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ABSTRACT

A local renormalisation group equation is formulated for renormalisable the-
ories which describes the effect of local Weyl rescalings of the metric. In two
dimensions the resulting equations are shown to correspond to Zamolodchikov’s
c-theorem and in four dimensions to give results which may have a similar sig-
nificance.

The conventional renormalisation group describes a flow in the space of
theories, as parameterised by a set of couplings, induced by a change in the overall
mass scale. In quantum field theory or statistical mechanical models, there is either
a natural or imposed cut off Λ at short distances but the theory becomes physically
relevant, and also the amplitudes and other observables are largely independent of
the initial cut off field theory when the correlation length, expressed in the units of
1/Λ diverges. In such a limit the dependence on Λ can be eliminated in favour of
an arbitrary finite mass scale µ which corresponds to a point on the renormalisa-
tion flow trajectory in the neighbourhood of an infra red stable fixed point. In this
neighbourhood the theory is characterised by a set of renormalisable couplings gi.
By introducing suitable explicit factors of µ gi may be assumed to be dimension-
less. In such continuum field theories the flow is generated by a differential operator
of the form

D = µ
∂

∂µ
+ βi ∂

∂gi
, (1)

where βi(g), the β function, is a vector field on the space of couplings. In general
βi(g) = kig

i + O(g2) where ki results from the explicit µ dependence introduced in
the basic action S and depends on the dimension of the operator Oi corresponding
to gi in S. For a strictly renormalisable theory in dimension d Oi has dimension
d and ki = 0.

For a field theory the physical amplitudes and other observables may be
expressed in terms of the vacuum energy W defined by a functional integral over



fields φ

eW =
∫
d[φ] e−S0 , (2)

with S0 formed from the initial action S and depending on the cut off Λ in such a
way that W (g) is a finite scalar function of the couplings gi as Λ → ∞. With an
appropriate renormalisation scheme W is invariant along the renormalisation flow
so that it obeys a homogeneous renormalisation group or Callan-Symanzik equation

DW (g) = 0 . (3)

If W is also regarded as a function of a constant spatial metric γµν , so that
(γµνx

µxν)
1
2 denotes the length of x, then by dimensional analysis W is invari-

ant under rescalings of length with a corresponding change in µ. This may also be
expressed as a differential equation(

µ
∂

∂µ
+ 2 γµν ∂

∂γµν

)
W = 0 . (4)

One approach to defining a local renormalisation group equation would be to al-
low the cut off and hence µ to be x dependent although the interpretation is not
clear1,2. Here we consider the extension of the usual renormalisation group to de-
scribe arbitrary local rescalings of the length3, as realised by Weyl transformations
γµν → e−2σγµν , with σ(x) arbitrary, when the field theory is defined to a curved
space background with general metric γµν(x). Such Weyl transformations form an
infinite dimensional abelian group extending the one dimensional group of constant
rescalings and which leads to the usual renormalisation group. The fixed points un-
der Weyl rescalings correspond to conformal field theories which, in two dimensions,
are the basic building blocks of string theories. The conditions for Weyl invariance
represent string equations of motion.

IfW is a finite functional of arbitrary local metrics γµν(x) then it is straight-
forward to define the expectation value of the energy momentum tensor Tµν(x) by
functional differentiation 〈

Tµν(x)
〉

= 2`
δ

δγµν(x)
W , (5)

where ` is some constant depending on conventions. Furthermore connected corre-
lation functions at non coincident points are similarly obtained.〈

Tµν(x)Tσρ(y) . . .
〉

= 2`
δ

δγµν(x)
2`

δ

δγσρ(y)
. . .W , x 6= y . (6)



Since we need to obtained well-defined local operator equations it is also necessary
to be able to define general finite local operators Oi(x) corresponding to the set of
renormalisable couplings gi and which form a closed set under operator mixing. A
very convenient formalism4,5,6 which ensures this is to allow all couplings gi to be
arbitrary functions of x so that they act as sources for the associated local operators
Oi. Although translational invariance is lost the essential renormalisability of the
theory should be maintained, although new counterterms depending on ∂µg

i will be
necessary. Such terms play a vital role in ensuring that it is possible to obtain finite
local composite operators by functional differentiation. We may therefore define〈

Oi(x)
〉

= `
δ

δgi(x)
W , (7)

with 〈Oi(x)Oj(y) . . .〉 also defined similarly to (5).
In this framework it is feasible to formulate finite equations representing

the effect of infinitesimal local Weyl transformations δγµν = 2σγµν . The generator
of such Weyl transformations is

