
1

(16π2)3

1

12

(
− 1

2 gk`mn gik`p gjmnp φiφj + 1
3 gik`m gjk`m Vij(φ)

)
.

From (6.26) this allows the calculation of the lowest order, four loop, contribution to βη,

2βη(φ) =
1

(16π2)4

1

6

(
− 1

6
Nk` gkmni g`mnj − gpqmn gpqk` gkmri g`nrj

+ grpq` grmnk g`mni gkpqj

)
φiφj , Nij = gik`m gjk`m .

(6.33)

This agrees with previous results [11,12] for a single component field.

From (6.30) we can also determine the lowest contribution to the metric on the space
of scalar couplings, as in (3.17a,b),

χ
g(3)
IJ =

1

(16π2)3

1

72
δIJ , W

(3)
I =

1

(16π2)3

1

216
gI . (6.34)

Since WI ∝ ∂I(gJgJ) (3.17a) becomes 8 ∂I β̃b = χgIJβ
g
J to this order. At four loops then

8β̃b = WIβ
g
I so βb remains zero. To the next order we expect corrections to χgIJ and

from an analysis of the relevant diagrams it is clear that there is a unique possibility
χgIJhIhJ ∝ gijk` hijmn hk`mn and that therefore WI = 1

12∂I(χ
g
JKgJgK). In this case

these terms do not contribute, in association with the one loop βg, to βb to five loop
order and we then obtain,

8βb =
1

(16π2)5

1

144

(
gijk` gijmn gpqkm gpq`n −

1

18
Nij Nij

)
. (6.35)

Also from (6.30) and (3.20) we obtain

χ
a(3)
IJ = − 1

(16π2)3

1

144
δIJ , Y (3) =

1

(16π2)3

1

432
gIgI . (6.36)

Hence (3.21a,b) give

8βc = − 1

(16π2)6

1

2160

(
6 gijk` gk`mn gmnpq giprs gjqrs

+12 gijk` gk`mn gmrpq gjspq ginrs −Nij gimk` gjmpq gk`pq
)
.

(6.37)

At higher orders the integrability of (3.16a,b), or (3.17a), provide non trivial constraints
on the form of βgI and the metric χgIJ . These arise initially at three loops for βg and five
loops for χg when there are seven potential independent terms, although WI is still a
total derivative 1

20∂I(χ
g
JKgJgK), and there are five linear relations on the coefficients for
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integrability. The compatibility of the three loop expression for βg with a gradient flow
was shown some time ago by Wallace and Zia [23].

7. Yukawa Couplings

Apart from gauge theories and scalar fields with quartic interaction terms the re-
maining renormalisable field theories are those involving Yukawa couplings of scalar fields
with Dirac fermions. The basic interaction is described by

Lψ = ψ̄
(
γµ
↔
∇µ +M(φ)

)
ψ , ∂iM = Γi = Γi

† . (7.1)

In general the couplings Γi may involve γ5 but to avoid any potential difficulties with
dimensional regularisation we exclude this possibility here. The hermitian matrix Γi then
defines a new coupling with a corresponding β function which to two loop order [24] for
no gauge interactions becomes

β̂Γ
i = Γj γ̂ji +

1

16π2

(
2 ΓjΓiΓj + 1

2

{
Γ2,Γi

})
+

1

(16π2)2

(
2
[
Γj ,Γk

]
ΓiΓjΓk − Γj

{
Γ2,Γi

}
Γj − 1

8

{
ΓjΓ

2Γj ,Γi
}

− 2 gijk`ΓjΓkΓ` − 4 tr(ΓjΓk)
(
ΓjΓiΓk + 3

8

{
ΓjΓk,Γi

}))
,

γ̂ij = − 1
2ε δij +

1

16π2
2 tr(ΓiΓj)

+
1

(16π2)2

( 1

12
gik`m gjk`m − 3 tr(Γ2Γ(iΓj))− 2 tr(ΓkΓiΓkΓj)

)
.

