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Preface

These are lecture notes for the course on Black Holes in Part III of the Cambridge
Mathematical Tripos.
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Conventions

We will use units such that the speed of light is c = 1 and Newton’s constant is
G = 1. This implies that length, time and mass have the same units.

The metric signature is (−+ ++)

The cosmological constant is so small that is is important only on the largest
length scales, i.e., in cosmology. We will assume Λ = 0 in this course.

We will use abstract index notation. Greek indices µ, ν, . . . refer to tensor
components with respect to some basis. Such indices take values from 0 to 3. An
equation written with such indices is valid only in a particular basis. Spacetime
coordinates are denoted xµ. Abstract indices are Latin indices a, b, c . . .. These
are used to denote tensor equations, i.e., equations valid in any basis. Any object
carrying abstract indices must be a tensor of the type indicates by its indices e.g.
Xa

b is a tensor of type (1, 1). Any equation written with abstract indices can be
written out in a basis by replacing Latin indices with Greek ones (a → µ, b → ν
etc). Conversely, if an equation written with Greek indices is valid in any basis
then Greek indices can be replaced with Latin ones.

For example: Γµνρ = 1
2
gµσ (gσν,ρ + gσρ,ν − gνρ,σ) is valid only in a coordinate

basis. Hence we cannot write it using abstract indices. But R = gabRab is a tensor
equation so we can use abstract indices.

Riemann tensor: R(X, Y )Z = ∇XY −∇YX −∇[X,Y ]Z.
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Chapter 1

Spherical stars

1.1 Cold stars

To understand the astrophysical significance of black holes we must discuss stars.
In particular, how do stars end their lives?

A normal star like our Sun is supported against contracting under its own
gravity by pressure generated by nuclear reactions in its core. However, eventually
the star will use up its nuclear ”fuel”. If the gravitational self-attraction is to be
balanced then some new source of pressure is required. If this balance is to last
forever then this new source of pressure must be non-thermal because the star will
eventually cool.

A non-thermal source of pressure arises quantum mechanically from the Pauli
principle, which makes a gas of cold fermions resist compression (this is called
degeneracy pressure). A white dwarf is a star in which gravity is balanced by
electron degeneracy pressure. The Sun will end its life as a white dwarf. White
dwarfs are very dense compared to normal stars e.g. a white dwarf with the same
mass as the Sun would have a radius around a hundredth of that of the Sun. Using
Newtonian gravity one can show that a white dwarf cannot have a mass greater
than the Chandrasekhar limit 1.4M� where M� is the mass of the Sun. A star
more massive than this cannot end its life as a white dwarf (unless it somehow
sheds some mass e.g. in a supernova).

Once the density of matter approaches nuclear density, the degeneracy pressure
of neutrons becomes important (at such high density, inverse beta decay converts
protons into neutrons). A neutron star is supported by the degeneracy pressure of
neutrons. These stars are tiny: a solar mass neutron star would have a radius of
around 10km (the radius of the Sun is 7×105km). Recall that validity of Newtonian
gravity requires |Φ| � 1 where Φ is the Newtonian gravitational potential. At the
surface of a such a neutron star one has |Φ| ∼ 0.1 and so a Newtonian description

1



CHAPTER 1. SPHERICAL STARS

is inadequate: one has to use GR.
In this chapter we will see that GR predicts that there is a maximum mass

for neutron stars. Remarkably, this is independent of the properties of matter
at extremely high density and so it holds for any cold star. As we will explain,
detailed calculations reveal the maximum mass to be around 3M�. Hence a hot
star more massive than this cannot end its life as a cold star (unless it somehow
sheds some mass e.g. in a supernova). Instead the star will undergo complete
gravitational collapse to form a black hole.

In the next few sections we will show that GR predicts a maximum mass for
a cold star. We will make the simplifying assumption that the star is spherically
symmetric. As we will see, the Schwarzschild solution is the unique spherically
symmetric vacuum solution and hence describes the gravitational field outside
any spherically symmetric star. The interior of the star can be modelled using a
perfect fluid and so spacetime inside the star is determined by solving the Einstein
equation with a perfect fluid source and matching onto the Schwarzschild solution
outside the star.

1.2 Spherical symmetry

We need to define what we mean by a spacetime being spherically symmetric. You
are familiar with the idea that a round sphere is invariant under rotations, which
form the group SO(3). In more mathematical language, this can be phrased as
follows. The set of all isometries of a manifold with metric forms a group. Consider
the unit round metric on S2:

dΩ2 = dθ2 + sin2 θ dφ2. (1.1)

The isometry group of this metric is SO(3) (actually O(3) if we include reflections).
Any 1-dimensional subgroup of SO(3) gives a 1-parameter group of isometries, and
hence a Killing vector field. A spacetime is spherically symmetric if it possesses
the same symmetries as a round S2:

Definition. A spacetime is spherically symmetric if its isometry group contains
an SO(3) subgroup whose orbits are 2-spheres. (The orbit of a point p under a
group of diffeomorphisms is the set of points that one obtains by acting on p with
all of the diffeomorphisms.)

The statement about the orbits is important: there are examples of spacetimes
with SO(3) isometry group in which the orbits of SO(3) are 3-dimensional (e.g.
Taub-NUT space: see Hawking and Ellis).

Definition. In a spherically symmetric spacetime, the area-radius function r :
M → R is defined by r(p) =

√
A(p)/4π where A(p) is the area of the S2 orbit

Part 3 Black Holes March 13, 2015 2 H.S. Reall



1.3. TIME-INDEPENDENCE

through p. (In other words, the S2 passing through p has induced metric r(p)2dΩ2.)

1.3 Time-independence

Definition. A spacetime is stationary if it admits a Killing vector field ka which
is everywhere timelike: gabk

akb < 0.

We can choose coordinates as follows. Pick a hypersurface Σ nowhere tangent
to ka and introduce coordinates xi on Σ. Assign coordinates (t, xi) to the point
parameter distance t along the integral curve through the point on Σ with coor-
dinates xi. This gives a coordinates chart such that ka = (∂/∂t)a. Since ka is a
Killing vector field, the metric is independent of t and hence takes the form

ds2 = g00(xk)dt2 + 2g0i(x
k)dtdxi + gij(x

k)dxidxj (1.2)

where g00 < 0. Conversely, given a metric of this form, ∂/∂t is obviously a timelike
Killing vector field and so the metric is stationary.

Next we need to introduce the notion of hypersurface-orthogonality. Let Σ be a
hypersurface in M specified by f(x) = 0 where f : M → R is smooth with df 6= 0
on Σ. Then the 1-form df is normal to Σ. (Proof: let ta be any vector tangent to
Σ then df(t) = t(f) = tµ∂µf = 0 because f is constant on Σ.) Any other 1-form
n normal to Σ can be written as n = gdf + fn′ where g is a smooth function with
g 6= 0 on Σ and n′ is a smooth 1-form. Hence we have dn = dg∧df +df ∧n′+fdn′

so (dn)|Σ = (dg − n′) ∧ df . So if n is normal to Σ then

(n ∧ dn)|Σ = 0 (1.3)

Conversely:

Theorem (Frobenius). If n is a non-zero 1-form such that n∧ dn = 0 everywhere
then there exist functions f, g such that n = gdf so n is normal to surfaces of
constant f i.e. n is hypersurface-orthogonal.

Definition. A spacetime is static if it admits a hypersurface-orthogonal timelike
Killing vector field. (So static implies stationary.)

For a static spacetime, we know that ka is hypersurface-orthogonal so when defin-
ing adapted coordinates we can choose Σ to be orthogonal to ka. But Σ is the
surface t = 0, with normal dt. It follows that, at t = 0, kµ ∝ (1, 0, 0, 0) in our
chart, i.e., ki = 0. However ki = g0i(x

k) so we must have g0i(x
k) = 0. So in

adapted coordinates a static metric takes the form

ds2 = g00(xk)dt2 + gij(x
k)dxidxj (1.4)

Part 3 Black Holes March 13, 2015 3 H.S. Reall



CHAPTER 1. SPHERICAL STARS

where g00 < 0. Note that this metric has a discrete time-reversal isometry:
(t, xi) → (−t, xi). So static means ”time-independent and invariant under time
reversal”. The metric outside a rotating star can be stationary but not static
because time-reversal changes the sense of rotation.

1.4 Static, spherically symmetric, spacetimes

We’re interested in determining the gravitational field of a time-independent spher-
ical object so we assume our spacetime to be stationary and spherically symmetric.
By this we mean that the isometry group is R × SO(3) where the the R factor
corresponds to ”time translations” (i.e., the associated Killing vector field is time-
like) and the orbits of SO(3) are 2-spheres as above. It can be shown that any
such spacetime must actually be static. (The gravitational field of a rotating star
can be stationary but the rotation defines a preferred axis and so the spacetime
would not be spherically symmetric.) So let’s consider a spacetime that is both
static and spherically symmetric.

Staticity means that we have a timelike Killing vector field ka and we can foliate
our spacetime with surfaces Σt orthogonal to ka. One can argue that the orbit of
SO(3) through p ∈ Σt lies within Σt. We can define spherical polar coordinates on
Σ0 as follows. Pick a S2 symmetry orbit in Σ0 and define spherical polars (θ, φ) on
it. Extend the definition of (θ, φ) to the rest of Σ0 by defining them to be constant
along (spacelike) geodesics normal to this S2 within Σ0. Now we use (r, θ, φ) as
coordinates on Σ0 where r is the area-radius function defined above. The metric
on Σ0 must take the form

ds2 = e2Ψ(r)dr2 + r2dΩ2 (1.5)

drdθ and drdφ terms cannot appear because they would break spherical symmetry.
Note that r is not ”the distance from the origin”. Finally, we define coordinates
(t, r, θ, φ) with t the parameter distance from Σ0 along the integral curves of ka.
The metric must take the form

ds2 = −e2Φ(r)dt2 + e2Ψ(r)dr2 + r2dΩ2 (1.6)

The matter inside a star can be described by a perfect fluid, with energy momentum
tensor

Tab = (ρ+ p)uaub + pgab (1.7)

where ua is the 4-velocity of the fluid (a unit timelike vector: gabu
aub = −1), and

ρ,p are the energy density and pressure measured in the fluid’s local rest frame
(i.e. by an observer with 4-velocity ua).

Part 3 Black Holes March 13, 2015 4 H.S. Reall



1.5. TOLMAN-OPPENHEIMER-VOLKOFF EQUATIONS

Since we’re interested in a time-independent situation we assume that the fluid
is at rest, so ua is in the time direction:

ua = e−Φ

(
∂

∂t

)a
(1.8)

Our assumptions of staticity and spherical symmetry implies that ρ and p depend
only on r. Let R denote the (area-)radius of the star. Then ρ and p vanish for
r > R.

1.5 Tolman-Oppenheimer-Volkoff equations

Recall that the fluid’s equations of motion are determined by energy-momentum
tensor conservation. But the latter follows from the Einstein equation and the
contracted Bianchi identity. Hence we can obtain the equations of motion from
just the Einstein equation. Now the Einstein tensor inherits the symmetries of the
metric and so there are only three non-trivial components of the Einstein equation.
These are the tt, rr and θθ components (spherical symmetry implies that the φφ
component is proportional to the θθ component). You are asked to calculate these
on examples sheet 1.

If we define m(r) by

e2Ψ(r) =

(
1− 2m(r)

r

)−1

(1.9)

then the tt component of the Einstein equation gives

dm

dr
= 4πr2ρ (1.10)

The rr component of the Einstein equation gives

dΦ

dr
=
m+ 4πr3p

r(r − 2m)
(1.11)

The final non-trivial component of the Einstein equation is the θθ component
This gives a third equation of motion. But this is more easily derived from the
r-component of energy-momentum conservation ∇µT

µν = 0, i.e., from the fluid
equations of motion. This gives

dp

dr
= −(p+ ρ)

(m+ 4πr3p)

r(r − 2m)
(1.12)

We have 3 equations but 4 unknowns (m,Φ, ρ, p) so we need one more equation.
We are interested in a cold star, i.e., one with vanishing temperature T . Thermo-
dynamics tells us that T , p and ρ are not independent: they are related by the

Part 3 Black Holes March 13, 2015 5 H.S. Reall



CHAPTER 1. SPHERICAL STARS

fluid’s equation of state e.g. T = T (ρ, p). Hence the condition T = 0 implies a
relation between p and ρ, i.e, a barotropic equation of state p = p(ρ). For a cold
star, p is not an independent variable so we have 3 equations for 3 unknowns.
These are called the Tolman-Oppenheimer-Volkoff equations.

We assume that ρ > 0 and p > 0, i.e., the energy density and pressure of
matter are positive. We also assume that p is an increasing function of ρ. If this
were not the case then the fluid would be unstable: a fluctuation in some region
that led to an increase in ρ would decrease p, causing the fluid to move into this
region and hence further increase in ρ, i.e., the fluctuation would grow.

1.6 Outside the star: the Schwarzschild solution

Consider first the spacetime outside the star: r > R. We then have ρ = p = 0.
For r > R (1.10) gives m(r) = M , constant. Integrating (1.11) gives

Φ =
1

2
log (1− 2M/r) + Φ0 (1.13)

for some constant Φ0. We then have gtt → −e2Φ0 as r → ∞. The constant Φ0

can be eliminated by defining a new time coordinate t′ = eΦ0t. So without loss of
generality we can set Φ0 = 0 and we have arrived at the Schwarzschild solution

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dΩ2 (1.14)

The constant M is the mass of the star. One way to see this is to note that
for large r, the Schwarzschild solution reduces to the solution of linearized theory
describing the gravitational field far from a body of mass M (a change of radial
coordinate is required to see this). We will give a precise definition of mass later
in this course.

The components of the above metric are singular at the Schwarzschild radius
r = 2M , where gtt vanishes and grr diverges. A solution describing a static spher-
ically symmetric star can exist only if r = 2M corresponds to a radius inside the
star, where the Schwarzschild solution does not apply. Hence a static, spherically
symmetric star must have a radius greater than its Schwarzschild radius:

R > 2M (1.15)

Normal stars have R� 2M e.g. for the Sun, 2M ≈ 3km whereas R ≈ 7× 105km.
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1.7 The interior solution

Integrating (1.10) gives

m(r) = 4π

∫ r

0

ρ(r′)r′
2
dr′ +m? (1.16)

where m? is a constant.
Now Σt should be smooth at r = 0 (the centre of the star). Recall that any

smooth Riemannian manifold is locally flat, i.e., measurements in a sufficiently
small region will be the same as in Euclidean space. In Euclidean space, a sphere
of area-radius r also has proper radius r, i.e., all points on the sphere lie proper
distance r from the centre. Hence the same must be true for a small sphere on
Σt. The proper radius of a sphere of area-radius r is

∫ r
0
eΨ(r′)dr′ ≈ eΨ(0)r for small

r. Hence we need eΨ(0) = 1 for the metric to be smooth at r = 0. This implies
m(0) = 0 and so m? = 0.

Now at r = R, our interior solution must match onto the exterior Schwarzschild
solution. For r > R we have m(r) = M so continuity of m(r) determines M :

M = 4π

∫ R

0

ρ(r)r2dr (1.17)

This is formally the same as the equation relating total mass to density in Newto-
nian theory. But there is an important difference: in the Euclidean space of New-
tonian theory, the volume element on a surface of constant t is r2 sin θdr∧ dθ∧ dφ
and so the RHS above gives the total energy of matter. However, in GR, the
volume element on Σt is eΨr2 sin θdr ∧ dθ ∧ dφ so the total energy of the matter is

E = 4π

∫ R

0

ρeΨr2dr (1.18)

and since eΨ > 1 (as m > 0) we have E > M : the energy of the matter in the
star is greater than the total energy M of the star. The difference E −M can be
interpreted as the gravitational binding energy of the star.

In GR there is a lower limit on the size of stars that has no Newtonian analogue.
To see this, note that the definition (1.9) implies m(r)/r < 1/2 for all r. Evaluating
at r = R recovers the result R > 2M discussed above. (To see that this has no
Newtonian analogue, we can reinsert factors of G and c to write it as GM/(c2R) <
1/2. Taking the Newtonian limit c→∞ the equation becomes trivial.) This lower
bound can be improved. Note that (1.12) implies dp/dr ≤ 0 and hence dρ/dr ≤ 0.
Using this it can be shown (examples sheet 1) that

m(r)

r
<

2

9

[
1− 6πr2p(r) + (1 + 6πr2p(r))1/2

]
(1.19)
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Evaluating at r = R we have p = 0 and hence obtain the Buchdahl inequality

R >
9

4
M (1.20)

The derivation of this inequality assumes only ρ ≥ 0 and dρ/dr ≤ 0 and nothing
about the equation of state, so it also applies to hot stars satisfying these assump-
tions. This inequality is sharp: on examples sheet 1 it is shown that stars with
constant density ρ can get arbitrarily close to saturating it (the pressure at the
centre diverges in the limit in which the inequality becomes an equality).

The TOV equations can be solved by numerical integration as follows. Regard
(1.10) and (1.12) as a pair of coupled first order ordinary differential equations for
m(r) and ρ(r) (recall that p = p(ρ) and dp/dρ > 0). These can be solved, at least
numerically on a computer, given initial conditions for m(r) and ρ(r) at r = 0.
We have just seen that m(0) = 0. Hence just need to specify the value ρc = ρ(0)
for the density at the centre of the star.

Given a value for ρc we can solve (1.10) and (1.12). The latter equation shows
that p (and hence ρ) decreases as r increases. Since the pressure vanishes at the
surface of the star, the radius R is determined by the condition p(R) = 0. This
determines R as a function of ρc. Equation (1.17) then determines M as a function
of ρc. Finally we determine Φ(r) inside the star by integrating (1.11) inwards from
r = R with initial condition Φ(R) = (1/2) log(1 − 2M/R) (from (1.13)). Hence,
for a given equation of state, static, spherically symmetric, cold stars form a 1-
parameter family of solutions, labelled by ρc.

1.8 Maximum mass of a cold star

When one follows the above procedure then one finds that, as ρc increases, M
increases to a maximum value but then decreases for larger ρc:

The maximum mass will depend on the details of the equation of state of cold
matter. For example, taking an equation of state corresponding to white dwarf
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1.8. MAXIMUM MASS OF A COLD STAR

matter reproduces the Chandrasekhar bound (as mentioned above, one does not
need GR for this, it can be obtained using Newtonian gravity). Experimentally we
know this equation of state up to some density ρ0 (around nuclear density) but we
don’t know its form for ρ > ρ0. One might expect that by an appropriate choice
of the equation of state for ρ > ρ0 one could arrange for the maximum mass to
be very large, say 100M�. This is not the case. Remarkably, GR predicts that
there is an upper bound on the mass of a cold, spherically symmetric star, which
is independent of the form of the equation of state at high density. This upper
bound is around 5M�.

Recall that ρ is a decreasing function of r. Define the core of the star as the
region in which ρ > ρ0 where we don’t know the equation of state and the envelope
as the region ρ < ρ0 where we do know the equation of state. Let r0 be the radius of
the core, i.e., the core is the region r < r0 and the envelope the region r0 < r < R.
The mass of the core is defined as m0 = m(r0). Equation (1.17) gives

m0 ≥
4

3
πr3

0ρ0 (1.21)

We would have the same result in Newtonian gravity. In GR we have the extra
constraint (1.19). Evaluating this at r = r0 gives

m0

r0

<
2

9

[
1− 6πr2

0p0 + (1 + 6πr2
0p0)1/2

]
(1.22)

where p0 = p(r0) is determined from ρ0 using the equation of state. Note that the
RHS is a decreasing function of p0 so we obtain a simpler (but weaker) inequality
by evaluating the RHS at p0 = 0:

m0 <
4

9
r0 (1.23)

i.e., the core satisfies the Buchdahl inequality. The two inequalities (1.21) and
(2.24) define a finite region of the m0 − r0 plane:

The upper bound on the mass of the core is

m0 <

√
16

243πρ0

(1.24)
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CHAPTER 1. SPHERICAL STARS

Hence although we don’t know the equation of state inside the core, GR predicts
that its mass cannot be indefinitely large. Experimentally, we don’t know the
equation of state of cold matter at densities much higher than the density of
atomic nuclei so we take ρ0 = 5× 1014 g/cm3, the density of nuclear matter. This
gives an upper bound on the core mass m0 < 5M�.

Now, given a core with massm0 and radius r0, the envelope region is determined
uniquely by solving numerically (1.10) and (1.12) with initial conditions m = m0

and ρ = ρ0 at r = r0, using the known equation of state at density ρ < ρ0. This
show that the total mass M of the star is a function of the core parameters m0

and r0. By investigating (numerically) the behaviour of this function as m0 and
r0 range over the allowed region of the above Figure, it is found that the M is
maximised at the maximum of m0 (actually one uses the stricter inequality (1.22)
instead of (1.23) to define the allowed region). At this maximum, the envelope
contributes less than 1% of the total mass so the maximum value of M is almost
the same as the maximum value of m0, i.e., 5M�.

It should be emphasized that this is an upper bound that applies for any
physically reasonable equation of state for ρ > ρ0. But any particular equation
of state will have its own upper bound, which will be less than the above bound.
Indeed, one can improve the above bound by adding further criteria to what one
means by ”physically reasonable”. For example, the speed of sound in the fluid is
(dp/dρ)1/2. It is natural to demand that this should not exceed the speed of light,
i.e. one could add the extra condition dp/dρ ≤ 1. This has the effect of reducing
the upper bound to about 3M�.
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Chapter 2

The Schwarzschild black hole

We have seen that GR predicts that a cold star cannot have a mass more than a
few times M�. A very massive hot star cannot end its life as a cold star unless it
somehow sheds some of its mass. Instead it will undergo complete gravitational
collapse to form a black hole. The simplest black hole solution is described by
the Schwarzschild geometry. So far, we have used the Schwarzschild metric to
describe the spacetime outside a spherical star. In this chapter we will investigate
the geometry of spacetime under the assumption that the Schwarzschild solution
is valid everywhere.

2.1 Birkhoff’s theorem

In Schwarzschild coordinates (t, r, θ, φ), the Schwarzschild solution is

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dΩ2 (2.1)

This is actually a 1-parameter family of solutions. The parameter M take either
sign but, as mentioned above, it has the interpretation of a mass so we will assume
M > 0 here. The case M < 0 will be discussed later.

Previously we assumed that we were dealing with r > 2M . But the above
metric is also a solution of the vacuum Einstein equation for 0 < r < 2M . We will
see below how these are related. r = 2M is called the Schwarzschild radius.

We derived the Schwarzschild solution under the assumptions of staticity and
spherical symmetry. It turns out that the former is not required:

Theorem (Birkhoff). Any spherically symmetric solution of the vacuum Ein-
stein equation is isometric to the Schwarzschild solution.

Proof. See Hawking and Ellis.
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CHAPTER 2. THE SCHWARZSCHILD BLACK HOLE

This theorem assumes only spherical symmetry but the Schwarzschild solution
has an additional isometry: ∂/∂t is a hypersurface-orthogonal Killing vector field.
It is timelike for r > 2M so the r > 2M Schwarzschild solution is static.

Birkhoff’s theorem implies that the spacetime outside any spherical body is
described by the time-independent (exterior) Schwarzschild solution. This is true
even if the body itself is time-dependent. For example, consider a spherical star
that ”uses up its nuclear fuel” and collapses to form a white dwarf or neutron
star. The spacetime outside the star will be described by the static Schwarzschild
solution even during the collapse.

2.2 Gravitational redshift

Consider two observers A and B who remain at fixed (r, θ, φ) in the Schwarzschild
geometry. Let A have r = rA and B have r = rB where rB > rA. Now assume
that A sends two photons to B separated by a coordinate time ∆t as measured
by A. Since ∂/∂t is an isometry, the path of the second photon is the same as the
path of the first one, just translated in time through an interval ∆t.

Exercise. Show that the proper time between the photons emitted by A, as
measured by A is ∆τA =

√
1− 2M/rA∆t.

Similarly the proper time interval between the photons received by B, as mea-
sured by B is ∆τB =

√
1− 2M/rB∆t. Eliminating ∆t gives

∆τB
∆τA

=

√
1− 2M/rB
1− 2M/rA

> 1 (2.2)

Now imagine that we are considering light waves propagating from A to B. Apply-
ing the above argument to two successive wavecrests shows that the above formula
relates the period ∆τA of the waves emitted by A to the period ∆τB of the waves
received by B. For light, the period is the same as the wavelength (since c = 1):
∆τ = λ. Hence λB > λA: the light undergoes a redshift as it climbs out of the
gravitational field.

If B is at large radius, i.e., rB � 2M , then we have

1 + z ≡ λB
λA

=

√
1

1− 2M/rA
(2.3)

Note that this diverges as rA → 2M . We showed above that a spherical star must
have radius R > 9M/4 so (taking rA = R) it follows that the maximum possible
redshift of light emitted from the surface of a spherical star is z = 2.
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2.3. GEODESICS OF THE SCHWARZSCHILD SOLUTION

2.3 Geodesics of the Schwarzschild solution

Let xµ(τ) be an affinely parameterized geodesic with tangent vector uµ = dxµ/dτ .
Since k = ∂/∂t and m = ∂/∂φ are Killing vector fields we have the conserved
quantities

E = −k · u =

(
1− 2M

r

)
dt

dτ
(2.4)

and

h = m · u = r2 sin2 θ
dφ

dτ
(2.5)

For a timelike geodesic, we choose τ to be proper time and then E has the inter-
pretation of energy per unit rest mass and h is the angular momentum per unit
rest mass. (To see this, evaluate the expressions for E and h at large r where
the metric is almost flat so one can use results from special relativity.) For a null
geodesic, the freedom to rescale the affine parameter implies that E and h do not
have direct physical significance. However, the ratio h/E is invariant under this
rescaling. For a null geodesic which propagates to large r (where the metric is
almost flat and the geodesic is a straight line), b = |h/E| is the impact parameter,
i.e., the distance of the null geodesic from ”a line through the origin”, more pre-
cisely the distance from a line of constant φ parallel (at large r) to the geodesic.

Exercise. Determine the Euler-Lagrange equation for θ(τ) and eliminate dφ/dτ
to obtain

r2 d

dτ

(
r2 dθ

dτ

)
− h2 cos θ

sin3 θ
= 0 (2.6)

One can define spherical polar coordinates on S2 in many different ways. It is

convenient to rotate our (θ, φ) coordinates so that our geodesic has θ = π/2 and
dθ/dτ = 0 at τ = 0, i.e., the geodesic initially lies in, and is moving tangentially
to, the ”equatorial plane” θ = π/2. We emphasize: this is just a choice of the
coordinates (θ, φ). Now, whatever r(τ) is (and we don’t know yet), the above
equation is a second order ODE for θ with initial conditions θ = π/2, dθ/dτ =
0. One solution of this initial value problem is θ(τ) = π/2 for all τ . Standard
uniqueness results for ODEs guarantee that this is the unique solution. Hence we
have shown that we can always choose our θ, φ coordinates so that the geodesic is
confined to the equatorial plane. We shall assume this henceforth.

Exercise. Choosing τ to be proper time in the case of a timelike geodesic, and ar-
clength (proper distance) in the case of a spacelike geodesic implies gµνu

µuν = −σ
where σ = 1, 0,−1 for a timelike, null or spacelike geodesic respectively. Rearrange
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CHAPTER 2. THE SCHWARZSCHILD BLACK HOLE

this equation to obtain

1

2

(
dr

dτ

)2

+ V (r) =
1

2
E2 (2.7)

where

V (r) =
1

2

(
1− 2M

r

)(
σ +

h2

r2

)
(2.8)

Hence the radial motion of the geodesic is determined by the same equation as a
Newtonian particle of unit mass and energy E2/2 moving in a 1d potential V (r).

2.4 Eddington-Finkelstein coordinates

Consider the Schwarzschild solution with r > 2M . Let’s consider the simplest
type of geodesic: radial null geodesics. ”Radial” means that θ and φ are constant
along the geodesic, so h = 0. By rescaling the affine parameter τ we can arrange
that E = 1. The geodesic equation reduces to

dt

dτ
=

(
1− 2M

r

)−1

,
dr

dτ
= ±1 (2.9)

where the upper sign is for an outgoing geodesic (i.e. increasing r) and the lower
for ingoing. From the second equation it is clear that an ingoing geodesic starting
at some r > 2M will reach r = 2M in finite affine parameter. Dividing gives

dt

dr
= ±

(
1− 2M

r

)−1

(2.10)

The RHS has a simple pole at r = 2M and hence t diverges logarithmically as
r → 2M . To investigate what is happening at r = 2M , define the ”Regge-Wheeler
radial coordinate” r∗ by

dr∗ =
dr(

1− 2M
r

) ⇒ r∗ = r + 2M log | r
2M
− 1| (2.11)

where we made a choice of constant of integration. (We’re interested only in
r > 2M for now, the modulus signs are for later use.) Note that r∗ ∼ r for large
r and r∗ → −∞ as r → 2M . (Fig. 2.1). Along a radial null geodesic we have

dt

dr∗
= ±1 (2.12)
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2.4. EDDINGTON-FINKELSTEIN COORDINATES

r
2M

0

r∗

Figure 2.1: Regge=Wheeler radial coordinate

so
t∓ r∗ = constant. (2.13)

Let’s define a new coordinate v by

v = t+ r∗ (2.14)

so that v is constant along ingoing radial null geodesics. Now let’s use (v, r, θ, φ) as
coordinates instead of (t, r, θ, φ). The new coordinates are called ingoing Eddington-
Finkelstein coordinates. We eliminate t by t = v − r∗(r) and hence

dt = dv − dr(
1− 2M

r

) (2.15)

Substituting this into the metric gives

ds2 = −
(

1− 2M

r

)
dv2 + 2dvdr + r2dΩ2 (2.16)

Written as a matrix we have, in these coordinates,

gµν =


−(1− 2M/r) 1 0 0

1 0 0 0
0 0 r2 0
0 0 0 r2 sin2 θ

 (2.17)

Unlike the metric components in Schwarzschild coordinates, the components of the
above matrix are smooth for all r > 0, in particular they are smooth at r = 2M .
Furthermore, this matrix has determinant −r4 sin2 θ and hence is non-degenerate
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CHAPTER 2. THE SCHWARZSCHILD BLACK HOLE

for any r > 0 (except at θ = 0, π but this is just because the coordinates (θ, φ)
are not defined at the poles of the spheres). This implies that its signature is
Lorentzian for r > 0 since a change of signature would require an eigenvalue
passing through zero.

The Schwarzschild spacetime can now be extended through the surface r = 2M
to a new region with r < 2M . Is the metric (2.16) a solution of the vacuum
Einstein equation in this region? Yes. The metric components are real analytic
functions of the above coordinates, i.e., they can be expanded as convergent power
series about any point. If a real analytic metric satisfies the Einstein equation
in some open set then it will satisfy the Einstein equation everywhere. Since we
know that the (2.16) satisfies the vacuum Einstein equation for r > 2M it must
also satisfy this equation for r > 0.

Note that the new region with 0 < r < 2M is spherically symmetric. How is
this consistent with Birkhoff’s theorem?

Exercise. For r < 2M , define r∗ by (2.11) and t by (2.14). Show that if the
metric (2.16) is transformed to coordinates (t, r, θ, φ) then it becomes (2.1) but
now with r < 2M .