∆W
σ = 2

∫
dv σ γµν δ

δγµν
, dv = ddx

√
γ , (8)

while the associated corresponding variation of the couplings, as determined by the
β function, is given by

∆β
σ =

∫
dv σ βi δ

δgi
, (9)

The essential local renormalisation group equation then takes the form

∆W
σ W = ∆β

σW + terms involving derivatives of γµν , g
i, σ . (10)

When the derivative terms are absent, for a flat background and gi, σ constant,
this reduces to the usual Callan-Symanzik equation given by (1), (3) and (4). It is
crucial that the additional terms in (10) should also be expressible as analogous local
functional derivatives of W . Assuming the cut off theory preserves invariance under
diffeomorphisms these derivative terms must also be invariant, and so derivatives
of the metric appear also in the form of the curvature tensor. (10) is equivalent to
the local equation

γµνTµν = βiOi +∇µZµ + curvature, ∂µg terms , (11)

where Zµ is a vector operator and the other terms are local scalars. The addi-
tional pieces in (10) or (11) may be calculated directly in the loop expansion for



renormalised perturbation theory, much effort has ensured knowledge of the cur-
vature dependent terms in the trace of the energy momentum tensor at one and
higher loops7 and the ∂µg terms in particular renormalisable theories have also
been recently calculated using dimensional regularisation4,6. These contributions
are strongly constrained by power counting.

Two Dimensional Theories

The analysis of the additional terms in (10) is simplest for two dimensional
field theories where we consider only terms proportional to the identity, or pure
c-numbers. We assume therefore that the dimensions of all other operators are
strictly positive and in particular neglect any vector operators that may be present.
In this case (10) becomes explicitly

∆W
σ W = ∆β

σW +
1
`

∫
dv σ

(
1
2 β

ΦR− 1
2 χij∂µg

i∂µgj
)
− 1
`

∫
dv ∂µσ wi∂

µgi . (12)

R is the scalar curvature while βΦ(g) in a string context is the dilaton β function.
χij(g) is a symmetric tensor while wi(g) is a vector on the space of couplings.
In renormalised perturbation theory only couplings gi corresponding to strictly
renormalisable interactions, so that Oi has dimension 2, appear.

Of courseW is arbitrary up to the addition of a local functional representing
the usual arbitrariness in the definition of renormalised couplings. In this case we
may consider

δW = −1
`

∫
dv

(
1
2bR−

1
2cij∂µg

i∂µgj
)

, (13)

It is easy to show that, using δσR = 2σR+ 2∇2σ, this gives

δβΦ = βi∂ib , δχij = Lβcij = βk∂kcij + ∂iβ
kckj + ∂jβ

kcik ,

δwi = − ∂ib+ cijβ
j . (14)

where Lβ denotes the Lie derivative. In general it should be noted that βΦ, χij , wi

cannot be transformed to zero, except if wi = ∂iX it is possible to take wi → 0 by
a choice of b.

The extra terms in (12) may be regarded as an anomaly for local scale
transformations and as usual they satisfy a consistency condition

0 =
[
∆W

σ −∆β
σ, ∆W

σ′ −∆β
σ′

]
W =

1
`

∫
dv (σ∂µσ

′ − σ′∂µσ)V µ ,

Vµ = ∂µβ
Φ − χij∂µg

iβj + βj ∂

∂gj

(
wi∂µg

i
)

. (15)



Since gi(x) is arbitrary the condition Vµ = 0 becomes

∂iβ
Φ = χijβ

j − Lβwi , Lβwi = βj∂jwi + ∂iβ
jwj . (16)

An alternative form is

∂iβ̃
Φ = χijβ

j + (∂iwj − ∂jwi)βj , β̃Φ = βΦ + wiβ
i , (17)

so that β̃Φ is stationary when βi = 0 and also

βi∂iβ̃
Φ = χijβ

iβj . (18)

Of course these equations (16), (17) and (18) are invariant under (14) when also
δβ̃Φ = cijβ

iβj .
The result (18) is equivalent to Zamolodchikov’s c-theorem8 if χij were

positive and (17) indicates that β̃Φ is effectively an action for the equations βi = 0.
(17) is sharper than (18), since the r.h.s. is constrained by integrability constraints.
This equation, for wi = 0, was also obtained by Zamolodchikov8 but only in lowest
order for perturbations around a conformal field theory.

