
1 Foundations of statistical physics

1.1 Density operators

In quantum mechanics we assume that the state of a system is described by some vector

|Ψ〉 belonging to a Hilbert space H. If we know the initial state then we can use the

Schrödinger equation to work out the state at a subsequent time (if we are working

in the Schrödinger picture). We can then use that to calculate the probability that

measuring an observable A gives a particular result.

In statistical physics, the individual quantum states of a system are called mi-

crostates. For a macroscopic system, consisting of N ∼ 1023 particles, there is no

way we could possibly know which microstate the system is in. Instead we refer to

the macrostate of a system, where we specify a few macroscopically observable quan-

tities e.g. energy, volume, temperature etc. In general, there will be many different

microstates corresponding to a particular macrostate e.g. switching the position of a

couple of molecules does not change the macroscopic behaviour of a system. Let |Ψi〉
be the microstates corresponding to a particular macrostate. We assume these mi-

crostates to be normalized but not necessarily orthogonal. For a given macrostate, not

all of these microstates need be equally likely, so let Pi be the probability that the state

is |Ψi〉. Note that this probability has got nothing to do with quantum uncertainty, it

simply reflects our ignorance of the system.

A standard way of thinking about this is using an ensemble of W � 1 (fictitious)

copies of our system. Each copy is in some definite microstate that is consistent with

the known macrostate. If ni denotes the number of members of the ensemble that

are in the state |Ψi〉 then we say that the probability that the actual system is in the

state |Ψi〉 is Pi = ni/W . So specifying the probability distribution Pi is equivalent to

specifying an ensemble.

Mathematically, we describe a macrostate using a density operator

ρ =
∑
i

Pi|Ψi〉〈Ψi| (1.1)

You met the concept of a density operator last term in Principles of Quantum Mechan-

ics. The term “density operator” is a bit stupid (what is it the density of?) but it is

standard so we are stuck with it. The components of a density operator w.r.t. a basis

are called a density matrix.

From the density operator we can calculate the probability that an observable A

takes a particular value. Let |a〉 denote the normalized eigenstate of A with eigenvalue
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1.1 Density operators

a. Then, using the rules of conditional probability

P (A = a) =
∑
i

P (A = a
∣∣state is |Ψi〉)P (state is |Ψi〉)

=
∑
i

|〈a|Ψi〉|2Pi =
∑
i

〈a|Ψi〉〈Ψi|a〉Pi = 〈a|ρ|a〉 (1.2)

Some simple properties of ρ are obvious: ρ is hermitian and positive (semi)-definite.

To see the latter note that, for any state |Ψ〉,

〈Ψ|ρ|Ψ〉 =
∑
i

Pi|〈Ψ|Ψi〉|2 ≥ 0 (1.3)

If we let {|i〉} be an orthonormal basis for H then we can calculate the trace of ρ over

H:

Tr(ρ) ≡
∑
i

ρii =
∑
i

〈i|ρ|i〉 =
∑
i,j

Pj〈i|Ψj〉〈Ψj|i〉 =
∑
i,j

Pj〈Ψj|i〉〈i|Ψj〉

=
∑
j

Pj〈Ψj|Ψj〉 =
∑
j

Pj = 1 (1.4)

Based on the above, we now make a definition:

Definition. A density operator is a Hermitian, positive semi-definite operator ρ such

that Tr(ρ) = 1.

Given a density operator ρ let |i〉 be the normalized eigenvectors of ρ, with eigen-

values pi. Since ρ is Hermitian, we can assume that {|i〉} form an orthonormal basis.

Positive semi-definiteness implies pi ≥ 0 and Tr(ρ) = 1 implies
∑

i pi = 1. Furthermore

the density operator takes then form

ρ =
∑
i

pi|i〉〈i| (1.5)

which is the same form as (1.1). Hence we can interpret pi as the probability that, in

a macrostate described by ρ, the microstate is |i〉. The eigenvalues pi are not the same

as the Pi unless the states |Ψi〉 are orthogonal.

Note that (using p2
i ≤ pi)

Tr(ρ2) =
∑
i

p2
i ≤ 1 (1.6)

with equality if, and only if, pi = δij for some j, in which case we know that the

microstate is definitely |j〉. So Tr(ρ2) = 1 if, and only if, we know the microstate of the
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1.2 The microcanonical ensemble

system. Under such circumstances, we say that ρ describes a pure state. In the general

case Tr(ρ2) < 1, the system could be in one of several different states; we then say that

ρ describes a mixed state.

Let’s now discuss the dynamics of mixed states. Consider a system which at time

t = 0 is in a mixed state described by the density operator ρ(0). Let {|i; 0〉} be the

normalized eigenvectors of ρ(0) so ρ(0) has the form (1.5) with |i〉 replaced by |i; 0〉.
Now, at time t, the state |i; 0〉 evolves to e−iHt/~|i; 0〉 (where H is the Hamiltonian

operator) and so the density operator at time t is

ρ(t) =
∑
i

pie
−iHt/~|i; 0〉〈i; 0|eiHt/~ (1.7)

From this it follows that ρ satisfies the equation of motion (exercise)

i~
∂ρ

∂t
= [H, ρ] (1.8)

This is the Schrödinger equation for mixed states.

In statistical physics we will be interested in systems that have “settled down

to equilibrium”. By this, we mean that the probability of any observable taking a

particular value is independent of time. Equation (1.2) implies that ρ(t) must be

independent of time so, from (1.8), ρ must commute with H. So a macrostate described

by a density operator ρ is an equilibrium state iff ρ commutes with H. This is true iff

we can simultaneously diagonalize ρ and H. Hence, in equilibrium, the eigenstates |i〉
of ρ can be assumed to be energy eigenstates, with energies Ei.

In equilibrium, ρ must commute with H. How restrictive is this? Obviously any

function of H will commute with H. Furthermore, if the system has appropriate

continuous symmetries then there exist other operators that commute with H. For

example, if the system is invariant under translations then the momentum operator

will commute with H. If it is invariant under rotations then the angular momentum

operator will commute with H. So, in equilibrium, the density operator must be a

function of these various operators. In practice, we are usually interested in systems

for which boundary conditions break translational and rotational symmetry e.g. a gas

in a cubic box. In such a situation, any operator which commutes with H must be

a function of H. So, in equilibrium, the density operator must be a function of the

Hamiltonian operator H.

1.2 The microcanonical ensemble

We’ve seen how a density operator describes a system about which we have imperfect

knowledge. But which density operator should we use? In other words, what determines

the probabilities pi?
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1.2 The microcanonical ensemble

The fundamental assumption of statistical physics. For an isolated system, all

states consistent with our partial knowledge of the system are equally probable.

In other words, in the absence of any other information, we simply assume that the

non-vanishing pi all take the the same value. Here “partial knowledge” means that we

know something about the system but we don’t know enough to determine its quantum

state exactly. “Isolated” means that the system is not interacting with anything else.

Think of a gas in a vacuum flask.

In this course we will be studying the properties of systems in equilibrium. By

this we mean that the probabilities of measurements do not depend on time, i.e, the

density matrix is time independent. Many systems in nature appear to “settle down” to

equilibrium over time. To achieve this, some damping mechanism e.g. friction is often

important (a harmonic oscillator without damping would never settle down to rest).