Note that ingoing radial null geodesics in the EF coordinates have dr/dτ = −1
(and constant v). Hence such geodesics will reach r = 0 in finite affine parameter.
What happens there? Since the metric is Ricci flat, the simplest non-trivial scalar
construced from the metric is RabcdR

abcd and a calculation gives

RabcdR
abcd ∝ M2

r6
(2.18)

This diverges as r → 0. Since this is a scalar, it diverges in all charts. Therefore
there exists no chart for which the metric can be smoothly extended through r = 0.
r = 0 is an example of a curvature singularity, where tidal forces become infinite
and the known laws of physics break down. Strictly speaking, r = 0 is not part of
the spacetime manifold because the metric is not defined there.

Recall that in r > 2M , Schwarzschild solution admits the Killing vector field
k = ∂/∂t. Let’s work out what this is in ingoing EF coordinates. Denote the latter
by xµ so we have

k =
∂

∂t
=
∂xµ

∂t

∂

∂xµ
=

∂

∂v
(2.19)

since the EF coordinates are independent of t except for v = t + r∗(r). We use
this equation to extend the definition of k to r ≤ 2M . Note that k2 = gvv so k is
null at r = 2M and spacelike for 0 < r < 2M . Hence the extended Schwarzschild
solution is static only in the r > 2M region.
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2.5. FINKELSTEIN DIAGRAM

2.5 Finkelstein diagram

So far we have considered ingoing radial null geodesics, which have v = constant
and dr/dτ = −1. Now consider the outgoing geodesics. For r > 2M in Schwarzschild
coordinates these have t − r∗ = constant. Converting to EF coordinates gives
v = 2r∗ + constant, i.e.,

v = 2r + 4M log | r
2M
− 1|+ constant (2.20)

To determine the behaviour of geodesics in r ≤ 2M we need to use EF coordinates
from the start. This gives

Exercise. Consider radial null geodesics in ingoing EF coordinates. Show that
these fall into two families: ”ingoing” with v = constant and ”outgoing” satisfying
either (2.20) or r ≡ 2M .

It is interesting to plot the radial null geodesics on a spacetime diagram. Let
t∗ = v − r so that the ingoing radial null geodesics are straight lines at 45◦ in the
(t∗, r) plane. This gives the Finkelstein diagram of Fig. 2.2.

r2M

t∗

curvature

}
ingoing radial null geodesics

}
outgoing radial null geodesics

singularity

Figure 2.2: Finkelstein diagram

Knowing the ingoing and outgoing radial null geodesics lets us draw light
”cones” on this diagram. Radial timelike curves have tangent vectors that lie
inside the light cone at any point.

The ”outgoing” radial null geodesics have increasing r if r > 2M . But if
r < 2M then r decreases for both families of null geodesics. Both reach the
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curvature singularity at r = 0 in finite affine parameter. Since nothing can travel
faster than light, the same is true for radial timelike curves. We will show below
that r decreases along any timelike or null curve (irrespective of whether or not it
is radial or geodesic) in r < 2M . Hence no signal can be sent from a point with
r < 2M to a point with r > 2M , in particular to a point with r =∞. This is the
defining property of a black hole: a region of an ”asymptotically flat” spacetime
from which it is impossible to send a signal to infinity.

2.6 Gravitational collapse

Consider the fate of a massive spherical star once it exhausts its nuclear fuel. The
star will shrink under its own gravity. As mentioned above, Birkhoff’s theorem
implies that the geometry outside the star is given by the Schwarzschild solution
even when the star is time-dependent. If the star is not too massive then eventually
it might settle down to a white dwarf or neutron star. But if it is sufficiently
massive then this is not possible: nothing can prevent the star from shrinking
until it reaches its Schwarzschild radius r = 2M .

We can visualize this process of gravitational collapse on a Finkelstein diagram.
We just need to remove the part of the diagram corresponding the interior of the
star. By continuity, points on the surface of the collapsing star will follow radial
timelike curves in the Schwarzschild geometry. This is shown in Fig. 2.3.

r

t∗

curvature
singularity

interior of star
(not Schwarzschild)

r = 2M }
null geodesics
outgoing radial

Figure 2.3: Finkelstein diagram for gravitational collapse

On examples sheet 1, it is shown that the total proper time along a timelike
curve in r ≤ 2M cannot exceed πM . (For M = M� this is about 10−5s.) Hence
the star will collapse and form a curvature singularity in finite proper time as
measured by an (unlucky) observer on the star’s surface.

Note the behaviour of the outgoing radial null geodesics, i.e., light rays emitted
from the surface of the star. As the star’s surface approaches r = 2M , light from
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the surface takes longer and longer to reach a distant observer. The observer will
never see the star cross r = 2M . Equation (2.3) shows that the redshift of this
light diverges as r → 2M . So the distant observer will see the star fade from view
as r → 2M .

2.7 Black hole region

We will show that the region r ≤ 2M of the extended Schwarzschild solution
describes a black hole. First recall some definitions.

Definition. A vector is causal if it is timelike or null (we adopt the convention
that a null vector must be non-zero). A curve is causal if its tangent vector is
everywhere causal.

At any point of a spacetime, the metric determines two light cones in the
tangent space at that point. We would like to regard one of these as the ”future”
light-cone and the other as the ”past” light-cone. We do this by picking a causal
vector field and defining the future light cone to be the one in which it lies:

Definition. A spacetime is time-orientable if it admits a time-orientation: a
causal vector field T a. Another causal vector Xa is future-directed if it lies in the
same light cone as T a and past-directed otherwise.

Note that any other time orientation is either everywhere in the same light cone
as T a or everywhere in the opposite light cone. Hence a time-orientable spacetime
admits exactly two inequivalent time-orientations.

In the r > 2M region of the Schwarzschild spacetime, we choose k = ∂/∂t
as our time-orientation. (We could just as well choose −k but this is related by
the isometry t → −t and therefore leads to equivalent results.) k is not a time-
orientation in r < 2M because in ingoing EF coordinates we have k = ∂/∂v,
which is spacelike for r < 2M . However, ±∂/∂r is globally null (grr = 0) and
hence defines a time-orientation. We just need to choose the sign that gives a time
orientation equivalent to k for r > 2M . Note that

k · (−∂/∂r) = −gvr = −1 (2.21)

and if the inner product of two causal vectors is negative then they lie in the same
light cone (remind yourself why!). Therefore we can use −∂/∂r to define our time
orientation for r > 0.

Proposition. Let xµ(λ) be any future-directed causal curve (i.e. one whose
tangent vector is everywhere future-directed and causal). Assume r(λ0) ≤ 2M .
Then r(λ) ≤ 2M for λ ≥ λ0.
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CHAPTER 2. THE SCHWARZSCHILD BLACK HOLE

Proof. The tangent vector is V µ = dxµ/dλ. Since −∂/∂r and V a both are future-
directed causal vectors we have

0 ≥
(
− ∂

∂r

)
· V = −grµV µ = −V v = −dv

dλ
⇒ dv

dλ
≥ 0 (2.22)

hence v is non-decreasing along any future-directed causal curve. We also have

V 2 = −
(

1− 2M

r

)(
dv

dλ

)2

+ 2
dv

dλ

dr

dλ
+ r2

(
dΩ

dλ

)2

(2.23)

where (dΩ/dλ)2 = (dθ/dλ)2 + sin2 θ(dφ/dλ)2. Rearranging gives

−2
dv

dλ

dr

dλ
= −V 2 +

(
2M

r
− 1

)(
dv

dλ

)2

+ r2

(
dΩ

dλ

)2

(2.24)

Note that every term on the RHS is non-negative if r ≤ 2M . Consider a point on
the curve for which r ≤ 2M so

dv

dλ

dr

dλ
≤ 0 (2.25)

Assume that dr/dλ > 0 at this point. Then this inequality is consistent with (2.22)
only if dv/dλ = 0. Plugging this into (2.24) and using the fact that the terms on
the RHS are non-negative implies that V 2 = 0 and dΩ/dλ = 0. But now the only
non-zero component of V µ is V r = dr/dλ > 0 so V is a positive multiple of ∂/∂r
and hence is past-directed, a contradiction.

We have shown that dr/dλ ≤ 0 if r ≤ 2M . If r < 2M then the inequality
must be strict for if dr/dλ = 0 then (2.24) implies dΩ/dλ = dv/dλ = 0 but then
we have V µ = 0, a contradiction. Hence if r(λ0) < 2M then r(λ) is monotonically
decreasing for λ ≥ λ0.

Finally we must consider the case r(λ0) = 2M . If dr/dλ < 0 at λ = λ0 then we have r < 2M
for λ slightly greater than λ0 and we are done. So assume dr/dλ = 0 at λ = λ0. If dr/dλ = 0
for all λ > λ0 then the curve remains r = 2M and we are done. So assume otherwise i.e., that
dr/dλ becomes positive for any λ slightly greater than λ0. (If it because negative then we’d have
r < 2M and we’re done. We might have dr/dλ = 0 for some finite range λ ∈ [λ0, λ

′
0] but in this

case we just apply the argument to λ′0 instead of λ0.) At λ = λ0, (2.24) vanishes, which implies
V 2 = dΩ/dλ = 0. This means that dv/dλ 6= 0 (otherwise V µ = 0) hence (from 2.22) we must
have dv/dλ > 0 at λ = λ0. Hence, at least near λ = λ0, we can use v instead of λ as a parameter
along the curve with r = 2M at v = v0 ≡ v(λ0). Dividing (2.24) by (dv/dλ)2 gives

−2
dr

dv
≥ 2M

r
− 1 ⇒ 2

dr

dv
≤ 1− 2M

r
(2.26)

Hence for v2 and v1 slightly greater than v0 with v2 > v1 we have

2

∫ r(v2)

r(v1)

dr

1− 2M/r
≤ v2 − v1 (2.27)
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Now take v1 → v0 so r(v1) → 2M . The LHS diverges but the RHS tends to a finite limit: a

contradiction.

This result implies that no future-directed causal curve connects a point with
r ≤ 2M to a point with r > 2M . More physically: it is impossible to send a
signal from a point with r ≤ 2M to a point with r > 2M , in particular to a point
at r = ∞. A black hole is defined to be a region of spacetime from which it is
impossible to send a signal to infinity. (We will define ”infinity” more precisely
later.) The boundary of this region is the event horizon.

Our result shows that points with r ≤ 2M of the extended Schwarzschild
spacetime lie inside a black hole. However, it is easy to show that there do exist
future-directed causal curves from a point with r > 2M to r =∞ (e.g. an outgoing
radial null curve) so points with r > 2M are not inside a black hole. Hence r = 2M
is the event horizon.

2.8 Detecting black holes

There are two important properties that underpin detection methods:
First: there is no upper bound on the mass of a black hole. This contrasts with

cold stars, which have an upper bound around 3M�.
Second: black holes are very small. A black hole has radius R = 2M . A solar

mass black holes has radius 3km. A black hole with the same mass as the Earth
would have radius 0.9cm.

There are other systems which satisfy either one of these conditions. For exam-
ple, there is no upper limit on the mass of a cluster of stars or a cloud of gas. But
these would have size much greater than 2M . On the other hand, neutron stars
are also very small, with radius not much greater than 2M . But a neutron star
cannot be arbitrarily massive. It is the combination of a large mass concentrated
into a small region which distinguishes black holes from other kinds of object.

Since black hole do not emit radiation directly, we infer their existence from
their effect on nearby luminous matter. For example, stars near the centre of our
galaxy are observed to be orbiting around the galactic centre (Fig. 2.4). From the
shapes of the orbits, one can deduce that there is an object with mass 4× 106M�
at the centre of the galaxy. Since some of the stars get close to the galactic centre,
one can infer that this mass must be concentrated within a radius of about 6 light
hours (6× 109km about the same size as the Solar System) since otherwise these
stars would be ripped apart by tidal effects. The only object that can contain so
much mass in such a small region is a black hole.

Many other galaxies are also believed to contain enormous black holes at their
centres (some with masses greater than 109M�). Black holes with mass greater
than about 106M� are referred to as supermassive. There appears to be a corre-
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Figure 2.4: Stars orbiting the galactic centre.

lation between the mass of the black hole and the mass of its host galaxy, with
the former typically about a thousandth of the latter. Supermassive black holes
do not form directly from gravitational collapse of a normal star (since the latter
cannot have a mass much greater than about 100M�). It is still uncertain how
such large black holes form.

2.9 Orbits around a black hole

Consider timelike geodesics. The effective potential has turning points where

r± =
h2 ±

√
h4 − 12h2M2

2M
(2.28)

If h2 < 12M2 then there are no turning points, the effective potential is a mono-
tonically increasing function of r. If h2 > 12M2 then there are two turning points.
r = r+ is a minimum and r = r− a maximum (Fig. 2.5). Hence there exist stable
circular orbits with r = r+ and unstable circular orbits with r = r−.

Exercise. Show that 3M < r− < 6M < r+.

r+ = 6M is called the innermost stable circular orbit (ISCO). For a normal
star, this lies well inside the star, where the Schwarzschild solution is not valid.
But for a black hole it lies outside the event horizon. There is no analogue of the
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r2M

V (r)

1
2

0
r− r+

Figure 2.5: Timelike geodesics: effective potential for h2 > 12M2

ISCO in Newtonian theory, for which all circular orbits are stable and exist down
to arbitrarily small r.

The energy per unit rest mass of a circular orbit can be calculated using E2/2 =
V (r) (since dr/dτ = 0):

Exercise. Show that the energy of a circular orbit r = r± can be written

E =
r − 2M

r1/2(r − 3M)1/2
(2.29)

Hence a body following a circular orbit with large r has E ≈ 1−M/(2r), i.e., its

energy is m −Mm/(2r) where m is the mass of the body. The first term is just
the rest mass energy (E = mc2) and the second term is the gravitational binding
energy of the orbit.

Black holes formed in gravitational collapse of a star have M less than about
100M� since (hot) stars with significantly higher mass than this do not exist.
The main way that such black holes are detected is to look for a binary system
consisting of a black hole and a normal star. In such a system, the black hole can
be surrounded by an accretion disc: a disc of gas orbiting the black hole, stripped
off the star by tidal forces due to the black hole’s gravitational field.

As a first approximation, we can treat particles in the disc as moving on
geodesics. A particle in this material will gradually lose energy because of friction
in the disc and so its value of E will decrease. This implies that r will decreases:
the particle will gradually spiral in to smaller and smaller r. This process can
be approximated by the particle moving slowly from one stable circular orbit to
another. Eventually the particle will reach the ISCO, which has E =

√
8/9, after

which it falls rapidly into the hole.
The energy that the particle loses as it moves towards the ISCO leaves the disc

as radiation, typically X-rays. Observations of these X-rays are the main method
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used to detect such black holes. The radiation exhibits a characteristic cut-off
in red-shift, corresponding to the ISCO. The fraction of rest mass converted to
radiation in this process is 1 −

√
8/9 ≈ 0.06. This is an enormous fraction of

the energy, much higher than the fraction of rest mass energy liberated in nuclear
reactions. That is why accretion discs around supermassive black holes are believed
to power some of the most energetic phenomena in the universe e.g. quasars.

2.10 White holes

We defined ingoing EF coordinates using ingoing radial null geodesics. What
happens if we do the same thing with outgoing radial null geodesics? Starting
with the Schwarzschild solution in Schwarzschild coordinates with r > 2M , let

u = t− r∗ (2.30)

so u = constant along outgoing radial null geodesics. Now introduce outgoing
Eddington-Finkelstein (u, r, θ, φ). The Schwarzschild metric becomes

ds2 = −
(

1− 2M

r

)
du2 − 2dudr + r2dΩ2 (2.31)

Just as for the ingoing EF coordinates, this metric is smooth with non-vanishing
determinant for r > 0 and hence can be extended to a new region r ≤ 2M . Once
again we can define Schwarzschild coordinates in r < 2M to see that the metric
in this region is simply the Schwarzschild metric. There is a curvature singularity
at r = 0.

This r < 2M region is not the same as the r < 2M region in the ingoing EF
coordinates. An easy way to see this is to look at the outgoing radial null geodesics,
i.e., lines of constant u. We saw above (in the Schwarzschild coordinates) that
these have dr/dτ = 1 hence they propagate from the curvature singularity at
r = 0, through the surface r = 2M and then extend to large r. This is impossible
for the r < 2M region we discussed previously since that region is a black hole.

Exercise. Show that k = ∂/∂u in outgoing EF coordinates and that the time-
orientation which is equivalent to k for r > 2M is given by +∂/∂r.

The r < 2M region of the outgoing EF coordinates is a white hole: a region
which no signal from infinity can enter. A white hole is the time reverse of a black
hole. To see this, make the substitution u = −v to see that the above metric
is isometric to (2.16). The only difference is the sign of the time orientation. It
follows that no signal can be sent from a point with r > 2M to a point with
r < 2M . Any timelike curve starting with r < 2M must pass through the surface
r = 2M within finite proper time.
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White holes are believed to be unphysical. A black hole is formed from a
normal star by gravitational collapse. But a white hole begins with a singularity,
so to create a white hole one must first make a singularity. Black holes are stable
objects: small perturbations of a black hole are believed to decay. Applying time-
reversal implies that white holes must be unstable objects: small perturbations of
a white hole become large under time evolution.

2.11 The Kruskal extension

We have seen that the Schwarzschild spacetime can be extended in two different
ways, revealing the existence of a black hole region and a white hole region. How
are these different regions related to each other? This is answered by introducing
a new set of coordinates. Start in the region r > 2M . Define Kruskal-Szekeres
coordinates (U, V, θ, φ) by

U = −e−u/(4M), V = ev/(4M), (2.32)

so U < 0 and V > 0. Note that

UV = −er∗/(2M) = −er/(2M)
( r

2M
− 1
)

(2.33)

The RHS is a monotonic function of r and hence this equation determines r(U, V )
uniquely. We also have

V

U
= −et/(2M) (2.34)

which determines t(U, V ) uniquely.

Exercise. Show that in Kruskal-Szekeres coordinates, the metric is

ds2 = −32M3e−r(U,V )/(2M)

r(U, V )
dUdV + r(U, V )2dΩ2 (2.35)

Hint. First transform the metric to coordinates (u, v, θ, φ) and then to KS coordi-
nates.

Let us now define the function r(U, V ) for U ≥ 0 or V ≤ 0 by (2.33). This new
metric can be analytically extended, with non-vanishing determinant, through the
surfaces U = 0 and V = 0 to new regions with U > 0 or V < 0.

Let’s consider the surface r = 2M . Equation (2.33) implies that either U = 0
or V = 0. Hence KS coordinates reveal that r = 2M is actually two surfaces, that
intersect at U = V = 0. Similarly, the curvature singularity at r = 0 corresponds
to UV = 1, a hyperbola with two branches. This information can be summarized
on the Kruskal diagram of Fig. 2.6.
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I

U
V

II

III

IV

t = const

r
=

2M

r
=

2M

ingoing radial
null geodesic

outgoing radial
null geodesic

r = 0

r = 0

r = const

Figure 2.6: Kruskal diagram

One should think of ”time” increasing in the vertical direction on this diagram.
Radial null geodesics are lines of constant U or V , i.e., lines at 45◦ to the horizontal.
This diagram has four regions. Region I is the region we started in, i.e., the
region r > 2M of the Schwarzschild solution. Region II is the black hole that we
discovered using ingoing EF coordinates (note that these coordinates cover regions
I and II of the Kruskal diagram), Region III is the white hole that we discovered
using outgoing EF coordinates. And region IV is an entirely new region. In this
region, r > 2M and so this region is again described by the Schwarzschild solution
with r > 2M . This is a new asymptotically flat region. It is isometric to region I:
the isometry is (U, V ) → (−U,−V ). Note that it is impossible for an observer in
region I to send a signal to an observer in region IV. If they want to communicate
then one or both of them will have to travel into region II (and then hit the
singularity).

Note that the singularity in region II appears to the future of any point. There-
fore it is not appropriate to think of the singularity as a ”place” inside the black
hole. It is more appropriate to think of it as a ”time” at which tidal forces become
infinite. The black hole region is time-dependent because, in Schwarzschild coor-
dinates, it is r, not t, that plays the role of time. This region can be thought of
as describing a homogeneous but anisotropic universe approaching a ”big crunch”.
Conversely, the white hole singularity resembles a ”big bang” singularity.

Most of this diagram is unphysical. If we include a timelike worldline corre-
sponding to the surface of a collapsing star and then replace the region to the
left of this line by the (non-vacuum) spacetime corresponding to the star’s interior
then we get a diagram in which only regions I and II appear (Fig. 2.7). Inside
the matter, r = 0 is just the origin of polar coordinates, where the spacetime is
smooth.

Finally, let’s discuss time translations in Kruskal coordinates:
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U
Vr = 0

r = 0
(origin of polar

r = 2M
I

II

coordinates)

interior
of star

Figure 2.7: Kruskal diagram for gravitational collapse. The region to the left of
the shaded region is not part of the spacetime.

Exercise. Show that, in Kruskal coordinates

k =
1

4M

(
V

∂

∂V
− U ∂

∂U

)
k2 = −

(
1− 2M

r

)
(2.36)

The result for k2 can be deduced either by direct calculation or by noting that

it is true for r > 2M (e.g. use Schwarzschild coordinates) and the the LHS and
RHS are both analytic functions of U, V (since the metric is analytic). Hence the
result must be true everywhere.

k is timeline in regions I and IV, spacelike in regions II and III, and null (or
zero) where r = 2M i.e. where U = 0 or V = 0. The orbits (integral curves) of k
on a Kruskal diagram look like this:

Note that the sets {U = 0} and {V = 0} are fixed (mapped into themselves)
by k and that k = 0 on the ”bifurcation 2-sphere” U = V = 0. Hence points on
the latter are also fixed by k.
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2.12 Einstein-Rosen bridge

Recall equation (2.34): in region I we have V/U = −et/(2M). Hence a surface of
constant t in region I is a straight line through the origin in the Kruskal diagram:

These extend naturally into region IV. Let’s investigate the geometry of these
hypersurfaces. Define a new coordinate ρ by

r = ρ+M +
M2

4ρ
(2.37)

Given r, there are two possible solutions for ρ. We choose ρ > M/2 in region I
and 0 < ρ < M/2 in region IV. The Schwarzschild metric in isotropic coordinates
(t, ρ, θ, φ) is then (exercise)

ds2 = −(1−M/(2ρ))2

(1 +M/(2ρ))2
dt2 +

(
1 +

M

2ρ

)4 (
dρ2 + ρ2dΩ2

)
(2.38)

The transformation ρ → M2/(4ρ) is an isometry that interchanges regions I and
IV. Of course the above metric is singular at ρ = M/2 but we know this is just a
coordinate singularity. Now consider the metric of a surface of constant t:

ds2 =

(
1 +

M

2ρ

)4 (
dρ2 + ρ2dΩ2

)
(2.39)
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This metric is non-singular for ρ > 0. It defines a Riemannian 3-manifold with
topology R×S2 (where R is parameterized by ρ). Its geometry can be visualized by
embedding the surface into 4d Euclidean space (examples sheet 1). If we suppress
the θ direction, this gives the following diagram:

The geometry has two asymptotically flat regions (ρ → ∞ and ρ → 0) con-
nected by a ”throat” with minimum radius 2M at ρ = M/2. A surfaces of constant
t in the Kruskal spacetime is called an ”Einstein-Rosen bridge”.

2.13 Extendibility

Definition. A spacetime (M, g) is extendible if it is isometric to a proper subset
of another spacetime (M′, g′). The latter is called an extension of (M, g).

(In GR we require that the spacetime manifold M is connected so both M and
M ′ should be connected in this definition.)

For example, let (M, g) denote the Schwarzschild solution with r > 2M and
let (M′, g′) denote the Kruskal spacetime. Then M is a subset of M′ (i.e. region
I). If we define a map to take a point ofM to the corresponding point ofM′ then
this is just the identity map in region I, which is obviously an isometry.

The Kruskal spacetime (M′, g′) is inextendible (not extendible). It is a ”maxi-
mal analytic extension” of (M, g).

2.14 Singularities

We say that the metric is singular in some basis if its components are not smooth or
its determinant vanishes. A coordinate singularity can be eliminated by a change
of coordinates (e.g. r = 2M in the Schwarzschild spacetime). These are unphys-
ical. However, if it is not possible to eliminate the bad behaviour by a change of
coordinates then we have a physical singularity. We have already seen an example
of this: a scalar curvature singularity, where some scalar constructed from the
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Riemann tensor blows up, cannot be eliminated by a change of coordinates and
hence is physical. It is also possible to have more general curvature singularities for
which no scalar constructed from the Riemann tensor diverges but, nevertheless,
there exists no chart in which the Riemann tensor remains finite.

Not all physical singularities are curvature singularities. For example consider
the manifold M = R2, introduce plane polar coordinates (r, φ) (so φ ∼ φ + 2π)
and define the 2d Riemannian metric

g = dr2 + λ2r2dφ2 (2.40)

where λ > 0. The metric determinant vanishes at r = 0. If λ = 1 then this is
just Euclidean space in plane polar coordinates, so we can convert to Cartesian
coordinates to see that r = 0 is just a coordinate singularity, i.e., g can be smoothly
extended to r = 0. But consider the case λ 6= 1. In this case, let φ′ = λφ to obtain

g = dr2 + r2dφ′
2

(2.41)

which is locally isometric to Euclidean space and hence has vanishing Riemann
tensor (so there is no curvature singularity at r = 0). However, it is not globally
isometric to Euclidean space because the period of φ′ is 2πλ. Consider a circle
r = ε. This has

circumference

radius
=

2πλε

ε
= 2πλ (2.42)

which does not tend to 2π as ε→ 0. Recall that any smooth Riemannian manifold
is locally flat, i.e., one recovers results of Euclidean geometry on sufficiently small
scales (one can introduce normal coordinates to show this). The above result shows
that this is not true for small circles centred on r = 0. Hence the above metric
cannot be smoothly extended to r = 0. This is an example of a conical singularity.

A problem in defining singularities is that they are not ”places”: they do not
belong to the spacetime manifold because we define spacetime as a pair (M, g)
where g is a smooth Lorentzian metric. For example, r = 0 is not part of the
Kruskal manifold. Similarly, in the example just discussed if we want a smooth
Riemannian manifold then we must take M = R2\(0, 0) so that r = 0 is not a point
of M . But in both of these examples, the existence of the singularity implies that
some geodesics cannot be extended to arbitrarily large affine parameter because
they ”end” at the singularity. It is this property that we will use to define what
we mean by ”singular”.

First we must eliminate a trivial case, corresponding to the possibility of a
geodesic ending simply because we haven’t taken the range of its parameter to be
large enough. Recall that a curve is a smooth map γ : (a, b) → M . Sometimes a
curve can be extended, i.e., it is part of a bigger curve. If this happens then the
first curve will have an endpoint, which is defined as follows.

Part 3 Black Holes March 13, 2015 30 H.S. Reall



2.14. SINGULARITIES

Definition. p ∈ M is a future endpoint of a future-directed causal curve γ :
(a, b) → M if, for any neighbourhood O of p, there exists t0 such that γ(t) ∈ O
for all t > t0. We say that γ is future-inextendible if it has no future endpoint.
Similary for past endpoints and past inextendibility. γ is inextendible if it is both
future and past inextendible.

For example, let (M, g) be Minkowski spacetime. Let γ : (−∞, 0) → M
be γ(t) = (t, 0, 0, 0). Then the origin is a future endpoint of γ. However, if
we instead let (M, g) be Minkowski spacetime with the origin deleted then γ is
future-inextendible.

Definition. A geodesic is complete if an affine parameter for the geodesic extends
to ±∞. A spacetime is geodesically complete if all inextendible causal geodesics
are complete.

For example, Minkowski spacetime is geodesically complete, as is the spacetime
describing a static spherical star. However, the Kruskal spacetime is geodesically
incomplete because some geodesics have r → 0 in finite affine parameter and
hence cannot be extended to infinite affine parameter. A similar definition applies
to Riemannian manifolds.

A spacetime that is extendible will also be geodesically incomplete. But in this
case, it is clear that the incompleteness arises because we are not considering ”the
whole spacetime”. So we will regard a spacetime as singular if it is geodesically
incomplete and inextendible. This is the case for the Kruskal spacetime.
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Chapter 3

The initial value problem

In the next chapter we will explain why GR predicts that black holes necessarily
form under certain circumstances. To do this, we need to understand the initial
value problem for GR.

3.1 Predictability

Definition. Let (M, g) be a time-orientable spacetime. A partial Cauchy surface
Σ is a hypersurface for which no two points are connected by a causal curve in
M . The future domain of dependence of Σ, denoted D+(Σ), is the set of p ∈ M
such that every past-inextendible causal curve through p intersects Σ. The past
domain of dependence, D−(Σ), is defined similarly. The domain of dependence of
Σ is D(Σ) = D+(Σ) ∪D−(Σ).

D(Σ) is the region of spacetime in which one can determine what happens
from data specified on Σ. For example, any causal geodesic (i.e. free particle
worldline) in D(Σ) must intersect Σ at some point p. The geodesic is determined
uniquely by specifying its tangent vector (velocity) at p. More generally, solutions
of hyperbolic partial differential equations are uniquely determined in D(Σ) by
initial data prescribed on Σ.

Here, by ”hyperbolic partial differential equations” we mean second order par-
tial differential equations for a set of tensor fields T (i)ab...

cd... (i = 1, . . . N) for which
the equations of motion take the form

gef∇e∇fT
(i)ab...

cd... = . . . (3.1)

where the RHS is a tensor that depends smoothly on the metric and its derivatives,
and linearly on the fields T (j) and their first derivatives, but not their second or
higher derivatives. The Klein-Gordon equation is of this form, as are the Maxwell
equations when written using a vector potential Aa in Lorentz gauge.
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For example, let Σ be the positive x-axis in 2d Minkowski spacetime (M, g)
(figure 3.1). D+(Σ) is the set of points with 0 ≤ t < x, D−(Σ) is the set of points
with −x < t ≤ 0. The boundary of D(Σ) is the pair of null rays t = ±x for x > 0.
Let Σ′ be the entire x-axis. This gives D(Σ′) = M .

t = xt

x

D+(Σ)

D−(Σ)

Σ

t = −x

Figure 3.1: The regions D±(Σ)

Consider the wave equation ∇a∇aψ = −∂2
t ψ + ∂2

xψ = 0 in this spacetime.
Specifying the initial data (ψ, ∂tψ) on Σ determines the solution uniquely in D(Σ).
Specifying initial data on Σ′ determines the solution uniquely throughout M . Two
such solutions whose initial data agrees on the subset Σ of Σ′ will agree within
D(Σ) but differ on M\D(Σ).

This is true in general: if D(Σ) 6= M then solutions of hyperbolic equations
will not be uniquely determined in M\D(Σ) by data on Σ. Given only this data,
there will be infinitely many different solutions on M which agree within D(Σ).

Definition. A spacetime (M, g) is globally hyperbolic if it admits a Cauchy surface:
a partial Cauchy surface Σ such that M = D(Σ).

(If (M, g) is not globally hyperbolic then the past/future boundary of D(Σ) is
called the past/future Cauchy horizon. We will define it more precisely later.)

Hence a globally hyperbolic spacetime is one in which one can predict what
happens everywhere from data on Σ. Minkowski spacetime is globally hyperbolic
e.g. a surface of constant t is a Cauchy surface. Other examples are the the
Kruskal spacetime and the spacetime describing spherically symmetric gravita-
tional collapse:
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To obtain an example of a spacetime which is not globally hyperbolic, delete the
origin from 2d Minkowski spacetime (the cross in Fig. 3.1). For any partial Cauchy
surface Σ, there will be some inextendible causal curves which don’t intersect Σ
because they ”end” at the origin.