The crucial equation (12) contains in concise form relations for correlation
functions which may be obtained by functional differentiation and then restricting
the flat space and also gi constant. In two dimensions the essential content is found
by considering just two point correlation functions. Thus by taking the derivative
of (12) with respect to γµν or gi we obtain〈

Tρρ(x)Tµν(0)
〉
−

〈
Θ(x)Tµν(0)

〉
= ` βΦ

(
∂2δµν − ∂µ∂ν

)
δ2(x) , (19a)〈

Tµµ(x)Oi(0)
〉
−

〈
Θ(x)Oi(0)

〉
= `wi∂

2δ2(x) , Θ = βiOi , (19b)

Furthermore (12) contains the renormalisation group equations, with D as in (1),

D
〈
Tµν(x)Tσρ(0)

〉
= 0 , (20a)

D
〈
Oi(x)Tµν(0)

〉
+∂iβ

j
〈
Oj(x)Tµν(0)

〉
= − ` ∂iβ

Φ
(
∂2δµν − ∂µ∂ν

)
δ2(x) , (20b)

D
〈
Oi(x)Oj(0)

〉
+∂iβ

k
〈
Ok(x)Oj(0)

〉
+∂jβ

k
〈
Oi(x)Ok(0)

〉
= − `χij∂

2δ2(x) .(20c)

The differentiation automatically generates the anomalous dimension matrix ∂iβ
j

for the operators Oj . This r.h.s. of (19a,b) and (20c) may be regarded as alterna-
tive definitions of βΦ, wi and χij , χij arises as a result of the additional divergences
present in the two point correlation functions of operators Oi not removed by con-
ventional renormalisations which ensure that Oi is a finite local operator. The r.h.s.



of (20b) is dictated by compatibility with (19a) and it is not difficult to derive the
essential result (16) by consistency.

To see in more detail the connection with Zamolodchikov’s c-theorem we
write 〈

Tµν(x)Tσρ(0)
〉

=
(
∂2δµν − ∂µ∂ν

)(
∂2δσρ − ∂σ∂ρ

)
Ω(t) ,〈

Tµν(x)Oi(0)
〉

=
(
∂2δµν − ∂µ∂ν

)
∂2Ωi(t) ,〈

Oi(x)Oj(0)
〉

= ∂2∂2Ωij(t) , t = 1
2 lnµ2x2 . (21)

With these definitions, choosing ` = −4π, we may obtain

Ω′(t)− βiΩ′
i(t) = −2βΦ , Ω′

i(t)− βjΩ′
ij(t) = −2wi ,

Ω′′ + LβΩ′ = 0 , Ω′′
i + LβΩ′

i = 2∂iβ
Φ , Ω′′

ij + LβΩ′
ij = 2χij , (22)

where Ω′(t) = ∂tΩ(t) (clearly any constants in Ω, Ωi or Ωij are irrelevant). The
Zamolodchikov metric is defined by

Gij(t) = 1
8 (x2)2

〈
Oi(x)Oj(0)

〉
, (23)

and is positive for unitary theories. Using (21) and (22) we find

Gij = 1
2Ω′′

ij− 1
2Ω′′′

ij + 1
8Ω′′′′

ij = χij +Lβcij , cij = − 1
2Ω′

ij + 1
2Ω′′

ij− 1
8Ω′′′

ij . (24)

Clearly therefore χij is equivalent to the positive Gij under the arbitrariness ex-
pressed by (16). At the same time we therefore define

Wi = wi + cijβ
j = − 1

2Ω′
i + 1

2Ω′′
i − 1

8Ω′′′
i ,

1
3C = βΦ +Wiβ

i = − 1
2Ω′ + 1

2Ω′′ − 1
8Ω′′′ , (25)

where C is equivalent to Zamolodchikov’s definition, if F = 1
8z

4〈Tzz(x)Tzz(0)〉,
G = 1

8z
2x2〈Tzz(x)Tµµ(0)〉, H = 1

8 (x2)2〈Tµµ(x)Tνν(0)〉 then C = 4F − 2G − 3
4H,

H = Gijβ
iβj . Since (16,17) are invariant under (14)

1
3∂iC = Gijβ

j + (∂iWj − ∂jWi)βj , (26a)
1
3C

′ = − βi∂iC = −Gijβ
iβj ≤ 0 , (26b)

where (26b) is the essential result of Zamolodchikov’s c-theorem. There is no simple
definition for Wi in terms of linear combinations of correlation functions for x 6=



0, similar to Gij in (23) or C, which remains valid in the limit of a conformal
field theory. For βi = 0 Wi = wi is determined by a contact term ∝ ∂z

2δ2(x)
in the operator product of Tzz(x) and Oi(0) which is presumably only present
for marginal operators. Given the definition (25) for Wi it is straightforward to
see directly that 1