However, once equilibrium has been achieved, a system will remain in equilibrium if it

is completely isolated. It is the equilibrium of isolated systems that we will focus on.

From what we said above, the density matrix of an equilibrium state must commute

with the Hamiltonian hence the eigenstates |i〉 of ρ must be energy eigenstates. Assume

that we know that the energy of an isolated system lies in the range (E,E+δE). Then,

from our fundamental assumption we know that the density operator has the form (1.5)

where |i〉 are energy eigenstates with energies Ei and

pi =

{
c if Ei ∈ (E,E + δE)

0 else
(1.9)

for some constant c. From the normalization condition
∑

i pi = 1 we have

c =
1

Ω
(1.10)

where Ω is the number of energy eigenstates with Ei ∈ (E,E + δE). Here we are

assuming that the energy eigenstates are discrete so we can count them. In practice,

we can arrange that this is true by putting our system in a box of fixed volume V :

you are familiar e.g. from the infinite square well that this renders the energy levels

discrete. If V is large compared to microscopic length scales then the spacing of the

energy levels will be very small, so our experimental accuracy δE will be much larger

than the spacing between energy levels.

The above probability distribution is called the microcanonical distribution. The

corresponding ensemble is called the microcanonical ensemble. Note that the micro-

canonical ensemble is appropriate for an isolated system. We’ll see below how other

ensembles describe equilibrium states of certain kinds of non-isolated system.
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1.3 Boltzmann entropy

Note that Ω depends on E and δE. It also depends on N , the number of particles,

and V (the volume) because the Ei depend on V . So we write Ω(E, V,N ; δE). If there

are other experimentally variable macroscopic quantities present in the system (e.g.

a magnetic field) then Ω will also depend on them. We’ll refer to such quantities as

“external parameters”.

1.3 Boltzmann entropy

Consider an isolated system in equilibrium, described with the microcanonical ensem-

ble. Define the Boltzmann entropy

S = k log Ω (1.11)

where k is a positive constant which we’ll keep arbitrary for now.

In principle S depends on E, V,N and δE. However, the dependence on δE is neg-

ligible in practice. To see this, let G(E, V,N) denote the number of energy eigenstates

with energy less than E. We then have, for δE � E, (suppressing the dependence on

V,N)

Ω(E; δE) = G(E + δE)−G(E) ≈ ∂G

∂E
δE (1.12)

and so

S ≈ k log

(
E
∂G

∂E

)
+ k log

δE

E
(1.13)

For a macroscopic system, the second term is absolutely tiny compared to the first

term. For example, for a system of N particles we would typically expect, G ∼ cEαN

for some constants c and α where α is dimensionless and of order 1 (examples sheet 1).

Now E∂G/∂E = αNG and

S ≈ k logG+ k log(αN) + k log
δE

E
(1.14)

Note that the first term above is proportional to N . For N ∼ 1023 this is much much

larger than the second term, which scales as logN . For the final term to be comparable

to the first term we’d need δE/E ∼ e−1023 , and no practical measurement could possibly

achieve such fantastic accuracy! So, for a macroscopic system, the second and third

terms above are always negligible compared to the first term. We can therefore neglect

the dependence of the entropy on δE and write simply S(E, V,N). Of course if there

are additional external parameters (e.g. magnetic field) then S will depend on them

too.

A final comment: we’ve seen that S ∼ kN , hence log Ω ∼ N . For N ∼ 1023 this

implies that Ω is a fantastically colossal, gigantic, enormous number!
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1.4 Thermal equilibrium

1.4 Thermal equilibrium

Consider two macroscopic systems which are coupled together weakly so that they are

free to exchange energy but the coupling does not significantly change the energy levels

of each system. We assume that the volume and number of particles of each system is

fixed and that the combined system is isolated, i.e., not interacting with anything else.

An example of such a set-up would be an insulating flask divided into two regions by a

very thin wall, with gas on each side of the wall. The two systems are the two separate

regions of gas, and they can exchange energy by molecules of the first gas colliding with

the wall molecules, which then collide with molecules of the second gas. However, the

volume and number of particles of each gas is fixed. The total energy is also fixed.

Let V1 and V2 be the volumes of the two systems and N1, N2 be the numbers of

particles in each system. These quantities cannot vary so we will often not write them

in the equations below. Let E1 and E2 be the energies of the two systems.1 Since the

systems can exchange energy, E1 and E2 can vary so only the total energy E = E1 +E2

is fixed.

Let’s assume that the combined system is in statistical equilibrum. By the funda-

mental assumption it is described by the microcanonical ensemble. We can now ask:

what is the probability that E1 takes a particular value? Let Ω1(E1) be the number of

microstates of the first system with energy in (E1, E1 +δE) and define Ω2(E2) similarly

for the second system. The number of microstates for the combined systems such that

the first system has energy in (E1, E1 +δE) and the second has energy in (E2, E2 +δE)

is then Ω1(E1)Ω2(E2) = Ω1(E1)Ω2(E − E1).

In the microcanonical ensemble any given microstate with energy in the range

(E,E + δE) has probability 1/Ω(E) where here Ω(E) refers to the combined system.

Hence the probability that the first system has energy in the range (E1, E1 + δE), with

the second in the range (E − E1, E − E1 + δE) is

p(E1) =
Ω1(E1)Ω2(E − E1)

Ω(E)
(1.15)

As we saw above, Ω1(E1) is an incredibly rapidly increasing function of E1. Similarly

Ω2(E − E1) is an incredibly rapidly decreasing function of E1. This implies that their

product will have a very sharply defined maximum at some value E∗1 , and decrease

incredibly rapidly moving away from this maximum. Hence E∗1 is overwhelmingly the

most probable value of E1: the probability of observing a different value of E1 is

negligible. On examples sheet 1 it is shown that the probability is negligible outside a

1 Hopefully you will not confuse E1 and E2 with the energy eigenvalues of a single system, which

we previously denoted Ei.
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1.5 The second law

region of size E/
√
N around E∗1 , where N1, N2 ∼ N , the total number of particles. For

N ∼ 1023 we see that indeed the maximum is very sharp. For a macroscopic object,

the width of this region is usually much less than δE, the accuracy with which we can

measure E.

To determine the value of E∗1 we just demand that the derivative w.r.t. E1 vanishes.

It’s easiest to do this by taking a log first, giving

0 =

(
∂S1

∂E1

)
E1=E∗1

−
(
∂S2

∂E2

)
E2=E−E∗1

(1.16)

here we write a partial derivative w.r.t. E1 because S1 depends also on V1 and N1,

which are held fixed when we take the derivative, and similarly for S2. We see that, in

equilibrium, it is overwhelmingly likely that the two systems will have equal values for

(∂S/∂E)V,N .

1.5 The second law

We can conclude more from the above discussion. Since p(E1) is negligible unless

E1 = E∗1 (to accuracy δE), it follows from (1.15) and the fact that probabilities must

sum to 1 that we have

Ω(E) ≈ Ω1(E∗1)Ω2(E − E∗1) (1.17)

Hence, in equilibrium, the entropy of the combined system is

S(E) = S1(E∗1) + S2(E − E∗1) (1.18)

This is simply the sum of the entropies of the individual systems: entropy is additive.