The following theorem is proved in Wald:

Theorem. Let (M, g) be globally hyperbolic. Then (i) there exists a global time
function: a map t : M → R such that −(dt)a (normal to surfaces of constant t)
is future-directed and timelike (ii) surfaces of constant t are Cauchy surfaces, and
these all have the same topology Σ (iii) the topology of M is R× Σ.

Exercise. Show that U + V is a global time function in the Kruskal spacetime.

Since the surface U + V = 0 is an Einstein-Rosen bridge, it follows that Σ has
topology R× S2 in this case. The topology of M is R2 × S2.

If (M, g) is globally hyperbolic then we can perform a 3 + 1 split (”Arnowitt-
Deser-Misner (ADM) decomposition”) of spacetime as follows. Let t be a time
function. Introduce coordinates xi (i = 1, 2, 3) on the Cauchy surface t = 0. Pick
an everywhere timelike vector field T a. Given p ∈ M , consider the integral curve
of T a through p. This intersects the surface t = 0 at a unique point. Let xi(p) be
the coordinates of this point. This defines functions xi : M → R. We use (t, xi)
as our coordinate chart. It is conventional to use the following notation for the
metric components:

ds2 = −N2dt2 + hij(dx
i +N idt)(dxj +N jdt) (3.2)

where N(t, x) is called the lapse function (sometimes denoted α) and N i(t, x) the
shift vector (sometimes denoted βi). The metric on a surface of constant t is
hij(t, x).

3.2 The initial value problem in GR

Recall that initial data for Einstein’s equation consists of a triple (Σ, hab, Kab)
where (Σ, hab) is a Riemannian 3-manifold and Kab is a symmetric tensor. The
idea is that Σ corresponds to a spacelike hypersurface in spacetime, hab is the pull-
back of the spacetime metric to Σ, and Kab is the extrinsic curvature tensor of Σ,
i.e., the ”rate of change” of the metric on Σ. The initial data is not completely
free: the Einstein equation implies that it must satisfy certain constraints. Let
na denote the unit vector normal to Σ in spacetime. Contracting the Einstein
equation with nanb gives the Hamiltonian constraint

R′ −KabKab +K2 = 16πρ (3.3)
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where R′ is the Ricci tensor of hab, K = Ka
a, indices are raised with hab, and

ρ ≡ Tabn
anb is the matter energy density measured by an observer with 4-velocity

na. Contracting the Einstein equation with na and projecting orthogonally to na

gives the momentum constraint

DbK
b
a −DaK = 8πhbaTbcn

c (3.4)

where Da is the Levi-Civita connection associated to hab. The RHS is (−8π times)
the momentum density measured by an observer with 4-velocity na.

The following result is of fundamental significance in GR:

Theorem (Choquet-Bruhat & Geroch 1969). Let (Σ, hab, Kab) be initial data
satisfying the vacuum Hamiltonian and momentum constraints (i.e. equations
(3.3,3.4) with vanishing RHS). Then there exists a unique (up to diffeomorphism)
spacetime (M, gab), called the maximal Cauchy development of (Σ, hab, Kab) such
that (i) (M, gab) satisfies the vacuum Einstein equation; (ii) (M, gab) is globally
hyperbolic with Cauchy surface Σ; (iii) The induced metric and extrinsic curvature
of Σ are hab and Kab respectively; (iv) Any other spacetime satisfying (i),(ii),(iii)
is isometric to a subset of (M, gab).

Analogous theorems exist in the non-vacuum case for suitable matter e.g. a
perfect fluid or tensor fields whose equations of motion are hyperbolic partial
differential equations (e.g. Maxwell field, scalar field, perfect fluid).

It is possible that (M, gab) is extendible, i.e., isometric to a proper subset of
another spacetime. If this happens then we cannot predict what happens outside
D(Σ) from initial data on Σ. Let’s look at some examples for which this happens.

First consider initial data given by a surface Σ = {(x, y, z) : x > 0} with flat
3-metric δµν and vanishing extrinsic curvature. The maximal development of this
initial data is the region |t| < x of Minkowski spacetime, which is extendible.
In this case we could have anticipated that the maximal development would be
extendible because the initial data is extendible (to x ≤ 0). If we are given initial
conditions only in part of space then we do not expect to be able to predict the
entire spacetime.

Now consider the Schwarzschild solution with M < 0:

ds2 = −
(

1 +
2|M |
r

)
dt2 +

(
1 +

2|M |
r

)−1

dr2 + r2dΩ2 (3.5)

This solution has a curvature singularity at r = 0 but no event horizon. Let
(Σ, hab, Kab) be the data on a surface t = 0 in this spacetime (in fact Kab = 0).
In this case, (Σ, hab) is inextendible. However, viewed as a Riemannian manifold,
(Σ, hab) is not geodesically complete because some of its geodesics have r → 0 in
finite affine parameter. So in this case, the initial data is ”singular”.
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The resulting maximal development is not the whole M < 0 Schwarzschild
spacetime. This is because some inextendible causal curves do not intersect Σ.
For example, consider an outgoing radial null geodesic, which satisfies

dt

dr
=

(
1 +

2|M |
r

)−1

=
r

r + 2|M |
≈ r

2|M |
at small r (3.6)

hence t ≈ t0 + r2/(4|M |) at small r so t has a finite limit t0 as r → 0. So this
null geodesic emerges from the singularity at time t0 and then has t > t0. Hence if
t0 > 0 then this geodesic does not intersect Σ so Σ is not a Cauchy surface for the
full spacetime. One can show that the boundary of D(Σ) is given precisely by those
radial null geodesics which have t0 = 0, i.e., they ”emerge from the singularity on
Σ”:

We emphasize that the solution outside D(Σ) is not determined by the initial
data on Σ. The data on Σ does not predict that the solution outside D(Σ) must
coincide with the M < 0 Schwarzschild solution. This is just one possibility
amongst infinitely many alternatives. These alternatives cannot be spherically
symmetric because of Birkhoff’s theorem.

In this case, the extendibility of the maximal development arises because the
initial data is singular (not geodesically complete) and one ”can’t predict what
comes out of a singularity”. Henceforth we will restrict to initial data which is
geodesically complete (and therefore also inextendible).

Even when (Σ, hab) is geodesically complete, the maximal development may be
extendible. For example, let Σ be the hyperboloid −t2 + x2 + y2 + z2 = −1 with
t < 0 in Minkowski spacetime:
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Take hab to be the induced metric and Kab the extrinsic curvature of this
surface. Clearly there are inextendible null curves in Minkowski spacetime which
do not intersect Σ. The maximal development of the initial data on Σ is the
interior of the past light cone through the origin in Minkowsi spacetime. In this
case, the maximal development is extendible because the initial data surface is
”asymptotically null”, which enables ”information to arrive from infinity”.

3.3 Asymptotically flat initial data

To avoid all of these problems, we will restrict to geodesically complete initial data
which is ”asymptotically flat” in the sense that, at large distance, it looks like a sur-
face of constant t in Minkowski spacetime. (Recall that such surfaces are Cauchy
surfaces for Minkowski spacetime.) We also want to allow for the possibility of
having several asymptotically flat regions, as in the Kruskal spacetime.

Definition. (a) An initial data set (Σ, hab, Kab) is an asymptotically flat end if
(i) Σ is diffeomorphic to R3\B where B is a closed ball centred on the origin
in R3; (ii) if we pull-back the R3 coordinates to define coordinates xi on Σ then
hij = δij +O(1/r) and Kij = O(1/r2) as r →∞ where r =

√
xixi (iii) derivatives

of the latter expressions also hold e.g. hij,k = O(1/r2) etc.

(b) An initial data set is asymptotically flat with N ends if it is the union of a
compact set with N asymptotically flat ends.

(If matter fields are present then these should also decay at a suitable rate at
large r.)

For example, in the (M > 0) Schwarzschild solution consider the surface Σ =
{t = constant, r > 2M}. On examples sheet 2 it is shown that this data is an
asymptotically flat end. Of course this initial data is not geodesically complete
(since it stops at r = 2M). But now consider the Kruskal spacetime. Then Σ
corresponds to part of an Einstein-Rosen bridge. The full Einstein-Rosen bridge is
asymptotically flat with 2 ends. This is because it is the union of the bifurcation
sphere U = V = 0 (a compact set) with two copies of the asymptotically flat end
just discussed (one in region I and one in region IV).

3.4 Strong cosmic censorship

For geodesically complete, asymptotically flat, initial data it would be very disturb-
ing if the maximal Cauchy development were extendible. It would imply that GR
suffers from a lack of determinism (predictability). The strong cosmic censorship
conjecture asserts that this does not happen:
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Strong cosmic censorship conjecture (Penrose). Let (Σ, hab, Kab) be a
geodesically complete, asymptotically flat (with N ends), initial data set for the
vacuum Einstein equation. Then generically the maximal Cauchy development of
this initial data is inextendible.

This conjecture is known to be correct for initial data which is sufficiently
close to initial data for Minkowski spacetime. For such data, a theorem of Christ-
doulou and Klainerman (1994) asserts that the resulting spacetime ”settles down to
Minkowski spacetime at late time”. In more physical terms, it says that Minkowski
spacetime is stable against small gravitational perturbations. The spacetime has
no Cauchy horizon so strong cosmic censorship is true for such initial data.

The word ”generically” is included because of known counter-examples. Later
we will discuss charged and rotating black hole solutions and find that they exhibit
a Cauchy horizon (for a geodesically complete, asymptotically flat initial data set)
inside the black hole. However, this is believed to be unstable in the sense that
an arbitrarily small perturbation of this initial data has an inextendible maximal
development. More formally, if one introduces some measure on the space of
geodesically complete, asymptotically flat, initial data, strong cosmic censorship
asserts that the maximal development is inextendible except for a set of initial
data of measure zero.

The above conjecture can be extended to include matter. We need to assume
that the matter is such that the Choquet-Bruhat-Geroch theorem applies, as will
be the case if the matter fields satisfy hyperbolic equations of motion. We also
restrict to matter that is ”physical” in the sense that it has positive energy density
and does not travel faster than light. We do this by imposing the dominant energy
condition (to be discussed later). This condition is satisfied by all ”normal” matter.

Proving the strong cosmic censorship conjecture, and the related weak cosmic
censorship conjecture, is one of the main goals of mathematical relativity.
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Chapter 4

The singularity theorem

We have seen how spherically symmetric gravitational collapse results in the forma-
tion of a singularity. But maybe this is just a consequence of spherical symmetry.
For example, in Newtonian theory, spherically symmetric collapse of a ball of mat-
ter produces a ”singularity”, i.e., infinite density at the origin. But this does not
happen without spherical symmetry. In this case, the singularity is non-generic:
a tiny perturbation (breaking spherical symmetry) of the initial state results in a
”bouncing” solution without a singularity. Could the same be true in GR? No.
In this chapter we will discuss the Penrose singularity theorem, which shows that
singularities are a generic prediction of GR.

4.1 Null hypersurfaces

Definition. A null hypersurface is a hypersurface whose normal is everywhere
null.

Example. Consider surfaces of constant r in the Schwarzschild spacetime. The
1-form n = dr is normal to such surfaces. Using ingoing Eddington-Finkelstein
coordinates, the inverse metric is

gµν =


0 1 0 0
1 1− 2M

r
0 0

0 0 1
r2

0
0 0 0 1

r2 sin2 θ

 (4.1)

hence

n2 ≡ gµνnµnν = grr = 1− 2M

r
(4.2)
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so the surface r = 2M is a null hypersurface. Since nµ = gµνnν = gµr we have

na|r=2M =

(
∂

∂v

)a
(4.3)

Let na be normal to a null hypersurface N . Then any (non-zero) vector Xa

tangent to the hypersurface obeys naX
a = 0 which implies that either Xa is

spacelike or Xa is parallel to na. In particular, note that na is tangent to the
hypersurface. Hence, on N , the integral curves of na lie within N .

Proposition. The integral curves of na are null geodesics. These are called the
generators of N .

Proof. Let N be given by an equation f = constant for some function f with
df 6= 0 on N . Then we have n = hdf for some function h. Let N = df . The
integral curves of na and Na are the same up to a choice of parameterization.

Then since N is null we have that NaNa = 0 on N . Hence the function NaNa

is constant on N which implies that the gradient of this function is normal to N :

∇a

(
N bNb

)
|N = 2αNa (4.4)

for some function α on N . Now we also have ∇aNb = ∇a∇bf = ∇b∇af = ∇bNa.
So the LHS above is 2N b∇aNb = 2N b∇bNa. Hence we have

N b∇bNa|N = αNa (4.5)

which is the geodesic equation for a non-affinely parameterized geodesic. Hence,
on N , the integral curves of Na (and therefore also na) are null geodesics. �

Example. In the Kruskal spacetime, let N = dU which is null everywhere (gUU =
0) and normal to a family of null hypersurfaces (U = constant), which gives

N b∇bNa = N b∇b∇aU = N b∇a∇bU = N b∇aNb = (1/2)∇a(N
2) = 0 (4.6)

so in this case Na is tangent to affinely parameterized null geodesics. Raising an
index gives (exercise)

Na = − r

16M3
er/(2M)

(
∂

∂V

)a
(4.7)

Now let N be the surface U = 0. Since r = 2M on N we see that Na is a
constant multiple of ∂/∂V . Hence V is an affine parameter for the generators of
N . Similarly U is an affine parameter for the generators of the null hypersurface
V = 0.
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4.2 Geodesic deviation

You encountered the geodesic deviation equation in the GR course. Recall the
following definitions:

Definition. A 1-parameter family of geodesics is a map γ : I × I ′ → M where I
and I ′ both are open intervals in R, such that (i) for fixed s, γ(s, λ) is a geodesic
with affine parameter λ (so s is the parameter that labels the geodesic); (ii) the
map (s, λ) 7→ γ(s, λ) is smooth and one-to-one with a smooth inverse. This implies
that the family of geodesics forms a 2d surface Σ ⊂M .

Let Ua be the tangent vector to the geodesics and Sa to be the vector tangent
to the curves of constant t, which are parameterized by s (see Fig. 4.1). In

}
λ = const

S

S

U
U U

s = const

Figure 4.1: 1-parameter family of geodesics

a chart xµ, the geodesics are specified by xµ(s, λ) with Sµ = ∂xµ/∂s. Hence
xµ(s + δs, λ) = xµ(s, λ) + δsSµ(s, λ) +O(δs2). Therefore (δs)Sa points from one
geodesic to an infinitesimally nearby one in the family. We call Sa a deviation
vector.

On the surface Σ we can use s and λ as coordinates. This gives a coordinate
chart in which S = ∂/∂s and U = ∂/∂λ on Σ. Hence Sa and Ua commute:

[S, U ] = 0 ⇔ U b∇bS
a = Sb∇bU

a (4.8)

Recall that this implies that Sa satisfies the geodesic deviation equation

U c∇c(U
b∇bS

a) = Ra
bcdU

bU cSd (4.9)

Given an affinely parameterized geodesic γ with tangent Ua, a solution Sa of this
equation along γ is called a Jacobi field.
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4.3 Geodesic congruences

Definition. Let U ⊂ M be open. A geodesic congruence in U is a family of
geodesics such that exactly one geodesic passes through each p ∈ U .

Consider a congruence for which all the geodesics are of the same type (timelike
or spacelike or null). Then by normalizing the affine parameter we can arrange
that the tangent vector Ua satisfies U2 = ±1 (in the spacelike or timelike case) or
U2 = 0 (in the null case) everywhere.

Now consider a 1-parameter family of geodesics belonging to a congruence.
Write (4.8) as

U b∇bS
a = Ba

bS
b (4.10)

where
Ba

b = ∇bU
a (4.11)

measures the failure of Sa to be parallelly transported along the geodesic with
tangent Ua. Note that

Ba
bU

b = 0 (4.12)

because Ua is tangent to affinely parameterized geodesics. Note also that

UaB
a
b =

1

2
∇b(U

2) = 0 (4.13)

because we’ve arranged that U2 is constant throughout U . This implies that

U · ∇(U · S) = (U · ∇Ua)Sa + UaU · ∇Sa = UaBabS
b = 0 (4.14)

using the geodesic equation and (4.10). Hence U ·S is constant along any geodesic
in the congruence.

Now recall that, even after normalising so that U2 ∈ {±1, 0}, the affine pa-
rameter is not uniquely defined because we are free to shift it by a constant. We
can choose this constant to be different on different geodesics, i.e., it can depend
on s: λ′ = λ− a(s) is just as good an affine parameter as λ. But this changes the
deviation vector to (exercise)

S
′a ≡ Sa +

da

ds
Ua (4.15)

Hence S
′a is a deviation vector pointing to the same geodesic as Sa:

Now U · S ′ = U · S + (da/ds)U2 so in the spacelike or timelike case, we can fix
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this ”gauge freedom” by choosing a(s) so that U · S = 0 at some point on each
geodesic (e.g. λ = 0). Since U ·S is constant along each geodesic, this implies that
U · S = 0 everywhere.

4.4 Null geodesic congruences

In the null case, the above procedure does not work because U · S ′ = U · S.
Instead we fix the gauge freedom as follows. Pick a spacelike hypersurface Σ
which intersects each geodesic once. Let Na be a vector field defined on Σ obeying
N2 = 0 and N · U = −1 on Σ. Now extend Na off Σ by parallel transport along
the geodesics: U · ∇Na = 0. This implies N2 = 0 and N · U = −1 everywhere
(proof: exercise). In summary, we’ve constructed a vector field such that

N2 = 0 U ·N = −1 U · ∇Na = 0 (4.16)

We can now decompose any deviation vector uniquely as

Sa = αUa + βNa + Ŝa (4.17)

where
U · Ŝ = N · Ŝ = 0 (4.18)

which implies that Ŝa is spacelike (or zero). Note that U · S = −β hence β is
constant along each geodesic. So we can write a deviation vector Sa the sum of
a part αUa + Ŝa orthogonal to Ua and a part βNa that is parallelly transported
along each geodesic.

An important case is when the congruence contains the generators of a null
hypersurface N and we are interested only in the behaviour of these generators.
In this case, if we pick a 1-parameter family of geodesics contained within N then
the deviation vector Sa will be tangent to N and hence obey U · S = 0 (since Ua

is normal to N ) i.e. β = 0.
Note that we can write

Ŝa = P a
b S

b (4.19)

where
P a
b = δab +NaUb + UaNb (4.20)

is a projection (i.e. P a
b P

b
c = P a

c ) of the tangent space at p onto T⊥, the 2d space
of vectors at p orthogonal to Ua and Na. Since Ua and Na are both parallelly
transported, so is P a

b :
U · ∇P a

b = 0 (4.21)

Proposition. A deviation vector for which U · S = 0 satisfies U · ∇Ŝa = B̂a
bŜ

b

where B̂a
b = P a

c B
c
dP

d
b .
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Proof. U · ∇Ŝa = U · ∇(P a
c S

c) = P a
c U · ∇Sc = P a

c B
c
dS

d = P a
c B

c
dP

d
e S

e using
U ·S = 0 and Bc

dU
d = 0 in the final step. Finally we can use P 2 = P to write the

RHS as P a
c B

c
dP

d
b P

b
eS

e = B̂a
bŜ

b.

4.5 Expansion, rotation and shear

Note that B̂a
b can be regarded as a matrix that acts on the 2d space T⊥. To

understand its geometrical interpretation, it is useful to divide it into its trace,
traceless symmetric, and antisymmetric parts as follows:

Definition. The expansion, shear and rotation of the null geodesic congruence
are

θ = B̂a
a σ̂ab = B̂(ab) −

1

2
Pabθ, ω̂ab = B̂[ab] (4.22)

This implies

B̂a
b =

1

2
θP a

b + σ̂ab + ω̂ab (4.23)

Exercise. Show that θ = gabBab = ∇aU
a.

This shows that the expansion is independent of the choice of Na, i.e., it is an
intrinsic property of the congruence. Scalar invariants of the rotation and shear
(e.g. ω̂abω̂

ab or the eigenvalues of σ̂ab) are also independent of the choice of Na.

Proposition. If the congruence contains the generators of a (null) hypersurface
N then ω̂ab = 0 on N . Conversely, if ω̂ab = 0 everywhere then Ua is everywhere
hypersurface orthogonal (i.e. orthogonal to a family of null hypersurfaces).

Proof. The definition of B̂ and U ·B = B · U = 0 implies

B̂b
c = Bb

c + U bNdB
d
c + UcB

b
dN

d + U bUcNdB
d
eN

e (4.24)

Using this, we have
U[aω̂bc] = U[aB̂bc] = U[aBbc] (4.25)

since the extra terms drop out of the antisymmetrization. Now using the definition
of Bab we have

U[aω̂bc] = U[a∇cUb] = −1

6
(U ∧ dU)abc (4.26)

If Ua is normal to N then U ∧ dU = 0 on N and hence, on N ,

0 = U[aω̂bc] =
1

3
(Uaω̂bc + Ubω̂ca + Ucω̂ab) (4.27)

Contracting this with Na gives ω̂bc = 0 on N (using U · N = −1 and ω̂ · N =
0). Conversely, if ω̂ = 0 everywhere then (4.26) implies that U is hypersurface-
orthogonal using Frobenius’ theorem.
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4.6 Expansion and shear of a null hypersurface

Assume that we have a congruence which includes the generators of a null hyper-
surface N . The generators of N have ω̂ = 0. To understand how these generators
behave, restrict attention to deviation vectors tangent to N (i.e. consider a 1-
parameter family of generators of N ). Consider the evolution of the generators of
N as a function of affine parameter λ:

Qualitatively: expansion θ corresponds to neighbouring generators moving
apart (if θ > 0) or together (if θ < 0). Shear corresponds to geodesics moving
apart in one direction, and together in the orthogonal direction whilst preserving
the cross-sectional area.

We can make this more precise by introducing Gaussian null coordinates nearN
as follows. Pick a spacelike 2-surface S withinN and let yi (i = 1, 2) be coordinates
on this surface. Assign coordinates (λ, yi) to the point affine parameter distance λ
from S along the generator of N (with tangent Ua) which intersects the surface S
at the point with coordinates yi. Now we have coordinates (λ, yi) on N such that
the generators are lines of constant yi and Ua = (∂/∂λ)a.

Let V a be a null vector field on N satisfying V · ∂/∂yi = 0 and V · U = 1.
Assign coordinates (r, λ, yi) to the point affine parameter distance r along the null
geodesic which starts at the point on N with coordinates (λ, yi) and has tangent
vector V a there.

This defines a coordinate chart in a neighbourhood of N such that N is at
r = 0, with U = ∂/∂λ on N , and ∂/∂r is tangent to affinely parameterized null
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geodesics. The latter implies that grr = 0 everywhere.

Exercise. Use the geodesic equation for ∂/∂r to show grµ,r = 0.

At r = 0 we have grλ = V ·U = 1 (as V = ∂/∂r onN ) and gri = V ·(∂/∂yi) = 0.
Since grµ is independent of r, these results are valid for all r. We also know that
gλλ = 0 at r = 0 (as Ua is null) and gλi = 0 at r = 0 (as ∂/∂yi is tangent to N
and hence orthogonal to Ua). So we can write gλλ = rF and gλi = rhi for some
smooth functions F , hi. Therefore the metric takes the form

ds2 = 2drdλ+ rFdλ2 + 2rhidλdy
i + hijdy

idyj (4.28)

(We note that F must vanish at r = 0. To see this, we use the fact that the curves λ 7→ (0, λ, yi),

for constant yi are affinely parameterized null geodesics: the generators of N . For these the

only-non vanishing component of the geodesic equation is the r component. This reduces to

∂r(rF ) = 0 Hence F = 0 at r = 0 so we can write F = rF̂ for some smooth function F̂ .)

On N the metric is
g|N = 2drdλ+ hijdy

idyj (4.29)

so Uµ = (0, 1, 0, 0) on N implies that Uµ = (1, 0, 0, 0) on N . Now U ·B = B ·U = 0
implies that Br

µ = Bµ
λ = 0. We saw above that θ = Bµ

µ. Hence on N we have

θ = Bi
i = ∇iU

i = ∂iU
i + ΓiiµU

µ = Γiiλ =
1

2
giµ (gµi,λ + gµλ,i − giλ,µ) (4.30)

In the final expression, note that the form of the metric on N implies that giµ is
non-vanishing only when µ = j, and that gij = hij (the inverse of hij) hence on N

θ =
1

2
hij (gji,λ + gjλ,i − giλ,j) =

1

2
hijhij,λ =

∂λ
√
h√
h

(4.31)

where we used giλ = 0 on N and defined h = dethij. Hence we have

∂

∂λ

√
h = θ

√
h (4.32)

From (4.29),
√
h is the area element on a surface of constant λ within N , so θ

measures the rate of increase of this area element with respect to affine parameter
along the geodesics.

4.7 Trapped surfaces

Consider a 2d spacelike surface S, i.e., a 2d submanifold for which all tangent
vectors are spacelike. For any p ∈ S there will be precisely two future-directed
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null vectors Ua
1 and Ua

2 orthogonal to S (up to the freedom to rescale Ua
1 and Ua

2 ).
If we assume that S is orientable then Ua

1 and Ua
2 can be defined continuously over

S. This defines two families of null geodesics which start on S and are orthogonal
to S (with the freedom to rescale Ua corresponding to the freedom to rescale the
affine parameter). These null geodesics form two null hypersurfaces N1 and N2.
In simple situations, these correspond to the set of ”outgoing” and ”ingoing” light
rays that start on S. Consider a null congruence that contains the generators of
Ni. By the proposition above, we will have ω̂ab = 0 on N1 and N2.

Example. Let S be a 2-sphere U = U0, V = V0 in the Kruskal spacetime. By
symmetry, the generators of Ni will be radial null geodesics:

Hence Ni must be surfaces of constant U or constant V with generators tangent
to dU and dV respectively. We saw above that dU and dV correspond to affine
parameterization. Raising an index, equation (4.7) gives

Ua
1 = rer/2M

(
∂

∂V

)a
Ua

2 = rer/2M
(
∂

∂U

)a
(4.33)

where we have discarded an overall constant and fixed the sign so that Ua
1 and Ua

2

are future-directed. (∂/∂U and ∂/∂V are future-directed because they are globally
null and hence define time-orientations. In region I they both give the same time
orientation as the one defined by ka.) We can now calculate the expansion of these
congruences:

θ1 = ∇aU
a
1 =

1√
−g

∂µ
(√
−gUµ

1

)
= r−1er/2M∂V

(
re−r/2Mrer/2M

)
= 2er/2M∂V r

(4.34)
The RHS can be calculated from (2.33), giving

θ1 = −8M2

r
U (4.35)

A similar calculation gives

θ2 = −8M2

r
V (4.36)
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We can now set U = U0 and V = V0 to study the expansion (on S) of the null
geodesics normal to S. For S in region I, we have θ1 > 0 and θ2 < 0 i.e., the
outgoing null geodesics normal to S are expanding and the ingoing geodesics are
converging, as one expects under normal circumstances. In region IV we have
θ2 > 0 and θ1 < 0 so again we have an expanding family and a converging family.
However, in region II we have θ1 < 0 and θ2 < 0: both families of geodesics normal
to S are converging. And in region III, θ1 > 0 and θ2 > 0 so both families are
expanding.

Definition. A compact, orientable, spacelike, 2-surface is trapped if both families
of null geodesics orthogonal to S have negative expansion everywhere on S. It is
marginally trapped if both families have non-positive expansion everywhere on S.

So in the Kruskal spacetime, all 2-spheres U = U0, V = V0 in region II are
trapped and 2-spheres on the event horizon (U0 = 0, V0 > 0) are marginally
trapped.

4.8 Raychaudhuri’s equation

Let’s determine how the expansion evolves along the geodesics of a null geodesic
congruence.

Proposition (Raychaudhuri’s equation).

dθ

dλ
= −1

2
θ2 − σ̂abσ̂ab + ω̂abω̂ab −RabU

aU b (4.37)

Proof. From the definition of θ we have

dθ

dλ
= U · ∇

(
Ba

bP
b
a

)
= P b

aU · ∇Ba
b = P b

aU
c∇c∇bU

a (4.38)

Now commute derivatives using the definition of the Riemann tensor:

dθ

dλ
= P b

aU
c
(
∇b∇cU

a +Ra
dcbU

d
)

= P b
a [∇b(U

c∇cU
a)− (∇bU

c)(∇cU
a)] + P b

aR
a
dcbU

cUd

= −Bc
bP

b
aB

a
c −RcdU

cUd (4.39)

where we used the geodesic equation and, in the final term, the antisymmetry of
the Riemann tensor allows us to replace P b

a with δba. Finally (exercise) we can
rewrite the first term so that

dθ

dλ
= −B̂c

aB̂
a
c −RabU

aU b (4.40)
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The result then follows by using (4.23).
Similar calculations give equations governing the evolution of shear and rota-

tion.

4.9 Energy conditions

Raychaudhuri’s equation involves the Ricci tensor, which is related to the energy-
momentum tensor of matter via the Einstein equation. We will want to consider
only ”physical” matter, which implies that the energy-momentum tensor should
satisfy certain conditions. For example, an observer with 4-velocity ua would mea-
sure an ”energy-momentum current” ja = −T abub. We would expect ”physically
reasonable” matter not to move faster than light, so this current should be non-
spacelike. This motivates:

Dominant energy condition. −T abV b is a future-directed causal vector (or
zero) for all future-directed timelike vectors V a.

For matter satisfying the dominant energy condition, if Tab is zero in some
closed region S of a spacelike hypersurface Σ then Tab will be zero within D+(S).
(See Hawking and Ellis for a proof.)

Example. Consider a massless scalar field

Tab = ∂aΦ∂bΦ−
1

2
gab(∂Φ)2 (4.41)

Let

ja = −T abV b = −(V · ∂Φ)∂aΦ +
1

2
V a(∂Φ)2 (4.42)

then, for timelike V a,

j2 =
1

4
V 2
(
(∂Φ)2

)2 ≤ 0 (4.43)

so ja is indeed causal or zero. Now consider

V · j = −(V · ∂Φ)2 +
1

2
V 2(∂Φ)2 = −1

2
(V · ∂Φ)2 +

1

2
V 2

(
∂Φ− V · ∂Φ

V 2
V

)2

(4.44)

the final expression in brackets is orthogonal to V a and hence must be spacelike
or zero, so its norm is non-negative. We then have V · j ≤ 0 using V 2 < 0. Hence
ja is future-directed (or zero).

A less restrictive condition requires only that the energy density measured by
all observers is positive:

Weak energy condition. TabV
aV b ≥ 0 for any causal vector V a.
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A special case of this is

Null energy condition. TabV
aV b ≥ 0 for any null vector V a.

The dominant energy condition implies the weak energy condition, which im-
plies the null energy condition. Another energy condition is

Strong energy condition. (Tab − (1/2)gabT
c
c )V aV b ≥ 0 for all causal vectors

V a.

Using the Einstein equation, this is equivalent to RabV
aV b ≥ 0, or ”gravity is

attractive”. Despite its name, the strong energy condition does not imply any of
the other conditions. The strong energy condition is needed to prove some of the
singularity theorems, but the dominant energy condition is the most important
physically. For example, our universe appears to contain a positive cosmological
constant. This violates the strong energy condition but respects the dominant
energy condition.