8 (x2)2〈Tµµ(x)Oi(0)〉 = 1
2Ω′′

i − 1
2Ω′′′

i + 1
8Ω′′′′

i = LβWi + ∂iβ
Φ =

∂i
1
3C − (∂iWj − ∂jWi)βj = Gijβ

j . When βi = 0 〈Tµµ(x)Tνν(0)〉 ∝ ∂2δ2(x) but
this can be removed by a counterterm breaking two dimensional reparameterisation
invariance. In such conformal field theories 〈Tzz(x)Tzz(0)〉 = 2C/z4 so that C
becomes the central charge in the Virasoro algebra. Many authors9 have calculated
the renormalisation flow of C in conformal field theories perturbed by just relevant
operators, i.e. operators with dimension slightly less than 2, and found consistency
with the framework of the c-theorem.

Four Dimensional Field Theories

The previous discussion may be extended to four dimensional field theo-
ries, although with significant additional complications since many more terms are
possible3,6. While in two dimension the essential operator equation on a curved
background but for constant couplings is

γµνTµν = βiOi + 1
2β

ΦR , (27)

in four dimensions

γµνTµν = βiOi − βa F − βbG− βc
1
9R

2 + d 1
3∇

2R ,

F = RαβγδRαβγδ − 2RαβRαβ + 1
3R

2 ,

G = RαβγδRαβγδ − 4RαβRαβ +R2 , (28)

neglecting any curvature terms involving lower dimension operators. Each of the co-
efficients βa, βb, βc has been considered as possible candidate for a generalisation of
the c-theorem10,11. Neglecting lower dimension operators the local renormalisation
group equation becomes (taking ` = −1 now)

∆W
σ W = ∆β

σW +
∫
dv σ B +

∫
dv ∂µσZµ −

∫
dv∇2σA ,

B = βa F + βbG+ 1
9βcR

2

+ 1
3χ

e
i∂µg

i ∂µR+ 1
6χ

f
ij∂µg

i∂µgj R+ 1
2χ

g
ij∂µg

i∂νg
j Gµν



+ 1
2χ

a
ij ∇2gi∇2gj + 1

2χ
b
ijk ∂µg

i∂µgj∇2gk + 1
4χ

c
ijk` ∂µg

i∂µgj∂νg
k∂νg` ,

Zµ = Gµν wi∂
νgi + 1

3RYi∂µg
i + Sij ∂µg

i∇2gj + 1
2Tijk ∂νg

i∂νgj∂µg
k ,

A = 1
3dR+ Ui∇2gi + 1

2Vij∂µg
i∂µgj , (29)

where Gαβ = Rαβ − 1
2γαβR is the Einstein tensor. This is equivalent to (28) when

∂µg
i = 0. Despite complications it is nevertheless possible to once more impose the

consistency condition

[
∆W

σ −∆β
σ, ∆W

σ′ −∆β
σ′

]
W = 0 . (30)

It is still important to recognise that the parameters βa, βb, . . . are arbitrary as a
consequence of possible local variations δW involving an integral over terms of the
same form as appearing in B in (29). In this case there are several independent
consistency relations but amongst these we may obtain

8∂iβb = χg
ij β

j − Lβwi , (31)

which is similar in form to (16). The other relations, which determine βc and
generalise earlier results obtained using dimensional regularisation12, are sensitive
to the presence of lower dimension operators3 so that for instance the expression
(28) for γµνTµν is modified by additional terms βa

ηOm
a

1
3R+ τa∇2Om

a for a basis of
operators Om

a of canonical dimension 2. None of the results involve the coefficient
βa in (28) since F is the square of the Weyl tensor. βa may be connected with the
spin 2 part of the correlation function 〈Tµν(x)Tσρ(0)〉 and analogous equation to
(26b) derived but they contain an extra term spoiling the monotonic flow11. βb is
not related to two point functions but should be definable by 3 point correlation
functions of Tµν in the limit of a conformal field theory when βi = 0. There is no
connection to any central charge of the conformal group in this case although in
both two and four dimensions it is the coefficient of the term in the trace of the
energy momentum tensor that integrates to give the Euler number that is relevant
in our discussion.