Notice that E∗1 was defined to maximize Ω1(E1)Ω2(E−E1) and hence to maximize

S(E,E1) ≡ k log [Ω1(E1)Ω2(E − E1)] = S1(E1) + S2(E − E1) (1.19)

Hence S(E) = S(E,E∗1), the maximum value of S(E,E1). Let’s now discuss the

interpretation of S(E,E1) for E1 6= E∗1 . Consider a situation in which our two systems

are initially non-interacting, with each system separately in equilibrium with energies

E1 and E−E1 respectively. So system 1 has entropy S1(E1) and system 2 has entropy

S2(E2). Now starting at time t = 0 we let the two systems interact. (In our example of

two gases in a box, the “non-interacting” set-up could correspond to an insulating wall

as well as the thin wall; we then remove the insulating wall to let the gases interact.)

If E1 6= E∗1 then, from the above analysis, we know that the combined system is not

in equilibrium at t = 0. Now so far, we have only defined entropy for systems in

equilibrium. But now it is very natural to define the entropy of the non-equilibrium
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1.5 The second law

state at t = 0 to be simply S(E,E1) since this is the sum of the entropies of the two

individual systems.

What happens next? From the above analysis, we know that for E1 6= E∗1 , the

macrostate at t = 0 is a very improbable state. So it “seems very likely” that the

combined system will evolve to more probable macrostates and eventually “settle down”

to the overwhelmingly most probably macrostate, namely the equilibrium state with

E1 = E∗1 . Notice in this process, the entropy S(E,E1) increases and eventually achieves

its maximum value S(E) when equilibrium is reached. This is a special case of the

second law of thermodynamics.

Second Law of Thermodynamics. The entropy of an isolated system increases

(or remains the same) in any physical process. In equilibrium, the entropy attains its

maximum value.

Note the important word “isolated”: if the system is not isolated, i.e., if it interacts

with an environment, then its entropy can decrease. However, the total entropy of the

system and its environment can only increase.

The second law lets us divide physical processes into two classes. For an isolated

system in equilibrium, a process is reversible if it does not change the entropy. It is

irreversible, if the entropy increases. If the system is not isolated, the same definitions

can be made using the total entropy of the system and its environment.

This statement of the second law is a bit vague because we have not defined the

entropy of a non-equilibrium macrostate of a general system. In fact no precise defi-

nition exists! The best one can do is to generalize the situation just discussed (with 2

interacting systems) and assume that the system can be chopped up into subsystems

which are each large compared to the scale of microscopic physics, and such that each

part is approximately in equilibrium (this is called local equilibrium). Think for exam-

ple of fluid mechanics: the fluid can be moving in a fairly complicated way and yet still

described by just a few functions e.g. density, velocity etc. The idea is that in this case

the chunks are small enough that these functions are approximately constant on each

chunk. One then defines the total entropy as the sum of the entropies of each part.

However it’s not possible to do this in a completely unambiguous way: it depends on

how you do the chopping up into chunks.

A more precise version of the second law refers only to equilibrium states, for which

the definition of entropy is unambiguous:

Second Law of Thermodynamics v2. Consider an isolated system which is

initially in equilibrium, then undergoes some change of its external parameters, and

settles down to equilibrium again. Then the entropy of the final state will be greater

than (or equal to) the entropy of the initial state.
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1.6 *Time asymmetry and the second law*

An example of such a process is the free expansion of a gas into a vacuum. Consider

a box separated into two regions by a rigid partition. On one side of the partition is

a gas in equilibrium, on the other side there is vacuum. Assume there is a valve in

the partition, with a timer set to open the valve at some prescribed time. This is an

isolated system. When the valve opens, the gas expands into the vacuum and then

settles down to equilibrium again, with gas on both sides of the partition. In this

process, the volume of the gas (an external parameter) changes. The initial and final

states are equilibrium states, and the final state will have greater entropy than the

initial state, so the change is irreversible.

The second law is motivated by probabilistic arguments: low entropy states are

“atypical” macrostates with very low probability so we expect such states to evolve to

“typical” macrostates with high probability and high entropy. The probabilistic nature

of this reasoning suggests that the second law may not be an absolute law, and that

there should be some small probability that one could observe a violation of the second

law. This is indeed true, but for a macroscopic system, the probability is so small that

one would have to wait many times the age of the Universe in order to observe such an

unlikely event.

1.6 *Time asymmetry and the second law*

Note that in our two system example above we did not derive the second law because

we invoked the assumption that the system evolves to a final state that maximizes the

probability (it “seems very likely that...”). The second law is not a consequence of

something else, it has the status of an axiom of statistical mechanics.

There have been attempts to derive the second law from the microscopic laws of

physics. However this does not work because most microscopic laws of physics are

invariant under time-reversal: if one is shown a film of particles moving according to

microscopic laws then the same film shown backwards would also be consistent with

those laws.2 Therefore it is not possible to deduce a time-asymmetric statement such

as the second law purely from microscopic laws.

To see the problem, consider applying time-reversal to the probabilistic motivation

for the second law. Given a low entropy macrostate we can ask: where did it come

from? If we evolve backwards in time, then what is the most probable state of the

system at some earlier time? Well, “more probable”, i.e., “more typical” states should

correspond to macrostates of higher entropy. So at earlier time, the macrostate should

have had higher entropy. We’ve deduced that the low entropy state formed from an

2 Actually there are subatomic particles called kaons which do not possess this time-reversal sym-

metry. But these exotic particles are not present in most systems of interest in statistical physics.
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1.7 Temperature

initially higher entropy state, in violation of the second law! Note that this argument

is possible because of the time-reversal symmetry of the microscopic laws, which means

there is nothing in these laws which selects a preferred direction of time. Hence if the

probabilistic argument is valid in one direction of time then it is equally valid in the

opposite direction.

The resolution of this apparent paradox is that it neglects initial conditions: in the

real-world, low entropy states occur because someone has prepared them in a lab! So

we have to consider the entropy of the combined system plus its environment, which

includes the experimentalist. This experimentalist is an example of a low-entropy

phenomenon, namely life. Now one can ask what makes low entropy life possible.

The answer is that the Sun supplies us with energy in a low entropy form, namely

high energy photons, with the energy re-emitted by the Earth in a higher entropy

form, namely a greater number of low-energy photons. This makes the total entropy

increase, even accounting for life on Earth. Now one can ask where did the Sun come

from etc. Tracing things back to earlier and earlier times, the ultimate reason that

the second law is true appears to originate in cosmology: the initial condition of the

Universe at the Big Bang was very special, i.e., very low entropy. The entropy of the

Universe has been increasing ever since.

1.7 Temperature

Let’s return to the discussion of two systems. We showed that, in equilbrium, the

energy of system 1 is overwhelmingly likely to be E1 = E∗1 where E∗1 is determined

by the condition (1.16). Hence equilibrium corresponds to equal values of ∂S/∂E for

the two systems. We therefore give this quantity a name: (inverse) temperature. In

general, the temperature of a system is defined by

1

T
=

(
∂S

∂E

)
V,N

(1.20)

where the subscript denotes that V,N are held fixed when we take the partial derivative.

We have shown that a necessary condition for equilibrium of a system composed

of two macroscopic bodies is that they have equal temperature:

T1 = T2 (1.21)

We’ll see later that this definition of T agrees with other standard definitions of tem-

perature (e.g. using properties of a dilute gas) provided one chooses the constant k

appropriately. The obvious choice would be k = 1, which would correspond to measur-

ing temperature in the same units used to measure energy (i.e. Joules). Unfortunately,
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1.8 Heat capacity

for historical reasons a different unit was chosen for temperature, namely the Kelvin.

