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Advanced Quantum Field Theory: Examples 1 H. Osborn

Path Integrals and Feynman Graphs

1. Let

K(q, t; q0, t0) =
(

m

2πi(t− t0)

) 1
2

e
im

(q−q0)2

2(t−t0) , t > t0 .

be the amplitude for a particle to propagate from q0 at time t0 to q at time t. Show that∫
dq′K(q, t; q′, t′) K(q′, t′; q0, t0) = K(q, t; q0, t0) , t > t′ > t0 .

2. Show that the expression given for K in the last example satisfies

− 1
2m

∂2

∂x2
K(x, t; 0, 0) = i

∂

∂t
K(x, t; 0, 0) and lim

t→0
K(x, t; 0, 0) = δ(x)

Use these facts to express the solution of the Schrödinger equation for a free particle Ψ(x, t) in
terms of initial data Ψ(x, 0) and K(x, t; 0, 0). Check this result for Ψ(x, 0) = eikx with k constant.

3. For a harmonic oscillator with angular frequency ω

K(q, t; q0, 0) =
(

mω

2πi sinωt

) 1
2

exp
(
imω

(q2 + q0
2) cos ωt− 2qq0

2 sinωt

)
.

Verify

tr
(
e−βH

)
=

∫
dq K(q,−iβ; q, 0) , tr

(
Pe−βH

)
=

∫
dq K(q,−iβ;−q, 0) ,

where H is the usual harmonic oscillator Hamiltonian and P is the parity operator. The operator
trace is defined by tr(O) =

∑
n〈n|O|n〉 where {|n〉} is a complete orthonormal set of states. Note

that we must require Reβ > 0.

4. Consider the Lagrangian L = 1
2 q̇2 − 1

2c(t) q2. Show that the quantum amplitude K in this case
can be approximated

K(q, t; q0, t0) ≈
1

(2πiε)
1
2 (N+1)

∫ N∏
r=1

dqr eiS[q] , S[q] =
N∑

r=0

( 1
2ε

(qr+1 − qr)2 − 1
2εcrq

2
r

)
,

where we take qN+1 = q, t − t0 = T = (N + 1)ε and cr = c(tr) for tr = t0 + rε. Suppose Qr,
with Q0 = q0, QN+1 = q, is the solution of ∂

∂qr
S[q] = 0 for r = 1, . . . , N . Let q = Q + f where

f0 = fN+1 = 0. Show that S[q] = S[Q] + S[f ] where S[f ] = 1
2ε

∑
r,s frAN,rsfs and we define j × j

matrices Aj by

Aj =



2− ε2c1 −1 0 . . . 0 0
−1 2− ε2c2 −1 . . . 0 0
0 −1 2− ε2c3 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 2− ε2cj−1 −1
0 0 0 . . . −1 2− ε2cj





Hence obtain
K(q, t; q0, t0) ≈

1
(2πiε det AN )

1
2

eiS[Q] .

By expanding along the j’th row or column show that detAj = (2− ε2cj) detAj−1−det Aj−2. For
cr = 0 show that det AN = N + 1. If D(tj) = ε detAj show that as N →∞ we have

d2

dt2
D(t) = −c(t)D(t) , D(t0) = 0 , D′(t0) = 1 .

Solve this for c(t) = ω2. For any N show that the eigenvalues of AN are λn = 2(1−cos nπ
N+1 )−ε2ω2

for n = 1, . . . N and that λn ≈ ε2(n2π2

T 2 − ω2) as N → ∞. Use
∏N

n=1(2 cos θ − 2 cos nπ
N+1 ) =

sin(N + 1)θ/ sin θ to work out detAN for large N in this case. How does this compare with using
the large N approximation for λn?

5. Prove the identity
G(∂/∂b)F (b) = F (∂/∂u)G(u)eub|u=0

by assuming the functions F and G are expandable as power series (by linearity, it then suffices to
consider F (x) = xn and G(x) = xm). Extend this to the case of many variables.

6. Determine all connected one loop graphs, with their appropriate symmetry factors, which
contribute to 〈φ(x1)φ(x2)〉, 〈φ(x1)φ(x2)φ(x3)〉 and 〈φ(x1)φ(x2)φ(x3)φ(x4)〉, for an interaction given
by V (φ) = 1

6gφ3 + 1
24λφ4.

7. Using the expansion of

Z = exp
(1

2
∂

∂x
·A−1 ∂

∂x

)
exp

(
− V (x)

)∣∣∣
x=0

,

where V (0) = 0 and if Vi1...in
= ∂i1 . . . ∂in

V (x)
∣∣
x=0

with Vi = Vij = 0, determine possible three
loop connected vacuum diagrams which are one particle irreducible (cannot be made disconnected
by cutting one line). If V (n) denotes the n’th derivative of V at x = 0 and if for a given three
loop diagram the contribution is O(A−r

(
V (3))s3(V (4))s4(V (5))s5(V (6))s6

)
show that we must have

r−
∑

n sn = 2 and 2r =
∑

n nsn. Hence verify that there are two diagrams involving just V (4) and
one just V (6) and two just V (3) and 8 in all. What are the symmetry factors for each diagram?

8. A zero dimensional model for the functional integral in quantum field theory is obtained by
considering

Z(λ) =
1

(2π)
1
2

∫
dx e−

1
2 x2− 1

24 λx4
, λ > 0 .

Obtain the N ’th order perturbation expansion ZN (λ) =
∑N

n=0(−1)n
(

λ
24

)n (4n)!
22n(2n)!n! and hence

W (λ) = log Z(λ) = − 1
8λ + 1

12λ2 − 11
96λ3 + O(λ4). Show how the coefficients in the expansion of

W (λ) are the sums of the symmetry factors of the relevant connected vacuum diagrams (there is
one at two loops, two at three loops and four at four loops).

Why is Z(λ) < 1? If you have access to Mathematica or equivalent plot ZN (λ) for λ = 0.1
against N and show that there is a region of N where the result appears to converge to a precise
answer before blowing up for larger N . By expanding e−

1
2 x2

obtain a convergent strong coupling
expansion in terms of powers λ−

1
4 (2n+1), n = 0, 1, . . .. How many terms does one need for λ = 0.1

to get the previous result?


