
1 Classical statistical physics

In the lectures we discussed the foundations of statistical physics within the framework

of quantum mechanics. These brief notes are designed to introduce the basic ideas

within the framework of classical physics.

1.1 Phase space density

Consider a system consisting of many particles e.g. a gas in a box. We will refer to

a microstate of the system as a precise microscopic specification of the state of the

system (i.e., the exact positions and velocities of each molecure). Of course this is

very complicated! Fortunately, we are not usually interested in the details of exactly

where each molecule is - we are interested in studying the macroscopic behaviour of

the system. A macrostate corresponds to a macroscopic description of the system in

terms of a few experimentally accessible parameters e.g. pressure, energy, volume etc.

The goal of statistical physics is to predict properties of macrostates starting from the

underlying microscopic laws of physics.

We want to predict properties of the system that don’t depend on the details of the

microstate, so we need to introduce some way of “averaging over microstates”. This is

done using an ensemble of systems. This is a set of W � 1 (noninteracting) copies of

the system. Each system in the ensemble is specified by a particular microstate, which

evolves according to the microscopic laws of physics of the system. Different systems

in the ensemble can be in different microstates. What we’d like to do is to construct

an ensemble for which taking an average over the ensemble lets us predict macroscopic

quantities in physically relevant situations.

To specify the microstate of a system we will work in phase space. If you’ve taken

Classical Dynamics you will know what phase space is. Otherwise here is a quick

summary. For a single particle, phase space in the 6-dimensional space with coordinates

(q,p) where q is the particle’s position and p is its momentum. As the particle moves,

it traces out a unique trajectory in phase space. For a system containing N particles,

phase space is the 6N -dimensional space with coordinates (q1, . . . ,qN ,p1, . . . ,pN). The

microstate of the system at any time is specified by a single point in phase space, and

this point traces out a trajectory over time. Different initial conditions give different

trajectories. These trajectories can’t intersect because that would contradict the fact

that there is a unique trajectory through each point.

Now consider an ensemble of systems. At a given time, each system in our ensemble

is fully specified by a single point in phase space, so the ensemble corresponds to W

points in phase space. Since W � 1 we can think of these points as distributed in

phase space with some density ρ(qi,pi). By this we mean that, the number of systems
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occupying a region of phase space centred on the point (q1, . . . ,qN ,p1, . . . ,pN) with

volume d3Nqd3Np = d3q1 . . . d
3qNd

3p1 . . . d
3pN is given by

Wρ(q1, . . . ,qN ,p1, . . . ,pN)d3Nqd3Np (1.1)

It may help to visualize the points describing the ensemble as a fluid in phase space with

density Wρ. From this definition, the phase space density ρ satisfies the normalization

condition ∫
ρd3Nq d3Np = 1 (1.2)

We do not assume our macroscopic system to be in some particular microstate. Instead

we can talk about the probability of it being in some microstate. More precisely, this

is the probability that a system picked at random from the ensemble will be in this

microstate. To calculate this probability we interpret ρ as a probability density in phase

space:

The probability that the actual microstate of our system is lies inside a phase space

volume d3Nq d3Np centred on the point (qi,pi) is given by ρ(qi,pi)d
3Nq d3Np.

Now we turn to dynamics: we need to work out how ρ(t,qi,pi) depends on t. We

assume that our system satisfies an equation of motion arising from a Lagrangian. In

the Classical Dynamics course it is shown how one can rewrite the equations of motion

in terms of a Hamiltonian, and the resulting equations of motion translate into a simple

equation of motion for ρ:

0 =
dρ

dt
≡ ∂ρ

∂t
+
∑
i

(
dqi
dt
· ∇qi

ρ+
dpi
dt
· ∇pi

ρ

)
(1.3)

where on the RHS we evaluate dqi/dt and dpi/dt using the equations of motion. Just

as in fluid mechanics, dρ/dt is simply the derivative moving along a trajectory in phase

space. Hence this equation has a very simple interpretation: ρ is constant in time

following the flow in phase space. This is Liouville’s theorem.

Consider a region of phase space small enough that ρ is constant throughout the

region. Let the region have volume dV = d3Nq d3Np, so it is occupied by n = WρdV

systems of our ensemble. Under time evolution, these systems will evolve to occupy

some other region of phase space, with volume dV ′. Since ρ is constant along the flow

we have n = WρdV ′, so it follows that dV ′ = dV . In other words, time evolution

preserves volume in phase space. However, the shape of this region will change, and

can become very complicated.
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1.2 Statistical equilibrium, the fundamental assumption and the micro-

canonical ensemble

To calculate anything we need to know what ρ is. In this course we will be entirely

concerned with systems which are in statistical equilibrium. By this we mean that

probabilities are not changing with time. Since ρ is a probability density function,

this implies that ρ cannot be varying with time, i.e., ∂ρ/∂t = 0 or ρ = f(qi,pi) for

some function f . The equation of motion dρ/dt = 0 now tells us that f(qi(t),pi(t))

is independent of t, i.e., it is conserved along any trajectory. Now most dynamical

systems admit just a few conservation laws such as conservation of the total energy,

total momentum and total angular momentum. So in statistical equilibrium ρ must be

some function of these conserved quantities.

We will often be interested in systems such as a gas in a box where total momentum

and total angular momentum are not conserved because of interactions with the walls

of the box. So in practice the only conserved quantity at our disposal is the total energy

E and so ρ = f(E) in statistical equilibrium.

We have seen that, in statistical equilibrium, the problem of specifying a function

ρ on a 6N -dimensional phase space reduces to specifying a single function f(E). But

what dictates our choice of f? By observing our macroscopic system we will have some

partial knowledge about the possible microstates that it could be in. In particular, we

will have some idea about its energy. Let’s assume that we know that the energy of our

system is known to lie between E and E + δE where δE represents our experimental

uncertainty. We would then choose f to vanish outside this range. But how do we

choose f inside this range?

The fundamental assumption of classical statistical physics is

All microstates consistent with our partial knowledge of the system are equally probably

in phase space.

In other words, we must take ρ to be constant in the region of phase space cor-

responding to energy between E and E + δE, and zero outside this region. Stating

that the energy is E defines some surface in phase space, so the region of interest lies

between the surfaces corresponding to energy E and E + δE. Let Ω(E, δE) be the

phase space volume of this region. Then from the normalization condition (1.2) we

have

ρ =

{
1

Ω(E,δE)
if energy between E and E + δE

0 otherwise
(1.4)

This defines the microcanonical ensemble.

As the name suggests, the fundamental assumption cannot be derived from some-

thing more basic. It is an axiom of statistical physics. Note that it refers to equal
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probabilities in phase space, not in energy space e.g. it is ρ(qi,pi) that is constant, not

f(E). Why should we make this assumption? Because we need to assume something

about ρ to make predictions, this is the simplest assumption, and it works!
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