4.10 Conjugate points

Lemma. In a spacetime satisfying Einstein’s equation with matter obeying the
null energy condition, the generators of a null hypersurface satisfy

dθ

dλ
≤ −1

2
θ2 (4.45)

Proof. Consider the RHS of Raychaudhuri’s equation. The generators of a null

hypersurface have ω̂ = 0. Vectors in T⊥ are all spacelike, so the metric restricted
to T⊥ is positive definite. Hence σ̂abσ̂ab ≥ 0. Einstein’s equation gives RabU

aU b =
8πTabU

aU b because Ua is null. Hence the null energy condition implies RabU
aU b ≥

0. The result follows from Raychaudhuri’s equation.

Corollary. If θ = θ0 < 0 at a point p on a generator γ of a null hypersurface then
θ → −∞ along γ within an affine parameter distance 2/|θ0| provided γ extends
this far.

Proof. Let λ = 0 at p. Equation (4.45) implies

d

dλ
θ−1 ≥ 1

2
(4.46)

Integrating gives θ−1 − θ−1
0 ≥ λ/2, which can be rearranged to give

θ ≤ θ0

1 + λθ0/2
(4.47)
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if θ0 < 0 then the RHS → −∞ as λ→ 2/|θ0|.
Definition. Points p, q on a geodesic γ are conjugate if there exists a Jacobi field
(i.e. a solution of the geodesic deviation equation) along γ that vanishes at p and
q but is not identically zero.

Roughly speaking, if p and q are conjugate then there exist multiple infinitesi-
mally nearby geodesics which pass through p and q:

The following results are proved in Hawking and Ellis:

Theorem 1. Consider the null geodesic congruence consisting of all null geodesics
through p (this congruence is singular at p). If θ → −∞ at a point q on a null
geodesic γ through p then q is conjugate to p along γ.

Theorem 2. Let γ be a causal curve with p, q ∈ γ. Then there does not exist a
smooth 1-parameter family of causal curves γs connecting p, q with γ0 = γ and γs
timelike for s > 0 (i.e. γ cannot be smoothly deformed to a timelike curve) if, and
only if, γ is a null geodesic with no point conjugate to p along γ between p and q.

For example, consider the 3d spacetime R× S2 with metric

ds2 = −dt2 + dΩ2 (4.48)

Null geodesics emitted from the south pole at time t = 0 (the spacetime point p)
all reconverge at the north pole at time t = π (spacetime point r)

Such geodesics correspond to great circles of S2. If q lies beyond r along one
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of these geodesics then by deforming the great circle into a shorter path one can
travel from p to q with velocity less than that of light hence there exists a timelike
curve from p to q.

Now consider the case in which we have a 2d spacelike surface S. As discussed
above, we can introduce two future-directed null vector fields Ua

1 , Ua
2 on S that

are normal to S and consider the null geodesics which have one of these vectors as
their tangent on S. These generate a null hypersurface N . Let p be a point on a
geodesic γ in this family. We say that p is conjugate to S if there exists a Jacobi
field along γ that vanishes at p and, on S, is tangent to S. If p is conjugate to S
then, roughly speaking, infinitesimally nearby geodesics normal to S intersect at
p.

The analogue of theorem 1 in this case is: p is conjugate to S if, θ → −∞
at p for any null geodesic congruence that contains the family of geodesics just
discussed. (We saw earlier that θ depends only in the geodesics in N and not on
how the other geodesics in the congruence are chosen.)

4.11 Causal structure

Definition. Let (M, g) be a time-orientable spacetime and U ⊂M . The chrono-
logical future of U , denoted I+(U), is the set of points of M which can be reached
by a future-directed timelike curve starting on U . The causal future of U , denoted
J+(U), is the union of U with the set of points of M which can be reached by
a future-directed causal curve starting on U . The chronological past I−(U) and
causal past J−(U) are defined similarly.

For example, let q be a point in Minkowski spacetime. Then I+(p) is the set
of points strictly inside the future light cone of p and J+(p) is the set of points on
or inside the future light cone of p, including p itself.

Next we need to review some basic topological ideas. A subset S of M is open
if, for any point p ∈ S, there exists a neighbourhood V of p (i.e. a set of points
whose coordinates in some chart are a neighbourhood of the coordinates of p) such
that V ⊂ S. Small deformations of timelike curves remain timelike. Hence I±(U)
are open subsets of M .
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We use an overbar to denote the closure of a set, i.e., the union of a set and its
limit points. In Minkowski spacetime, we have I±(p) = J±(p) so J±(p) are closed
sets, i.e., they contain their limit points. This is not true in general e.g. let (M, g)
be the spacetime obtained by deleting a point from 2d Minkowski spacetime:

In this example we see that J+(p) 6= I+(p) and J+(p) is not closed.

A point p ∈ S is an interior point if there exists a neighbourhood of p contained
in S. The interior of S, denoted int(S) is the set of interior points of S. If S is
open then int(S) = S. The boundary of S is Ṡ = S̄\int(S). This is a topological
boundary rather than a boundary in the sense of manifold-with-boundary (to be
defined later).

The boundary of I+(p) is İ+(p) = I+(p)\I+(p). In Minkowski spacetime,
I+(p) is the set of points along future-directed timelike geodesics starting at p and
İ+(p) is the set of points along future-directed null geodesics starting at p. These
statements are not true in general, they are true only locally in the following sense:

Theorem 1. Given p ∈M there exists a convex normal neighbourhood of p. This
is an open set U with p ∈ U such that for any q, r ∈ U there exists a unique
geodesic connecting q, r that stays in U . The chronological future of p in the
spacetime (U, g) consists of all points in U along future-directed timelike geodesics
in U that start at p. The boundary of this region is the set of all points in U along
future-directed null geodesics in U that start at p.

Proof. See Hawking and Ellis or Wald.

Corollary. If q ∈ J+(p)\I+(p) then there exists a null geodesic from p to q.

Proof (sketch). Let γ be a future-directed causal curve with γ(0) = p and γ(1) = q.
Since [0, 1] is compact, the set of points on γ is compact, hence we can cover a
neighbourhood of this set by finitely many convex normal neighbourhoods. Use
the above Theorem in each neighbourhood.

Lemma. Let S ⊂M . Then J+(S) ⊂ I+(S) and I+(S) = int(J+(S)).

Proof. See Hawking and Ellis (this is an exercise in Wald).

Since I+(S) ⊂ J+(S), I+(S) ⊂ J+(S) so the first result implies that J+(S) =
I+(S). The second result then implies J̇+(S) = İ+(S).
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Definition. S ⊂M is achronal if no two points of S are connected by a timelike
curve.

Theorem 2. Let U ⊂M . Then J̇+(U) is an achronal 3d submanifold of M .

Proof. Assume p, q ∈ J̇+(U) with q ∈ I+(p). Since I+(p) is open, there exists r
(near q) with r ∈ I+(p) but r /∈ J+(U). Similarly, since I−(r) is open, there exists
s (near p) with s ∈ I−(r) and s ∈ J+(U). Hence there exists a causal curve from
U to s to r so r ∈ J+(U), which is a contradiction. Hence we can’t have q ∈ I+(p),
which establishes achronality. For proof of the ”submanifold” part see Wald.

For example, let M = R× S1 with the flat metric

ds2 = −dt2 + dφ2 (4.49)

where φ ∼ φ + 2π parameterizes S1 (this is a 2d version of the ”Einstein static
universe”). The diagram shows J+(p) (shaded). Its boundary J̇+(p) is a pair of
null geodesic segments which start at p and end at q.

Note that q is a future endpoint of these geodesics. They could be extended
to the future beyond q but then they would leave J̇+(p). They also have a past
endpoint at p.

The next theorem characterises the behaviour of J̇+(U).

Theorem 3. Let U ⊂ M be closed. Then every p ∈ J̇+(U) with p /∈ U lies on a
null geodesic λ lying entirely in J̇+(U) and such that λ is either past-inextendible
or has a past endpoint on U .

Proof (sketch). Since U is closed, M\U is a manifold. We will work in this
manifold. Consider a compact neighbourhood V of p and a sequence of points
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pn ∈ I+(U) = int(J+(U)) with limit point p. Let λn be a timelike curve from U
to pn and let qn be the past endpoint of λn in V :

Then one can show that qn has a limit point q ∈ J+(U) and there is a causal
”limit curve” λ from q to p lying in J+(U) (see Wald). We need to show λ ⊂ J̇+(U).
Suppose there is a point r ∈ λ such that r ∈ I+(U) = int(J+(U)). Then there
is a timelike curve γ from r′ ∈ U to r. But then we can get from r′ to r to p by
following γ then λ. Hence p ∈ J+(r′) but p /∈ I+(r′) (as p /∈ I+(U)) so theorem 1
implies that this curve must be a null geodesic, which is a contradiction because
it’s not null everywhere. Hence we must have λ ⊂ J+(U)− I+(U) = J̇+(U).

Theorem 2 tells us that J̇+(U) is achronal so p /∈ I+(q). Theorem 1 then tells
us that λ must be a null geodesic. Now we repeat the argument starting at q, to
get a point r ∈ J̇+(U) with a null geodesic λ′ from r to q lying in J̇+(U), If λ′

were not the past extension of λ we could ”round off the corner” to construct a
timelike curve from r to p, violating achronality. This argument can be repeated
indefinitely, hence λ cannot have a past endpoint in M\U .

In the case of a globally hyperbolic spacetime, this theorem can be strengthened
as follows:

Theorem 4. Let S be a 2-dimensional orientable compact spacelike submanifold
of a globally hyperbolic spacetime. Then every p ∈ J̇+(S) lies on a future-directed
null geodesic starting from S which is orthogonal to S and has no point conjugate
to S between S and p.

Finally, we can use the notation of this section to define what we mean by a
Cauchy horizon:

Definition. The future Cauchy horizon of a partial Cauchy surface Σ is H+(Σ) =
D+(Σ)\I−(D+(Σ)). Similarly for the past Cauchy horizon H−(Σ).

We don’t define H+(Σ) simply as Ḋ+(Σ) since this includes Σ itself. However,
one can show that Ḋ(Σ) = H+(Σ) ∪H−(Σ). One can also show that H± are null
hypersurfaces in the same sense as J̇+(U) in Theorems 2 and 3 above. (See Wald
for details.)
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4.12 Penrose singularity theorem

Theorem (Penrose 1965). Let (M, g) be globally hyperbolic with a non-
compact Cauchy surface Σ. Assume that the Einstein equation and the null energy
condition are satisfied and that M contains a trapped surface T . Let θ0 < 0 be the
maximum value of θ on T for both sets of null geodesics orthogonal to T . Then at
least one of these geodesics is future-inextendible and has affine length no greater
than 2/|θ0|.
Proof. Assume that all future inextendible null geodesics orthogonal to T all
have affine length greater than 2/|θ0|. Along any of these geodesics, we will have
θ → −∞ (from the Corollary in section 4.10), and hence a point conjugate to T ,
within affine parameter no greater than 2/|θ0|.

Let p ∈ J̇+(T ), p /∈ T . From theorem 4 above, we know that p lies on a
future-directed null geodesic γ starting from T which is orthogonal to T and has
no point conjugate to T between T and p. It follows that p cannot lie beyond the
point on γ conjugate to T on γ.

Therefore J̇+(T ) is a subset of the compact set consisting of the set of points
along the null geodesics orthogonal to T , with affine parameter less than or equal
to 2/|θ0|. Since J̇+(T ) is closed this implies that J̇+(T ) is compact. Now recall
(theorem 2 of section 4.11) that J̇+(T ) is a manifold, which implies that it can’t
have a boundary. If Σ were compact this might be possible because the ”ingoing”
and ”outgoing” congruences orthogonal to T might join up:

But since Σ is non-compact, this can’t happen and we’ll now reach a contra-
diction as follows. Pick a timelike vector field T a (possible because our manifold
is time-orientable). By global hyperbolicity, integral curves of this vector field will
intersect Σ exactly once. They will intersect J̇+(T ) at most once (because this set
is achronal by theorem 2 of section 4.11). This defines a continuous one-to-one map
α : J̇+(T ) → Σ. This is a homeomorphism between J̇+(T ) and α(J̇+(T )) ⊂ Σ.
Since the former is a closed set, so must be the latter. Now J̇+(T ) is a 3d subman-
ifold hence for any p ∈ J̇+(T ) we can find a neighbourhood V of p in J̇+(T ). Then
α(V ) gives a neighbourhood of α(p) in α(J̇+(T )) hence the latter set is open (in
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Σ). Since it is both open and closed, and since Σ is connected (this follows from
connectedness of M) we have α(J̇+(T )) = Σ. But this is a contradiction because
the set on the LHS is compact (because J̇+(T ) is). �

The formation of trapped surfaces is routinely observed in numerical simula-
tions of gravitational collapse. There are also various mathematical results con-
cerning the formation of trapped surfaces. The Einstein equation possesses the
property of Cauchy stability, which implies that the solution in a compact region
of spacetime depend continuously on the initial data. In a spacetime describing
spherically symmetric gravitational collapse, choose a compact region that includes
a trapped surface (e.g. a 2-sphere in region II of the Kruskal diagram). Cauchy
stability implies that if one perturbs the initial data (breaking spherical symme-
try) then the resulting spacetime will also have a trapped surface, for a small
enough initial perturbation. This shows that trapped surfaces occur generically in
gravitational collapse.

A theorem due to Schoen and Yau (1983) establishes that asymptotically flat
initial data will contain a trapped surface if the energy density of matter is suffi-
ciently large in a small enough region. Recently, Christodoulou (2009) has proved
that trapped surfaces can be formed dynamically, even in the absence of matter
and without any symmetry assumptions, by sending sufficiently strong gravita-
tional waves into a small enough region.

The above theorem implies that a spacetime containing a trapped surface is
either not globally hyperbolic or it is not geodesically complete. The former possi-
bility is (generically) excluded if the strong cosmic censorship conjecture is correct.
In fact, a different singularity theorem (due to Hawking and Penrose) eliminates
the assumption that spacetime is globally hyperbolic (at the cost of requiring the
strong energy condition and a mild ”genericity” assumption on the spacetime cur-
vature) and still proves existence of incomplete geodesics. Hence there are very
good reasons to believe that gravitational collapse leads to geodesic incomplete-
ness, i.e., to formation of a singularity. Notice that these theorems tell us nothing
about the nature of this singularity e.g. we do not know that it must be a curvature
singularity as occurs in spherically symmetric collapse.
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Chapter 5

Asymptotic flatness

We’ve already defined the notion of asymptotic flatness of an initial data set. In
this chapter, we will define what it means for a spacetime to be asymptotically
flat. We’ll then be able to define the term ”black hole”.

5.1 Conformal compactification

Given a spacetime (M, g) we can define a new metric ḡ = Ω2g where Ω is a
smooth positive function on M . We say that ḡ is obtained from g by a conformal
transformation. The metrics g, ḡ agree on the definitions of ”timelike”, ”spacelike”
and ”null” so they have the same light cones, i.e., the same causal structure.

The idea of conformal compactification is to choose Ω so that ”points at in-
finity” with respect to g are at ”finite distance” w.r.t. the ”unphysical” metric
ḡ. To do this we need Ω → 0 ”at infinity”. More precisely, we try to choose Ω
so that the spacetime (M, ḡ) is extendible in the sense we discussed previously,
i.e., (M, ḡ) is part of a larger ”unphysical” spacetime (M̄, ḡ). M is then a proper
subset of M̄ with Ω = 0 on the boundary ∂M of M in M̄ . This boundary ∂M
corresponds to ”infinity” in (M, g). It is easiest to see how this works by looking
at some examples.

Minkowski spacetime

Let (M, g) be Minkowski spacetime. In spherical polars the metric is

g = −dt2 + dr2 + r2dω2 (5.1)

(We denote the metric on S2 by dω2 to avoid confusion with the conformal factor
Ω.) Define retarded and advanced time coordinates

u = t− r v = t+ r (5.2)
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In what follows it will be important to keep track of the ranges of the different
coordinates: since r ≥ 0 we have −∞ < u ≤ v <∞. The metric is

g = −dudv +
1

4
(u− v)2dω2 (5.3)

Now define new coordinates (p, q) by

u = tan p v = tan q (5.4)

so the range of (p, q) is finite: −π/2 < p ≤ q < π/2. This gives

g = (2 cos p cos q)−2
[
−4dpdq + sin2(q − p)dω2

]
(5.5)

”Infinity” in the original coordinates corresponds to |t| → ∞ or r → ∞. In the
new coordinates this corresponds to |p| → π/2 or |q| → π/2.

To conformally compactify this spacetime, define the positive function

Ω = 2 cos p cos q (5.6)

and let
ḡ = Ω2g = −4dpdq + sin2(q − p)dω2 (5.7)

Finally define
T = q + p ∈ (−π, π) χ = q − p ∈ [0, π) (5.8)

so
ḡ = −dT 2 + dχ2 + sin2 χdω2 (5.9)

Now dχ2+sin2 χdω2 is the unit radius round metric on S3. If we had T ∈ (−∞,∞)
and χ ∈ [0, π] then ḡ would be the metric of the Einstein static universe R× S3,
given by the product of a flat time direction with the unit round metric on S3.
The ESU can be visualised as an infinite cylinder, whose axis corresponds to the
time direction. In our case the restrictions on the ranges of p, q imply that M is
just a finite portion of the ESU:

Let (M̄, ḡ) denote the ESU. This is an extension of (M, ḡ). The boundary
∂M of M in M̄ corresponds to ”infinity” in Minkowski spacetime. This consists
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of (i) the points labelled i± i.e. T = ±π, χ = 0 (ii) the point labelled i0, i.e.,
T = 0, χ = π (iii) a pair of null hypersurfaces I± (I is pronounced ”scri”) with
equations T = ±(π − χ), which are parameterized by χ ∈ (0, π) and (θ, φ) and
hence have the topology of cylinders R× S2 (since (0, π) is diffeomorphic to R).

It is convenient to project the above diagram onto the (T, χ)-plane to obtain
the Penrose diagram of Minkowski spacetime:

Formally, a Penrose diagram is a bounded subset of R2 endowed with a flat
Lorentzian metric (in this case −dT 2 + dχ2). Each point of the interior of a
Penrose diagram represents an S2. Points of the boundary can represent an axis
of symmetry (where r = 0) or points at ”infinity” of our original spacetime with
metric g.

Let’s understand how the geodesics of g look on a Penrose diagram. This is
easiest for radial geodesics, i.e., constant θ, φ. Remember that the causal structure
of g and ḡ is the same. Hence radial null curves of g are null curves of the flat
metric −dT 2 + dχ2, i.e., straight lines at 45◦. These all start at I−, pass through
the origin, and end at I+. For this reason, I− is called past null infinity and I+

is called future null infinity. Similarly, radial timelike geodesics start i− and end
at i+ so i− is called past timelike infinity and i+ is called future timelike infinity.
Finally, radial spacelike geodesics start and end at i0 so i0 is called spatial infinity.

One can also plot the projection of non-radial curves onto the Penrose dia-
gram. This projection makes things look ”more timelike” w.r.t. the 2d flat metric
(because moving the final term in (5.9) to the LHS gives a negative contribu-
tion). Hence a non-radial timelike geodesic remains timelike when projected and
a non-radial null curve looks timelike when projected.

The behaviour of geodesics has an analogue for fields. Roughly speaking, mass-
less radiation ”comes in from” I− and ”goes out to” I+. For example, consider a
massless scalar field ψ in Minkowski spacetime, i.e., a solution of the wave equation
∇a∇aψ = 0. For simplicity, assume it is spherically symmetric ψ = ψ(t, r).

Exercise. Show that the general spherically symmetric solution of the wave equa-
tion in Minkowski spacetime is
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ψ(t, r) =
1

r
(f(u) + g(v)) =

1

r
(f(t− r) + g(t+ r)) (5.10)

where f and g are arbitrary functions. This is singular at r = 0 (and hence not a
solution there) unless g(x) = −f(x) which gives

ψ(t, r) =
1

r
(f(u)− f(v)) =

1

r
(F (p)− F (q)) (5.11)

where F (x) = f(tanx). If we let F0(q) denote the limiting value of rψ on I− (where
p = −π/2) then we have F (−π/2) − F (q) = F0(q) so F (q) = F (−π/2) − F0(q).
Hence we can write the solution as

ψ =
1

r
(F0(q)− F0(p)) (5.12)

which is uniquely determined by the function F0 governing the behaviour of the
solution at I−. Similarly it is uniquely determined by the behaviour at I+.

2d Minkowski

As another example of these ideas, consider the Penrose diagram of 2d Minkowski
spacetime with metric

g = −dt2 + dr2 (5.13)

Following the same coordinate transformations as before, the only difference is
that now we have −∞ < r < ∞ hence −∞ < u, v < ∞, −π/2 < p, q < π/2 and
T, χ ∈ (−π, π). The Penrose diagram is:

In this case, we have ”left” and ”right” portions of spatial infinity and fu-
ture/past null infinity.

Kruskal spacetime

In this case, we know that the spacetime (M, g) has two asymptotically flat
regions. it is natural to expect that ”infinity” in each of these regions has the
same structure as in (4d) Minkowski spacetime. Hence we expect ”infinity” in
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Kruskal spacetime to correspond to two copies of infinity in Minkowski spacetime.
To construct the Penrose diagram for Kruskal we would define new coordinates
P = P (U) and Q = Q(V ) (so that lines of constant P or Q are radial null
geodesics) such that that the range of P,Q is finite, say (−π/2, π/2), then we
would need to find a conformal factor Ω so that the resulting unphysical metric ḡ
can be extended smoothly onto a bigger manifold M̄ (analogous to the Einstein
static universe we used for Minkowski spacetime). M is then a subset of M̄ with
a boundary that has 4 components, corresponding to places where either P or Q
is ±π/2. We identify these 4 components as future/past null infinity in region I,
which we denote as I± and future/past null infinity in region IV, which we denote
as I±′ .

Doing this explicitly is fiddly. Fortunately we don’t need to do it: now we’ve
understood the structure of infinity we can deduce the form of the Penrose diagram
from the Kruskal diagram. This is because both diagrams show radial null curves
as straight lines at 45◦. The only important difference is that ”infinity” corresponds
to a boundary of the Penrose diagram. It is conventional to use the freedom in
choosing Ω to arrange that the curvature singularity at r = 0 is a horizontal
straight line in the Penrose diagram. The result is:

In contrast with the conformal compactification of Minkowski spacetime, it
turns out that the unphysical metric is singular at i± (and i±

′
). This can be

understood because lines of constant r meet at i±, and this includes the curvature
singularity r = 0. Less obviously, it turns out that one can’t choose Ω to make the
unphysical metric smooth at i0.

Spherically symmetric collapse

The Penrose diagram for spherically symmetric gravitational collapse is easy
to deduce from the form of the Kruskal diagram:
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5.2 Asymptotic flatness

An asymptotically flat spacetime is one that ”looks like Minkowski spacetime at
infinity”. In this section we will define this precisely. Infinity in Minkowski space-
time consists of I±, i± and i0. However, we saw that i± are singular points in the
conformal compactification of the Kruskal spacetime. Since we want to regard the
latter as asymptotically flat, we cannot include i± in our definition of asymptotic
flatness. We also mentioned that i0 is not smooth in the Kruskal spacetime so we
will also not include i0. (However, it is possible to extend the definition to include
i0, see Wald for details.) So we will define a spacetime to be asymptotically flat if
it has the same structure for null infinity I± as Minkowski spacetime.

First, recall that a manifold-with-boundary is defined in the same way as a
manifold except that the charts are now maps φ : M → Rn/2 ≡ {(x1, . . . , xn) :
x1 ≤ 0}. The boundary ∂M of M is defined to be the set of points which have
x1 = 0 in some chart.

Definition. A time-orientable spacetime (M, g) is asymptotically flat at null in-
finity if there exists a spacetime (M̄, ḡ) such that

1. There exists a positive function Ω on M such that (M̄, ḡ) is an extension of
(M,Ω2g) (hence if we regard M as a subset of M̄ then ḡ = Ω2g on M).

2. Within M̄ , M can be extended to obtain a manifold-with-boundary M ∪∂M

3. Ω can be extended to a function on M̄ such that Ω = 0 and dΩ 6= 0 on ∂M

4. ∂M is the disjoint union of two components I+ and I−, each diffeomorphic
to R× S2

5. No past (future) directed causal curve starting in M intersects I+ (I−)

6. I± are ”complete”. We’ll define this below.

Conditions 1,2,3 are just the requirement that there exist an appropriate con-
formal compactification. The condition dΩ 6= 0 ensures that Ω has a first order
zero on ∂M , as in the examples discussed above. This is needed to ensure that the
spacetime metric approaches the Minkowski metric at an appropriate rate near
I±. Conditions 4,5,6 ensure that infinity has the same structure as null infinity
of Minkowski spacetime. In particular, condition 5 ensures that I+ lies ”to the
future of M” and I− lies ”to the past of M”.

Example. Consider the Schwarzschild solution in outgoing EF coordinates (u, r, θ, φ),
for which I+ corresponds to r → ∞ with finite u. Let r = 1/x with x > 0. This
gives

g = − (1− 2Mx) du2 + 2
dudx

x2
+

1

x2

(
dθ2 + sin2 θdφ2

)
(5.14)
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Hence by choosing a conformal factor Ω = x we obtain the unphysical metric

ḡ = −x2 (1− 2Mx) du2 + 2dudx+ dθ2 + sin2 θdφ2 (5.15)

which can be smoothly extended across x = 0. The surface x = 0 is I+. It is
parameterized by (u, θ, φ) and is hence diffeomorphic to R× S2. Of course we’ve
only checked the above definition at I+ here. But one can do the same at I− using
ingoing EF coordinates and the same conformal factor Ω = 1/r (recall that r is the
same for both coordinate charts). Hence the Schwarzschild spacetime is asymptot-
ically flat at null infinity. Similarly, the Kruskal spacetime is asymptotically flat
(in fact both regions I and IV are asymptotically flat).

Let’s now see how the above definition implies that the metric must approach
the Minkowski metric near I+ (of course I− is similar).

Exercise (examples sheet 2). Let ∇̄ denote the Levi-Civita connection of ḡ
and R̄ab the Ricci tensor of ḡ. Show that on M

Rab = R̄ab + 2Ω−1∇̄a∇̄bΩ + ḡabḡ
cd
(
Ω−1∇̄c∇̄dΩ− 3Ω−2∂cΩ∂dΩ

)
(5.16)

We will consider the case in which (M, g) satisfies the vacuum Einstein equa-

tion. This assumption can be weakened: our results will apply also to spacetimes
for which the energy-momentum tensor decays sufficiently rapidly near I+. The
vacuum Einstein equation is Rab = 0. Multiply by Ω to obtain

ΩR̄ab + 2∇̄a∇̄bΩ + ḡabḡ
cd
(
∇̄c∇̄dΩ− 3Ω−1∂cΩ∂dΩ

)
= 0 (5.17)

Since ḡ and Ω are smooth at I+, the first three terms in this equation admit
a smooth limit to I+. It follows that so must the final term which implies that
Ω−1ḡcd∂cΩ∂dΩ can be smoothly extended to I+. This implies that ḡcd∂cΩ∂dΩ must
vanish on I+ i.e. dΩ is null (w.r.t ḡ) on I+. But dΩ is normal to I+ (as Ω = 0 on
I+) hence I+ must be a null hypersurface in (M̄, ḡ).

Now the choice of Ω in our definition is far from unique. If Ω satisfies the
definition then so will Ω′ = ωΩ where ω is any smooth function on M̄ that is
positive on M ∪ ∂M . We can use this ”gauge freedom” to simplify things further.
If we replace Ω with Ω′ then we must replace ḡab with ḡ′ab = ω2ḡab. The primed
version of the quantity we just showed can be smoothly extended to I+ is then

Ω
′−1ḡ

′cd∂cΩ
′∂dΩ

′ = ω−3ḡcd
(
Ω∂cω∂dω + 2ω∂cΩ∂dω + ω2Ω−1∂cΩ∂dΩ

)
= ω−1

(
2na∂a logω + Ω−1ḡcd∂cΩ∂dΩ

)
on I+ (5.18)

where
na = ḡab∂bΩ (5.19)
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is normal to I+ and hence also tangent to the null geodesic generators of I+. We
can therefore choose ω to satisfy

na∂a logω = −1

2
Ω−1ḡcd∂cΩ∂dΩ on I+ (5.20)

since this is just an ordinary differential equation along each generator of I+.
Pick an S2 cross-section of I+, i.e., an S2 ⊂ I+ which intersects each generator
precisely once. There is a unique solution of this differential equation for any
(positive) choice of ω on this cross-section. We’ve now shown that the RHS of
(5.18) vanishes on I+, i.e., that we can choose a gauge for which

Ω−1ḡcd∂cΩ∂dΩ = 0 on I+ (5.21)

Evaluating (5.17) on I+ now gives

2∇̄a∇̄bΩ + ḡabḡ
cd∇̄c∇̄dΩ = 0 on I+ (5.22)

Contracting this equation gives ḡcd∇̄c∇̄dΩ = 0. Substituting back in we obtain

∇̄a∇̄bΩ = 0 on I+ (5.23)

and hence
∇̄an

b = 0 on I+ (5.24)

In particular we have
na∇̄an

b = 0 on I+ (5.25)

so, in this gauge, na is tangent to affinely parameterized (w.r.t. ḡ) null geodesic
generators of I+. Furthermore, (5.24) shows that these generators have vanishing
expansion and shear.

We introduce coordinates near I+ as follows. In our choice of gauge, we still
have the freedom to choose ω on a S2 cross-section of I+. A standard result is that
any Riemannian metric on S2 is conformal to the unit round metric on S2. Hence
we can choose ω so that the metric on our S2 induced by ḡ (i.e. the pull-back
of ḡ to this S2) is the unit round metric. Introduce coordinates (θ, φ) on this S2

so that the unit round metric takes the usual form dθ2 + sin2 θdφ2. Now assign
coordinates (u, θ, φ) to the point parameter distance u along the integral curve of
na through the point on this S2 with coordinates (θ, φ). This defines a coordinate
chart on I+ with the property that the generators of I+ are lines of constant θ, φ
with affine parameter u.

On I+ consider the vectors that are orthogonal (w.r.t. ḡ) to the 2-spheres of
constant u, i.e., orthogonal to ∂/∂θ and ∂/∂φ. Such vectors form a 2d subspace of
the tangent space. In 2d, there are only two distinct null directions. Hence there
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are two distinct null directions orthogonal to the 2-spheres of constant u. One of
these is tangent to I+ so pick the other one, which points into M .

Consider the null geodesics whose tangent at I+ is in this direction. Extend
(u, θ, φ) off I+ by defining them to be constant along these null geodesics. Finally,
since dΩ 6= 0 on I+, we can use Ω as a coordinate near I+. We now have a
coordinate chart (u,Ω, θ, φ) defined in a neighbourhood of I+, with I+ given by
Ω = 0.

By construction we have a coordinate chart with na = ∂/∂u on I+. Hence
nµ = δµu . But the definition of na implies ∂µΩ = ḡµνn

ν from which we deduce
ḡuµ = δΩ

µ at Ω = 0. Since (u, θ, φ) don’t vary along the null geodesics pointing
into M , the tangent vector to these geodesics must be proportional to ∂/∂Ω.
Since the geodesics are null we must therefore have ḡΩΩ = 0 for all Ω. We also
know that these geodesics are orthogonal to ∂/∂θ and ∂/∂φ on I+ hence we have
ḡΩθ = ḡΩφ = 0 at Ω = 0.