Because of this, in order for our definition of T to agree with earlier definitions we must

take

k = 1.38× 10−23JK−1 (1.22)

This constant is called Boltzmann’s constant.

Assume that we prepare an initial state such that each system is individually in

equilibrium, but they are not in equilibrium with each other, so we have T1 6= T2. A

short time later, the systems will have exchanged energy and the entropy has changed

by

δS = δS1 + δS2 =
δE1

T1

+
δE2

T2

=

(
1

T1

− 1

T2

)
δE1 (1.23)

where the first equality follows from our definition of entropy in the non-equilibrium

situation, the second equality is the definition of temperature, and the final equality

uses the fact that the total energy is fixed so δE2 = −δE1. The second law of ther-

modynamics says that δS ≥ 0. Hence if T1 > T2 then δE1 < 0: energy flows from

the system with the higher temperature to the system with the lower temperature, i.e.,

from the “hotter” system to the “colder” system.

For a system with G ≈ cEαN we have from (1.13)

S ≈ k logG = kαN logE + const. (1.24)

and hence

kT =
E

αN
(1.25)

so kT is a measure of the energy per particle. We’ll sharpen this statement later.

1.8 Heat capacity

Our definition of temperature gives T = T (E, V,N). Inverting this relation gives

E = E(T, V,N), and we define the heat capacity at constant volume

CV =

(
∂E

∂T

)
V.N

(1.26)

This quantity is important because it can be measured experimentally by seeing how

much energy is required to achieve a certain change in temperature. For a system with

G ≈ cEαN we have CV ≈ αN , i.e., constant heat capacity proportional to the number

of particles. (Often one works with the specific heat capacity, which is the heat capacity

of an object divided by its mass, and hence independent of the number of particles.)
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1.9 Pressure and the first law

Note that if we write S = S(T, V,N) then we have(
∂S

∂T

)
V,N

=

(
∂S

∂E

)
V,N

(
∂E

∂T

)
V,N

=
CV
T

(1.27)

and hence

S(T2, V,N)− S(T1, V,N) =

∫ T2

T1

CV (T, V,N)

T
dT (1.28)

so by measuring the heat capacity as a function of temperature we can determine

entropy differences experimentally.

Finally note that (
∂2S

∂E2

)
V,N

=

(
∂(T−1)

∂E

)
V,N

= − 1

T 2CV
(1.29)

Now apply this to our two systems in equilibrium. Recall that the second law requires

that the non-equilbrium entropy S(E,E1) = S1(E1) +S2(E−E1) is maximized, which

led us to the condition E = E∗1 and hence T1 = T2. But E1 = E∗1 is only sufficient for

the entropy to be extremized, we did not check that the extremum was a maximum!

To do this we need to look at the second derivative:

∂2S

∂E2
1

=

(
∂2S1

∂E2
1

)
E1=E∗1

+

(
∂2S2

∂E2
2

)
E2=E−E∗1

= − 1

T 2
1CV 1

− 1

T 2
2CV 2

= − 1

T 2
1

(
1

CV 1

+
1

CV 2

)
(1.30)

For the extremum to be a maximum we need the RHS to be negative. This is indeed

the case when both systems have positive heat capacity.

Negative heat capacity would indicate instability in a homogeneous system. This is

because one could simply divide the system into two subsystems, each of which would

have negative heat capacity (by homogeneity). Then the above argument would imply

that the entropy is minimized when T1 = T2 so the second law predicts that fluctuations

would make the temperatures unequal so the system would become inhomogeneous.

However, this argument does not exclude stable inhomogeneous systems with negative

heat capacity. Black holes (and some stars) are examples of such systems!

1.9 Pressure and the first law

Consider again our two weakly coupled macroscopic systems, with each individual

system in equilibrium but the two systems not necessarily in equilibrium with each

other. Previously we assumed that they were able to exchange energy but the volume

of each was fixed. But now let’s assume that they can also exchange volume, with the

total volume V = V1 +V2 fixed. For example, we could have an insulating flask divided
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into two regions by a very thin moveable wall, with gas on each side of the wall. They

can exchange energy as before, but now they can also exchange volume. However, the

total number of particles N1, N2 of each system is fixed so we will not write N1, N2

below.

The non-equilibrium entropy of the combined system is

S(E,E1, V, V1) = S1(E1, V1) + S2(E − E1, V − V1) (1.31)

The second law of thermodynamics says that, in equilibrium, this must be maximized.

E and V are fixed so the equilibrium values (E∗1 , V
∗

1 ) of E1 and V1 are determined by

solving ∂S/∂E1 = 0 and ∂S/∂V1 = 0. We’ve already shown that the first equation

gives T1 = T2. The second equation gives(
∂S1

∂V1

)
E1=E∗1 ,V1=V ∗1

−
(
∂S2

∂V2

)
E2=E−E∗1 ,V2=V−V ∗1

= 0 (1.32)

We now define the pressure of a system as

p = T

(
∂S

∂V

)
E,N

(1.33)

Since T1 = T2, (1.32) implies that

p1 = p2 (1.34)

So, in equilibrium, two systems which can exchange energy and volume must have equal

temperatures and equal pressures. If T1 = T2 but p1 > p2 then an argument analogous

to that of equation (1.23) shows that the second law predicts that V1 will increase (so

V2 will decrease), in agreement with our intuitive idea of pressure.

For a single system with a fixed number N of particles, our definitions of temper-

ature and pressure can be rewritten as

dS =

(
∂S

∂E

)
V,N

dE +

(
∂S

∂V

)
E,N

dV =
1

T
dE +

p

T
dV (1.35)

so rearranging gives

dE = TdS − pdV (1.36)

This is called the fundamental thermodynamic relation. It relates two infinitesimally

nearby equilibrium states of a single system.

Let’s see whether our definition of p agrees with the usual definition as “force per

unit area”. Consider a system (say a gas) in an insulating box, one wall of which is a

moveable piston of area A. If we move the piston outwards through distance dx then the
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increase in volume of the system is dV = Adx. Assume that this can be done reversibly,

so that S remains constant. Then (1.36) gives dE = −pAdx. Let F be the force holding

the piston in place. Then the work done by the force is −Fdx (positive if we compress

the system), so the change in energy of the system in dE = −Fdx. Equating these

expressions gives F = pA, so indeed our definition of pressure reproduces the more

familiar definition as force per unit area. Furthermore, we see that the term −pdV in

the fundamental thermodynamic relation is the work done on the system.

Some words of caution: we made an assumption here, namely that the change was

reversible. Only for a reversible change can we identify −pdV with the work done on

the system. For such changes, we identify TdS as the “heat supplied” to the system,

which is zero for a reversible change of an isolated system, but can be non-zero for

a reversible change of a non-isolated system. As an example of a irreversible change,

consider a piston for which there is some friction. Then the work done to compress the

system will be greater than −pdV . Another example is the free expansion of a gas into

a vacuum, which we discussed above. Imagine the “vacuum” side of the container to

be very small compared to the side which originally contains the gas, so that we can

think of the final state as being infinitesimally close to the initial state. In this case,

we have dE = 0 and dV > 0 but no work is done on (or by) the gas. In this case the

fundamental thermodynamic relation implies TdS = pdV > 0 so the entropy increases,

confirming that this is an irreversible change.