(7.2)

When Γi is allowed to be x-dependent it is necessary for a consistent renormalisation
procedure to introduce an arbitrary external gauge field Aψµ = −Aψ†µ in (7.1) so that

∇µ → Dψ
µ = ∇µ + Aψµ . The counterterms depending on the fermion field ψ may then

be absorbed by ψ → ψo = µ−εZψψ and also Aψµ → Aψoµ = Aψµ + N ·DµΓ as well as

M(φ) → Mo(φo), Γoi = µ
1
2 ε(Γi + LΓ

i ), where N and LΓ
i contain just poles in ε. As in

(6.8) we may define an appropriate β function βA
ψ

µ . When the discusion of the previous
section is extended to this case these additional terms give rise to modifications akin to
(6.24) arising from the essential arbitrariness under Γi → U†ΓiU for U†U = 1.

At one loop as part of the necessary counterterms we find a contribution

− 1

16π2ε

(
2 tr(DµMDµM) +

1

3
R tr(M2) + ψ̄Γiγ

µ↔Dψ
µΓiψ

)
, (7.3)

for DµM = ∂µM+[Aψµ ,M ]. Using DµM → ΓiDµφi+DµΓi φi , DµΓi = ∂µΓi+[Aψµ ,Γi]+
Aµ ijΓj , this can be cast into the required renormalised form leading to the one loop
contribution to γij in (7.2) and

βAµ ij = − 4

16π2
tr(Γ[iDµΓj]) , βA

ψ

µ = − 1

16π2
1
2 [Γi, DµΓi] ,

βQ(φ) = − 2

16π2
tr(DµΓiD

µΓj)φiφj .

(7.4)
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At two loops the essential counterterms, for the purposes of this paper, are given by

λ(2) · R =
1

(16π2)2

1

ε

1

6

(1

8
F tr(ΓiΓi) + 2Gµνtr(DµΓiDνΓi)

+H tr(DµΓiD
µΓi)− tr(D2ΓiD

2Γi)
)
.

(7.5)

This expression, apart from the F term, is similar in form to (6.30), both are determined
by the finiteness requirements of (3.9e,f) neglecting higher order O(β) terms. From (7.5)
the lowest order contribution to the metric for the Yukawa couplings is

h·χg(2) ·h =
1

(16π2)2

4

3
tr(hihi) , W (2) ·h = h· ∂

∂Γ

1

(16π2)2

1

6
tr(Γ2) , (7.6)

for any hermitian matrix hi of the same dimension as Γi. It is easy to see that (3.17a)
now becomes

h· ∂
∂Γ

8β̃b = h·χg ·βΓ , (7.7)

which is solved, to lowest order with the one loop βΓ in (7.2), by

8β̃b = W ·βΓ , or βb = 0. (7.8)

At the next order the corrections to (7.6) have not been calculated but should have the
general form,

(16π2)3 h·χg(3) ·h = x tr(h2Γ2) + y tr(ĥiΓiĥjΓj) + z tr(hiΓjhiΓj) + u tr(hihjΓiΓj)

+ v tr(hihjΓjΓi) + a tr(h2)tr(Γ2) + b tr(hiΓi)tr(hjΓj)

+ c tr(hihj)tr(ΓiΓj) + d tr(hiΓj)tr(hiΓj) + e tr(hiΓj)tr(hjΓi) ,

(16π2)3W (3) ·h = h· ∂
∂Γ

1

24

(
(x+ y + v)tr(Γ2Γ2) + (z + u)tr(ΓiΓjΓiΓj) (7.9)

+ (a+ b)tr(Γ2)tr(Γ2) + (c+ d+ e)tr(ΓiΓj)tr(ΓiΓj)
)
,

where ĥiΓi = 1
2 (hiΓi + Γihi). The requirement that (7.7) is integrable, along with (7.6)

and the two loop β function in (7.2), then imposes conditions on this expression for χg

which entail

1
2 (d+ e) = y + v = 2x+ 2

3 = 1
2u−

2
3 = z − 2 = c+ 10

3 , a = 2b .