Now consider the gauge condition (5.23). Writing this out in our coordinate
chart, it reduces to

0 = Γ̄Ω
µν =

1

2
ḡΩρ (ḡρµ,ν + ḡρν,µ − ḡµν,ρ) =

1

2
(ḡuµ,ν + ḡuν,µ − ḡµν,u) at Ω = 0

(5.26)
where we used ḡΩρ = ḡνρ(dΩ)ν = nρ = δρu. Taking µ and ν to be θ or φ, we have
ḡuµ,ν = ḡuν,µ = 0 so we learn that ḡµν,u = 0 at Ω = 0, i.e., the θ, φ components of
the metric ḡ on I+ don’t depend on u. Since we know that this metric is the unit
round metric when u = 0, it must be the unit round metric for all u.

We have now deduced the form of the unphysical metric on I+:

ḡ|Ω=0 = 2dudΩ + dθ2 + sin2 dφ2 (5.27)

For small Ω 6= 0, the metric components will differ from the above result by O(Ω)
terms. However, by setting ν = Ω in (5.26) and taking µ to be u, θ or φ, we
learn that ḡuµ,Ω = 0 at Ω = 0 so smoothness of ḡ implies that ḡuµ = O(Ω2) for
µ = u, θ, φ.

Finally we can write down the physical metric g = Ω−2ḡ. It is convenient to
define a new coordinate r = 1/Ω so that I+ corresponds to r →∞. On examples
sheet 2, it is shown that, after a finite shift in r, the metric can be brought to the
form

g = −2dudr + r2
(
dθ2 + sin2 θdφ2

)
+ . . . (5.28)
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for large r, where the ellipsis refers to corrections that are subleading at large r.
The leading term written above is simply the metric of Minkowski spacetime in
outgoing Eddington-Finkelstein coordinates. If one converts this to inertial frame
coordinates (t, x, y, z) so that the leading order metric is diag(−1, 1, 1, 1) then the
correction terms are all of order 1/r (examples sheet 2). Hence the metric of an
asymptotically flat spacetime does indeed approach the Minkowski metric at I+.

Finally we can explain condition 6 of our definition of asymptotic flatness.
Nothing in the above construction guarantees that the range of u is (−∞,∞)
as it is in Minkowski spacetime. We would not want to regard a spacetime as
asymptotically flat if I+ ”ends” at some finite value of u. Recall that u is the
affine parameter along the generators of I+ so if this happens then the generators
of I+ would be incomplete. Condition 6 eliminates this possibility.

Definition. I+ is complete if, in the gauge (5.23), the generators of I+ are
complete (i.e. the affine parameter extends to ±∞). Similarly for I−.

This completeness assumption will be important when we discuss weak cosmic
censorship.

5.3 Definition of a black hole

We can now make precise our definition of a black hole as a region of an asymptot-
ically flat spacetime from which it is impossible to send a signal to infinity. I+ is a
subset of our unphysical spacetime (M̄, ḡ) so we can define J−(I+) ⊂ M̄ . The set
of points of M that can send a signal to I+ is M ∩ J−(I+). We define the black
hole region to be the complement of this region, and the future event horizon to
be the boundary of the black hole region:

Definition. Let (M, g) be a spacetime that is asymptotically flat at null infinity.
The black hole region is B = M\[M ∩ J−(I+)] where J−(I+) is defined using the
unphysical spacetime (M̄, ḡ). The future event horizon is H+ = Ḃ (the boundary
of B in M), equivalently H+ = M ∩ J̇−(I+). Similarly, the white hole region is
W = M\[M ∩ J+(I−)] and the past event horizon is H− = Ẇ = M ∩ J̇+(I−).

One can construct examples of spacetimes with a non-empty black hole region
simply by deleting sets of points from Minkowski spacetime. However, we can
eliminate such trivial examples by restricting attention to spacetimes that are the
maximal development of geodesically complete, asymptotically flat initial data.

In the Kruskal spacetime, no causal curve from region II or IV can reach I+

hence B is the union of regions II and IV (including the boundary U = 0 where
r = 2M). H+ is the surface U = 0. W is the union of regions III and IV (including
the boundary V = 0). H− is the surface V = 0.
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Theorems 2 and 3 of section 4.11 imply that H± are null hypersurfaces. The-
orem 3 (time reversed) implies that the generators of H+ cannot have future end-
points. However, they can have past endpoints. This happens in the spacetime
describing spherically symmetric gravitational collapse, with Penrose diagram:

The generators of H+ have a past endpoint at p, which is the point at which
the black hole forms. So null generators can enter H+ but they cannot leave it.
Note that the sets W and H− are empty in this spacetime.

We will need a extra technical condition to prove useful things about black
holes:

Definition. An asymptotically flat spacetime (M, g) is strongly asymptotically
predictable if there exists an open region V̄ ⊂ M̄ such that M ∩ J−(I+) ⊂ V̄ and
(V̄ , ḡ) is globally hyperbolic.

This definition implies that (M ∩ V̄ , g) is a globally hyperbolic subset of M .
Roughly speaking, there is a globally hyperbolic region M ∩ V̄ of spacetime con-
sisting of the region not in B together with a neighbourhood of H+. It ensures that
physics is predictable on, and outside, H+. A simple consequence of this definition
is the result that a black hole cannot bifurcate (split into two):

Theorem. Let (M, g) be strongly asymptotically predictable and let Σ1, Σ2 be
Cauchy surfaces for V̄ with Σ2 ⊂ I+(Σ1). Let B be a connected component of
B ∩Σ1. Then J+(B) ∩Σ2 is contained within a connected component of B ∩Σ2.

Proof. Global hyperbolicity implies that every causal curve from Σ1 intersects
Σ2 and vice-versa. Note that J+(B) ⊂ B hence J+(B) ∩ Σ2 ⊂ B ∩ Σ2. Assume
J+(B)∩Σ2 is not contained within a single connected component of B∩Σ2. Then
we can find disjoint open sets O,O′ ⊂ Σ2 such that J+(B) ∩ Σ2 ⊂ O ∪ O′ with
J+(B)∩O 6= ∅, J+(B)∩O′ 6= ∅. Then B ∩ I−(O) and B ∩ I−(O′) are non-empty
and B ⊂ I−(O)∪I+(O). Now p ∈ B cannot lie in both I−(O) and I+(O′) for then
we could divide future-directed timelike geodesics from p into two sets according
to whether they intersected O or O′, and hence divide the future-directed timelike
vectors at p into two disjoint open sets, contradicting connectedness of the future
light-cone at p. Hence the open sets B ∩ I−(O) and B ∩ I−(O′) are disjoint open
sets whose union is B. This contradicts the connectedness of B.
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5.4 Weak cosmic censorship

In our Penrose diagram for spherically symmetric gravitational collapse, the singu-
larity at r = 0 is hidden behind the event horizon: no signal from the singularity
can reach I+. (More precisely: no inextendible incomplete causal geodesic reaches
I+.) This is not true for the Kruskal spacetime, where a signal from the white
hole curvature singularity can reach I+: it is a naked singularity. The same is true
for the M < 0 Schwarzschild solution:

The singularity theorems tell us that gravitational collapse results in the for-
mation of a singularity (i.e. geodesic incompleteness). But could this singularity
be naked?

If we have a spherically symmetric collapsing star then Birkhoff’s theorem
tells us that the exterior of the star is given by the Schwarzschild solution, with
the same (positive) mass as the star. This gives the standard diagram for grav-
itational collapse to form a black hole. However, this is just a consequence of
spherical symmetry and Birkhoff’s theorem. With spherical symmetry, the dy-
namics of the gravitational field is trivial: there are no gravitational waves (and
no electromagnetic waves if there is a Maxwell field).

In order to make the dynamics more interesting we will assume that the matter
in our spacetime includes a scalar field. This allows us to maintain the convenience
of spherical symmetry, i.e., the use of Penrose diagrams, whilst circumventing
Birkhoff’s theorem. If the scalar field is non-trivial outside the collapsing matter
then Birkhoff’s theorem doesn’t apply. We emphasize that the only reason for
including this scalar field is to make the dynamics richer and therefore give us an
idea of what is possible in the more general situation without spherical symmetry.

It is now tempting to draw the following diagram describing collapse to form
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a naked singularity:

(With the scalar field, we can no longer define a sharp boundary to the col-
lapsing matter so the surface of the star is not precisely defined.) Imagine starting
from initial data on Σ as shown. This data describes a collapsing star. The initial
data is geodesically complete and asymptotically flat. When the star collapses to
zero size, a timelike singularity forms. This is naked because it can send a signal
to I+.

This diagram is misleading. Note the presence of a future Cauchy horizon
H+(Σ) which bounds the maximal development of Σ. The spacetime beyond
H+(Σ) is not determined by data on Σ. Hence we cannot say what happens
beyond H+(Σ): one would need extra information (new laws of physics) to do so.
So it is incorrect to draw a diagram as above. Instead we should draw just the
maximal development of the initial data on Σ:

This spacetime does not have a singularity which can send a signal to I+.
But the spacetime shown is pathological in two respects. First, even though we
started from geodesically complete, asymptotically flat initial data, the maximal
development is extendible. Hence strong cosmic censorship is violated. Second,
the spacetime does not satisfy our definition of asymptotic flatness. This is because
I+ is not complete: only part of it is present. The weak cosmic censorship property
asserts that the latter behaviour does not occur:

Conjecture (weak cosmic censorship). Let (Σ, hab, Kab) be a geodesically
complete, asymptotically flat, initial data set. Let the matter fields obey hyper-
bolic equations and satisfy the dominant energy condition. Then generically the
maximal development of this initial data is an asymptotically flat spacetime (in
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particular it has a complete I+) that is strongly asymptotically predictable.

Just like strong cosmic censorship, this conjecture refers only to the maximal
development, i.e., to the region of spacetime that can be predicted uniquely from
the initial data. This conjecture captures the idea that a ”naked singularity would
lead to an incomplete I+” without referring to any actual singularity.

The word ”generically” is included because it is known that there exist exam-
ples which violate the conjecture if this word is omitted. However, such examples
are ”fine-tuned”, i.e., if one introduces an appropriate measure on the space of
initial data then the set of data which violates the conjecture is of measure zero.
For example, consider gravity coupled to a massless scalar field, with spherical
symmetry. This system was studied in the early 1990s by Christodoulou (rigor-
ously) and Choptuik (numerically). One can construct a 1-parameter family of
initial data labelled by a parameter p with the following property. There exists
p∗ such that for p < p∗, the scalar field simply disperses whereas for p > p∗ it
collapses to form a black hole. These cases with p 6= p∗ respect the weak cosmic
censorship conjecture. However, the ”critical” solution with p = p∗ violates the
conjecture. But this solution is fine-tuned and hence non-generic.

In spite of the name, weak cosmic censorship is not implied by strong cosmic
censorship: the two conjectures are logically independent. This is shown in the
following Penrose diagrams:

The first diagram violates strong but not weak, the second violates weak but
not strong and the diagram we drew previously violates both weak and strong.

Historically, a very popular model for gravitational collapse consists of gravity
coupled to a pressureless perfect fluid (”dust”), with spherical symmetry. For
initial data consisting of a homogeneous ball of dust (i.e. constant density), it is
known that gravitational collapse leads to formation of a black hole in the standard
way. However, Christodoulou showed that if one considers a spherically symmetric
but inhomogenous ball of dust (i.e., the density ρ depends on radius r) then both
cosmic censorship conjectures are false (if one interprets ”generic” as meaning
”generic within the class of spherically symmetric initial data”). Generically, a
singularity forms at the centre of the ball before an event horizon forms. However,
it is believed that this model is unphysical because of the neglect of pressure.
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For the case of gravity coupled to a massless scalar field, Christodoulou has
proved that both cosmic censorship conjectures are true, again within the restricted
class of spherically symmetric initial data. In this model, generic initial data
either disperses (and settles down to flat spacetime at late time), or undergoes
gravitational collapse to form a black hole.

Further evidence for the validity of weak cosmic censorship comes from the
Penrose inequality (to be discussed later) and many numerical simulations e.g. of
gravitational collapse, or black hole collisions.

5.5 Apparent horizon

Note that the definition of B and H+ is non-local: to determine whether or not
p ∈ B we must establish whether there exists a causal curve from p to I+. This
requires knowledge of the behaviour of the spacetime to the future of p, it can’t be
determined by measurements in a neighbourhood of p. This makes it difficult to
determine the location ofH+ e.g. in a numerical simulation. However, determining
whether or not a spacelike 2-surface is trapped can be done locally. Furthermore,
these must lie inside B (if weak cosmic censorship is correct):

Theorem. Let T be a trapped surface in a strongly asymptotically predictable
spacetime obeying the null energy condition. Then T ⊂ B.

Proof (sketch).Assume there exists p ∈ T such that p /∈ B, i.e., p ∈ J−(I+).
Then there exists a causal curve from p to I+. One can use strong asymptotic
predictability to show that this implies that J̇+(T ) must intersect I+, i.e., there
exists q ∈ I+ with q ∈ J̇+(T ). Theorem 3 of section 4.10 implies that q lies on a
null geodesic γ from r ∈ T that is orthogonal to T and has no point conjugate to r
along γ. Since T is trapped, the expansion of the null geodesics orthogonal to T is
negative at r and hence (from section 4.10) θ →∞ within finite affine parameter
along γ. So there exists a point s conjugate to r along γ, a contradiction. �

In a numerical simulation one considers a foliation of the spacetime by Cauchy
surfaces Σt labelled by a time coordinate t. Then ”the black hole region at time
t” is Bt ≡ B ∩ Σt and the ”event horizon at time t” is Ht ≡ H+ ∩ Σt. We can’t
determine Bt just from the solution on Σt. However, we can investigate whether
there exist trapped surfaces on Σt. If such surfaces exist then the above theorem
implies that Bt is non-empty.

Definition. Let Σt be a Cauchy surface in a globally hyperbolic spacetime (M, g).
The trapped region Tt of Σ is the set of points p ∈ Σ for which there exists a trapped
surface S with p ∈ S ⊂ Σ. The apparent horizon At is the boundary of Tt.

(Note that several different definitions of apparent horizon appear in the litera-
ture.) If weak cosmic censorship is correct then Tt ⊂ B which implies that At ⊂ B
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so the apparent horizon always lies inside (or on) the event horizon. It is natural
to hope that Tt is a reasonable approximation to Bt, and that At is a reasonable
approximation to Ht. Whether or not this is actually true can depend on how the
surfaces Σt are chosen. For spherically symmetric Cauchy surfaces in the Kruskal
spacetime, one has At = Ht. However, one can find non-spherically symmetric
Cauchy surfaces which enter the black hole region and come arbitrarily close to
the singularity but do not contain trapped surfaces (Iyer and Wald 1991).

By continuity, one expects At to be a marginally trapped surface. This is how
its location is determined in numerical simulations.
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Charged black holes

In this chapter, we will discuss the Reissner-Nordstrom solution, which describes
a charged, spherically symmetric black hole. Large imbalances of charge don’t
occur in nature, so matter undergoing gravitational collapse would be expected to
be almost neutral. Furthermore, a charged black hole would preferentially attract
particles of opposite charge and hence gradually lose its charge. Hence charged
black holes are unlikely to be important in astrophysics. However, they have played
an important role in quantum gravity, especially in string theory.

6.1 The Reissner-Nordstrom solution

The action for Einstein-Maxwell theory is

S =
1

16π

∫
d4x
√
−g
(
R− F abFab

)
(6.1)

where F = dA with A a 1-form potential. Note that the normalisation of F
used here differs from the standard particle physics normalisation. The Einstein
equation is

Rab −
1

2
Rgab = 2

(
Fa

cFbc −
1

4
gabF

cdFcd

)
(6.2)

and the Maxwell equations are

∇bFab = 0 dF = 0 (6.3)

There is a generalisation of Birkhoff’s theorem to this theory:

Theorem. The unique spherically symmetric solution of the Einstein-Maxwell
equations with non-constant area radius function r is the Reissner-Nordstrom so-
lution:
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ds2 = −
(

1− 2M

r
+
e2

r2

)
dt2 +

(
1− 2M

r
+
e2

r2

)−1

dr2 + r2dΩ2

A = −Q
r
dt− P cos θdφ e =

√
Q2 + P 2 (6.4)

This solution has 3 parameters: M,Q,P . We will show later that these are the
mass, electric charge and magnetic charge respectively (there is no evidence that
magnetic charge occurs in nature but it is allowed by the equations).

Several properties are similar to the Schwarzschild solution: the RN solution
is static, with timelike Killing vector field ka = (∂/∂t)a. The RN solution is
asymptotically flat at null infinity in the same way as the Schwarzschild solution.

If r is constant then the above theorem doesn’t apply. In this case, one obtains
the Robinson-Bertotti (AdS2 × S2) solution discussed on examples sheet 2.

To discuss the properties of this solution, it is convenient to define

∆ = r2 − 2Mr + e2 = (r − r+)(r − r−) r± = M ±
√
M2 − e2 (6.5)

so the metric is

ds2 = −∆

r2
dt2 +

r2

∆
dr2 + r2dΩ2 (6.6)

If M < e then ∆ > 0 for r > 0 so the above metric is smooth for r > 0. There is a
curvature singularity at r = 0. This is a naked singularity, just like in the M < 0
Schwarzschild spacetime. Dynamical formation of such a singularity is excluded
by the cosmic censorship hypotheses. If one considers a spherically symmetric
ball of charged matter with M < e then electromagnetic repulsion dominates
over gravitational attraction so gravitational collapse does not occur. Note that
elementary particles (e.g. electrons) can have M < e but these are intrinsically
quantum mechanical.

6.2 Eddington-Finkelstein coordinates

The special case M = e will be discussed later so consider the case M > e. ∆ has
simple zeros at r = r± > 0. These are coordinate singularities. To see this, we
can define Eddington-Finkelstein coordinates in exactly the same way as we did
for the Schwarzschild solution. Start with r > r+ and define

dr∗ =
r2

∆
dr (6.7)

Integrating gives

r∗ = r +
1

2κ+

log |r − r+

r+

|+ 1

2κ−
log |r − r−

r−
|+ const. (6.8)
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where

κ± =
r± − r∓

2r2
±

(6.9)

Now let
u = t− r∗ v = t+ r∗ (6.10)

In ingoing EF coordinates (v, r, θ, φ), the RN metric becomes

ds2 = −∆

r2
dv2 + 2dvdr + r2dΩ2 (6.11)

This is now smooth for any r > 0 hence we can analytically continue the metric
into a new region 0 < r < r+. There is a curvature singularity at r = 0. A surface
of constant r has normal n = dr and hence is null when grr = ∆/r2 = 0. It follows
that the surfaces r = r± are null hypersurfaces.

Exercise. Show that r decreases along any future-directed causal curve in the
region r− < r < r+.

It follows from this that no point in the region r < r+ can send a signal to I+

(since r =∞ at I+). Hence this spacetime describes a black hole. The black hole
region is r ≤ r+ and the future event horizon is the null hypersurface r = r+.

Similarly, if one uses outgoing EF coordinates one obtains the metric

ds2 = −∆

r2
du2 − 2dudr + r2dΩ2 (6.12)

and again one can analytically continue to a new region 0 < r ≤ r+ and this is a
white hole.

6.3 Kruskal-like coordinates

To understand the global structure, define Kruskal-like coordinates

U± = −e−κ±u V ± = ±eκ±v (6.13)

Starting in the region r > r+, use coordinates (U+, V +, θ, φ) to obtain the metric

ds2 = −r+r−
κ2

+r
2
e−2κ+r

(
r − r−
r−

)1+κ+/|κ−|

dU+dV + + r2dΩ2 (6.14)

where r(U+, V +) is defined implicitly by

−U+V + = e2κ+r

(
r − r+

r+

)(
r−

r − r−

)κ+/|κ−|
(6.15)
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The RHS is a monotonically increasing function of r for r > r−. Initially we have
U+ < 0 and V + > 0 which gives r > r+ but now we can analytically continue to
U+ ≥ 0 or V + ≤ 0. In particular, the metric is smooth and non-degenerate when
U+ = 0 or V + = 0. We obtain a diagram very similar to the Kruskal diagram:

Just as for Kruskal, we have a pair of null hypersurfaces which intersect in the
”bifurcation 2-sphere” U+ = V + = 0, where ka = 0. Surfaces of constant t are
Einstein-Rosen bridges connection regions I and IV. The major difference with the
Kruskal diagram is that we no longer have a curvature singularity in regions II and
III because r(U+, V +) > r−. However, from our EF coordinates, we know that it
is possible to extend the spacetime into a region with r < r−. Hence the above
spacetime must be extendible. Phrasing things differently, we know (from the EF
coordinates) that radial null geodesics reach r = r− in finite affine parameter.
Hence such geodesics will reach U+V + = −∞ in finite affine parameter so we have
to investigate what happens there.

To do this, start in region II and use ingoing EF coordinates (v, r, θ, φ) (as we
know these cover regions I and II). We can now define the retarded time coordinate
u in region II as follows. First define a time coordinate t = v − r∗ in region II
with r∗ defined by (6.8). The metric in coordinates (t, r, θ, φ) takes the static RN
form given above, with r− < r < r+. Now define u by u = t − r∗ = v − 2r∗.
Having defined u in region II we can now define the Kruskal coordinates U− < 0
and V − < 0 in region II using the formula above. In these coordinates, the metric
is

ds2 = −r+r−
κ2
−r

2
e2|κ−|r

(
r+ − r
r+

)1+|κ−|/κ+
dU−dV − + r2dΩ2 (6.16)

where r(U−, V −) < r+ is given by

U−V − = e−2|κ−|r
(
r − r−
r−

)(
r+

r+ − r

)|κ−|/κ+
(6.17)
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This can now be analytically continued to U− > 0 or V − > 0, giving the diagram

We now have new regions V and VI in which 0 < r < r−. These regions contain
the curvature singularity at r = 0 (U−V − = −1), which is timelike. Region III′ is
isometric to region III and so, by introducing new coordinates (U+′ , V +′) this can
be analytically to the future to give further new regions I′, II′ and IV′:

In this diagram, I′ and IV′ are new asymptotically flat regions isometric to
I and IV. This procedure can be repeated indefinitely, to the future and past,
so the maximal analytic extension of the RN solution contains infinitely many
regions. The resulting Penrose diagram extends to infinity in both directions. By
an appropriate choice of conformal factor, one can arrange that the singularity is
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a straight line.

6.4 Cauchy horizons

Consider the surface Σ shown on the above diagram. This is a geodesically com-
plete asymptotically flat (with 2 ends) hypersurface. But D+(Σ) is bounded to
the future by a Cauchy horizon H+(Σ) and D−(Σ) is bounded to the past by a
Cauchy horizon H−(Σ). Both Cauchy horizons have r = r−.

The existence of these Cauchy horizons means that most of the above Penrose
diagram is unphysical. We should take seriously only the part of the diagram
corresponding to D(Σ) since this is the part that is uniquely determined by initial
data on Σ. The solution outside D(Σ) is not determined by this data: to obtain
the above Penrose diagram one has to assume analyticity or spherical symmetry.
But if we just assume that spacetime is smooth then there are infinitely many
ways of extending D(Σ).

The extendibility of D(Σ) appears to violate strong cosmic censorship. But
recall that the latter applies to generic initial data: violation of strong cosmic
censorship would require that D(Σ) is generically extendible for a sufficiently small
perturbation of the initial data on Σ. (This could be a perturbation that breaks
spherical symmetry or it could be a perturbation that preserves spherical symmetry
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but introduces a small amount of matter: a popular model is a massless scalar
field.)

There is a lot of evidence that D(Σ) is not extendible when the initial data on Σ
is perturbed, i.e., strong cosmic censorship is respected. The physical mechanism
for this can be understood as follows. Consider two observers A,B as shown:

A crosses H+(Σ) in region II whereas B stays in region I. Assume that B
sends light signals to A at proper time intervals of 1 second. If B lives forever (!)
then he sends infinitely many signals. From the Penrose diagram, it is clear that
A receives all of these signals within a finite proper time as she crosses H+(Σ).
Hence signals from region I undergo an infinite blueshift at H+(Σ). Therefore a
tiny perturbation in region I will have an enormous energy (as measured by A) at
H+(Σ). This suggests that the gravitational back reaction of a tiny perturbation
in region I will become large in region II. In other words, region II exhibits an
instability. The effect of this might be to give a singularity, rather than a Cauchy
horizon, in region II, thus rendering D(Σ) inextendible in agreement with strong
cosmic censorship.

A tractable model for studying this in detail is to consider Einstein-Maxwell
theory coupled to a massless scalar field, assuming spherical symmetry. In this
case, results of Dafermos (2012) strongly suggest that small perturbations of the
initial data on Σ lead to a spacetime in which the Cauchy horizons are replaced by
null curvature singularities. Hence strong cosmic censorship is respected (at least
within the class of spherically symmetric initial data). For a charged black hole
formed by gravitational collapse of (almost) spherically symmetric charged matter,
it seems likely that the singularity will be partially null and partially spacelike:
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6.5 Extreme RN

The RN solution with M = e is called extreme RN. The metric is

ds2 = −
(

1− M

r

)2

dt2 +

(
1− M

r

)−2

dr2 + r2dΩ2 (6.18)

Starting in the region r > M one can define dr∗ = dr/(1−M/r)2, i.e.,

r∗ = r + 2M log |r −M
M
| − M2

r −M
(6.19)

and introduce ingoing EF coordinates v = t+ r? so that the metric becomes

ds2 = −
(

1− M

r

)2

dv2 + 2dvdr + r2dΩ2 (6.20)

which can be analytically extended into the region 0 < r < M , which is a black
hole region. Similarly one can use outgoing EF coordinates to uncover a white
hole region. Each of these can be analytically extended across an inner horizon.
The Penrose diagram is:

Note that H± are Cauchy horizons for a surface of constant t. A novel feature
of this solution is that a surface of constant t is not an Einstein-Rosen bridge
connecting two asymptotically flat ends. Consider the proper length of a line of
constant t, θ, φ from r = r0 > M to r = M :∫ r0

M

dr

1−M/r
=∞ (6.21)

Hence a surface of constant t exhibits an ”infinite throat”:

To understand the geometry near the horizon, let r = M(1 + λ). To leading
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order in λ,

ds2 ≈ −λ2dt2 +M2dλ
2

λ2
+M2dΩ2 (6.22)

This is the Robinson-Bertotti metric: a product of 2d anti-de Sitter spacetime
(AdS2) with S2 (see examples sheet 2).

6.6 Majumdar-Papapetrou solutions

Introduce a new radial coordinates ρ = r −M and assume P = 0. The extreme
RN metric becomes

ds2 = −H−2dt2 +H2
(
dρ2 + ρ2dΩ2

)
H = 1 +

M

ρ
(6.23)

this is a special case of the Majumdar-Papapetrou solution:

ds2 = −H(x)−2dt2 +H(x)2
(
dx2 + dy2 + dz2

)
A = H−1dt (6.24)

where x = (x, y, z) and H obeys the Laplace equation in 3d Euclidean space:

∇2H = 0 (6.25)

Choosing

H = 1 +
N∑
i=1

Mi

|x− xi|
(6.26)

gives a static solution describing N extreme RN black holes of masses Mi at po-
sitions xi (each of these is an S2, not a point). Physically, such a solution exists
because Mi = Qi for all i hence there is an exact cancellation of gravitational
attraction and electromagnetic repulsion between the black holes.
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Chapter 7

Rotating black holes

In this chapter we will discuss the Kerr solution, which describes a stationary rotat-
ing black hole. The solution is considerably more complicated than the spherically
symmetric solutions that we have discussed so far. We will start by explaining
why the Kerr solution is believed to be the unique stationary black hole solution.

7.1 Uniqueness theorems

Black holes form by gravitational collapse, a time-dependent process. However, we
would expect an isolated black hole eventually to settle down to a time-independent
equilibrium state (this is actually a very fast process, occuring on a time scale set
by the radius of the black hole: microseconds for a solar mass black hole). Hence
it is desirable to classify all such equilibrium states, i.e., all possible stationary
black hole solutions of the vacuum Einstein (or Einstein-Maxwell) equations.

First we will need to weaken slightly our definition of ”stationary” to cover
rotating black holes:

Definition. A spacetime asymptotically flat at null infinity is stationary if it
admits a Killing vector field ka that is timelike in a neighbourhood of I±. It is
static if it is stationary and ka is hypersurface-orthogonal.

It is conventional to normalize ka so that k2 → −1 at I±. Sometimes the term
”strictly stationary/static” is used if ka is timelike everywhere, not just near I±.
So Minkowski spacetime is strictly static. The Kruskal spacetime is static but not
strictly static (because ka is spacelike in regions II, III).

So far, we have discussed only spherically symmetric black holes. But rotating
black holes cannot be spherically symmetric. However, they can be axisymmetric,
i.e. ”symmetric under rotations about an axis”. For a stationary spacetime we
define this as follows.
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Definition. A spaetime asymptotically flat at null infinity is stationary and ax-
isymmetric if (i) it is stationary; (ii) it admits a Killing vector field ma that is
spacelike near I±; (iii) ma generates a 1-parameter group of isometries isomorphic
to U(1); (iv) [k,m] = 0.

(We can also define the notion of axisymmetry in a non-stationary spacetime
by deleting (i) and (iv).) For such a spacetime, one can choose coordinates so that
k = ∂/∂t and m = ∂/∂φ with φ ∼ φ+ 2π.

Now recall that a spherically symmetric vacuum spacetime must be static, by
Birkhoff’s theorem. The converse of this is untrue: a static vacuum spacetime need
not be spherically symmetric e.g. consider the spacetime outside a cube-shaped
object. However, if the only object in the spacetime is a black hole then we have:

Theorem (Israel 1967, Bunting & Masood 1987). If (M, g) is a static,
asymptotically flat, vacuum black hole spacetime that is suitably regular on, and
outside an event horizon, then (M, g) is isometric to the Schwarzschild solution.

We will not attempt to describe precisely what ”suitably regular” means here.
This theorem establishes that static vacuum multi black hole solutions do not
exist. There is an Einstein-Maxwell generalisation of this theorem, which states
that such a solution is either Reissner-Nordstrom or Majumdar-Papapetrou.

For stationary black holes, we have the following:

Theorem (Hawking 1973, Wald 1992). If (M, g) is a stationary, non-static,
asymptotically flat analytic solution of the Einstein-Maxwell equations that is
suitably regular on, and outside an event horizon, then (M, g) is stationary and
axisymmetric.

This is sometimes stated as ”stationary implies axisymmetric” for black holes.
But this theorem has the unsatisfactory assumption that the spacetime be analytic.
This is unphysical: analyticity implies that the full spacetime is determined by its
behaviour in the neighbourhood of a single point. If one accepts the above result,
or simply assumes axisymmetry, then

Theorem (Carter 1971, Robinson 1975). If (M, g) is a stationary, axisym-
metric, asymptotically flat vacuum spacetime suitably regular on, and outside, a
connected event horizon then (M, g) is a member of the 2-parameter Kerr (1963)
family of solutions. The parameters are mass M and angular momentum J .

These results lead to the expectation that the final state of gravitational col-
lapse is generically a Kerr black hole. This implies that the final state is fully
characterized by just 2 numbers: M and J . In contrast, the initial state can be
arbitrarily complicated. Nearly all information about the initial state is lost during
gravitational collapse (either by radiation to infinity, or by falling into the black
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hole), with just the 2 numbers M,J required to describe the final state on, and
outside, the event horizon.

