Mathematical Tripos Part III Lent Term 2020
Black Holes: Examples Sheet 2 H.S. Reall

1. A general static, spherically symmetric metric can be written

dr?

ds* = —A(r)dt* + B0

+ r2dQ?,

where d? is the metric on a unit 2-sphere. Assume that A(r) and B(r) are analytic functions
of r such that both have a simple zero at » = r > 0 and are positive for » > r,.

(a) Show that radial null geodesics are given by ¢ + r* = constant, where

= /T dz
"~ Jro VA(2)B(x)’
with 79 > r4 an arbitrary constant. Show that r* — —oco as r — r4.

(b) Obtain the metric in ingoing Eddington-Finkelstein coordinates. Explain why this metric
can be analytically continued through r = r.

2. Consider a particle with 4-velocity U in a stationary, asymptotically flat, space-time with timelike
Killing vector field k. £ = —k - U has the interpretation of “energy per unit mass measured at
infinity” if the particle moves on a geodesic. For non-geodesic motion, this equation is used to
define “energy per unit mass measured at infinity.”

(a) Consider a unit mass particle P following an orbit of k at radius » = rp > 2M in the
Schwarzschild spacetime. Assume that the force making this particle accelerate comes from a
radial massless inelastic string, whose other end is held by an observer Q at infinity. If Q pulls
the string through proper distance S then what is the change drp in rp ?

(b) What is the change §F in the energy of P measured by @7 This must equal the work F'§.S
done by @) where F' is the force that the string exerts on @), i.e., the tension at ). Calculate F'.
Show that F' — 1/(4M) as rp — 2M. What is the force measured by P as rp — 2M?

3. Consider 2d Minkowski spacetime with coordinates (¢, z). Delete the points (£1,0). Let ¥ be a
surface of constant ¢. Sketch D(X), distinguishing the cases t > 1, -1 <t <1 and ¢t < —1.

4. Prove that the extrinsic curvature of a spacelike hypersurface with unit normal vector n® satisfies
Ku = (1/2) L, hay. Deduce that a surface of constant ¢ in a static spacetime has K, = 0.

5. Use isotropic coordinates to prove that a surface of constant ¢ in the Schwarzschild spacetime is
an asymptotically flat end (with K, = 0).

6. Consider a metric written in the 3 + 1 form
ds? = ~N2d#? + hyj (da' + N'dt) (da? + Nidt) .

Let T = 0/0t, X = N'9/0x' and n = N~Y(T — X). (a) Verify that n, = —N(dt), and hence
that n® is the future-directed unit normal to surfaces of constant ¢. (b) By writing n, in terms
of T, and X, and using Ku, = hhiVeng, show that Ky = (2N) ! (hy — DiNj = D;N;) where

a dot denotes a derivative w.r.t. ¢, D; is the Levi-Civita connection of h;;, and N; = h;; N 3.



7.

10.

A perfect fluid has stress tensor Ty, = (p + p)ugup + pgap, Wwhere p is the energy density, p the
pressure, and u® the 4-velocity of the fluid. Show that

(a) the dominant energy condition is obeyed if, and only if, p > |p|;

(b) the weak energy condition is obeyed if, and only if, p > 0 and p+p > 0;

(c) the null energy condition is obeyed if, and only if, p +p > 0;

(d) the strong energy condition is obeyed if, and only if, p+3p > 0 and p+p > 0.

A cosmological constant has p = —p. Which energy conditions does it violate? (Consider both
signs for p.)

. Consider two Lorentzian metrics on a manifold M related by a conformal transformation § = Q%g

where € is a positive function on M.
(a) Show that g and g have the same null geodesics.
(b) Show that the Ricci tensor of g is related to the Ricci tensor of g by

Rap = Rap + 2071V, V2 + Gung™ (Q—lvcvdsz . 39_26098d(2)

where V is the Levi-Civita connection associated with g.

(c) Let 1 be a solution of the equation ¢*°V,Vy) + ERY = 0. We say that the equation is
conformally invariant if there exists a constant p such that 1) = QP1) is a solution of the equation
in a spacetime with metric § = Q?g whenever 1 solves the equation in a spacetime with metric
g. Determine the value of £ for which this equation is conformally covariant.

. The Robinson-Bertotti metric is

2 2 7,2 o [(dAN? 2 1092
ds® = =Xdt* + M ()\) + M=dS2
This is the product AdSs x S? where AdS, denotes 2d anti-de Sitter spacetime. By replacing
the time coordinate t by one of the radial null coordinates u =t + M /X, v =t — M/ show that
the singularity at A = 0 is merely a coordinate singularity. By introducing the new coordinates
(U, V), defined by u = tan(U/2), v = — cot(V/2), obtain the maximal analytic extension of the
RB metric and deduce its Penrose diagram (more precisely: deduce the Penrose diagram of the
AdSy part of the RB metric). Is this spacetime globally hyperbolic?

Let ¥ be a spacelike hypersurface with future directed timelike unit normal n%, induced metric
hab = gap + Nenp and extrinsic curvature Ky, = hghgvcnd. Let S be a compact orientable 2d
surface within ¥ with unit normal m,. On S, let U = (n® £ m®)/v/2. (a) Show that U¢ are
future-directed null vectors orthogonal to S and Uy - U- = —1. (b) Consider a null geodesic
congruence containing the geodesics orthogonal to S with tangent U{ there. On S we can choose
(in the notation of lectures) U* = U¢ and N* = U%. Show that the projection operator P can
be written as P’ = hj — m®my. (c) On S, the expansion of the geodesics orthogonal to S is
64 = P*V,U,. Since P is a projection onto directions tangential to S, this expression involves
only derivatives tangential to S so we can replace Uy by its value on S, i.e., Uyp. Show that this
gives
0L = (h® — m*m®) K, + k

where k is the trace of the extrinsic curvature of S viewed as a surface in 3. (d) Let ¥ be
a time-symmetric hypersurface, i.e., Ky = 0. Can S be trapped? Show that S is marginally



trapped if, and only if, £ = 0. (This is the condition for S to be a minimal surface in X.) (e) Let
Kap = J(oMy) where J* and M* are tangential to 3 and orthogonal to each other. Assume that
M, is tangent to S. Show that the results in (d) extend to this case. (A surface of constant ¢ in
the Kerr geometry has Ky of this form.)