Although this does not determine (7.9) entirely it does enable the calculation of the lowest
order non zero contribution to βb,

8βb =
1

(16π2)4

2

9

(1

8
tr(ΓiΓ

2ΓiΓ
2) + tr(ΓiΓjΓiΓjΓ

2) + tr(ΓiΓjΓiΓkΓjΓk)

− tr(ΓiΓjΓkΓiΓjΓk) + 3 tr(ΓiΓj) tr(ΓiΓjΓ
2 + ΓiΓkΓjΓk)

+ gijk` tr(ΓiΓjΓkΓ`)−
1

24
Nij tr(ΓiΓj)

)
.

(7.10)
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Besides partially determining (7.9) the integrability of (7.7) also depends on the particular
structure for the two loop β function in (7.2).* In addition the O(g) terms in (7.10), which
arise from the appropriate terms in βΓ(2), are also entailed by the additional terms in the
one loop expression for βg,

hI ∆βgI = hijk`
1

16π2

(
−48 tr(ΓiΓjΓkΓ`) + 8 gijkm tr(ΓmΓ`)

)
, (7.11)

in association with the lowest order contribution to the metric for the scalar couplings
(6.34) when variations of β̃b with respect to gI are considered.

For the counterterms corresponding to the bosonic part of (7.3) we find to the next
order

1

(16π2ε)2

{
− 4(1− 1

4ε)
(

tr
(
ΓiDµM ΓiD

µM
)
+

1

6
(1− 1

6ε)R tr
(
ΓiMΓiM

))
− 2(1− 3

4ε)
(

tr
(
Γ2DµM DµM

)
+

1

6
(1− 1

6ε)R tr
(
Γ2M2

))
− 2(1− 1

4ε) tr
(
ΓiDµΓiD

µMM +DµΓi ΓiMDµM
)

+ 4(1− 1
2ε) tr

(
DµΓiMDµΓiM

)
+4(1− 3

4ε) tr
(
D2ΓiMΓiM

)
− ε tr

(
D2Γi{Γi ,M2}

)
− 2(1− 1

4ε) tr
(
DµΓiD

µΓj
)
Vij + ε tr

(
D2Γi Γj

)
Vij

}
.

(7.12)

To achieve this expression, as well as (7.5), it is essential to take account of the d-
dependent factor in (6.5) which modifies the cancellation of subdivergences from straight-
forward minimal subtraction. The DµφD

µφ and Rφ2 terms in (7.12) are then in accord
with the form of K(A, φo) in (6.5) since 1

8 (d− 2)/(d− 1) ≈ 1
12 (1− 1

6ε). This result deter-
mines the appropriate Zij corresponding to the two loop Yukawa coupling contributions
to γij in (7.2). From (7.12) we may find Aoµ and Q to two loop order since if M → Γiφi
and (7.12) is expressed in the form

1
2 (Dµφ)TZ2Dµφ+ (Dµφ)TVµφ+ 1

2φ
TUφ , ZT = Z ,

then

Aoµ = Aµ + Z−1Vµ−Z
−1 − 1

2 [DµZ,Z
−1] , Vµ± = 1

2 (Vµ ± V Tµ ) ,

Q = µ−ε 1
2 φ

T
(
D2Z2 −DµV

µ
+ + (Vµ− − 1

2DµZ
2)Z−2(V µ− + 1

2D
µZ2) + U

)
φ .