For a general change between two equilibrium states of a not-necessarily-isolated

system we write

∆E = Q+W (1.37)

where W is the work done on the system and this equation defines Q, the heat supplied

to the system. This equation is the first law of thermodynamics: it simply expresses

conservation of energy. As it stands, this is simply a definition of Q but it has content

when combined with an additional statement: for any change of an isolated system no

heat is supplied, i.e., Q = 0. This is really just another definition, in this case defining

what we mean by an isolated system. In practice, a good approximation to an isolated

system is a system surrounded by insulating walls e.g. a system in a vacuum flask. For

an isolated system, the first law gives ∆E = W , i.e., the work done to transform one

equilibrium state to another is equal to the difference in energy between those states.

We’ll return to this later when we discuss classical thermodynamics.

For an infinitesimal change we write

dE = d̄Q+ d̄W (1.38)

The reason for writing d̄ is the following. On the LHS, E is a function of state, i.e.,

it is uniquely defined by the macrostate of the system. However, there is no function
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of state corresponding to “heat” or “work”: one cannot divide the total energy E of

a macrostate into a certain amount of “heat energy” and a certain amount of “work

energy”. In a change between two macrostates, the heat supplied and the work done

are well-defined quantities. But these quantities depend on how the change is achieved.

Different changes resulting in the same final state can involve different amounts of heat

supplied and work done. However, the change in E is independent of how the change

is achieved: it depends just on the initial and final states. Since the heat supplied d̄Q

is not the differential of any quantity we write d̄ instead of d, and similarly for d̄W .

From the discussion above we have

for a reversible change : d̄Q = TdS d̄W = −pdV (1.39)

Finally, let’s return to heat capacity. Using the fundamental thermodynamic rela-

tion we can rewrite our definition of the heat capacity at constant volume as

CV =

(
∂E

∂T

)
V,N

= T

(
∂S

∂T

)
V,N

(1.40)

on the RHS we see the “heat supplied” TdS (at least for reversible changes), explaining

the name “heat capacity”. Often it is more convenient to perform experiments at

constant pressure (e.g. atmospheric pressure) than at constant volume. This motivates

defining the heat capacity at constant pressure as

Cp = T

(
∂S

∂T

)
p,N

(1.41)

Note that this is not equal to (∂E/∂T )p,N . Usually Cp > CV . This is because at

fixed volume, all of the heat supplied to a system goes into raising its temperature.

However, at fixed pressure, most systems will expand when heat is supplied, so some of

the energy supplied goes into doing work during this expansion. Therefore more heat

has to be supplied to achieve a certain change in temperature.

1.10 Extensive and intensive variables

Consider a homogeneous system in equilibrium (e.g. a gas in a box). Let x be some

thermodynamic parameter of the system (e.g. energy, pressure etc.). Now imagine

dividing the system into two parts with a partition. Let x1 and x2 denote the values

of our thermodynamic parameter for the subsystems on each side of the partition.

Thermodynamic parameters can be classified according to how x is related to x1 and

x2. We say that x is extensive if x = x1 + x2 and that x is intensive if x = x1 = x2.

Extensive variables scale with the size of the system: if the system is increased

in size by a factor λ (e.g. by putting λ identical copies of the system next to each
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other) than an extensive variable increases by the same factor λ. However an intensive

variable is unchanged by such a scaling.

Examples of extensive variables are the volume V , energy E, and number of parti-

cles N of a system. Entropy S is also extensive: for example when we put two systems

together we found that the entropy of the combined system is S1 + S2. On the other

hand, the definition of temperature involves a derivative of one extensive quantity w.r.t.

another extensive quantity, which does not change if we scale the size of the system.

Hence temperature is an intensive variable. Similarly, pressure is intensive.

Heat capacities are extensive since they involve derivatives of an extensive quantity

w.r.t. an intensive one. However, specific heat capacities (heat capacity per unit mass)

are intensive.

1.11 The canonical ensemble

In the microcanonical ensemble we consider an isolated system. However most systems

are not isolated, they interact with their environment. We can deal with this by viewing

the environment as a second system. We now have the situation of two interacting

systems which we discussed previously, viewing the combination of the two systems as

a single system which we could study using the microcanonical ensemble. But we now

have an additional property, namely that the second system (the environment) is much

larger than the original system. This implies that a small fluctuation in its energy has

negligible effect on its temperature.

Let S be the system of interest. We refer to the second system as a heat reservoir

R. This is defined as a system so large compared to S that the energy of S is negligible

compared to the energy of R so exchanges of energy between S and R do not change

the temperature of R. We assume that the volumes of S and R, and the numbers of

particles in S and R, are all fixed.

We treat the combined system S + R using the microcanonical ensemble with

energy in the range (Etotal, Etotal + δE). Let |n〉 be the energy eigenstates of S, with

energy eigenvalues En. Assume that S is in the state |i〉. Then the energy of R is in

the range (Etotal − Ei, Etotal − Ei + δE). The number of microstates of R with this

property is

ΩR(Etotal − Ei) = exp
[
k−1SR(Etotal − Ei)

]
≈ exp

[
k−1SR(Etotal)− k−1

(
∂SR
∂E

)
V,N

Ei

]
= ek

−1SR(Etotal)e−βEi (1.42)
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in the second line we used Ei � Etotal and the assumption that the volume of R is

fixed. In the third line we used the definition of temperature and defined

β ≡ 1

kT
(1.43)

where T is the temperature of the heat reservoir R. Now, the total number of mi-

crostates of the combined system with energy in the range (Etotal, Etotal + δE) is

Ω(Etotal). In the microcanonical ensemble, all states with energy in this range have

equal probability 1/Ω(Etotal). It follows that the probability that S is in the state |i〉 is

pi =
ΩR(Etotal − Ei)

Ω(Etotal)
∝ e−βEi (1.44)

From
∑

i pi = 1 we can fix the constant of proportionality on the RHS, giving

pi =
e−βEi

Z
(1.45)

where

Z =
∑
i

e−βEi (1.46)

Equation (1.45) is a probability distribution on the microstates of S, called the Boltz-

mann distribution. All details of the reservoir have dropped out except for its temper-

ature T . Of course, in equilibrium, T is also the temperature of S. So we can regard

(1.45) as defining a new kind of ensemble for the system S in which its temperature,

rather than its energy, is held fixed. This is called the canonical ensemble.

Note that the probability decays exponentially for Ei � kT = 1/β so only states

with Ei
<∼ kT have a reasonable probability. As T → 0, only the ground state is

occupied.

The corresponding density operator is

ρ =
1

Z

∑
i

e−βEi |i〉〈i| = 1

Z
e−βH (1.47)

where H is the Hamiltonian of S. The final equality can be checked by calculating

matrix elements in the basis {|n〉}. Since ρ is a function of H, this is an equilibrium

(i.e. time-independent) mixed state.

