
Mathematical Tripos Part III Lent Term 2012
Advanced Quantum Field Theory: Examples 3 H. Osborn

Feynman Graph and RG Calculations

1. Consider a theory in 4 dimensions which contains both scalar fields φ and spinor fields ψ. The interaction
lagrangian contains vertices of different types, labelled by r, which have the general structure λr φ

br ψ̄frψfr .
Show that the superficial degree of divergence of a diagram with EB external boson lines, EF external
fermion lines, and nr vertices of type r is

D = 4− EB − 3
2EF +

∑
rnrδr with δr = br + 3fr − 4 .

Relate δr to the dimension of the coupling constant λr. A fermion propagator behaves like 1/p for large
momentum p.

2. What renormalisable, polynomial interactions are allowed for a scalar field in d = 2 spacetime dimensions?
Draw all divergent connected one particle irreducible diagrams which arise for φ4 theory in d = 2. Are the
examples consistent with the statement that this theory can be rendered finite in the operator approach by
normal ordering? [In terms of diagrams, normal ordering is equivalent to the restriction that propagators
cannot begin and end on the same vertex.] What renormalisable interactions are allowed for a spinor
(fermion) field in d = 2?

3. With c, c′ > 0 let

I1(c) =
∫ ∞

0

dx
x1−ε

x+ c
, I2(c, c′) =

∫ ∞

0

dx
x1−ε

(x+ c)(x+ c′)
, I3(c) =

∫ ∞

0

dx
∫ ∞

0

dy
x1−ε y1−ε

(x+ c)(y + c)(x+ y + c)
.

For what ε are these integrals convergent? Using x−λΓ(λ) =
∫∞
0

dααλ−1e−αx for x > 0 and also the identity
Γ(1− ε)Γ(ε) = π/ sinπε evaluate the integrals to obtain

I1(c) = − π

sinπε
c1−ε , I2(c, c′) =

π

sinπε
c1−ε − c′1−ε

c− c′
, I3(c) = Γ(1− ε)2

(
Γ(2ε− 1)− Γ(ε)2

)
c1−2ε .

Determine the divergent parts of I1, I2, I3 as given by poles in ε. Note that for ε = 0 I3 has subdivergences
when x→∞ or y →∞. Explain why the subdivergences may be subtracted by considering

I3(c)−
2
ε
I1(c) ∼

1
ε2

(1− 1
2ε) c ,

which does not have any ln c divergent terms.

4. Using A−1 =
∫∞
0

dα e−αA prove the general Feynman parameter identity

1
A1A2 . . . An

= (n−1)!
∫ 1

0

dx1

∫ 1

0

dx2 . . .

∫ 1

0

dxn
δ(1− x1 − x2 − . . .− xn)

(x1A1 + x2A2 + . . .+ xnAn)n
.

5. Using (x2)−λΓ(λ) =
∫∞
0

dα αλ−1 e−αx2
evaluate

∫
ddx (x2)−λ ei p·x. Check that the result is consistent

with the standard Fourier inversion formula. Let G0(x) be the Green function whose Fourier transform is
1/p2. Calculate

∫
ddx G0(x)n ei p·x for n = 2, 3. Show that the poles in ε = 4 − d are in exact agreement

with one and two loop momentum space calculations. What happens for d ≈ 3? Why should we consider
n = 3, 4, 5 in this case?

6. For the scalar field theory with V (φ) = 1
2m

2φ2 + 1
24µ

ελφ4, with d = 4− ε and µ an arbitrary mass scale
so that λ is dimensionless, the counterterms necessary for a finite four dimensional theory are written as

Lc.t.(φ) = − 1
2A (∂φ)2 − 1

2B φ
2 − 1

24µ
ελDφ4 .



At one and two loops the non zero results of calculations are, for λ̂ = λ/16π2,

A(2) = − λ̂2

12ε
, B(1) =

λ̂m2

ε
, B(2) = λ̂2m2

(
2
ε2
− 1

2ε

)
, D(1) =

3λ̂
ε
, D(2) = 3λ̂2

(
3
ε2
− 1
ε

)
.

Find corresponding expressions for λ0,m
2
0 and determine βλ(λ) and γm2(λ) to two loop order. Check that

the ε−2 poles have the necessary coefficients.

7. Let τ̂n(p1, . . . , pn) be the one particle irreducible functions in four dimensions with n external lines with
incoming momenta pi after removal of a factor i(2π)4δ(

∑
pi). In φ4 theory, as calculated using dimensional

regularisation in the MS scheme, show that to one loop we may obtain the finite results

τ̂2(p,−p) = −p2 −m2 +
λm2

32π2

(
1− ln

m2

µ2

)
, τ̂4(p1, p2, p3, p4) = −λ− λ2

32π2

(
f(s) + f(t) + f(u)

)
,

where

f(s) =
∫ 1

0

dα ln
m2 − α(1− α)s

µ2
, s = −(p1 + p2)2 , t = −(p1 + p3)2 , u = −(p1 + p4)2 .

Show that τ̂2(p,−p) and τ̂4(p1, p2, p3, p4) satisfy the RG equations(
µ
∂

∂µ
+

3λ2

16π2

∂

∂λ
+
λm2

16π2

∂

∂m2

)
τ̂n =

{
O(λ2), n = 2;
O(λ3), n = 4.

For s = t = u and −s� m2 in τ̂4 verify that

τ̂4(p1, p2, p3, p4) = −
(

1
λ
− 3

32π2
ln

(−s
µ2

))−1

,

satisfies the equation with zero right hand side. Suppose τ̂4(p, p,−p,−p) = −λ′ for p2 = −m2 is an alternative
definition of the coupling. Find λ′ in terms of λ and express τ̂4 in terms of λ′ to O(λ′2). Note that τ̂4 is then
independent of µ but that the limit m2 → 0 is singular.

8. Consider a scalar field φ where V (φ) = 1
2m

2φ2 + 1
6µ

1
2 εgφ3 in dimension d and ε = 6 − d. Here µ is

an arbitrary mass scale so that g is dimensionless. Draw the one-loop one particle irreducible graph which
contributes to the propagator at order g2. Show that the divergent part of the corresponding integral using
dimensional regularisation for the six dimensional theory is

−1
ε

g2

(4π)3
(
m2 + 1

6p
2
)
,

where p is the external momentum. Using dimensional regularisation compute the divergence corresponding
to the one particle irreducible one-loop graph giving a g3 correction to three point function. Find also the one
loop divergence for the one point function. Show that these divergences in six dimensions may be cancelled
by introducing the counterterm Lagrangian

Lc.t.(φ) =
1
ε

1
6(4π)3

(
1
2g

2(∂φ)2 + µ−εV ′′(φ)3
)
.

Check that Lc.t. has dimension d.

9. For the six dimensional φ3 theory of the previous question express the bare g0,m
2
0 in terms of the

dimensionless coupling g and m2 and also an arbitrary scale mass µ to lowest order. Determine the beta
function βg(g) and also γm2(g) to lowest order and show that βg(g) < 0 for g small.

10. For a theory with multiple couplings gi the beta function βi(g) = µ d
dµg

i defines a vector field. Show
that under a redefinition gi → g′i(g) we have

β′i(g′) =
∂g′i

∂gj
βj(g) .

Show that for a single coupling with β(g) = b1g
3 + b2g

5 + O(g7) and g′(g) = g + O(g3) the first two terms
in the beta function are invariant. Show also that it is possible to choose g′(g) so that all terms other than
the first two are zero.