Although χg
ij has no presently known connection with a positive definite

metric, as occurs in two dimensions, the result (31) is nevertheless non trivial.
Writing (31) as

8∂iβ̃b = χg
ijβ

j + (∂iwj − ∂jwi)βj , 8β̃b = 8βb + wiβ
i , (32)



there are consistency conditions necessary for the integrability of β̃b. A general
renormalisable field theory in four dimensions is characterised by the following di-
mensionless parameters

gauge coupling g interaction gψ̄γµAa
µtaψ , ta

† = −ta ,

Yukawa coupling Γi ψ̄Γiφiψ , Γi
† = Γi ,

quartic scalar coupling λijk`
1
24λijk`φiφjφkφ` , (33)

for a simple gauge group. In perturbation theory at low orders wi = ∂iX and the
effective metric χg

ij has been calculated for each of the renormalisable couplings in
(33) to the first order in which there is a non zero result. If nV is the dimension of
the gauge group straightforward calculations6 give

χg
ijdg

idgj =
1

16π2

4nV

g2
(dg)2 1 loop

+
1

(16π2)2
4
3

tr(dΓidΓi) 2 loops

+
1

(16π2)3
1
72
dλijk` dλijk` 3 loops . (34)

This result is renormalisation scheme independent. At 2 loops there are corrections
∝ (dg)2 which have also been calculated and at 3 loops we expect further modifi-
cations to the first two terms of (34) as well as cross terms ∝ dgdΓi. To show the
non trivial nature of (32) we consider the one loop gauge coupling dependence of
the Yukawa β function

βΓ
i ∼

g2

16π2
3{t2,Γi} . (35)

Inserting this in (32), with wi → 0, leads to a prediction for the 2 loop Yukawa
coupling contribution to the gauge coupling β function

βg ∼ 2g3

(16π2)2
1
nV

tr(t2Γ2) , (36)

which is in accord with direct calculation. There are other consistency checks in-
volving the Yukawa β function at two loops and also the gauge coupling contribution
to βλ

ijk` which may also be verified6. Such conditions on β functions were suggested
some time ago by Wallace and Zia13 for purely scalar field theories, but they found
no constraints on βλ

ijk` due to the large number of possible terms in an arbitrary
metric at O(λ2). Here the relation between (35) and (36) arises since the lowest



order non zero results in (34) occur at differing numbers of loops for the different
couplings.

To derive a c-theorem it is essential to go beyond perturbative considera-
tions. At lowest order, or for a free theory,

β0
b =

1
90× 64π2

(
62nV + 11nF + nS

)
, (37)

for nV vectors, nF Dirac fermions and nS scalars. Cardy, who first proposed14

the possibility of a four dimensional c-theorem based on βb, has also suggested
an interesting application of a possible 4 dimensional c-theorem to QCD when at
short distances it is described by free gluons and quarks and at large distances,
assuming confinement and no quark mass terms, by an effective chiral Lagrangian
describing the massless Goldstone bosons arising from spontaneously broken chiral
symmetry. Such scenarios are beyond the scope of the treatment here. However
the results in four dimensions, with the positivity of the metric in (34), should
rule out the possibility of limit cycles or chaotic behaviour15 in the renormalisation
flow described by perturbatively calculated β functions in the neighbourhood of the
origin in the space of couplings, i.e. where perturbative calculations are valid.

References

1. G.M. Shore, Nucl. Phys. B286 (1987) 349.

2. V. Periwal, Comm. Math. Phys. 120 (1988) 71.

3. H. Osborn, Nucl. Phys. B363 (1991) 486.

4. H. Osborn, Nucl. Phys. B294 (1987) 595.

5. H. Osborn, Phys. Lett. B222 (1989) 97.

6. I. Jack and H. Osborn, Nucl. Phys. B343 (1990) 647.

7. I. Jack and H. Osborn, Nucl. Phys. B234 (1984) 331;
I. Jack, Nucl. Phys. B234 365 (1984); B253 (1985) 323.

8. A.B. Zamolodchikov, JETP Lett. 43 (1986) 43; Sov. J. Nucl. Phys. 46 (1988)
1090.

9. A.W.W. Ludwig and J.L. Cardy, Nucl. Phys. B285 [FS19] (1987) 687;
R.G. Pogosynan, Sov. J. Nucl. Phys. 48 (1987) 763;
D.A. Kastor, E.J. Martinec and S.H. Shenker, Nucl, Phys. B316 (1989) 590;
A.N. Redlich, Phys. Lett. 216B (1989) 129;



Y. Kitazawa et al. Nucl. Phys. B306 (1988) 425;
C. Crnokovic, G. Sotkov and M. Stanishkov, Phys. Lett. 226B (1989) 297;
M.T. Grisaru, A. Lerda, S. Penati and D. Zanon, Phys. Lett. 234B (1990) 88;
Nucl, Phys. B342 (1990) 564;
A. Capelli and J.I. Latorre, Nucl. Phys. B340 (1990) 659;
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