The quantity Z defined by (1.46) is called the partition function. It has the following

important property. Consider two non-interacting systems, with energy levels E
(1)
n and

E
(2)
n respectively. Then the partition function for the combined system factorizes:

Z(β) =
∑
m,n

e−β(E
(1)
m +E

(2)
n ) =

∑
m

e−βE
(1)
m

∑
n

e−βE
(2)
n = Z1(β)Z2(β) (1.48)
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In the canonical ensemble, the temperature, rather than the energy, is held fixed. We

can calculate the mean value of the energy using the partition function

〈E〉 =
∑
i

piEi =
1

Z

∑
i

Eie
−βEi = −

(
∂

∂β
logZ

)
Ei

(1.49)

where the derivative w.r.t. β on the RHS is taken with the energy levels Ei held

fixed. These energy levels will depend on external parameters such as the volume V ,

magnetic field B etc, as well as the number of particles N . If V,N are the only external

parameters then we can write

Z = Z(T, V,N) 〈E〉 = −
(
∂

∂β
logZ

)
V,N

(1.50)

Note that ∂/∂β = −kT 2∂/∂T .

We can also calculate the variance of E, which measures how sharply peaked it is

around the mean, i.e., the typical size of fluctuations. The variance is

∆E2 ≡ 〈(E − 〈E〉)2〉 = 〈E2〉 − 〈E〉2 (1.51)

A simple calculation gives (exercise)

∆E2 =

(
∂2

∂β2
logZ

)
V,N

= −
(
∂〈E〉
∂β

)
V,N

= kT 2

(
∂〈E〉
∂T

)
V,N

= kT 2CV (1.52)

For a macroscopic system we expect 〈E〉 ∝ N and CV ∝ N and hence

∆E

〈E〉
∝ 1√

N
(1.53)

Hence fluctuations in E are negligible in the thermodynamic limit N → ∞. For a

macroscopic system N is enormous so we are always in the themodynamic limit and

fluctuations are negligible except in very special circumstances.3 This means that

the energy of our system is essentially fixed and so the canonical and microcanonical

ensembles should agree. Therefore we will often write E instead of 〈E〉 when discussing

the canonical ensemble.

1.12 Gibbs entropy

The Boltzmann definition of entropy applies to the microcanonical ensemble. How do

wo define entropy for a different ensemble such as the canonical ensemble?

3We will return to this when we discuss critical phenomena.
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Consider a system described by a density operator ρ with associated probabilities

pi. In the corresponding ensemble, we have W � 1 copies of the system and piW of

them are in the state |i〉. Now let’s apply the Boltzmann definition of entropy to the

entire ensemble. Define Ω to be the number of ways of choosing which copies of the

system are in which states. A simple calculation gives

Ω =
W !

Πi(piW )!
(1.54)

We now define the Boltzmann entropy of the entire ensemble as

Sensemble = k log Ω ≈ −kW
∑
i

pi log pi (1.55)

where the second equality follows from Stirling’s approximation (n! ≈
√

2πnn+1/2e−n

for n� 1) assuming W and Wpi are large (exercise). This suggests that we define the

entropy of a single copy of our system, in the mixed state described by ρ, as

S = −k
∑
i

pi log pi (1.56)

This is the Gibbs entropy of the mixed state. In terms of the density operator it can

be written4

S = −kTr(ρ log ρ) (1.57)

To see this, evaluate the trace in the basis of eigenstates of ρ.

Let’s calculate the Gibbs entropy of the microcanonical ensemble. This gives

Smicro(E, V,N) = −k
∑

i:E≤Ei≤E+δE

1

Ω
log

1

Ω
= k log Ω = SBoltzmann (1.58)

So the Gibbs entropy of the microcanonical ensemble is the Boltzmann entropy.

Now consider the canonical ensemble. The Gibbs entropy is

Scanonical(T, V,N) = −k
∑
i

pi (−βEi − logZ) = kβ〈E〉+ k logZ

= k

[
∂

∂T
(T logZ)

]
V,N

(1.59)

4 For general ρ this is also called the von Neumann entropy. Note that the equation of motion

(1.8) implies that this quantity is constant under time evolution so it does not obey the second law.

Therefore it does not solve the problem of defining thermodynamic entropy for non-equilibrium states.

The term “Gibbs entropy” usually refers only to equilibrium states, i.e. ones for which ρ commutes

with H.
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We’ve seen that, in the canonical ensemble, fluctuations in E are negligible for a macro-

scopic body and so we would expect Scanonical(T, V,N) to agree with Smicro(〈E〉, V,N).

This is indeed the case. To prove this, note that the contribution to the partition

function from states with energies in (E,E+ δE) is Ω(E)e−βE, assuming that δE � E

so that e−βE can be approximated as constant in this range. Summing over all such

energy ranges gives

Z ≈
∑
E

Ω(E)e−βE (1.60)

Inside the sum, we have a very rapidly increasing function Ω(E) multipled by a very

rapidly decreasing function e−βE and so the product will be negligible except close to

a very sharply defined maximum at some value E = E∗. Hence we can write

Z ≈ Ω(E∗)e
−βE∗ (1.61)

The value of E∗ is determined by

0 =

[
∂

∂E

(
Ω(E)e−βE

)]
E=E∗

⇒ 1

Ω(E∗)

(
∂Ω

∂E

)
E=E∗

= β (1.62)

Using (1.61) in (1.49) gives

〈E〉 = − ∂

∂β
(log Ω(E∗)− βE∗) = − 1

Ω(E∗)

(
∂Ω

∂E

)
E=E∗

∂E∗
∂β

+ β
∂E∗
∂β

+ E∗ (1.63)

From (1.62) the first and second terms cancel giving

〈E〉 = E∗ (1.64)

and hence from (1.61)

Z ≈ Ω(〈E〉)e−β〈E〉 (1.65)

Finally, plugging this into the RHS of the first line of (1.59) gives (reinstating V,N)

Scanonical(T, V,N) ≈ k log Ω(〈E〉, V,N) = SBoltzmann(〈E〉, V,N) (1.66)

So, for a macroscopic system, the entropy is the same in the canonical and microcanon-

ical ensembles.

The Gibbs entropy gives a different way of deriving the microcanonical and canoni-

cal ensembles. The idea is to maximize the Gibbs entropy subject to certain constraints.

In other words, we want to maximize SGibbs as a function of the probabilities pi. Ob-

viously we have to do this subject to the constraint∑
i

pi = 1 (1.67)
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To obtain the microcanonical ensemble we assume that all systems in the ensemble have

energy in the range (E,E+δE), so we extremize SGibbs over all probability distributions

such that pi = 0 unless Ei ∈ (E,E+δE). To impose the constraint (1.67) we introduce

a Lagrange multiplier α and extremize k−1SGibbs + α(
∑

i pi − 1) over the non-zero pi:

∂

∂pi

(
−
∑
j

pj log pj + α
∑
j

pj − α

)
= 0 ⇒ pi = eα−1 (1.68)

Hence all states with Ei ∈ (E,E + δE) are equally likely, so we’ve recovered is the

microcanonical ensemble.

To obtain the canonical ensemble we follow the same procedure but now, instead

of assuming that all systems in the ensemble have energy in the range (E,E + δE), we

assume that the average energy 〈E〉 takes some fixed value. This constraint introduces

a second Lagrange multipler β, which turns out to be the same quantity β (i.e. inverse

temperature) that is used to define the canonical ensemble. (See examples sheet 1.)