There is an Einstein-Maxwell generalization of the above theorem, which states
that (M, g) should belong to the 4-parameter Kerr-Newman (1965) solution de-
scribed in the next section.

7.2 The Kerr-Newman solution

This is a rotating, charged solution of Einstein-Maxwell theory. In Boyer-Lindquist
coordinates, it is

ds2 = −
(
∆− a2 sin2 θ

)
Σ

dt2 − 2a sin2 θ
(r2 + a2 −∆)

Σ
dtdφ

+

(
(r2 + a2)2 −∆a2 sin2 θ

Σ

)
sin2 θdφ2 +

Σ

∆
dr2 + Σdθ2

A = −Qr(dt− a sin2 θdφ) + P cos θ (adt− (r2 + a2)dφ)

Σ
(7.1)

where

Σ = r2 + a2 cos2 θ ∆ = r2 − 2Mr + a2 + e2 e =
√
Q2 + P 2 (7.2)

At large r, the coordinates (t, r, θ, φ) reduce to spherical polar coordinates in
Minkowski spacetime. In particular, (θ, φ) have their usual interpretation as angles
on S2 so 0 < θ < π and φ ∼ φ + 2π. It can be shown that the KN solution is
asymptotically flat at null infinity.

The solution is stationary and axisymmetric with two commuting Killing vector
fields:

ka =

(
∂

∂t

)a
ma =

(
∂

∂φ

)a
(7.3)

ka is timelike near infinity although, as we will discuss, it is not globally timelike.
The solution possesses a discrete isometry t→ −t, φ→ −φ which simultaneously
reverses the direction of time and the sense of rotation.

The solution has 4 parameters: M,a,Q, P . We’ll see later that M is the mass,
Q the electric charge, P the magnetic charge and a = J/M where J is the angular
momentum. When a = 0 the KN solution reduces to the RN solution. Note that
φ→ −φ has the same effect as a→ −a so there is no loss of generality in assuming
a ≥ 0.
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7.3 The Kerr solution

Set Q = P = 0 in the KN solution to get the Kerr solution of the vacuum Einstein
equation. Let’s analyze the structure of this solution. As we did for RN, write

∆ = (r − r+)(r − r−) r± = M ±
√
M2 − a2 (7.4)

The solution with M2 < a2 describes a naked singularity so let’s assume M2 > a2

(and discuss M = a later). The metric is singular at θ = 0, π but these are just
the usual coordinate singularities of spherical polars. The metric is also singular
at ∆ = 0 (i.e. r = r±) and at Σ = 0 (i.e. r = 0, θ = π/2). Starting in the region
r > r+, the first singularity we have to worry about is at r = r+. We will now show
that this is a coordinate singularity. To see this, define Kerr coordinates (v, r, θ, χ)
for r > r+ by

dv = dt+
r2 + a2

∆
dr dχ = dφ+

a

∆
dr (7.5)

which implies that in the new coordinates we have χ ∼ χ+ 2π and

ka =

(
∂

∂v

)a
ma =

(
∂

∂χ

)a
(7.6)

The metric is (exercise)

ds2 = −
(
∆− a2 sin2 θ

)
Σ

dv2 + 2dvdr − 2a sin2 θ
(r2 + a2 −∆)

Σ
dvdχ

− 2a sin2 θdχdr +

(
(r2 + a2)2 −∆a2 sin2 θ

Σ

)
sin2 θdχ2 + Σdθ2 (7.7)

This metric is smooth and non-degenerate at r = r+. It can be analytically
continued through the surface r = r+ into a new region with 0 < r < r+.

Proposition. The surface r = r+ is a null hypersurface with normal

ξa = ka + ΩHm
a (7.8)

where

ΩH =
a

r2
+ + a2

(7.9)

Proof. Exercise: Determine ξµ and show that ξµdx
µ|r=r+ is proportional to dr.

Hence (i) ξa is normal to the surface r = r+ and (ii) ξµξµ|r=r+ = 0 because ξr = 0.

Just as for RN, the region r ≤ r+ is (part of) the black hole region of this
spacetime with r = r+ (part of) the future event horizon H+.
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In BL coordinates we have ξ = ∂/∂t+ ΩH∂/∂φ. Hence ξµ∂µ (φ− ΩHt) = 0 so
φ = ΩHt+ const. on orbits (integral curves) of ξa. Note that φ = const. on orbits
of ka. Hence particles moving on orbits of ξa rotate with angular velocity ΩH with
respect to a stationary observer (i.e. someone on an orbit of ka). In particular,
they rotate with this angular velocity w.r.t. a stationary observer at infinity. Since
ξa is tangent to the generators of H+, it follows that these generators rotate with
angular velocity ΩH w.r.t. a stationary observer at infinity, so we interpret ΩH as
the angular velocity of the black hole.

7.4 Maximal analytic extension

The Kerr coordinates are analogous to the ingoing EF coordinates we used for RN.
One can similarly define coordinates analogous to retarded EF coordinates and use
these to construct an analytic extension into a white hole region. Then, just as for
RN, one can define Kruskal-like coordinates that cover all of these regions, as well
as a new asymptotically flat region, i.e., there are regions analogous to regions I
to IV of the analytically extended RN solution.

Just as for RN, the spacetime can be analytically extended across null hyper-
surfaces at r = r− in regions II and III. The resulting maximal analytic extension
is similar to that of RN except for the behaviour near the singularity. In the Kerr
case, it turns out that the curvature singularity has the structure of a ring and by
passing through the ring one can enter a new asymptotically flat region. One also
finds that ma becomes timelike near the singularity. The orbits of ma are closed
(because φ ∼ φ+ 2π) hence there are closed timelike curves near the singularity.

The Kerr solution is not spherically symmetric so one can’t draw a Penrose
diagram for it. However, if one considers the submanifold of the spacetime corre-
sponding to the axis of symmetry (θ = 0 or θ = π) then, since this submanifold
is two-dimensional, one can draw a Penrose diagram for it. Note that this sub-
manifold is ”totally geodesic”, i.e., a geodesic initially tangent to it will remain
tangent. (The same is true for the ”equatorial plane” θ = π/2.) The resulting
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diagram takes the following form:

Most of this diagram is unphysical because, just as for RN, the null hypersur-
faces r = r− are Cauchy horizons for a geodesically complete, asymptotically flat
(with 2 ends) surface Σ. Hence the spacetime beyond r = r− is not determined
uniquely by the data on Σ (unless one makes the unphysical assumption of ana-
lyticity). By the same argument as for RN, these Cauchy horizons are expected
to be unstable against small perturbations in region I (or IV), with the perturbed
spacetime exhibiting null or spacelike singularities instead of Cauchy horizons, in
agreement with strong cosmic censorship.

When we studied the Schwarzschild solution, we saw that it describes the
metric outside a spherical star. This was a consequence of Birkhoff’s theorem. In
contrast, the Kerr solution does not describe the spacetime outside a rotating star.
This solution is expected to describe only the ”final state” of gravitational collapse.
One can’t obtain a solution describing gravitational collapse to form a Kerr black
hole simply by ”gluing in” a ball of collapsing matter as we did for Schwarzschild.
In particular, the spacetime during such collapse would be non-stationary because
the collapse would lead to emission of gravitational waves.

Finally, the special case M = a is called the extreme Kerr solution. It is a black
hole solution with several properties similar to those of the extreme RN solution.
In particular, surfaces of constant t exhibit an ”infinite throat” andH± are Cauchy
horizons for surfaces of constant.

7.5 The ergosphere and Penrose process

In BL coordinates, consider the norm of the Killing vector field ka:

k2 = gtt = −
(
∆− a2 sin2 θ

)
Σ

= −
(

1− 2Mr

r2 + a2 cos2 θ

)
(7.10)

Hence ka is timelike in region I if and only if r2 − 2Mr + a2 cos2 θ > 0 i.e. if, and
only if r > M +

√
M2 − a2 cos2 θ. Hence ka is spacelike in the following region
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outside H+

r+ = M +
√
M2 − a2 < r < M +

√
M2 − a2 cos2 θ (7.11)

This region is called the ergosphere. Its surface is called the ergosurface. The
latter intersects H+ at the poles θ = 0, π:

A stationary observer is someone with 4-velocity parallel to ka. Such observers
do not exist in the ergosphere because ka is spacelike there. Any causal curve in
the ergosphere must rotate (relative to observers at infinity) in the same direction
as the black hole.

Consider a particle with 4-momentum P a = µua (where µ is rest mass and ua

is 4-velocity). Let the particle approach a Kerr black hole along a geodesic. The
energy of the particle according to a stationary observer at infinity is the conserved
quantity along the geodesic

E = −k · P (7.12)

Suppose that the particle decays at a point p inside the ergosphere into two other
particles with 4-momenta P a

1 and P a
2 . From the equivalence principle, we know

that the decay must conserve 4-momentum (because we can use special relativity
in a local inertial frame at p) hence

P a = P a
1 + P a

2 ⇒ E = E1 + E2 (7.13)

where Ei = −k · Pi. Since ka is spacelike within the ergoregion, it is possible that
E1 < 0. We must then have E2 = E + |E1| > E. It can be shown that the first
particle must fall into the black hole and the second one can escape to infinity.
This particle emerges from the ergoregion with greater energy than the particle
that was sent in! Energy is conserved because the particle that falls into the black
hole carries in negative energy, so the energy (mass) of the black hole decreases.
This Penrose process is a method for extracting energy from a rotating black hole.

How much energy can be extracted in this process? A particle crossing H+

must have −P · ξ ≥ 0 because both P a and ξa are future-directed causal vectors.
But ξa = ka + ΩHm

a hence

E − ΩHL ≥ 0 (7.14)
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where E is the energy of the particle and

L = m · P (7.15)

is its conserved angular momentum. Hence we have L ≤ E/ΩH (recall our con-
vention a > 0 so ΩH > 0). The particle carries energy E and angular momentum
L into the black hole. If the black hole now settles down to a Kerr solution then
this new Kerr solution will have slightly different mass and angular momentum:
δM = E and δJ = L. Therefore

δJ ≤ δM

ΩH

=
2M(M2 +

√
M4 − J2)

J
δM (7.16)

Exercise. Show that this is equivalent to δMirr ≥ 0 where the irreducible mass is

Mirr =

[
1

2

(
M2 +

√
M4 − J2

)]1/2

(7.17)

Inverting this expression gives

M2 = M2
irr +

J2

4M2
irr

≥M2
irr (7.18)

Hence in the Penrose process it is not possible to reduce the mass of the black hole
below the initial value of Mirr: there is a limit to the amount of energy that can
be extracted.

Exercise. Show that A = 16πM2
irr is the ”area of the event horizon” of a Kerr

black hole, i.e., the area of the intersection of H+ with a partial Cauchy surface
(e.g. a surface v = const in Kerr coordinates).

Hence δA ≥ 0 in the Penrose process: the area of the event horizon is non-
decreasing. This is a special case of the second law of black hole mechanics. The
explicit expression for A is

A = 8π
(
M2 +

√
M4 − J2

)
(7.19)
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Chapter 8

Mass, charge and angular
momentum

8.1 Charges in curved spacetime

On an orientable n-dimensional manifold with a metric, we denote the volume
form by εa1...an . This can be shown to obey

εa1...apcp+1...cnεb1...bpcp+1...cn = ±p!(n− p)!δa1[b1
. . . δ

ap
bp] (8.1)

where the upper (lower) sign holds for Riemannian (Lorentzian) signature.

Definition. The Hodge dual of a p-form X is the (n− p)-form ? X defined by

(? X)a1...an−p =
1

p!
εa1...an−pb1...bpX

b1...bp (8.2)

Lemma. For a p-form X

?(? X) = ±(−1)p(n−p)X (8.3)

(? d ? X)a1...ap−1 = ±(−1)p(n−p)∇bXa1...ap−1b (8.4)

where the upper (lower) sign holds for Riemannian (Lorentzian) signature.

Proof. Use (8.1).
For example, in 3d Euclidean space, the usual operations of vector calculus can

be written using differential forms as

∇f = df div X = ? d ? X curl X = ? dX (8.5)

where f is a function and X denotes the 1-form Xa obtained from a vector field
Xa. The final equation shows that the exterior derivative can be thought of as a
generalization of the curl operator.
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Another example is Maxwell’s equations

∇aFab = −4πjb ∇[aFbc] = 0 (8.6)

where ja is the current density vector. These can be written as

d ? F = −4π ? j, dF = 0 (8.7)

The first of these implies d ? j = 0, which is equivalent to ∇aj
a = 0, i.e., ja is

a conserved current. The second of these implies (by the Poincaré lemma) that
locally there exists a 1-form A such that F = dA.

Now consider a spacelike hypersurface Σ. We define the total electric charge
on Σ to be

Q = −
∫

Σ

?j (8.8)

(The orientation of Σ is fixed by regarding Σ as a boundary of J−(Σ) and choosing
the orientation used in Stokes’ theorem.) Using Maxwell’s equations we can write

Q =
1

4π

∫
Σ

d ? F (8.9)

Hence if Σ is a manifold with boundary ∂Σ then Stokes’ theorem gives

Q =
1

4π

∫
∂Σ

?F (8.10)

This expresses the total charge on Σ in terms of an integral of ?F over ∂Σ. It is
the curved space generalisation of Gauss’ law Q ∼

∫
E · dS.

For example, consider Minkowski spacetime in spherical polar coordinates,
choosing the orientation so that the volume form is r2 sin θdt ∧ dr ∧ dθ ∧ dφ. Let
Σ be the surface t = 0. If we regard this as the boundary of the region t ≤ 0
then Stokes’ theorem fixes the orientation of Σ as dr∧ dθ∧ dφ. Now let ΣR be the
region r ≤ R of Σ, whose boundary is S2

R: the sphere t = 0, r = R. Stokes tells
us to pick the orientation of S2

R to be dθ ∧ dφ. Consider a Coulomb potential

A = −q
r
dt ⇒ F = − q

r2
dt ∧ dr (8.11)

Taking the Hodge dual gives

(?F )θφ = r2 sin θF tr = q sin θ (8.12)

and hence the charge on ΣR is

Q[ΣR] =
1

4π

∫
S2
R

?F =
1

4π

∫
dθdφ q sin θ = q (8.13)
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so our definition of Q indeed gives the correct result.
For an asymptotically flat hypersurface in Minkowski spacetime we can take the

limit R→∞ to express the total charge on Σ as an integral at infinity. Motivated
by this, we now define the total charge for any asymptotically flat end:

Definition. Let (Σ, hab, Kab) be an asymptotically flat end. Then the electric and
magnetic charges associated to this end are

Q =
1

4π
lim
r→∞

∫
S2
r

?F P =
1

4π
lim
r→∞

∫
S2
r

F (8.14)

where S2
r is a sphere xixi = r2 where xi are the coordinates used in the definition

of an asymptotically flat end.

Exercise (examples sheet 3). Show that these definitions agree with Q,P used
in the Kerr-Newman solution.

Hence the charges can be non-zero even when no charged matter is present in
the spacetime (i.e. ja = 0). Consider a surface of constant t in Kerr-Newman
(or Reissner-Nordstrom). The total charge on this surface is zero. But when we
convert it to a surface integral at infinity, we get two terms because the surface
has two asymptotically flat ends. Hence the charges of these two ends must be
equal in magnitude with opposite sign.

8.2 Komar integrals

If (M, g) is stationary then there exists a conserved energy-momentum current

Ja = −Tabkb d ? J = 0 (8.15)

Hence one can define the total energy of matter on a spacelike hypersurface Σ as

E[Σ] = −
∫

Σ

?J (8.16)

This is conserved: if Σ,Σ′ bound a spacetime region R then

E[Σ′]− E[Σ] = −
∫
∂R

?J = −
∫
R

d ? J = 0 (8.17)

Note that we need not require that the energy-momentum tensor Tab used
above is the one appearing on the RHS of the Einstein equation. It could be the
time-dependent energy momentum tensor of a test field in a stationary vacuum
spacetime.
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Now if we had ?J = dX for some 2-form X then we could convert E[Σ] to an
integral over ∂Σ as we did in the previous section. We could then define the total
energy for a general asymptotically flat end. Unfortunately, this is not possible.
However, consider

(?d ? dk)a = −∇b(dk)ab = −∇b∇akb +∇b∇bka = 2∇b∇bka (8.18)

where we using Killing’s equation. Now recall

Lemma. A Killing vector field ka obeys

∇a∇bk
c = Rc

badk
d (8.19)

Hence we have

(?d ? dk)a = −2Rabk
b = 8πJ ′a (8.20)

where we used Einstein’s equation (so henceforth Tab must be the one appearing
Einstein’s equation) and

J ′a = −2

(
Tab −

1

2
Tgab

)
kb (8.21)

Therefore
d ? dk = 8π ? J ′ (8.22)

So ?J ′ is exact (and conserved: d ? J ′ = 0). It follows that

−
∫

Σ

?J ′ = − 1

8π

∫
Σ

d ? dk = − 1

8π

∫
∂Σ

?dk (8.23)

The LHS appears to be a measure of the energy-momentum content of space-
time.

Exercise. Consider a static, spherically symmetric, perfect fluid star. Let Σ be
the region r ≤ r0 of a surface of constant t where r0 > R. Show that the RHS
of (8.23) is the Schwarzschild parameter M . Show that, in the Newtonian limit,
(p� ρ, |Φ| � 1, |Ψ| � 1), the LHS of (8.23) is the total mass of the fluid.

Hence M is the mass of the star in the Newtonian limit. This motivates the
following definition:

Definition. Let (Σ, hab, Kab) be an asymptotically flat end in a stationary space-
time. The Komar mass (or Komar energy) is

MKomar = − 1

8π
lim
r→∞

∫
S2
r

?dk (8.24)
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with S2
r defined as above.

The Komar mass is a measure of the total energy of the spacetime. This energy
comes both from matter and from the gravitational field. For example, the first
part of the above exercise shows that the Komar mass of a Schwarzschild black
hole is non-zero, even when no matter is present in the spacetime.

The only property of ka that we used above is the Killing property. In an
axisymmetric spacetime we have a Killing vector field ma that generates rotations
about the axis of symmetry. Using this we can define the angular momentum of
an axisymmetric spacetime:

Definition. Let (Σ, hab, Kab) be an asymptotically flat end in an axisymmetric
spacetime. The Komar angular momentum is

JKomar =
1

16π
lim
r→∞

∫
S2
r

?dm (8.25)

Exercise (examples sheet 3). Show that MKomar = M and JKomar = J for the
Kerr-Newman solution.

8.3 Hamiltonian formulation of GR

The Komar mass can be defined only in a stationary spacetime. How do we
define energy in a non-stationary spacetime? Energy is defined as the value of
the Hamiltonian. So we need to consider the Hamiltonian formulation of GR. For
simplicity we’ll work in vacuum, i.e., no matter fields present. It is also convenient
to change our units. Previously we have set G = 1. But in this section we will set
16πG = 1 instead.

Recall that in the 3 + 1 decomposition of spacetime, we consider a spacetime
foliated with surfaces of constant t, so that the metric takes the form

ds2 = −N2dt2 + hij(dx
i +N idt)(dxj +N jdt) (8.26)

where N is the lapse function and N i the shift vector. If one substitutes this into
the Einstein-Hilbert action then the resulting action is, neglecting surface terms,

S =

∫
dtd3xL =

∫
dtd3x

√
hN

(
(3)R +KijK

ij −K2
)

(8.27)

where (3)R is the Ricci scalar of hij, Kij is the extrinsic curvature of a surface of
constant t, with trace K, and ij indices on the RHS are raised with hij, the inverse
of hij. The extrinsic curvature can be written

Kij =
1

2N

(
ḣij −DiNj −DjNi

)
(8.28)
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where a dot denotes a t-derivative and Di is the covariant derivative associated to
hij on a surface of constant t.

The action S is a functional of N , N i and hij. Note that it does not depend
on time derivatives of N or N i. Varying N gives the hamiltonian constraint for
a surface of constant t. Similarly, varying N i gives the momentum constraint.
Varying hij gives the evolution equation for hij. There are no evolution equations
for N,N i: these functions are not dynamical but can be freely specified, which
amounts to a choice of coordinates.

To introduce the Hamiltonian formulation of GR, we need to determine the
momenta conjugate to N , N i and hij. Since the action does not depend on time
derivatives of N and N i, it follows that their conjugate momenta are identically
zero. The momentum conjugate to hij is

πij ≡ δS

δḣij
=
√
h
(
Kij −Khij

)
(8.29)

Note that the factor of
√
h means that πij is not a tensor, it is an example of

a tensor density. (A tensor density of weight p transforms under a coordinate
transformation in the same way as hp times a tensor.)

Now we define the Hamiltonian as the Legendre transform of the Lagrangian:

H =

∫
d3x

(
πijḣij − L

)
(8.30)

If we integrate by parts and neglect surface terms, this gives

H =

∫
d3x
√
h
(
NH +N iHi

)
(8.31)

where

H = −(3)R + h−1πijπij −
1

2
h−1π2 (8.32)

Hi = −2hikDj

(
h−1/2πjk

)
(8.33)

with π ≡ hijπij. In the Hamiltonian formalism, hij and πij are the dynami-
cal variables. N and N i play the role of Lagrange multipliers, i.e., we demand
δH/δN = δH/δN i = 0, which gives H = Hi = 0. These are simply the Hamilto-
nian and momentum constraints. The equations of motion are given by Hamilton’s
equations:

ḣij =
δH

δπij
π̇ij = − δH

δhij
(8.34)

The first of these just reproduces the definition of πij. The second equation is
quite lengthy.
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Now we’ve determined the Hamiltonian for GR, we can define the energy of a
solution as the value of the Hamiltonian. But (8.31) vanishes for any solution of
the constraint equations!

The resolution of this puzzle is that we need to add a boundary term to the
Hamiltonian. To calculate the variational derivatives in (8.34) we need to integrate
by parts in order to remove derivatives from δπij and δhij. This generates surface
terms. We need to investigate whether neglecting these terms is legitimate. If
the constant t surfaces are compact then there won’t be any surface terms. So in
this case, referred to as a closed universe, the Hamiltonian really does evaluate to
zero on a solution. This remains true when matter is included. Hence, in GR, the
total energy of a closed universe is exactly zero. (This leads to speculation about
quantum creation of a closed universe from nothing...)

Now consider the case in which the surfaces constant t are not spatially com-
pact. Let’s assume that each of these surfaces is asymptotically flat with 1 end.
Hence we can introduce ”almost Cartesian” coordinates so that as r →∞ we have
hij = δij + O(1/r) and πij = O(1/r2). Hence the natural boundary conditions
on the variations of hij and πij are δhij = O(1/r) and δπij = O(1/r2). We also
assume our time foliation is chosen so that t, xi approach ”inertial” coordinates in
Minkowski spacetime at large r. More precisely, assume that N = 1 +O(1/r) and
N i → 0 as r →∞.

Consider the region of our constant t surface contained within a sphere of
constant r, with boundary S2

r . When we vary πij, the resulting surface term on
S2
r is ∫

S2
r

dA
(
−2N ihiknjh

−1/2δπjk
)

(8.35)

where dA is the area element, and nj the outward unit normal, of S2
r . Now

dA = O(r2) but our boundary conditions imply that the expression in brackets
decays faster than 1/r2 as r →∞ hence the whole expression vanishes as r →∞.
So we don’t need to worry about the surface term that arises when we vary πij.

When we vary hij, surface terms arise in two ways. First, the variation of h−1/2

in Hi is within a derivative so we need to integrate by parts, generating a surface
term. This is very similar to the surface term above and vanishes as r → ∞.
Second, we have the variation of the term (3)R in H. You know the variation of
the Ricci scalar because this is what you need to calculate when you derive the
Einstein equation from the Einstein-Hilbert action. The only difference is that we
are now varying a 3d, rather than a 4d, Ricci scalar:

δ(3)R = −Rijδhij +DiDjδhij −DkDk

(
hijδhij

)
(8.36)

When we calculate δH, we need to integrate by parts twice to eliminate these
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derivatives on δhij. The first integration by parts gives the surface term

S1 = −
∫
S2
r

dA N
[
niDjδhij − nkDk(h

ijδhij)
]

(8.37)

and the second integration by parts gives another surface term

S2 =

∫
S2
r

dA
(
njδhijD

iN − hijδhijnkDkN
)

(8.38)

Our boundary conditions implies that S2 → 0 as r → ∞. On the other hand, we
have

lim
r→∞

S1 = − lim
r→∞

∫
S2
r

dA ni (∂jδhij − ∂iδhjj) (8.39)

Here we have used the fact that hij → δij so (a) Dk → ∂k as r → ∞ and (b) we
don’t need to distinguish between ”upstairs” and ”downstairs” indices. But we
can rewrite this as

lim
r→∞

S1 = −δEADM (8.40)

where

EADM = lim
r→∞

∫
S2
r

dA ni (∂jhij − ∂ihjj) (8.41)

In general, δEADM will be non-zero. But now consider

H ′ = H + EADM (8.42)

Since H ′ and H differ by a surface term, they will give the same equations of
motion. However, when we vary hij in H ′, the boundary term S1 coming from the
variation of H will be cancelled by the variation of the surface term EADM . Hence
no surface terms arise in the variation of H ′ so H ′ must be the Hamiltonian for
General Relativity with asymptotically flat initial data. The need for this surface
term was first pointed out by Regge and Teitelboim (1974).

8.4 ADM energy

Now that we have a satisfactory variational principle, we can evaluate the Hamil-
tonian on a solution. As before, we have that H = 0 so the value of H ′ is the value
of the surface term EADM . Hence EADM must be the energy of our initial data
set. This is the Arnowitt-Deser-Misner energy (1962). We now return to G = 1
units to obtain the following
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Definition. The ADM energy of an asymptotically flat end is

EADM =
1

16π
lim
r→∞

∫
S2
r

dA ni (∂jhij − ∂ihjj) (8.43)

If we have asymptotically flat initial data with several asymptotically flat ends
then one can define a separate ADM energy for each asymptotic end. In a station-
ary, asymptotically flat spacetime, it can be shown that EADM = MKomar if one
chooses the surfaces of constant t to be orthogonal to the timelike Killing vector
field as r →∞.

Exercise (examples sheet 3). Show that EADM = M for a constant t surface
in the Kerr-Newman solution.

There is also a notion of the total 3-momentum of an asymptotically flat end:

Definition. The ADM 3-momentum of an asymptotically flat end is

Pi =
1

8π
lim
r→∞

∫
S2
r

dA (Kijnj −Kni) (8.44)

In Newtonian gravity, the energy density of the gravitational field is negative.

So one might wonder whether the ADM energy in GR could also be negative.
Since EADM = M for a surface of constant t in the Schwarzschild spacetime, it
follows that EADM < 0 for M < 0 Schwarzschild. But in this case, the surface
of constant t is singular (not geodesically complete). We could also arrange that
EADM < 0 if we included matter with negative energy density. But if we exclude
these unphysical possibilities then we have the positive energy theorem:

Theorem (Schoen & Yau 1979, Witten 1981). Let (Σ, hab, Kab) be an initial
data set that is geodesically complete and asymptotically flat. Assume that the
energy-momentum tensor satisfies the dominant energy condition. Then EADM ≥√
PiPi, with equality only if (Σ, hab, Kab) arises from a surface in Minkowski space-

time.

In the case of a spacetime containing black holes, one might not want to assume
anything about the black hole interior. In this case, one can allow Σ to have an
inner boundary corresponding to an apparent horizon and the result still holds
(Gibbons, Hawking, Horowitz & Perry 1983).

There is a natural way of regarding (EADM , Pi) as a 4-vector defined at spatial
infinity i0. We then define the ADM mass by

MADM =
√
E2
ADM − PiPi ≥ 0 (8.45)
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Chapter 9

Black hole mechanics

9.1 Killling horizons and surface gravity

Definition. A null hypersurface N is a Killing horizon if there exists a Killing
vector field ξa defined in a neighbourhood of N such that ξa is normal to N .

Theorem (Hawking 1972). In a stationary, analytic, asymptotically flat vac-
uum black hole spacetime, H+ is a Killing horizon.

Proof. See Hawking and Ellis.

The result extends to Einstein-Maxwell theory or theories where the matter
fields obey hyperbolic equations. As mentioned previously, it would be desirable
to eliminate the assumption of analyticity because analyticity implies that the full
spacetime is determined by its behaviour in a neighbourhood of a single point.

Note that H+ is not necessarily a Killing horizon of the stationary Killing
vector field ka. For example, in the Kerr solution, we have ξa = ka + ΩHm

a where
ma is the Killing field corresponding to axisymmetry. One can show (see Hawking
and Ellis) that this behaviour is general: if ξa is not tangent to ka then one can
construct a linear combination ma of ξa and ka so that the spacetime is stationary
and axisymmetric.

If N is a Killing horizon w.r.t. a Killing vector field ξa then it is also a Killing
horizon w.r.t. the Killing vector field cξa where c is any non-zero constant. In
a stationary, asymptotically flat spacetime, it is conventional to normalise the
generator of time translations so that kaka → −1 at infinity. We then normalize
ξa so that so that ξa = ka + ΩHm

a.

Since ξaξa = 0 on N , it follows that the gradient of ξaξa is normal to N , i.e.,
proportional to ξa. Hence there exists a function κ on N such that

∇a(ξ
bξb)|N = −2κξa (9.1)
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The function κ is called the surface gravity of the Killing horizon. The LHS can be
rearranged to give 2ξb∇aξb = −2ξb∇bξa using Killing’s equation. Hence we have

ξb∇bξ
a|N = κξa (9.2)

which shows that κ measures the failure of integral curves of ξa to be affinely
parameterized. If we let na be the tangent to the affinely parameterized generators
of N then we have ξa = fna for some function f on N . Then using n · ∇na = 0
we have, on N , ξb∇bξ

a = fnanb∂bf = f−1ξaξb∂bf and hence

κ = ξa∂a log |f | (9.3)

Example. The Reissner-Nordstrom solution in ingoing EF coordinates is

ds2 = −∆

r2
dv2 + 2dvdr + r2dΩ2 (9.4)

where ∆ = (r − r+)(r − r−) and r± = M ±
√
M2 − e2. The stationary Killing

vector field is k = ∂/∂v. At r = r± we have ∆ = 0 so ka = (dr)a, which is normal
to the null hypersurfaces r = r±. Hence these surfaces are Killing horizons. To
calculate the surface gravity we use

d(kbkb) = d(−∆/r2) = (−∆′/r2 + 2∆/r3)dr (9.5)

Evaluating at r = r± gives

d(kbkb)|r=r± = −(r± − r∓)

r2
±

dr = −(r± − r∓)

r2
±

k|r=r± (9.6)

hence the surface gravities are

κ = κ± =
(r± − r∓)

2r2
±

(9.7)

For Schwarzschild we have e = 0 so r+ = 2M , r− = 0 and hence κ = 1/4M is the
surface gravity of H+. For extreme RN we have r+ = r− and κ = 0.

Exercise. In the Kruskal spacetime, H+ is the surface U = 0 and H− the surface
V = 0. Use (2.36) to show that these are Killing horizons of ka (the time translation
Killing vector field). Calculate the LHS of (9.1). Use (2.33) to relate dr to d(UV ).
Hence show that the surface gravity of H± is ±1/(4M).
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This is an example of a bifurcate Killing horizon i.e. a pair of intersecting null
hypersurfaces N± that are each Killing horizons with respect to the same Killing
vector field. At the bifurcation surface B = N+ ∩ N−, the Killing field can’t be
normal to both N+ and N− so it must vanish on B. Any vector Xa tangent to B
is tangent to both N+ and N−, which implies that Xa must be spacelike so B is
a spacelike surface. For the Kruskal spacetime this is the 2-sphere {U = V = 0}.