A useful consistency check on these results is provided by the obvious extension of the
pole equations such as (6.10a) to this case, when it is necessary to use all the one loop

* For a general β
Γ(2)
i = P ΓjΓkΓiΓjΓk +QΓkΓjΓiΓjΓk +R 1

2
Γj{Γ2,Γi}Γj + S 1

2
{ΓjΓ2Γj ,Γi}+

I tr(ΓjΓk)ΓjΓiΓk + J tr(ΓjΓk) 1
2
{ΓjΓk,Γi} + K tr(Γ2Γ(iΓj))Γj + L tr(ΓkΓiΓkΓj)Γj + O(g) then it is

necessary that Q− 2R+ 8S = 0, Q+ I − 2J = 0, 2R− 2K +L = 0 which are of course compatible with
(7.2).
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results in (7.4). Furthermore we then obtain at two loops the extra pieces as compared
to (6.29)

∆βAµ ij =
1

(16π2)2

(
4 tr
(
ΓkΓ[iΓkDµΓj]

)
+3 tr

(
Γ2{Γ[i, DµΓj]}

)
+ 1

2 tr
(
[Γk, DµΓk][Γi,Γj ]

))
, (7.13a)

∆βQ(φ) =
1

(16π2)2

{(
2 tr
(
ΓkDµΓi ΓkD

µΓj +DµΓkD
µΓi ΓkΓj + ΓkDµΓiD

µΓk Γj
)

− 2 tr
(
DµΓk ΓiD

µΓk Γj
)
−4 tr

(
D2Γk ΓiΓkΓj

)
+ 3 tr

(
Γ2DµΓiD

µΓj +DµΓ2Dµ(ΓiΓj)
)
+2 tr

(
DµΓkD

µΓk ΓiΓj
)

− 1
2 tr
(
[Γk, DµΓk][Γi, DµΓj ]

)
−tr
(
{Γk, D2Γk}ΓiΓj

))
φiφj

+ tr
(
DµΓiD

µΓj
)
Vij(φ) + 2 tr

(
D2Γi Γj

)
Vij(φ)

}
. (7.13b)

The general discussion of section 6 may be extended to include Yukawa couplings if
we write for the additional contributions an analogous form to (6.8)

∆βAµ = ρ·DµΓ , ∆βQ = βδ ·D2Γ + 1
2 DµΓ·βε ·DµΓ . (7.14)

The corresponding version of (6.25) gives(
gI

∂

∂gI
+ 1

2 Γ· ∂
∂Γ

)
S = −ρIgI − 1

2 ρ·Γ , (7.15)

so that it is clear that S remains zero to two loop order. At one loop from (7.4)

(ρ·h)ij = − 4

16π2
tr(Γ[ihj]) , h·βε(φ)·h = − 4

16π2
tr(hihj)φiφj . (7.16)

To lowest order (6.27) becomes

2βδ ·h = −h·βε ·βΓ − βΓ · ∂
∂Γ

U ·h− U ·
(
h· ∂
∂Γ

βΓ + (ρ·h)Γ
)

+(U ·h)· ∂
∂V

βV , (7.17)

where

U(φ)·h =
2

16π2
tr(hiΓj)φiφj . (7.18)

Using the results (7.16) and (7.18) in (7.17) with the one loop βΓ from (7.2) and

βV (φ) =
1

16π2

(
1
2 Vij(φ)Vij(φ) + 2Vi(φ)tr(ΓiΓj)φj − 2 tr

(
M(φ)4

))
(7.19)

gives

βδ(φ)·h = − 2

(16π2)2

{(
tr
(
ĥkΓkΓiΓj

)
+2 tr

(
hkΓiΓkΓj

))
φiφj − tr

(
hiΓj

)
Vij(φ)

}
, (7.20)
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which can also be read off directly from (7.13b). From (6.22c) we then find

T (φ) = − 1

(16π2)2

1

2

{(
tr
(
Γ2ΓiΓj

)
+2 tr

(
ΓkΓiΓkΓj

))
φiφj − tr(ΓiΓj

)
Vij(φ)

}
. (7.21)

Using these results it is then possible to use (6.26) to calculate the lowest order three
loop contribution to βη,

2βη(φ) =
1

(16π2)3

{(
− 2 tr

(
ΓkΓ`ΓkΓ`ΓiΓj

)
+tr
(
Γ2{ΓkΓiΓk,Γj}

)
−4 tr

(
Γ`ΓkΓ`ΓiΓkΓj

)
+ 4 tr

(
ΓkΓ`ΓiΓ`ΓkΓj

)
− 1

2 tr
(
ΓkΓ2ΓkΓiΓj

)
+ 1

2 tr
(
Γ2ΓiΓ

2Γj
)

+ 6 tr
(
ΓkΓ`

)
tr
(
ΓkΓ`ΓiΓj

))
φiφj − 1

2 tr
(
ΓiΓj

)
Vk`i(φ)Vk`j(φ)

}
.