1.13 Free energy

Let’s investigate the consequences of the second law of thermodynamics for a system in

contact with a heat reservoir. We’ll want to consider non-equilibrium situations so we

will denote the temperature of the reservoir as T0 to distinguish it from the temperature

T of the system. Let S be the entropy of the system and S0 the entropy of the heat

reservoir. The second law applied to the combined system then states that in any

process, the entropy must increase:

∆(S + S0) ≥ 0 (1.69)

We are assuming that the reservoir has fixed volume and so the fundamental thermo-

dynamic relation applied to the reservoir gives dE0 = T0dS0 where E0 is the energy

of the reservoir. By definition, T0 cannot change so integrating this relation gives

∆E0 = T0∆S0 hence

∆S0 =
∆E0

T0

= −∆E

T0

(1.70)

where E is the energy of the system. In the final equality we’ve used the fact that the

total energy E + E0 is conserved. Substituting into (1.69) and rearranging gives

∆A ≤ 0 where A = E − T0S (1.71)

The quantity A is called the availability. We have shown that the availability must

decrease in any physical process of a system in contact with a heat reservoir. In

equilibrium the availability will be minimized.
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Consider a physical process in which the initial and final states of the system both

have temperature T = T0, but the temperature of the system may change during the

process. We then have ∆A = ∆F where F is the Helmholtz free energy:

F = E − TS (1.72)

So, for such a process, the second law implies ∆F ≤ 0 with F minimized in equilibrium.

The advantange of using F rather than A is that the definition of F refers only to the

system whereas A refers to both the system and the heat reservoir.

As an example of such a process, consider two substances which can undergo a

chemical reaction. Assume that a container of fixed volume contains the two substances

separated by a partition, with the container immersed in a heat reservoir. The partition

is removed, allowing the substances to react. During the reaction the temperature may

change but the system will eventually return to equilibrium with the heat reservoir. In

this process the free energy of the system will decrease.

In the definition of F , since we are working in the canonical ensemble we should

really write 〈E〉 but, as discussed above, fluctuations in E are expected to be negligible

so we simply write E. The entropy S in this definition is the Gibbs entropy of the

canonical ensemble, which, in equilibrium, we expect to be in very good agreement

with the Boltzmann entropy. Note that F is an extensive variable.

If we consider two infinitesimally nearby equilibrium states then the fundamental

thermodynamic relation dE = TdS − pdV implies

dF = dE − TdS − SdT = −SdT − pdV (1.73)

Note that the form of the RHS suggests that it is natural to regard F as a function of

T and V (and N which is not varied here), which is indeed what we do in the canonical

ensemble.

From the above relation we deduce

S = −
(
∂F

∂T

)
V,N

p = −
(
∂F

∂V

)
T,N

(1.74)

Another useful relation relates F to the partition function:

F = −kT logZ i.e. Z = e−βF (1.75)

To prove this, use ∂/∂β = kT 2∂/∂T to write

F = E − TS = −
(
∂ logZ

∂β

)
V,N

− TS = kT 2

(
∂ logZ

∂T

)
V,N

− kT
(
∂(T logZ)

∂T

)
V,N

= −kT logZ (1.76)
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1.14 The chemical potential

So far we have kept the total number of particles N fixed. But now let’s consider what

happens when N can vary. In analogy with how we defined temperature and pressure,

we can consider two weakly interacting macroscopic systems, with each individual sys-

tem in equilibrium, but with the two systems not necessarily in equilibrium with each

other. Previously we’ve considered the situation in which the two systems can exchange

energy and volume. Let’s now assume that they can also exchange particles. For ex-

ample, we could have an insulated flask divided into two regions by a thin moveable

and permeable wall so that particles can cross through the wall from one side to the

other. Now we have E = E1 + E2, V = V1 + V2 and N = N1 + N2 where E, V,N are

fixed but Ei, Vi and Ni can vary. What are the conditions for equilibrium?

The non-equilibrium entropy of the combined system is

S(E,E1, V,V1, N,N1) = S1(E1, V1, N1) + S2(E − E1, V − V1, N −N1) (1.77)

The second law of thermodynamics requires that this is maximized in equilibrium.

Hence the equilibrum values (E∗1 , V
∗

1 , N
∗
1 ) of (E1, V1, N1) are determined by solving

∂S/∂E1 = 0, ∂S/∂V1 = 0 and ∂S/∂N1 = 0 with fixed (E, V,N). The first two

equations reproduce the conditions T1 = T2 and p1 = p2 we’ve discussed previously

but now we have an additional condition for equilibrium:(
∂S1

∂N1

)
E1=E∗1 ,V1=V ∗1 ,N1=N∗1

−
(
∂S2

∂N2

)
E2=E−E∗1 ,V2=V−V ∗1 ,N2=N−N∗1

= 0 (1.78)

We define the chemical potential of a system as

µ = −T
(
∂S

∂N

)
E,V

(1.79)

so we see that equilibrium of our two systems requires

µ1 = µ2 (1.80)

so in equilibrium, the two systems must have equal temperatures, pressures and chem-

ical potentials. Note that chemical potential is an intensive quantity.

From the definitions of T , p and µ we have

dS =

(
∂S

∂E

)
V,N

dE +

(
∂S

∂V

)
E,N

dV +

(
∂S

∂N

)
E,V

dN =
1

T
dE +

p

T
dV − µ

T
dN (1.81)

and hence, when particle number can vary, the fundamental thermodynamic relation is

dE = TdS − pdV + µdN (1.82)
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As before, this equation relates two infinitesimally nearby equilibrium states of a single

system. From this equation we have an alternative formula for µ

µ =

(
∂E

∂N

)
S,V

(1.83)

Equation (1.82) also reveals the physical interpretation of µ: it is the increase in energy

if we add one particle to the system, at constant entropy and volume. In fact µ often

turns out to be negative. This is because adding a particle at fixed E tends to increase

S (there are more ways to share the energy around) and so to keep S fixed, E must

decrease.

So far we’ve used the microcanonical ensemble, in which (E, V,N) are the inde-

pendent variables. We can easily switch to the canonical ensemble, where (T, V,N) are

the independent variables. To do this, we use the Helmholtz free energy F = E − TS.

From (1.82) we have

dF = −SdT − pdV + µdN (1.84)

and hence

µ =

(
∂F

∂N

)
T,V

(1.85)

If a system contains several different types of particle then its macrostate can be

specified by (E, V,N1, N2, . . .) where Ni is the number of particles of type i. We can

then define a chemical potential for each species of particle as

µi = −T
(
∂S

∂Ni

)
E,V,Nj 6=i

(1.86)

It then follows as above that

dE = TdS − pdV +
∑
i

µidNi (1.87)

Equations (1.83) and (1.85) generalize in the obvious way.

This can be applied to situations in which the number of particles of each type

is not conserved e.g. when reactions between different particles are possible. For

example consider a system containing molecules of types A,B,C which can undergo

the chemical reaction A+B ↔ C. In this case, generic values for Ni will not correspond

to equilibrium, so when we write S as a function of (E, V,Ni) we are considering a non-

equilibrium entropy. To determine the values of Ni in equilibrium we need to maximize

this entropy over the allowed variations of the Ni. Not all variations are allowed: the

equation of the chemical reaction implies that dNA = dNB = −dNC . If we assume the
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system has constant E and V then maximizing S gives dS = dE = dV = 0 hence from

(1.87) we have
∑

i µidNi = 0, i.e., (µA + µB − µC)dNA = 0 for arbitrary dNA. Hence

the condition for equilibrium is µA + µB − µC = 0. If the system has constant T and

V then the same condition arises from minimizing F .

