
Supplementary notes

Tensor components

Consider a basis {eµ} for Tp(M) and let {fµ} be the dual basis for T ?p (M).
In the abstract index notation we denote the µth basis vector as eaµ. Here µ
simply labels which basis vector we are talking about. Similarly the µth dual
basis covector as fµa . Let a vector Xa have components Xµ, i.e., Xa = Xµeaµ.
We then haveXµ = fµaX

a. Similarly a covector ηa has components ηµ = eaµηa.
And for a tensor we have

T µ1...µrν1...νs = fµ1a1 . . . f
µr
ar e

b1
ν1
. . . ebsνsT

a1...ar
b1...bs

Covariant derivative

A covariant derivative of a vector field Y a is tensor field of type (1, 1). In
the abstract index notation we should really write it as (∇Y )ab but it is
often written instead as ∇bY

a. To avoid confusion, remember that ∇bY
a ≡

(∇Y )ab. In a basis the components are

∇µY
ν ≡ (∇Y )νµ = ebµf

ν
a (∇Y )ab = f νa (∇µY )a

(recall ∇µ means ∇eµ). Now each component Y ν can be regarded as a func-
tion (possibly defined only on some region of the manifold). So we can also
calculate the covariant derivative of this function, which is the same as the
gradient of this function, i.e., a covector field (∇(Y ν))a. The µ component
of this covector field is

∇µ(Y ν) = eaµ(∇(Y ν))a = ∇µ(Y ν) = ∇µ(f νaY
a) 6= ∇µY

ν

Exterior derivative

We defined the exterior derivative in a coordinate basis as

(dX)µ1...µp+1 = (p+ 1)∂[µ1Xµ2...µp+1]

As an exercise I asked you to prove that these components transform in the
right way under a change of coordinate basis, so that this does indeed define
a (p+ 1)-form. Here’s the solution to this exercise. Use the above expression
to define the components of dX in a chart with coordinates xµ and introduce
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another chart with coordinates x
′µ. The components of X in the two charts

are related by

Xµ1...µp =
∂x
′ν1

∂xµ1
. . .

∂x
′νp

∂xµp
X ′ν1...νp (1)

hence

(dX)µ1...µp+1 = (p+ 1)
∂

∂x[µ1

(
∂x
′ν2

∂xµ2
. . .

∂x
′νp+1

∂xµp+1]
X ′ν2...νp+1

)

=

(
∂

∂x[µ1
X ′ν2...νp+1

)
∂x
′ν2

∂xµ2
. . .

∂x
′νp+1

∂xµp+1]

=

(
∂

∂x′ν1
X ′ν2...νp+1

)
∂x
′ν1

∂x[µ1
∂x
′ν2

∂xµ2
. . .

∂x
′νp+1

∂xµp+1]

=

(
∂

∂x′ν1
X ′ν2...νp+1

)
∂x
′[ν1

∂xµ1
∂x
′ν2

∂xµ2
. . .

∂x
′νp+1]

∂xµp+1

=

(
∂

∂x′[ν1
X ′ν2...νp+1]

)
∂x
′ν1

∂xµ1
∂x
′ν2

∂xµ2
. . .

∂x
′νp+1

∂xµp+1

= (dX)′ν1...νp+1

∂x
′ν1

∂xµ1
∂x
′ν2

∂xµ2
. . .

∂x
′νp+1

∂xµp+1

which is the tensor transformation law. The second equality uses the fact
that second partial derivatives are symmetric and hence drop out when we
antisymmetrize. The fourth equality uses the result that, for any tµν we have

tν1 [µ1 . . . t
νr
µr] = t[ν1µ1 . . . t

νr]
µr

(This same result is needed to verify that the RHS of (1) is antisymmetric,
or more generally that antisymmetrization is independent of the choice of
basis.) The proof of this result is (σ denotes a permutation of {1, 2, . . . , r})

tν1 [µ1 . . . t
νr
µr] =

1

r!

∑
σ

sign(σ)tν1µσ(1) . . . t
νr
µσ(r)

=
1

r!

∑
σ

sign(σ)tνσ−1(1)
µ1 . . . t

νσ−1(r)
µr

= t[ν1µ1 . . . t
νr]

µr

where the second equality just rearranges the order of the factors in the sum
and the final equality uses the fact that σ and σ−1 have the same sign, and
summing over σ is equivalent to summing over σ−1.
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