9.2 Interpretation of surface gravity

The main reason that κ is important is because ~κ/(2π) is the Hawking tempera-
ture of the hole (see later). There is also a classical interpretation of κ.

In a static, asymptotically flat spacetime, consider a particle of unit mass that is
”at rest”, i.e., following an orbit of ka. Such orbits are not geodesics so the particle
is accelerating. This acceleration requires a force, let’s assume it is provided by a
massless inelastic string attached to the particle, with the other end of the string
held by an observer at infinity. Let F be the force in the string (i.e. the tension)
measured at infinity. Then F → κ as we consider orbits closer and closer to a
Killing horizon of ka (for the Schwarzschild solution this is proved on examples
sheet 3). Hence κ is the force per unit mass required at infinity to hold a test
particle at rest near the horizon.

The local force on the particle is certainly not κ. In a general stationary space-
time, the 4-velocity of a particle on an orbit of ka is

ua =
ka√
−k2

(9.8)

where the normalisation is fixed by the condition u2 = −1. The proper acceleration
of the particle is therefore

Aa = u · ∇ua =
k · ∇ka

−k2
+

ka

2(−k2)2
k · ∇(k2) (9.9)

In the first term, Killing’s equation gives kb∇bka = −kb∇akb = −(1/2)∂a(k
2). In

the second term k · ∇(k2) = 2kakb∇akb = 0. Hence we have

Aa =
∂a(−k2)

2(−k2)
=

1

2
∂a log(−k2) (9.10)

Since k2 → 0 at a Killing horizon, it follows that Aa must diverge at the horizon.
For Schwarzschild we have (viewing Aa as a 1-form)

A =
1

2
d log

(
1− 2M

r

)
=

M

r2 (1− 2M/r)
dr (9.11)

Part 3 Black Holes March 13, 2015 107 H.S. Reall



CHAPTER 9. BLACK HOLE MECHANICS

and so the norm of A is (using grr = (1− 2M/r))

|A| ≡
√
gabAaAb =

√
M2

r4(1− 2M/r)
=

M

r2
√

1− 2M/r
(9.12)

which diverges as r → 2M . Hence the local tension (i.e. the force exerted on the
particle by the string) is very large if the particle is near the horizon. A physical
string would break if the particle were too near the horizon.

9.3 Zeroth law of black holes mechanics

Proposition. Consider a null geodesic congruence that contains the generators
of a Killing horizons N . Then θ = σ̂ = ω̂ = 0 on N .

Proof. ω̂ = 0 on N because the generators are hypersurface orthogonal.
Let ξa be a Killing field normal to N . On N we can write ξa = hUa where Ua is

tangent to the (affinely parameterized) generators of N and h is a function on N .
Let N be specified by an equation f = 0. Then we can write Ua = h−1ξa + fV a

where V a is a smooth vector field. We can then calculate

Bab = ∇bUa = (∂bh
−1)ξa + h−1∇bξa + (∂bf)Va + f∇bVa (9.13)

so evaluating on N and using Killing’s equation gives

B(ab)|N =
(
ξ(a∂b)h

−1 + V(a∂b)f
)
N (9.14)

But both ξa and ∂af are parallel to Ua on N . Hence when we project onto T⊥,
both terms are eliminated:

B̂(ab)|N = P c
aB(cd)P

d
b = 0 (9.15)

Hence θ and σ̂ vanish on N .

Theorem (zeroth law of black hole mechanics). κ is constant on the future
event horizon of a stationary black hole spacetime obeying the dominant energy
condition.

Proof. Note that Hawking’s theorem implies that H+ is a Killing horizon w.r.t
some Killing vector field ξa. From the above result we know that θ = 0 along the
generators of H+ hence dθ/dλ = 0 along these generators. We also have σ̂ = ω̂ = 0
so Raychaudhuri’s equation gives

0 = Rabξ
aξb|H+ = 8πTabξ

aξb|H+ (9.16)
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where we used Einstein’s equation and ξ2|H+ = 0 in the second equality. This
implies

J · ξ|H+ = 0 (9.17)

where Ja = −Tabξb. Now ξa is a future-directed causal vector field hence (by the
dominant energy condition), so is Ja (unless Ja = 0). Hence the above equation
implies Ja is parallel to ξa on H+. Therefore

0 = ξ[aJb]|H+ = −ξ[aTb]cξ
c|H+ = − 1

8π
ξ[aRb]cξ

c|H+ (9.18)

where we used Einstein’s equation in the final equality. On examples sheet 3, it is
shown that this implies

0 =
1

8π
ξ[a∂b]κ (9.19)

Hence ∂aκ is proportional to ξa so t · ∂κ = 0 for any vector field ta that is tangent
to H+. Hence κ is constant on H+ (assuming H+ is connected).

9.4 First law of black hole mechanics

The Kerr solution is specified by two parameters M,a. Consider a small variation
of these parameters. This will induce small changes in J and A (the horizon area).
Using the formula for A one can check that, to first order (exercise)

κ

8π
δA = δM − ΩHδJ (9.20)

We can define a linearized metric perturbation to be the difference of the Kerr
metric with parameters (M + δM, a + δa) and the Kerr metric with parameters
(M,a). The above formula tells us how this linearized perturbation of the Kerr
solution changes A etc. Remarkably, it turns out that this formula holds for any
linearized perturbation of the metric of the Kerr solution. Consider a hypersurface
Σ which extends from the bifurcation surface B to infinity and, near infinity, is
asymptotically orthogonal to the timelike Killing vector field. Σ is actually a
manifold with boundary because it includes B. Let hab be the induced metric and
Kab the extrinsic curvature of Σ. Then (Σ\B, hab, Kab) is an asymptotically flat
end. Now consider a linearized perturbation hab → hab + δhab, Kab → Kab + δKab

and assume that this obeys the constraint equations to linear order. Then the
perturbed initial data satisfies equation (9.20) where δA is the change in the area of
B, δM is the change in the ADM energy and δJ is the change in the ADM angular
momentum (we have not defined the latter but for an axisymmetric spacetime it
agrees with the Komar angular momentum).
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This result was proved by Sudasky and Wald in 1992. (A more restricted
version, applying only to stationary axisymmetric perturbations, was obtained
by Bardeen, Carter and Hawking in 1973.) The proof can be extended to any
stationary black hole solution, not just Kerr. For example, it holds for stationary
black holes in theories containing matter fields even when one cannot write down
the solution explicitly. The result even holds for more general diffeomorphism-
covariant theories of gravity involving higher derivatives of the metric. In the
particular case of Einstein-Maxwell theory, there is an additional term −ΦHδQ
on the RHS where Q is the electric charge and ΦH is the electrostatic potential
difference between the event horizon and infinity (examples sheet 4).

In this version of the first law of black hole mechanics, we are comparing two
different spacetimes: a stationary black hole and a perturbed stationary black hole.
There is a another version of the first law, due to Hartle and Hawking (1972) in
which we perturb a black hole by throwing in a small amount of matter and wait
for it to settle down to a stationary solution again. In this case, (9.20) relates the
change in horizon area to the energy and angular momentum of the matter that
crosses the event horizon, rather than to a change in the ADM energy and angular
momentum (indeed the latter don’t change, they are conserved). We will prove
this ”physical process” version of the first law. (The other version is sometimes
called the ”equilibrium state” version when restricted to stationary perturbations.)

We treat the matter as a small perturbation of a Kerr black hole, i.e., the
energy momentum tensor is O(ε). We can define energy and angular momentum
4-vectors for the matter

Ja = −T abkb La = T abm
b (9.21)

If we treat the matter as a test field then these are exactly conserved. However,
we want to include the gravitational backreaction of the matter, which induces
an O(ε) change in the metric, which will not be stationary and axisymmetric in
general, hence Ja and La will not be exactly conserved. However, this is a second
order effect so ∇aJ

a and ∇aL
a will be O(ε2). We will work to linear order in ε so

we can assume that Ja and La are conserved.

Assume that the matter crosses H+ to the future of the bifurcation sphere B.
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Let N be the portion of H+ to the future of B:

The energy and angular momentum of the matter that crosses N are (examples
sheet 3)

δM = −
∫
N
?J δJ = −

∫
N
?L (9.22)

We can introduce Gaussian null coordinates (r, λ, yi) on H+ as described in section
4.6, taking the surface S used there to be B. We choose the affine parameter λ of
the generators of H+ to vanish on B, so N is the portion λ > 0 of H+. In these
coordinates, H+ is the surface r = 0 and the metric on H is

ds2|H+ = 2drdλ+ hij(λ, y)dyidyj (9.23)

We order (y1, y2) so that the volume form on H+ is

η =
√
h dλ ∧ dr ∧ dy1 ∧ dy2 (9.24)

using
√
−g =

√
h. This orientation of N used in (9.22) is the one used in Stokes’

theorem, viewing N as the boundary of the region r > 0. This is dλ ∧ dy1 ∧ dy2.
We then have, on N

(?J)λ12 =
√
hJr =

√
hJλ =

√
hU · J (9.25)

where U = ∂/∂λ is tangent to the generators of N . Hence

δM = −
∫
N
dλd2y

√
hU · J (9.26)

and similarly

δJ = −
∫
N
dλd2y

√
hU · L (9.27)

Since Ja and La are O(ε), the perturbation to the spacetime metric contributes
to these integrals only at O(ε2) hence we can evaluate the integrals by working in
the Kerr spacetime. Hence N is a Killing horizon of ξ = k + ΩHm so on N we
have ξ = fU for some function f and we have equation (9.3)

ξ · ∂ log |f | = κ ⇒ U · ∂f = κ ⇒ ∂f

∂λ
= κ (9.28)
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hence f = κλ + f0(y). But we know that ξ = 0 on B hence f = 0 at λ = 0 so
f0 = 0. We have shown that

ξa = κλUa on N (9.29)

From the definition of Ja we have

δM =

∫
N
dλd2y

√
hTabU

akb =

∫
N
dλd2y

√
hTabU

a
(
ξb − ΩHm

b
)

=

∫
N
dλd2y

√
hTabU

aU bκλ− ΩH

∫
N
dλd2y

√
hU · L (9.30)

The final integral is−δJ . In the first integral the Einstein equation gives 8πTabU
aU b =

RabU
aU b (as Ua is null). Here Rab is the O(ε) Ricci tensor of the perturbed space-

time. Hence we have

δM − ΩHδJ =
κ

8π

∫
N
dλd2y

√
hλRabU

aU b (9.31)

Raychaudhuri’s equation gives

dθ

dλ
= −RabU

aU b (9.32)

where we have used the far that generators of N have ω̂ = 0 and neglected θ2,
σ̂2 because these are O(ε2) (since θ and σ̂ vanish for the unperturbed spacetime).
Hence we have

δM − ΩHδJ = − κ

8π

∫
d2y

∫ ∞
0

√
hλ

dθ

dλ
dλ

= − κ

8π

∫
d2y

{[√
hλθ

]∞
0
−
∫ ∞

0

(
√
h+ λ

d
√
h

dλ

)
θdλ

}
(9.33)

Now recall that d
√
h/dλ = θ

√
h = O(ε). This is multiplied by θ in the final

integral, giving a negligible O(ε2) contribution. If we assume that the black hole
settles down to a new stationary solution at late time then

√
h must approach a

finite limit as λ→∞. We have∫ ∞
0

√
h θdλ =

∫ ∞
0

d
√
h

dλ
dλ = δ

√
h (9.34)

the RHS is finite hence the integral on the LHS must converge so θ = o(1/λ) as
λ → ∞. This implies that the boundary term on the RHS of (9.33) vanishes,
leaving

δM − ΩHδJ =
κ

8π

∫
d2y δ

√
h =

κ

8π
δ

∫
d2y
√
h =

κ

8π
δA (9.35)
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9.5 Second law of black hole mechanics

Theorem (Hawking 1972). Let (M, g) be a strongly asymptotically predictable
spacetime satisfying the Einstein equation with the null energy condition. Let
U ⊂ M be a globally hyperbolic region for which J−(I+) ⊂ U (such U exists
because the spacetime is strongly asymptotically predictable). Let Σ1, Σ2 be
spacelike Cauchy surfaces for U with Σ2 ⊂ J+(Σ1). Let Hi = H+ ∩ Σi. Then
area(H2) ≥ area(H1).

Proof. We will make the additional assumption that inextendible generators of
H+ are future complete, i.e., H+ is ”non-singular”. (This assumption can be
eliminated with a bit more work.) First we will show θ ≥ 0 on H+. So assume
θ < 0 at p ∈ H+. Let γ be the (inextendible) generator of H+ through p and let q
be slightly to the future of p along γ. By continuity we have θ < 0 at q. But then
we know from section 4.10 that there exists a point r (to the future of q) conjugate
to p on γ (here we use the assumption that γ is future-complete). Theorem 2 of
section 4.10 then tells us that we can deform γ to obtain a timelike curve from p
to r, violating achronality of H+. Hence θ ≥ 0 on H+.

Let p ∈ H1. The generator of H+ through p cannot leave H+ (as generators
can’t have future endpoints) so it must intersect H2 (as Σ2 is a Cauchy surface).
This defines a map φ : H1 → H2. Now area(H2) ≥ area(φ(H1)) ≥ area(H1) where
the first inequality follows because φ(H1) ⊂ H2 and the second inequality follows
from θ ≥ 0. �

For example, consider the formation of a Schwarzschild black hole in spherically
symmetric gravitational collapse. We can draw a Finkelstein diagram:

Now consider two well-separated non-rotating black holes such that the met-
ric near each is well approximated by the Schwarzschild solution. Let the mass
parameters be M1 and M2. Assume that these black holes collide and merge into
a single black hole which settles down to a Schwarzschild black hole of mass M3.
The above theorem implies that the horizon areas obey

A3 ≥ A1 + A2 ⇒ 16πM2
3 ≥ 16πM2

1 + 16πM2
2 (9.36)

hence

M3 ≥
√
M2

1 +M2
2 (9.37)
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The energy radiated as gravitational radiation in this process is M1 + M2 −M3.
In principle, this energy could be used to do work. The efficiency of this process
is limited by the second law because

efficiency =
M1 +M2 −M3

M1 +M2

≤ 1−
√
M2

1 +M2
2

M1 +M2

≤ 1− 1√
2

(9.38)

with the final inequality arising from dividing the numerator and denominator by
M1 and then maximising w.r.t M2/M1.

Finally we can discuss the Penrose inequality. Consider initial data which is
asymptotically flat and contains a trapped surface behind an apparent horizon
of area Aapp. Let Ei denote the ADM energy of this data (”i” for initial). If
weak cosmic censorship is correct, the spacetime resulting from this data will be a
strongly asymptotically predictable black hole spacetime. We would expect this to
”settle down” to a stationary black hole at late time. By the uniqueness theorems,
this should be described by a Kerr solution with mass Mf and angular momentum
Jf (”f” for final). Now since the apparent horizon must lie inside the event horizon
we expect Aapp ≤ Ai where Ai is the area of the intersection of H+ with the initial
surface Σ. The second law tells us that Ai ≤ AKerr(Mf , Jj) (the horizon area of
the final Kerr black). But from (7.19) we have

AKerr(Mf , Jf ) = 8π
(
M2

f +
√
M4

f − J2
f

)
≤ 16πM2

f (9.39)

Finally, we have Mf ≤ Ei because gravitational radiation carries away energy in
this process. Putting this together gives

Aapp ≤ 16πE2
i ⇒ Ei ≥

√
Aapp

16π
(9.40)

This refers only to quantities that can be calculated from the initial data! If
standard beliefs about the gravitational collapse process are correct then this in-
equality must be satisfied by any initial data set. If one could find initial data that
violated this inequality then some aspect of the above argument (e.g. weak cosmic
censorship) must be false. No counterexample has been found. Indeed, in the
case of time-symmetric initial data (Kab = 0) with matter obeying the weak en-
ergy condition, the above inequality has been proved (Huisken and Ilmanen 1997).
Note that the inequality can be regarded as a stronger version of the positive mass
theorem.
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Chapter 10

Quantum field theory in curved
spacetime

10.1 Introduction

The laws of black hole mechanics have a remarkable similarity to the laws of ther-
modynamics. At rest, a black hole has energy E = M . Consider a thermodynamic
system with the same energy and angular momentum as the black hole. This is
governed by the first law of thermodynamics

dE = TdS + µdJ (10.1)

where µ is the chemical potential that enforces conservation of angular momen-
tum. This is identical to the first law of black hole mechanics if we make the
identifications

T = λκ S = A/(8πλ) µ = Ω (10.2)

for some constant λ. Furthermore, if we do this then the zeroth law of thermo-
dynamics (the temperature is constant in a body in thermodynamic equilibrium)
becomes the zeroth law of black hole mechanics. The second law of thermodynam-
ics (the entropy is non-decreasing in time) becomes the second law of black hole
mechanics.

This similarity suggests that black holes might be thermodynamic objects.
Another reason for believing this is that if black holes do not have entropy then
one could violate the second law of thermodynamics simply by throwing some
matter into a black hole: the total entropy of the universe would effectively decrease
according to an observer who remains outside the hole. This led Bekenstein (1972)
to suggest that black holes have an entropy proportional to their area, as above.

There is a serious problem with this proposal: if (10.2) is correct then a black
hole has a temperature and hence must emit radiation just like any other hot body
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in empty space. But, by definition, a black hole cannot emit anything!
These different ideas were all drawn together into a consistent picture by Hawk-

ing’s famous discovery (1974) that, if one treats matter quantum mechanically
then a black hole does emit radiation, with a blackbody spectrum at the Hawking
temperature

TH =
~κ
2π

(10.3)

Hence black holes are indeed thermodynamic objects, and the laws of black hole
mechanics are the laws of thermodynamics applied to these objects. Hawking’s
calculation determines the correct value of λ to use in (10.2).

In this chapter, we will explain Hawking’s result. In order to do this we need
to study quantum field theory in curved spacetime. QFT is usually studied in
Minkowski spacetime and the standard approach relies heavily on the symmetries
of Minkowski spacetime. We will see that several familiar features of flat spacetime
QFT are absent, or ambiguous in curved spacetime.

10.2 Quantization of the free scalar field

Let (M, g) be a globally hyperbolic spacetime. Perform a 3 + 1 decomposition of
the metric as explained in section 3.1:

ds2 = −N2dt2 + hij(dx
i +N idt)(dxj +N jdt) (10.4)

Let Σt denote a (Cauchy) surface of constant t. The future-directed unit normal
to this is na = −N(dt)a. The metric on Σt is hij and we have

√
−g = N

√
h.

Consider a massive real Klein-Gordon field with action

S =

∫
M

dtd3x
√
−g
(
−1

2
gab∂aΦ∂bΦ−

1

2
m2Φ2

)
(10.5)

and equation of motion
gab∇a∇bΦ−m2Φ = 0 (10.6)

The canonical momentum conjugate to Φ is obtained by varying the action:

Π(x) =
δS

δ(∂tΦ(x))
= −
√
−ggtµ∂µΦ = −N

√
h(dt)νg

νµ∂µΦ =
√
hnµ∂µΦ (10.7)

To quantize, we promote Φ and Π to operators and impose the canonical commu-
tation relations (units: ~ = 1)

[Φ(t, x),Π(t, x′)] = iδ(3)(x− x′) [Φ(t, x),Φ(t, x′)] = 0 [Π(t, x),Π(t, x′)] = 0
(10.8)
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We now want to introduce a Hilbert space of states that these operators act on.
Let S be the space of complex solutions of the KG equation. Global hyperbolicity
implies that a point of S is specified uniquely by initial data Φ, ∂tΦ on Σ0. For
α, β ∈ S we can define

(α, β) = −
∫

Σ0

d3x
√
hnaj

a(α, β) (10.9)

where ja is defined by
j(α, β) = −i (ᾱdβ − βdᾱ) (10.10)

Note that this can be calculated just from the initial data on Σ0. Now

∇aja = −i
(
ᾱ∇2β − β∇2ᾱ

)
= −im2(ᾱβ − βᾱ) = 0 (10.11)

so j is conserved. It follows that we can replace Σ0 by any surface Σt in (10.9)
and get the same result. Note the following properties:

(α, β) = (β, α) (10.12)

which implies that (, ) is a Hermitian form. It is non-degenerate: if (α, β) = 0 for
all β ∈ S then α = 0. However,

(α, β) = −(β̄, ᾱ) (10.13)

so (α, α) = −(ᾱ, ᾱ) so (, ) is not positive definite.
In Minkowski spacetime, (, ) is positive definite on the subspace Sp of S con-

sisting of positive frequency solutions. A basis for Sp are the positive frequency
plane waves:

ψp(x) =
1

(2π)3/2(2p0)1/2
eip·x p0 =

√
p2 +m2 (10.14)

where x denotes inertial frame coordinates (t,x). These modes (solutions) are
positive frequency in the sense that, if k = ∂/∂t then they have negative imaginary
eigenvalue w.r.t. Lk:

Lkψp = −ip0ψp (10.15)

The complex conjugate of ψp is a negative frequency plane wave. These are orthog-
onal to the positive frequency plane waves so we have the orthogonal decomposition

S = Sp ⊕ S̄p (10.16)

where (, ) is positive definite on Sp and negative definite on S̄p.

Part 3 Black Holes March 13, 2015 117 H.S. Reall



CHAPTER 10. QUANTUM FIELD THEORY IN CURVED SPACETIME

In curved spacetime, we do not have a definition of ”positive frequency” except
when the spacetime is stationary (see below). Hence there is no preferred way to
decompose S as above. Instead, we simply choose a subspace Sp for which (, ) is
positive definite and (10.16) holds. In general there will be many ways to do this.

In the quantum theory, we define the creation and annihilation operators as-
sociated to a mode f ∈ Sp of a real scalar field (Φ† = Φ) by

a(f) = (f,Φ) a(f)† = −(f̄ ,Φ) (10.17)

e.g. taking f = ψp in Minkowski spacetime gives the usual a(f) = ap. The
canonical quantization rules imply (examples sheet 4)

[a(f), a(g)†] = (f, g) [a(f), a(g)] = [a(f)†, a(g)†] = 0 (10.18)

e.g. in Minkowski spacetime with f = ψp and g = ψq, the first condition gives
[ap, a

†
q] = δ(3)(p− q).

We define a vacuum state |0〉 by the conditions

a(f)|0〉 = 0 ∀f ∈ Sp 〈0|0〉 = 1 (10.19)

Given a basis {ψi} for Sp, we define the N -particle states as

a†i1 . . . a
†
iN
|0〉 (10.20)

where
ai = a(ψi) (10.21)

(Here the index i might be continuous e.g. in flat spacetime, basis elements are
usually labelled by 3-momentum p.) We then choose the Hilbert space to be the
Fock space spanned by the vacuum state, the 1-particle states, the 2-particles
states etc. The fact that elements of Sp have positive Klein-Gordon norm implies
that this Hilbert space has a positive definite inner product e.g.

||a(f)†|0〉||2 = 〈0|a(f)a(f)†|0〉 = 〈0|[a(f), a(f)†]|0〉 = (f, f) > 0 (10.22)

In a general curved spacetime there is no preferred choice of Sp, instead there
will be many inequivalent choices. Let S ′p be another choice of positive frequency
subspace. Then any f ′ ∈ S ′p can be decomposed uniquely as f ′ = f + ḡ with
f, g ∈ Sp. Hence

a(f ′) = (f,Φ) + (ḡ,Φ) = a(f)− a(g)† (10.23)

so a(f ′)|0〉 6= 0 hence |0〉 is not the vacuum state if one uses S ′p as the positive
frequency subspace. In fact it can be shown that the vacuum state defined using
S ′p does not even belong to the Hilbert space that one defines using Sp! Since the
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vacuum state depends on the choice of Sp, so does the definition of 1-particle states
etc. So there is no natural notion of particles in a general curved spacetime.

Why doesn’t this issue arise in Minkowski spacetime? In a stationary space-
time, one can use the time translation symmetry to identify a preferred choice
of Sp. Let ka be the (future-directed) time-translation Killing vector field. Since
this generates a symmetry, it follows that Lk (the Lie derivative w.r.t. k) com-
mutes with ∇2 − m2 and therefore maps S to S. It can be shown that Lk is
anti-hermitian w.r.t (, ) (examples sheet 4) and hence has purely imaginary eigen-
values. We say that an eigenfunction has positive frequency if the eigenvalue is
negative imaginary:

Lku = −iωu ω > 0 (10.24)

(The flat spacetime solutions (10.14) have positive frequency.) Such solutions have
positive KG norm (examples sheet 4) so we define Sp to be the space spanned
by these positive frequency eigenfunctions. Complex conjugation shows that the
solution ū is a negative frequency eigenfunction. The anti-hermitian property
implies that eigenfunctions with distinct eigenvalues are orthogonal so we indeed
have an orthogonal decomposition as in (10.16).

10.3 Bogoliubov transformations

Let {ψi} be an orthonormal basis for Sp:

(ψi, ψj) = δij (10.25)

The orthogonality of the decomposition (10.16) implies

(ψi, ψ̄j) = 0 (10.26)

We define the annihilation operators ai by (10.21). Using orthogonality we have

Φ =
∑
i

(
aiψi + a†i ψ̄i

)
(10.27)

For such a basis we have

[ai, a
†
j] = δij [ai, aj] = 0 (10.28)

Let S ′p be a different choice for the positive frequency subspace, with orthonormal
basis {ψ′i}. This will be related to the first basis by a Bogoliubov transformation:

ψ′i =
∑
j

(
Aijψj +Bijψ̄j

)
ψ̄′i =

∑
j

(
B̄ijψj + Āijψ̄j

)
(10.29)
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A,B are called Bogoliubov coefficients. For S ′p we define annihilation operators
a′i = a(ψ′i).

Exercise. Show that

a′i =
∑
j

(
Āijaj − B̄ija

†
j

)
(10.30)

Show also that the requirement that the second basis obeys the conditions (10.25)
and (10.26) implies that∑

k

(
ĀikAjk − B̄ikBjk

)
= δij i.e. AA† −BB† = 1 (10.31)

∑
k

(AikBjk −BikAjk) = 0 i.e. ABT −BAT = 0 (10.32)

10.4 Particle production in a non-stationary space-

time

Consider a globally hyperbolic spacetime (M, g) which is stationary at early time,
then becomes non-stationary, and finally becomes stationary again. Write M =
M− ∪M0 ∪M+ where (M±, g) are stationary but (M0, g) is non-stationary:

In the spacetimes (M±, g), stationarity implies that there is a preferred choice of
positive frequency subspace S±p and hence the notion of particles is well-defined at
early time and again at late time. Global hyperbolicity implies that any solution
of the KG equation in (M±, g) extends uniquely to (M, g). Hence we have two
choices of positive frequency subspace for (M, g): S+

p and S−p .
Let {u±i } denote an orthonormal basis for S±p and let a±i be the associated

annihilation operators. The bases are related by a Bogoliubov transformation:

u+
i =

∑
j

(
Aiju

−
j +Bijū

−
j

)
(10.33)

from (10.30) we have

a+
i =

∑
j

(
Āija

−
j − B̄ija

−†
j

)
(10.34)
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Denote the vacua defined w.r.t. S±p as |0±〉 i.e. a±i |0±〉 = 0. Assume that no
particles are present at early time so the state is |0−〉. The particle number
operator for the ith late-time mode is N+

i = a+†
i a

+
i , so the expected number of

such particles present is

〈0− |N+
i |0−〉 = 〈0− |a+†

i a
+
i |0−〉 =

∑
j,k

〈0− |a−k (−Bik)(−B̄ij)a
−†
j |0−〉

=
∑
j,k

BikB̄ij〈0− |a−k a
−†
j |0−〉 =

∑
j

BijB̄ij = (BB†)ii(10.35)

using the expression for the commutator in the penultimate step. The expected
total number of particles present at late time is tr(BB†) = tr(B†B), which vanishes
iff B = 0 i.e. iff S+

p = S−p , which will not be true generically. In this example, one
can say that a time-dependent gravitational field results in particle production.
But we emphasise that this interpretation is possible here only because of the
assumed stationarity at early and late times.

10.5 Rindler spacetime

Consider the geometry near the event horizon of a Schwarzschild black hole. Define
a new radial coordinate x by

r = 2M +
x2

8M
(10.36)

then the metric becomes (exercise)

ds2 = −κ2x2dt2 + dx2 + (2M)2dΩ2 + . . . (10.37)

where κ = 1/(4M) is the surface gravity and the ellipsis denotes terms that are
subleading near x = 0. The first two terms of the above metric are

ds2 = −κ2x2dt2 + dx2 x > 0 (10.38)

This is called Rindler spacetime. It is a popular toy model for understanding
physics near a black hole horizon. There is a coordinate singularity at x = 0 which
can be removed by introducing Kruskal-like coordinates

U = −xe−κt V = xeκt (10.39)

with the result
ds2 = −dUdV = −dT 2 + dX2 (10.40)
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where (T,X) are defined by

U = T −X V = T +X (10.41)

so Rindler spacetime is flat. But it corresponds to just part of Minkowski spacetime
because U < 0 and V > 0:

This is analogous to region I of the Kruskal spacetime. There is another Rindler
region analogous to region IV of Kruskal. We will refer to these two Rindler regions
as R and L respectively. The lines U = 0 and V = 0 correspond to a bifurcate
Killing horizon of k = ∂/∂t with surface gravity ±κ. In (U, V ) coordinate we have

k = κ

(
V

∂

∂V
− U ∂

∂U

)
(10.42)

Orbits of k (i.e. lines of constant x) are worldlines of observers whose proper accel-
eration (9.10) is Aa = (1/x)(dx)a with norm |A| = 1/x. Such a ”Rindler observer”
would naturally regard k as the generator of time translations, and use it to de-
fine ”positive frequency”. However, this differs from the conventional definition
of positive frequency in Minkowski spacetime, which uses ∂/∂T . Let’s investigate
how the standard Minkowski vacuum state appears to a Rindler observer. We will
use Sp to denote the usual Minkowski definition of positive frequency.