1.15 The grand canonical ensemble

Consider a system S in equilibrium with a heat and particle reservoir R: a much

larger system (e.g. “the environment” of a non-isolated system) with which it can

exchange energy and particles. Since R is very large, we can neglect fluctuations in the

temperature and chemical potential of R, and regard these quantities as fixed. We can

generalize the argument of section (1.11).

Treat the combined system S +R using the microcanonical ensemble with energy

in the range (Etotal, Etotal + δE) and total number of particles Ntotal. Label the energy

eigenstates of S as |n〉 and let the state |n〉 have energy En and contain Nn particles.

If S is in the state |i〉 then R contains Ntotal−Ni particles and has energy in the range

(Etotal−Ei, Etotal−Ei + δE). The number of microstates of R with these properties is

ΩR(Etotal − Ei, Ntotal −Ni) = exp
[
k−1SR(Etotal − Ei, Ntotal −Ni)

]
≈ exp

[
k−1SR(Etotal, Ntotal)− k−1

(
∂SR
∂E

)
V,N

Ei − k−1

(
∂SR
∂N

)
E,V

Ni

]
= ek

−1SR(Etotal,Ntotal)e−β(Ei−µNi) (1.88)

where in the second line we used Ei � Etotal and Ni � Ntotal and the assumption that

the volume of R is fixed. In the third line we used the definitions of temperature and

chemical potential. Let Ω(Etotal, Ntotal) be the total number of microstates of S + R
with Ntotal particles, and energy in the range (Etotal, Etotal +δE). In the microcanonical

ensemble these are all equally likely so it follows that the probability that S is in the

state |i〉 is

pi =
ΩR(Etotal − Ei, Ntotal −Ni)

Ω(Etotal, Ntotal)
∝ e−β(Ei−µNi) (1.89)

Using
∑

i pi = 1 we obtain

pi =
e−β(Ei−µNi)

Z
(1.90)

where

Z(T, V, µ) =
∑
i

e−β(Ei−µNi) (1.91)

The probability distribution (1.90) defines the grand canonical ensemble and is called

the Gibbs distribution, or grand canonical distribution. It describes a system in equi-
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librium with a heat and particle reservoir with temperature T and chemical potential

µ. Equation (1.91) defines the grand canonical partition function.

The density operator of the grand canonical ensemble is

ρ =
1

Z
∑
i

e−β(Ei−µNi)|i〉〈i| = 1

Z
e−β(H−µN ) (1.92)

where H is the Hamiltonian of S and N is the number operator of S, whose eigenvalue

gives the number of particles is a given state of S, i.e., N|n〉 = Nn|n〉. N and H

commute so ρ commutes with H, as expected in equilibrium.

We can derive formulae for the average energy, and average particle number, just

as in the canonical ensemble. Note that

〈E〉 − µ〈N〉 =
∑
i

(Ei − µNi)pi = −
(
∂ logZ

∂β

)
V,µ

(1.93)

and

〈N〉 =
∑
i

Nipi =
1

β

(
∂ logZ
∂µ

)
T,V

(1.94)

Plugging into the previous formula now determine 〈E〉. We can also calculate variances

e.g. a simple calculation gives

∆N2 ≡ 〈N2〉 − 〈N〉2 =
1

β2

(
∂2 logZ
∂µ2

)
T,V

=
1

β

(
∂〈N〉
∂µ

)
T,V

(1.95)

The RHS is extensive and usually proportional to 〈N〉 hence we have ∆N/〈N〉 ∝
1/
√
〈N〉 so we see that fluctuations in N are negligible in the thermodynamic limit

〈N〉 → ∞. The same is true for fluctuations in E. In the thermodynamic limit, the

microcanonical, canonical and grand canonical ensembles all agree because fluctuations

are negligible in this limit.

The (Gibbs) entropy of the grand canonical ensemble is

Sgrand = −k
∑
i

pi log pi = −k
∑
i

pi [−β(Ei − µNi)− logZ]

= kβ (〈E〉 − µ〈N〉) + k logZ = −kβ
(
∂ logZ
∂β

)
V,µ

+ k logZ

= k

[
∂

∂T
(T logZ)

]
V,µ

(1.96)

which has the same form as the expression for the entropy of the canonical ensemble.

In the thermodynamic limit, this will agree with the entropy of the microcanonical and

canonical ensembles.
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1.16 Grand canonical potential

In the canonical ensemble we defined the Helmholtz free energy F . In the grand

canonical ensemble we define the grand canonical potential

Φ = F − µN = E − TS − µN (1.97)

Strictly speaking we should write 〈E〉 and 〈N〉 in this expression and S refers to the

Gibbs entropy of the grand canonical ensemble. But, as emphasized above, the different

ensembles agree in the thermodynamic limit so we don’t usually bother to emphasize

these details.

The argument of section 1.13 can be generalized straightforwardly to show that, in

physical changes of a system in contact with a heat and particle reservoir, the quantity

E − T0S − µ0N must decrease, attaining a minimum in equilibrium. Here T0 and

µ0 are the (constant) temperature and chemical potential of the reservoir. Hence for

a physical process for which the initial and final temperatures of the system are the

same, and the initial and final chemical potentials of the system are the same (although

the temperature and chemical potential may vary during the process) we have ∆Φ ≤ 0,

with Φ minimized in equilbrium.

From the fundamental thermodynamic relation we obtain

dΦ = −SdT − pdV −Ndµ (1.98)

which indicates that it is most natural to regard Φ as a function of (T, V, µ), the

independent variables used to define the grand canonical ensemble. Hence Φ is a

natural object to work with when we use this ensemble.

From (1.93) and (1.96) we obtain

Φ = −
(
∂ logZ
∂β

)
V,µ

− kT
[
∂

∂T
(T logZ)

]
V,µ

= −kT logZ (1.99)

and hence

Z = e−βΦ (1.100)

so Z and Φ in the grand canonical ensemble are related in the same way as Z and F

in the canonical ensemble.

Φ is clearly an extensive quantity, so if we rescale the size of the system by a factor

λ we obtain

Φ(T, λV, µ) = λΦ(T, V, µ) (1.101)
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where we used the fact that V is extensive but T, µ are intensive. Now differentiate

this expression w.r.t. λ and set λ = 1. The result is

V

(
∂Φ

∂V

)
T,µ

(T, V, µ) = Φ(T, V, µ) (1.102)

But from (1.98) the LHS is −pV so we have the useful relation5

Φ(T, V, µ) = −p(T, µ)V (1.103)

where on the RHS we’ve used the fact that p is intensive so p(T, V, µ) must be inde-

pendent of V . Substituting this back into (1.98) gives the Gibbs-Duheim relation:

dp =
S

V
dT +

N

V
dµ (1.104)

1.17 Summary of ensembles

We have defined three different ensembles: microcanonical, canonical and grand canon-

ical. Their different properties are summarized in the table. The final column states

which quantity is extremized in equilibrium.

ensemble system
independent

variables

thermodynamic

potential

microcanonical isolated E, V,N S maximized

canonical
in contact with heat

reservoir
T, V,N F minimized

grand canonical
in contact with heat

and particle reservoir
T, V, µ Φ minimized

5 Note that this argument does not work for F (T, V,N): extensivity implies only that F must have

the form V f(T,N/V ) for some function f .
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