(7.22)

In principle it would also be possible to use (7.13b) to determine βε to two loops
and then use an extension of (7.17) to find βδ at three loops and hence the next order
corrections to (7.22). The appearance of curvature dependent pieces in Q is significant
since they are directly related to the so called improvement terms in the flat space energy
momentum tensor for scalar theories.

8. Conclusion

The analysis described in this paper shows how curvature dependent renormalisa-
tion quantities may be obtained from those restricted to flat space but involving local
composite operators and their products. However there is also an essential constraint on
ordinary β functions, as shown in the previous section for the Yukawa coupling at two
loops, arising from the integrability of the equations for the variation of the natural four
dimensional analogue of the Virasoro central charge. A further illustration of the non triv-
ial aspects of the integrability condition is provided by considering a scalar-fermion field
theory with also a coupling to a quantum gauge field. At one loop, if ta, t

φ
a are the gauge

group generators acting on the fermion, scalar fields V ′(φ)T tφaφ = 0, [ta,Γi] = tφa ijΓj ,
then there is an additional term in the Yukawa β function

∆βΓ
i =

g2

16π2
3
{
t2,Γi

}
. (8.1)

Using the metric in (7.6) we find

8 ∆β̃b =
4 g2

(16π2)3
tr(t2Γ2) . (8.2)

Hence considering now the variation with respect to g and using (5.12) this gives

∆βg =
2 g3

(16π2)2

1

nV
tr(t2Γ2) , (8.3)
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which is in accord with a direct two loop calculation [24]. Similarly there is also an extra
contribution to the scalar coupling β function,

∆βV (φ) =
3

16π2

(
g2 V ′(φ)T tφ2φ+ 1

2 g
4 φT tφat

φ
b φφ

T tφat
φ
b φ
)
. (8.4)

This then gives

8 ∆β̃b =
1

(16π2)4

1

12

(
g2 tr(Ntφ2) + 6 g4 gijk` (tφat

φ
b )ij(t

φ
at
φ
b )k`

)
, (8.5)

for Nij as in (6.33), which implies

∆βg =
1

(16π2)3

1

24

1

nV

(
g3 tr(Ntφ2) + 12 g5 gijk` (tφat

φ
b )ij(t

φ
at
φ
b )k`

)
. (8.6)

We are not aware of a three loop calculation with which this can be compared.

In order to derive a genuine c-theorem it is necessary that the metric given by χg

should be positive. This is true for the lowest order contributions calculated in (5.12),
(6.34) and (7.6). In essence this is a consequence of the finiteness condition for (3.9e) since
Aij is the leading divergent part of the composite operator two point function, see (2.17),
and in our conventions should be negative definite. (In two dimensions the positivity of
the analogous metric in the perturbative treatment discussed here would be implied by
a similar argument as that for Aij which is clearly related to Zamolodchikov’s discussion
[3] of positivity in general.) It may be possible to bound the remaining O(β) terms
in (3.9e) and hence show positivity in general. In any event at least at weak coupling
the effective metric on the space of coupling constants is positive and the flow of the C
function defined here by β̃b is monotonic.

Although many parts of this paper are perhaps rather technical in character it demon-
strates that the analysis of the conditions for finiteness of correlation functions involving
composite operators on a general curved space background lead to non trivial constraints
on the expressions for β functions that are not revealed in conventional discussions of
renormalisation. The essential results contained in sections 2 and 3 are relatively sim-
ple in character although as always detailed calculations in specific theories tend to be
complicated. It would be interesting to derive similar expressions within a more general
procedure.
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