Consider the massless Klein-Gordon equation (wave equation). In inertial co-
ordinates this is (

− ∂2

∂T 2
+

∂2

∂X2

)
Φ = 0 (10.43)

The general solution consists of a ”right-moving” part and and a ”left-moving”
part:

Φ = f(U) + g(V ) (10.44)

The standard Minkowski basis of positive frequency solutions is

up(T,X) = cpe
−i(ωT−pX) ω = |p| (10.45)

where cp is a normalization constant. This can also be written as

up =

{
cpe
−iωU if p > 0 (right movers)

cpe
−iωV if p < 0 (left movers)

(10.46)
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We now want to find a basis of positive frequency solutions for Rindler spacetime.
A solution with frequency σ w.r.t. k has time dependence e−iσt so the wave
equation is

0 = ∇a∇aΦ =
1√
−g

∂µ
(√
−ggµν∂νΦ

)
=

1

x2

[
x∂x (x∂xΦ) +

σ2

κ2
Φ

]
(10.47)

with solutions Φ ∝ e−iσtxiP where P = ±σ/κ. If σ > 0 then the P > 0 solution
is a right-moving mode because x increases with t along lines of constant phase.
Similarly the P < 0 solution is a left-moving mode. We can now define a basis of
positive frequency solutions in R by

uRP = CP e
−i(σt−P log x) σ = κ|P | (10.48)

for some normalisation constant CP .
We will want to relate these to the standard Minkowski modes. To do this, it

is useful to extend the definition of the Rindler modes to the whole of Minkowski
spacetime. We do this by defining uRP = 0 in L. The solution is then uniquely
determined throughout Minkowski spacetime. Converting to the Kruskal-like co-
ordinates gives

uRP =


{
CP e

iσ
κ

log(−U) U < 0
0 U > 0

}
P > 0 (right movers){

0 V < 0
CP e

−iσ
κ

log(V ) V > 0

}
P < 0 (left movers)

(10.49)

(These are solutions everywhere since they have the form (10.44).) We would like
to choose the constant CP so that the above modes have unit norm w.r.t. the
KG inner product in Rindler spacetime. However, there is a problem here, which
also arises for the Minkowski modes (10.45): these modes are not normalizable.
To deal with this problem one can instead consider wavepackets constructed as
superpositions of positive frequency modes and work with a basis of such wave
packets. We won’t do this but it means we will encounter certain integrals below
that do not converge. We will manipulate them as if they did converge, a more
rigorous treatment would use the wavepacket basis. We also won’t need to choose
a value of CP here.

The modes uRP do not supply a basis for solutions in Minkowski spacetime (e.g.
because they vanish in L). We can obtain a second set of modes, which is non-
vanishing in L and vanishing in R, by applying the isometry (U, V )→ (−U,−V ):

ūLP =


{
CP e

iσ
κ

log(U) U > 0
0 U < 0

}
P > 0{

0 V > 0
CP e

−iσ
κ

log(−V ) V < 0

}
P < 0

(10.50)

Part 3 Black Holes March 13, 2015 123 H.S. Reall



CHAPTER 10. QUANTUM FIELD THEORY IN CURVED SPACETIME

The reason for the overbar on the LHS is that the isometry preserves ka hence these
modes will be positive frequency w.r.t. ka. But ka is past-directed in L. Hence it is
more natural to use −ka to define the notion of positive frequency in L. The above
modes are negative frequency w.r.t. −ka hence the overbar. (However, nothing
will depend on how we define positive frequency in L.) Now {uRP , ūRP , uLP , ūLP} is a
basis for solutions in Minkowski spacetime.

We now discuss a useful condition which ensures that a mode is positive fre-
quency w.r.t. ∂/∂T . To decompose a right-moving mode f(U) it into Minkowski
modes of frequency ω we perform a Fourier transform:

f(U) =

∫ ∞
−∞

dω

2π
e−iωU f̃(ω) (10.51)

where

f̃(ω) =

∫ ∞
−∞

dUeiωUf(U) (10.52)

Assume that, in the lower half of the complex U -plane, f(U) is analytic with
maxθ∈[−π,0] |f(Reiθ)| → 0 as R→∞. Then, for ω < 0, we can close the contour in

the lower half-plane to deduce that f̃(ω) = 0 (Jordan’s lemma). Hence such f(U)
is positive frequency w.r.t. ∂/∂T , i.e., an element of Sp.

To apply this result, consider for P > 0 and U > 0:

ūLP = CP e
iσ
κ

logU = CP e
iσ
κ

[log(−U)−iπ] = CP e
πσ
κ ei

σ
κ

log(−U) (10.53)

where we define the logarithm in the complex plane by taking a branch cut along
the negative imaginary axis:

log z = log |z|+ i arg z arg z ∈ (−π/2, 3π/2) (10.54)

Hence we have
uRP + e−

πσ
κ ūLP = CP e

iσ
κ

log(−U) P > 0 (10.55)

for all U . This is analytic in the lower half U -plane. It does not decay as |U | → ∞
but this is a consequence of working with non-normalizable modes (the integral
(10.52) does not converge). Modulo this technicality, we deduce that the above
combination of Rindler modes is an element of Sp. For P < 0 we have

uRP + e−
πσ
κ ūLP = CP e

−πσ
κ ei

σ
κ

log(−V ) P < 0 (10.56)

which is similarly analytic in the lower half V -plane and therefore a superposition
of the positive frequency left-moving Minkowski modes. Similarly

uLP + e−
πσ
κ ūRP =

{
CP e

−πσ
κ e−i

σ
κ

log(−U) P > 0
CP e

iσ
κ

log(−V ) P < 0
(10.57)
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which is also analytic in the lower half U, V planes and therefore an element of Sp.
So we have a new set of positive frequency (w.r.t. ∂/∂T ) modes

v
(1)
P = D

(1)
P

(
uRP + e−

πσ
κ ūLP

)
v

(2)
P = D

(2)
P

(
uLP + e−

πσ
κ ūRP

)
(10.58)

where D
(i)
P are normalization constants. Notice that uRP can be expressed as linear

combinations of v
(1)
P and v̄

(2)
P . Since the latter has negative frequency, it follows

that uRP is a mixture of both positive and negative Minkowski space modes (and
similarly for uLP ).

This new set of modes, together with their complex conjugates, forms a basis for
S. Since v

(i)
P are positive frequency w.r.t. w.r.t. ∂/∂T it follows that {v(1)

P , v
(2)
P ∀P}

is a basis for Sp. Hence the vacuum state defined using annihilation operators a
(1)
P

and a
(2)
P for this basis will agree with that defined using the usual Minkowski

modes:

a
(i)
P |0〉 = 0 (10.59)

where |0〉 is the standard Minkowski vacuum state.

To fix the normalisation, we use the orthogonality of uRP and ūLP , and the
properties of the KG norm to obtain

(v
(1)
P , v

(1)
P ) = |D(1)

P |
2
[
(uRP , u

R
P )− e−2πσ

κ (uLP , u
L
P )
]

= 2|D(1)
P |

2e−
πσ
κ sinh(πσ/κ)(uRP , u

R
P ) (10.60)

using the fact that the L modes have the same norm as the R modes. A similar
result holds for v

(2)
P . So we normalize by choosing

D
(i)
P =

e
πσ
2κ√

2 sinh(πσ/κ)
(10.61)

We then have (exercise)

uRP =
1√

2 sinh(πσ/κ)

(
e
πσ
2κ v

(1)
P − e

−πσ
2κ v̄

(2)
P

)
(10.62)

and hence, using (10.17), the annihilation operators for the R Rindler modes are

bRP ≡ (uRP ,Φ) =
1√

2 sinh(πσ/κ)

[
e
πσ
2κ (v

(1)
P ,Φ)− e−

πσ
2κ (v̄

(2)
P ,Φ)

]
=

1√
2 sinh(πσ/κ)

[
e
πσ
2κ a

(1)
P + e−

πσ
2κ a

(2)†
P

]
(10.63)
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In R, the number operator for Rindler particles of momentum P is NR
P = bR†P b

R
P .

How many such particles does a Rindler observer see in the Minkowski vacuum
state? The expected number is (using (10.59))

〈0|NR
P |0〉 =

e−
πσ
κ

2 sinh(πσ/κ)
〈0|a(2)

P a
(2)†
P |0〉 =

1

e
πσ
κ − 1

〈0|[a(2)
P , a

(2)†
P ]|0〉

=
1

e
2πσ
κ − 1

(v
(2)
P , v

(2)
P ) (10.64)

using (10.18). The RHS involves the KG norm of the mode v
(2)
P . Although this

mode is not normalizable, we will assume that it is, with the justification that this
can be made rigorous by using a basis of wavepackets. Hence we have

〈0|NR
P |0〉 =

1

e
2πσ
κ − 1

(10.65)

Consider a Rindler observer at fixed x. Her 4-velocity is

1

κx

∂

∂t
=
A

κ

∂

∂t
(10.66)

where A = 1/x is the magnitude of her proper acceleration. Hence, according to
her, the frequency of a R mode is σ̂ = Aσ/κ. So

〈0|NR
P |0〉 =

1

e
2πσ̂
A − 1

(10.67)

This is the Planck spectrum of thermal radiation at the Unruh temperature

TU =
A

2π
(10.68)

in units where Boltzmann’s constant kB = 1. A uniformly accelerating observer
perceives the Minkowski vacuum state as a thermal state at the temperature TU .
This is a physical effect: if the observer carries a sufficiently sensitive particle
detector then it will detect particles! However, for plausible values of a, the effect
is very small. In physical units we have

TU ≈
(

A

1019ms−2

)
K (10.69)

10.6 Wave equation in Schwarzschild spacetime

To discuss Hawking radiation we first need to understand the behaviour of solu-
tions of the wave equation in the Schwarzschild solution. Work in Schwarzschild
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coordinates.We can decompose a KG field Φ into spherical harmonics Ylm(θ, φ):

Φ =
∞∑
l=0

l∑
m=−l

1

r
φlm(t, r)Ylm(θ, φ) (10.70)

The wave equation ∇a∇aΦ = 0 reduces to (examples sheet 4)[
∂2

∂t2
− ∂2

∂r2
∗

+ Vl(r∗)

]
φlm = 0 (10.71)

where

Vl(r∗) =

(
1− 2M

r

)(
l(l + 1)

r2
+

2M

r3

)
(10.72)

where on the RHS we view r as a function of r∗. This has the form of a 2d wave
equation with a potential Vl(r∗):

Note that Vl(r∗) vanishes as r∗ → ∞ (r → ∞, i.e., I±) and as r∗ → −∞
(r → 2M+, i.e., H±). Consider a solution describing a wavepacket localized at
some finite value of r∗ at time t0. At late time t → ∞ we expect the solution to
consist of a superposition of two wavepackets, propagating to the ”left” (r∗ → −∞)
and to the ”right” (r∗ → ∞). Time reversal implies that at early time t → −∞
the solution consists of a superposition of wavepackets propagating in from the
left and the right. Hence we expect

φlm ≈ f±(t− r∗) + g±(t+ r∗) = f±(u) + g±(v) as t→ ±∞ (10.73)

where f± and g± are each localized around some particular value of u or v and
hence vanish for |u| → ∞ or |v| → ∞. The full solution is uniquely determined
by its behaviour for t→∞ or t→ −∞ i.e. by either f+, g+ or by f−, g−.

At late time the term f+(u) describes an outgoing wavepacket propagating
to I+ whereas g+(v) describes an ingoing wavepacket propagating to H+. More
precisely, if we evaluate the above solution on I+ (where v → ∞ with finite u)
we obtain the result f+(u). Similarly we can evaluate on H+ (where u→∞ with
finite v) to obtain the result g+(v). Hence the solution is uniquely determined (for
all t) by specifying its behaviour on I+ ∪H+.
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We will define an ”out” mode to be a solution which vanishes on H+ and a
”down” mode to be a solution which vanishes on I+. From what we have just
said, any solution of (10.71) can be written uniquely as a superposition of an out
mode and a down mode. Out modes and down modes are orthogonal since we can
evaluate the integral defining the KG inner product at late time, when the out
modes are non-zero only near r∗ =∞ and the down modes are non-zero only near
r∗ = −∞.

Similarly, at early time, the solution is a superposition of a wavepacket g−(v)
propagating in from I− and a wavepacket f−(u) propagating out from H−. So the
solution is uniquely determined by its behaviour on I− ∪ H−. We define an ”in”
mode to be a solution which vanishes on H− and an ”up” mode to be a solution
which vanishes on I−. Any solution can be written uniquely as a superposition of
an in mode and an up mode.

The late time modes can be written in terms of the early time modes and vice
versa. For example, an out mode is a superposition of an in mode and an up mode;
an up mode is a superposition of an out mode and a down mode:

This spacetime is stationary so we can consider modes with definite frequency
i.e. eigenfunctions of Lk with eigenvalue −iω. Such modes have time dependence
e−iωt. A mode with frequency ω > 0 has the form

Φωlm =
1

r
e−iωtRωlm(r)Ylm(θ, φ) ω > 0 (10.74)

More generally, we say that a solution has positive frequency if it can be written
as a superposition of such modes. Setting φlm = e−iωtRωlm above gives the ”radial
equation” [

− d2

dr2
∗

+ Vl(r∗)

]
Rωlm = ω2Rωlm (10.75)

This has the form of a Schrödinger equation with potential Vl(r∗). Since Vl(r∗)
vanishes as |r∗| → ∞ we expect the solutions to behave for |r∗| → ∞ as

Rωlm ∼ e±iωr∗ ⇒ Φωlm ∝ e−iω(t∓r∗) =

{
e−iωu

e−iωv

}
(10.76)

The upper (lower) choice of sign corresponds to outgoing (ingoing) waves.
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10.7 Hawking radiation

Consider a massless scalar field in the spacetime describing spherically symmetric
gravitational collapse, with Penrose diagram:

Outside the collapsing matter, the spacetime is described by the Schwarzschild
solution, which is static. However, the spacetime is not stationary because the
geometry inside the collapsing matter is not stationary. Hence we expect particle
creation. The surprising result is that this particle creation is not a transient effect,
but there is a steady flux of particles from the black hole at late time.

We will introduce bases analogous to those used above. At early time, there is
no past event horizon so there is no analogue of the ”up” modes, we have just the
”in” modes, i.e., wavepackets propagating in from I−. The geometry near I− is
static so there is a natural notion of ”positive frequency” there. Let fi be a basis
of ”in” modes that are positive frequency near I−.

At late time, we can define ”out” and ”down” modes as before, i.e., as wavepack-
ets that vanish on H+ and I+ respectively. The geometry near I+ is static so we
can define a notion of ”positive frequency” there. Let pi be a basis of positive
frequency out modes. The geometry is not static everywhere on H+ so there is
no natural notion of positive frequency for the down modes. We pick an arbitrary
basis {qi, q̄i} for these modes.

We have two different bases for S, i.e., {fi, f̄i} and {pi, qi, p̄i, q̄i}. We will
assume that both bases are orthonormal, i.e., (fi, fj) = δij and

(pi, pj) = (qi, qj) = δij (pi, qj) = 0 (10.77)

where the orthogonality of the out and down modes was discussed above. Let ai, bi
be annihilation operators for the ”in” and ”out” modes respectively:

ai = (fi,Φ) bi = (pi,Φ) (10.78)

We can expand

pi =
∑
j

(
Aijfj +Bij f̄j

)
(10.79)
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so from (10.30)

bi = (pi,Φ) =
∑
j

(
Āijaj − B̄ija

†
j

)
(10.80)

We assume that there are no particles present at early time, i.e., that the state is
the vacuum state defined using the modes fi:

ai|0〉 = 0 (10.81)

The expected number of particles present in the ith ”out” mode is then

〈0|b†ibi|0〉 = (BB†)ii (10.82)

To calculate this we need to determine the Bogoliubov coefficients Bij.
We will choose our ”out” basis elements pi so that at I+ they are wavepackets

localized around some particular retarded time ui and containing only positive
frequencies localized around some value ωi:

We define the ”in” basis element fi to be a (positive frequency) wavepacket on
I− whose dependence on v is the same as the dependence of pi on u at I+.

Consider first Kruskal spacetime. Imagine propagating the wavepacket pi back-
wards in time from I+ ∪H+. Part of the wavepacket would be ”reflected” to give
a wavepacket on I− (an in mode) and part would be ”transmitted” to give a
wavepacket crossing H− (an up mode). So we can write

pi = p
(1)
i + p

(2)
i (10.83)

where p
(1)
i is the ”in” part and p

(2)
i the ”up” part. Let

Ri =

√
(p

(1)
i , p

(1)
i ) Ti =

√
(p

(2)
i , p

(2)
i ) (10.84)

(Both KG norms are positive because there is no mixing of frequencies in Kruskal
spacetime.) Then from the normalisation of pi and the fact that ”in” and ”up”
modes are orthogonal, we have

R2
i + T 2

i = 1 (10.85)
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Ri is called the reflection coefficient, i.e., the fraction of the wavepacket that
is reflected to I− and Ti is called the transmission coefficient, i.e., the fraction
that crosses H−. The time reversal symmetry of the Schwarzschild spacetime im-
plies that Ri, Ti are also the reflection and transmission coefficients for the ”in”
wavepacket fi propagating in from I−. Specifically, Ti is the fraction of fi that
crosses H+ and Ri is the fraction reflected to I+.

Let’s now include the collapsing matter in our spacetime. We will be interested
in the case of a wavepacket pi that is localized around a late retarded time ui. Then
the reflected wavepacket will be localized around a late advanced time vi. In this
case, the scattering of the wavepacket occurs outside the collapsing matter and
hence behaves just as in Kruskal spacetime. So we can write (10.83) as above,

where p
(1)
i is defined to be the part of the wavepacket that is scattered outside the

collapsing matter. This does not experience the time-dependent geometry of the
collapsing matter and so just gives a positive frequency mode at I−. From the
above arguments we know that the norm of p

(1)
i is Ri which is the same as the

fraction of the mode fi that is reflected to I+ in the Kruskal spacetime.

On the other hand, the part of the wavepacket that would have entered H−
in the Kruskal spacetime now enters the collapsing matter. This is the part p

(2)
i

in (10.83). It propagates through the collapsing matter and out to I−. Since it
has travelled through a time-dependent geometry, the resulting solution will be
a mixture of positive and negative frequency modes at I−. Hence it is p

(2)
i that

determines Bij. We can decompose both p
(1)
i and p

(2)
i as in (10.79) hence we have

(as B
(1)
ij = 0)

Aij = A
(1)
ij + A

(2)
ij Bij = B

(2)
ij (10.86)

At early time it is clear that p
(1)
i and p

(2)
i are well-separated wavepackets and

hence they are orthogonal w.r.t. the KG inner product. Hence (since pi has unit

norm and R2
i + T 2

i = 1) the norm of p
(2)
i must be Ti, which is the same as the

fraction of the mode fi which crosses H+ in the Kruskal spacetime.

To calculate Bij we must determine the behaviour of p
(2)
i on I−. On I+, the

wavepacket pi has oscillations with characteristic frequency near to ωi, modulated
by a smooth profile (e.g. a Gaussian function) localized around some retarded time
ui. There will be infinitely many of these oscillations along I+. When these are
propagated backwards in time, there will be infinitely many oscillations between
the line u = ui and the event horizon at u = ∞. This means that an observer
who crosses H+ would observe infinitely many oscillations of the field in a finite
affine time, i.e., the proper frequency of the field measured by the observer would
diverge at H+.

Let γ denote a generator of H+ and extend γ to the past until it intersects
H−. We can define our advanced time coordinate v so that γ intersects I− at
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v = 0. Our wavepacket will be localized around some value v0 < 0 on I−, with
infinitely many oscillations in v0 < v < 0. Hence the arguments just given imply
that the field oscillates very rapidly near γ all the way back to I−. Since the field
is oscillating so rapidly near γ, we can use the geometric optics approximation.

In geometric optics we write the scalar field as Φ(x) = A(x)eiλS(x) and assume
that λ � 1. To leading order in λ the wave equation reduces to (∇S)2 = 0,
i.e., surfaces of constant phase S are null hypersurfaces. The generators of these
hypersurfaces are null geodesics.

Consider a null geodesic congruence containing the generators of these surfaces
of constant S, and also the generators of H+ (which is the surface S = ∞). We
can introduce a null vector Na as in section 4.4 such that N · U = −1 where Ua

is the tangent vector to the geodesics and U · ∇Na = 0. We can decompose a
deviation vector for this congruence into the sum of a part orthogonal to Ua and
a term βNa parallelly transported along the geodesics (equation (4.17)). On H+,
the former is tangent to H+ but the latter points off H+ and hence towards a
generator of a surface of constant S. Choose β = −ε where ε > 0 is small. Then
−εNa is a deviation vector from γ to a generator γ′ of a surface of constant S.

Spherical symmetry implies that we can choose Nµ such that N θ = Nφ =
0. Outside the collapsing matter we know that ∂/∂V is tangent to the affinely
parameterized generators of H+, so we can choose Ua = (∂/∂V )a there. Since Nµ

is null and not parallel to Uµ we must then have NV = 0. From U · N = −1 we
obtain

N = C
∂

∂U
(10.87)

for some positive constant C (since gUV is constant on H+ outside the matter).
Hence, outside the collapsing matter, the deviation vector −εNa connects γ to a
null geodesic γ′ with

U = −Cε (10.88)

Fom the definition of U we have

u = −1

κ
log(−U) (10.89)

Hence, at late time, γ′ is an outgoing null geodesic with

u = −1

κ
log(Cε) (10.90)

Let F (u) denote the phase of the wavepacket pi on I+. Then the phase everywhere
along γ′ must be

S = F

(
−1

κ
log(Cε)

)
(10.91)
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At I−, γ, γ′ are ingoing radial null geodesics. In (u, v) coordinates this implies
that Ua is a multiple of ∂/∂u. The metric near I− has the form

ds2 = −dudv +
1

4
(u− v)2dΩ2 (10.92)

so spherical symmetry and the fact that N is null and not parallel to U implies

N = D−1 ∂

∂v
at I− (10.93)

for some positive constant D, which implies that γ′ intersects I− at

v = −D−1ε (10.94)

Combining with (10.91), we learn that the phase on I− is, for small v < 0,

S = F

(
−1

κ
log(−CDv)

)
(10.95)

Hence on I− we have

p
(2)
i ≈

{
0 v > 0
A(v) exp

[
iF
(
− 1
κ

log(−CDv)
)]

small v < 0
(10.96)

where the amplitude A(v) is a smooth positive function. This shows that, on I−,
most of our late time wavepacket is squeezed into a small region near v = 0 where
the logarithm varies rapidly. To determine Bij we now have to decompose this
function into positive and negative frequency ”in” modes on I−.

So far we have been working with normalizable wavepackets built by superpos-
ing modes of definite frequency. But now we will assume that pi contains only the
single positive frequency ωi > 0 so F (u) = −ωiu. This means that pi is neither
normalizable nor localized at late time (as assumed above) but it makes the rest of
the calculation easier. The result is the same as a more rigorous calculation using
wavepackets. We will also use ω to label the modes i.e. we will write pω instead
of pi (there will be additional labels (l,m) but we will suppress these). For this
function pω we have on I−:

p(2)
ω ≈

{
0 v > 0
Aω(v) exp

[
iω
κ

log(−CDv)
]

small v < 0
(10.97)

Similarly we will use a basis of ”in” modes fσ such that fσ has frequency σ > 0,
i.e., fσ = (2πNσ)−1e−iσv on I− where Nσ is a normalization constant. Writing p

(2)
ω

in terms of {fσ, f̄σ} is therefore just a Fourier transform w.r.t. v on I−. Since p
(2)
ω

is squeezed into a small range of v near v = 0 (or would be if it were a wavepacket),
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its Fourier transform will involve mainly high frequency modes, i.e. large σ. For
such modes, the Fourier transform is dominated by the region where p

(2)
ω oscillates

most rapidly, i.e., near v = 0. So we can use the above expression and approximate
the amplitude Ai(v) as a constant. The Fourier transform is therefore

p̃(2)
ω (σ) = Aω

∫ 0

−∞
dv eiσv exp

[
i
ω

κ
log(−CDv)

]
(10.98)

with inverse

p(2)
ω (v) =

∫ ∞
−∞

dσ

2π
e−iσvp̃(2)

ω (σ) (10.99)

=

∫ ∞
0

dσNσp̃
(2)
ω (σ)fσ(v) +

∫ ∞
0

dσN̄σp̃
(2)
ω (−σ)f̄σ(v)

the first term picks out the positive frequency components and second term the
negative frequency components. Hence in (10.79) we have

A(2)
ωσ = Nσp̃

(2)
ω (σ) Bωσ = N̄σp̃

(2)
ω (−σ) ω, σ > 0 (10.100)

The integral in (10.98) is not convergent but this is an artefact of working with
non-normalizable states. It would converge if we used wavepackets so we will
manipulate it as if it converged. We will want to extend the integrand into the
complex v-plane so we define the logarithm with a branch cut in the lower half
plane:

log z = log |z|+ i arg z arg z ∈ (−π/2, 3π/2) (10.101)

which makes the integrand in (10.98) analytic in the lower half plane. If σ > 0 then

the integrand in p̃
(2)
ω (−σ) decays as v →∞ in the lower half v-plane. Consider the

semi-circular contour:

The integral around this contour vanishes by Cauchy’s theorem. The integral
around the curved part of the semi-circle vanishes as R→∞ (at least it would if
we were working with wavepackets, by Jordan’s lemma). Hence we have, for σ > 0

p̃(2)
ω (−σ) = −Aω

∫ ∞
0

dv e−iσv exp
[
i
ω

κ
log(−CDv)

]
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= −Aω
∫ ∞

0

dv e−iσv exp
[
i
ω

κ
(log(CDv) + iπ)

]
= −Aωe−ωπ/κ

∫ 0

−∞
dv eiσv exp

[
i
ω

κ
log(−CDv)

]
= −e−ωπ/κp̃(2)

ω (σ) (10.102)

therefore
|Bωσ| = e−ωπ/κ|A(2)

ωσ| (10.103)

We now return to using wavepackets, for which the corresponding result is

|Bij| = e−ωiπ/κ|A(2)
ij | (10.104)

Now the normalization of p(2) gives (upon substituting in the decomposition of p(2)

in terms of f, f̄)

T 2
i = (p

(2)
i , p

(2)
i ) =

∑
j

(
|A(2)

ij |2 − |Bij|2
)

=
(
e2ωiπ/κ − 1

)∑
j

|Bij|2

=
(
e2ωiπ/κ − 1

)
(BB†)ii (10.105)

hence the expected number of late time ”out” particles of type i is

〈0|b†ibi|0〉 =
Γi

(e2ωiπ/κ − 1)
(10.106)

where Γi ≡ T 2
i . As explained above, Γi is the ”absorption cross-section” for the

mode fi (the ”in” mode with the same profile as the ”out mode” pi), i.e., the
fraction of this mode that is absorbed by the black hole. This result is exactly the
spectrum of a blackbody at the Hawking temperature

TH =
κ

2π
(10.107)

This result shows that particle production is not just a transient effect during
gravitational collapse: surprisingly, there is a steady flux of particles at late time.

The above argument can be generalized to other types of free field e.g. a
massive scalar field, an electromagnetic field or a fermion field. In all cases, the
result is the same: a blackbody spectrum at the Hawking temperature. One can
also generalize to allow for non-spherically symmetric collapse, and collapse to a
rotating or charged black hole. In the latter cases, one finds that the temperature
is still given by (10.107) and the black hole preferentially emits particles with the
same sign angular momentum or charge as itself, just like a rotating or charged
blackbody.
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For an astrophysical black hole, the Hawking temperature is tiny: for Schwarzschild
we have

TH = 6× 10−8M�
M

K (10.108)

this is well below the temperature of the cosmic microwave background radiation
(2.7K) so astrophysical black holes absorb much more radiation from the CMB
than they emit in Hawking radiation, Tiny black holes, with M � M�, could
have a non-negligible temperature. But there is no convincing evidence for the
existence of such small black holes.

Notice that TH decreases with M . So Schwarzschild black holes have negative
heat capacity.

10.8 Black hole thermodynamics

Hawking’s discovery implies that a stationary black hole is a thermodynamic ob-
ject with temperature TH . Hence the zeroth law of black hole mechanics can be
regarded as the zeroth law of thermodynamics applied to a black hole (the tem-
perature is constant throughout a body in thermal equilibrium). ‘The first law of
black hole mechanics can now be written

dE = THdSBH + ΩHdJ (10.109)

where

SBH =
A

4
(10.110)

This is identical in form to the first law of black hole mechanics provided we
interpret SBH as the entropy of the black hole: this is referred to as the Bekenstein-
Hawking entropy. Reinstating units we have

SBH =
c3A

4G~
(10.111)

The second law of black hole mechanics now states that SBH is non-decreasing
classically. But SBH does decrease quantum mechanically by Hawking radiation:
the black hole loses energy by emitting radiation and therefore gets smaller. How-
ever, this radiation itself has entropy and the total entropy Sradiation +SBH does not
decrease. This is a special case of the generalized second law (due to Bekenstein)
which states that the total entropy

S = Smatter + SBH (10.112)

is non-decreasing in any physical process. Evidence in favour of this law comes
from the failure of various thought experiments aimed at violating it.
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The result that black holes have entropy has several consequences. First,
plugging in numbers reveals that the entropy of a Schwarzschild black hole with
M = M� is SBH ∼ 1077. This is many orders of magnitude greater than the
entropy of the matter in the Sun: S� ∼ 1058. Hence the entropy of the Universe
would be much greater if all of the mass were in the form of black holes. So our
Universe is in a very special (i.e. low entropy) state. This observation is due to
Penrose.

Second, Hawking’s result treats the gravitational field classically. But sta-
tistical physics tells us that entropy measures how many quantum microstates
correspond to the same macroscopic configuration. So a black hole must have
N ∼ exp(A/4) quantum microstates. What are these? To answer this requires
a quantum theory of gravity. A statistical physics derivation of SBH = A/4 is a
major goal of quantum gravity research. String theory has been successful in do-
ing this for certain ”supersymmetric” black holes. Such black holes are necessarily
extreme (κ = 0) and include the extreme Reissner-Nordstrom solution.

10.9 Black hole evaporation

The energy of the Hawking radiation must come from the black hole itself. Hawk-
ing’s calculation neglects the effect of the radiation on the spacetime geometry. An
accurate calculation of this backreaction would involve quantum gravity. However,
one can estimate the rate of mass loss by using Stefan’s law for the rate of energy
loss by a blackbody:

dE

dt
≈ −αAT 4 (10.113)

where α is a dimensionless constant and we approximate Γi by treating the black
hole as a perfectly absorbing sphere of area A (roughly the black hole horizon area)
in Minkowski spacetime. Plugging in E = M with A ∝ M2 and T ∝ 1/M gives
dM/dT ∝ −1/M2. Hence the black hole evaporates away completely in a time

τ ∼M3 ∼ 1071

(
M

M�

)3

sec (10.114)

This is a very crude calculation but it is expected to be a reasonable approximation
at least until the size of the black hole becomes comparable to the Planck mass (1
in our units) when quantum gravity effects are expected to become important.

This process of black hole evaporation leads to the information paradox. Con-
sider gravitational collapse of matter to form a black hole which then evaporates
away completely, leaving thermal radiation. It should be possible to arrange that
the collapsing matter is in a definite quantum state, i.e., a pure state rather than
a density matrix. However, the final state is a mixed state, i.e., only describable
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in terms of a density matrix. Evolution from a pure state to a mixed state is
impossible according to the usual unitary time evolution in quantum mechanics.

Another way of saying this is: information about the initial state appears to be
permanently lost in black hole formation and evaporation. This is in contrast with,
say, burning an encyclopaedia. In that case one could reproduce (in principle) the
information in the encyclopaedia if one collected all of the radiation and ashes and
studied them very carefully. Not so with Hawking radiation, which appears to be
exactly thermal and hence contains no information about the initial state.

Hawking interpreted this apparent paradox as indicating that quantum me-
chanics would need modifying in a full quantum theory of gravity. Most other
physicists take a more conservative view that information is not really lost and
that there are subtle correlations in the Hawking radiation which take a long time
to appear but could, in principle, be used to reconstruct information about the
initial state. However, this idea has run into trouble recently: if one assumes this,
as well as several other cherished beliefs about black hole physics (e.g. nothing
special happens at the event horizon, QFT in curved spacetime is a good descrip-
tion of the physics until the black hole reaches the Planck scale) then one runs
into a contradiction (Almheiri, Marolf, Polchinski & Sully 2012).
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